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Abstract—In sparse linear regression, the SLOPE estimator
generalizes LASSO by assigning magnitude-dependent regular-
izations to different coordinates of the estimate. In this paper,
we present an asymptotically exact characterization of the
performance of SLOPE in the high-dimensional regime where
the number of unknown parameters grows in proportion to the
number of observations. Our asymptotic characterization enables
us to derive optimal regularization sequences to either minimize
the MSE or to maximize the power in variable selection under
any given level of Type-I error. In both cases, we show that
the optimal design can be recast as certain infinite-dimensional
convex optimization problems, which have efficient and accurate
finite-dimensional approximations. Numerical simulations verify
our asymptotic predictions. They also demonstrate the superi-
ority of our optimal design over LASSO and a regularization
sequence previously proposed in the literature.

I. INTRODUCTION

In sparse linear regression, we seek to estimate a sparse

vector β ∈ R
p from

y = Aβ +w, (1)

where A ∈ R
n×p is the design matrix and w denotes

the observation noise. In this paper, we study the sorted `1
penalization estimator (SLOPE) [1] (see also [2], [3]). Given a

non-decreasing regularization sequence λ = [λ1, λ2, . . . , λp]
>

with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp, SLOPE estimates β by solving

the following optimization problem

β̂ = arg min
x

1

2
‖y −Ax‖22 +

p∑

i=1

λi|x|(i), (2)

where |x|(1) ≤ |x|(2) ≤ · · · ≤ |x|(p) is a reordering of the

absolute values |x1| , |x2| , . . . , |xp| in increasing order. In [1],

the regularization term Jλ(x)
def
=

∑p
i=1 λi|x|(i) is referred

to as the “sorted `1 norm” of x. The same regularizer was

independently developed in a different line of work [2]–[4],

where the motivation is to promote group selection in the

presence of correlated covariates.

The classical LASSO estimator is a special case of SLOPE.

It corresponds to using a constant regularization sequence, i.e.,

λ1 = λ2 = · · · = λp = λ. However, with more general

λ-sequences, SLOPE has the flexibility to penalize different

coordinates of the estimate according to their magnitudes. This

adaptivity endows SLOPE with some nice statistical properties

that are not possessed by LASSO. For example, it is shown

in [5], [6] that SLOPE achieves the minimax `2 estimation

rate with high probability. In terms of testing, the authors of

[1] show that SLOPE controls false discovery rate (FDR) for

orthogonal design matrices, which is not the case in LASSO

[7]. In addition, we note that the new regularizer Jλ(x) is

still a norm [1], [3]. Thus, the optimization problem associated

with SLOPE remains convex, and it can be efficiently solved

by using e.g., proximal gradient descent [1], [3].

In the aforementioned studies on analyzing SLOPE, the per-

formance of the estimator is given in terms of non-asymptotic

probabilistic bounds. Such bounds provide very limited in-

formation about how to optimally design the regularization

sequence λ in different settings, an important open question in

the literature. In this paper, we provide two main contributions:

1) We obtain a characterization of SLOPE in the asymptotic

regime: n, p → ∞ and n/p → δ. Compared with the

probabilistic bounds derived in previous work, our results

are asymptotically exact. Similar asymptotic analysis has

been done for LASSO [8] and many other regularized

linear regression problems [9]–[11], but the main techni-

cal challenge in analyzing SLOPE is the nonseparability

of Jλ(x): it cannot be written as a sum of component-

wise functions, i.e., Jλ(x) 6=
∑p

i=1 Ji(xi). In our work,

we overcome this challenge by showing that the proximal

operator of Jλ(x) is asymptotically separable.

2) Using our asymptotic characterization, we derive oracle

optimal λ in two settings: (1) the optimal regularization

sequence that minimizes the MSE E‖β̂ − β‖2; and (2)

the optimal sequence that achieves the highest possible

power in testing and variable selection under a given level

of Type-I error. In both cases, we show that the opti-

mal design can be recast as certain infinite-dimensional

convex optimization problems, which have efficient and

accurate finite-dimensional approximations.

A caveat of our optimal design is that it requires knowing

the limiting empirical measure of β (e.g., the sparsity level and

the distribution of its nonzero coefficients). For this reason, our

results are oracle optimal. It provides the first step towards

more practical optimal designs that are completely blind to β.

The rest of the paper is organized as follows. In Sec. II, we

first prove the asymptotic separability of the proximal operator

associated with Jλ(x). This property allows us to derive our

main asymptotic characterization of SLOPE, summarized as

Theorem 1. Based on this analysis, we present the optimal

design of the regularization sequence in Sec. III. Numerical

simulations verify our asymptotic characterizations. They also



demonstrate the superiority of our optimal design over LASSO

and a previous sequence design in the literature [5]. Due to

space constraints, we only state and illustrate the main results

in this paper, and leave the technical proofs to [12].

II. MAIN ASYMPTOTIC RESULTS

A. Technical Assumptions

There are four main objects in the description of our

model and algorithm: (1) the unknown sparse vector β; (2)

the design matrix A; (3) the noise vector w; and (4) the

regularization sequence λ. Since we study the asymptotic limit

(with p → ∞), we will consider a sequence of instances{
β(p), A(p), w(p), λ(p)

}
p∈N

with increasing dimensions p,

where β(p), λ(p) ∈ R
p, A(p) ∈ R

n×p and w(p) ∈ R
n. A

sequence of vectors x(p) ∈ R
p indexed by p is called a

converging sequence [8] if its empirical measure µp(x)
def
=

1
p

∑p
i=1 δ(x−x

(p)
i ) converges weakly to a probability measure

on R.

Our results are proved under the following assumptions:

(A.1) The number of observations grows in proportion to p:

n(p)/p→ δ ∈ (0,∞).
(A.2) The number of nonzero elements in β(p) grows in pro-

portion to p: k/p→ ρ ∈ (0, 1].
(A.3) The elements of A(p) are i.i.d. Gaussian distribution:

A
(p)
ij

i.i.d.
∼ N (0, 1

n
).

(A.4) {β(p)}p, {w(p)}p and {λ(p)}p are converging sequences.

The distribution functions of the limiting measures are

denoted by Fβ , Fw and Fλ, respectively. Moreover, we

have P(|λ| 6= 0) > 0, 1
p
‖β(p)‖2 → E[β2], 1

n
‖w(p)‖2 →

E[w2] = σ2
w and 1

p
‖λ(p)‖2 → E[λ2], where the probabil-

ity P(·) and the expectations E[·] are all computed with

respect to the limiting measures.

B. Asymptotics of the Proximal Operator of Jλ(x)

We start by studying the proximal operator associated with

the sorted `1 norm Jλ(x). Given y ∈ R
p and a regularization

sequence λ with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp, the proximal op-

erator is defined as the solution to the following optimization

problem:

Proxλ(y)
def
= arg min

x

1

2
‖y − x‖22 +

p∑

i=1

λi|x|(i), (3)

where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp.

In the case of LASSO, which corresponds to choosing λ1 =
λ2 = · · · = λp = λ, the proximal operator is easy to char-

acterize, as it is separable: [Proxλ(y)]i = sign(yi)max(|yi| −
λ, 0). In other words, the ith element of Proxλ(y) is solely

determined by yi. However, this separability property does

not hold for a general regularization sequence. When p is

finite, [Proxλ(y)]i depends not only on yi but also on other

elements of y. This coupling makes it much harder to analyze

the proximal operator. Fortunately, as we show below, when

p→∞, Proxλ(·) becomes asymptotically separable.
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Figure 1: (a) and (c): The histograms of two different λ-

sequences. (b) and (d): Sample points of (yi, [Proxλ(y)]i) (the

blue dots) compared against the limiting scalar functions (the

red curves). In this experiment, p = 1024.

Proposition 1: Let {y(p)}p and {λ(p)}p be two converging

sequences. Denote by Fy and Fλ the distribution functions of

their respective limiting measures. It holds that

lim
p→∞

1

p
‖Proxλ(y

(p))− η(y(p);Fy, Fλ)‖
2 → 0, (4)

where η(·;Fy, Fλ) is a scalar function that is determined by

Fy and Fλ, and η(y(p);Fy, Fλ) denotes a coordinate-wise

application of η(·;Fy, Fλ) on y(p).

The asymptotic separability of Proxλ(·) greatly facilitates

our asymptotic analysis and design of SLOPE, since it allows

us to reduce the original high-dimensional problem to an

equivalent one-dimensional problem. In what follows, we refer

to η(·;Fy, Fλ) as the limiting scalar function. In the appendix,

we briefly present a procedure for constructing η(·;Fy, Fλ)
from the limiting distribution functions Fy and Fλ. More

details can be found in [12].

Example 1: We compare the proximal operator Proxλ(y)
and the limiting scalar function η(y;Fy, Fλ), for two dif-

ferent λ-sequences shown in Fig. 1(a) and Fig. 1(c). The

red curves represent the limiting scalar functions obtained in

Proposition 1, whereas the blue circles are sample points of

(yi, [Proxλ(y)]i), with yi ∼ N (0, 1). For better visualization,

we randomly sample 3% of all (yi, [Proxλ(y)]i). It can be

seen that under a moderate dimension p = 1024, the proximal

operator can already be very accurately approximated by the

limiting scalar function.

C. Asymptotics of SLOPE

We are now ready to tackle the original optimization prob-

lem (2) associated with SLOPE. Our goal is to characterize the

joint empirical measure of (β̂, β): µp(β̂, β)
def
= 1

p

∑p
i=1 δ(β̂−

β̂i, β − βi). Indeed, many quantities of interest, such as the



MSE, type-I error, and FDR, are all functionals of this joint

empirical measure. A function ψ : R2 → R is called pseudo-

Lipschiz if |ψ(x)− ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)‖x− y‖2 for

all x, y ∈ R
2, where L is a positive constant. As in [8], we

will depict the limit of µp(β̂, β) through its action on pseudo-

Lipschiz functions.

Theorem 1: Assume (A.1) – (A.4) hold. For any pseudo-

Lipschiz function ψ, we have

lim
p→∞

1

p

p∑

i=1

ψ(β̂i, βi) = EB,Z [ψ(η(B + σZ; Fy, Fτλ), B)].

(5)

Here, B,Z are two independent random variables with B ∼
Fβ and Z ∼ N (0, 1); η(· ;Fy, Fτλ) is the limiting scalar func-

tion defined in Proposition 1, with Fy denoting the distribution

function of B + σZ and Fτλ denoting that of τλ for some

τ ≥ 0. Moreover, the scalar pair (σ, τ) is the unique solution

of the following equations:

σ2 = σ2
w +

1

δ
EB,Z [(η(B + σZ;Fy, Fτλ)−B)2] (6)

1 = τ
(
1−

1

δ
EB,Z [η

′(B + σZ;Fy, Fτλ)]
)
. (7)

Remark 1: Readers familiar with the asymptotic analysis

of LASSO will recognize that the forms of (6) and (7) look

identical to the results of LASSO obtained in [8], [11]. Indeed,

the first part of our proof directly applies the framework of an-

alyzing LASSO asymptotics using convex Gaussian min-max

theorem (CMGT) [10], [11]. Following [11], in the asymptotic

regime, the limiting measure of SLOPE is determined by the

following fixed point equations:

σ2 = σ2
w +

1

δ
lim
p→∞

1

p
‖Proxτλ(β + σZ)− β‖22 (8)

1 = τ

[
1−

1

δ
lim
p→∞

1

p
div(Proxτλ(β + σZ))

]
. (9)

Note that (8) and (9) are similar to (6) and (7), except that

they involve an R
p 7→ R

p proximal mapping: Proxτλ(β+σZ).
This is where Proposition 1 becomes useful. Using the asymp-

totic separability stated in that proposition, we can simplify (8)

and (9) to the scalar equations given in (6) and (7).

Theorem 1 essentially says that the joint empirical mea-

sure of (β̂, β) converges weakly to the law of (η(B +
σZ; Fy, Fτλ), B). This means that although the original prob-

lem (2) is high-dimensional, its asymptotic performance can be

succinctly captured by merely two scalars random variables.

In (5), if we let ψ(x, y) = (x− y)2, we obtain the asymptotic

MSE; by setting ψ(x, y) = 1y=0, x 6=0, we can recover the

type-I error. (Technically, 1y=0,x 6=0 is not pseudo-Lipschiz.

However, with additional justifications [1], one can show that

the conclusion is still correct.)

III. ORACLE OPTIMALITY OF SLOPE

In this section, we will study the optimal design of the

regularization sequence in SLOPE. Using the asymptotic char-

acterization presented in Sec. II, we will derive the optimal

limiting distribution Fλ to achieve the best estimation or

testing performance, given the oracle knowledge of Fβ .

A. Estimation with Minimum MSE

We first turn to the problem of finding the optimal λ-

sequence which minimizes the MSE of slope estimator. Since

we work in the asymptotic regime, it boils down to finding

the optimal distribution F ∗
λ such that

F ∗
λ = arg min

Fλ

lim
p→∞

1

p
‖β̂ − β‖22

= arg min
Fλ

EB,Z [(η(B + σZ;Fy, Fτλ)−B)2],

where B ∼ Fβ and the second equality follows from Theorem

1. From (6), this is further equivalent to finding Fλ to minimize

σ. However, directly searching over Fλ appears unwieldy,

since σ as a functional of Fλ is defined indirectly through

a nonlinear fixed point equation.

To simplify this problem, we first note that in (6) and (7),

the influence of Fλ on the solution (σ, τ) is only through the

limiting scalar function η. Therefore, instead of optimizing

over Fλ, we can find the optimal η∗ and then calculate the

corresponding F ∗
λ . The next question then becomes finding

all possible η that can be realized by some Fλ. In fact, we

can compute all possible η(·) associated with any converging

sequence
{
y(p)

}
p∈N

. Let

M
def
=

{
η(· ;Fy, Fλ) | ∃Fλ, Eλ

2 <∞, s.t. (4) holds
}

be the functional space that η belongs to. We have the

following result:

Proposition 2: For any converging sequence
{
y(p)

}
p∈N

, we

have

M ={η(y) | η(y) = −η(−y) and

0 ≤ η(y1)− η(y2) ≤ y1 − y2, ∀y1 ≥ y2}

and M is a convex set. Moreover, for any η ∈ M, the

corresponding distribution of the λ-sequence that yields η can

be represented by: λ ∼ |Y | − η(|Y |), where Y follows the

limiting distribution of
{
y(p)

}
p∈N

.

Remark 2: Proposition 2 is the key ingredient in our optimal

design. It shows that, with different choices of Fλ, we can

reach any nondecreasing and odd function that is Lipschitz

continuous with constant 1. Clearly, the soft-thresholding

functions associated with LASSO belongs to M, but the

set M is much richer. This is the essence of how SLOPE

generalizes LASSO: it allows for more degrees of freedom in

the regularization.

Due to Proposition 2, the optimization problem can be

simplified to that of finding the optimal η ∈ M such that

σ as obtained from (6) and (7) is minimized. Specifically, we

need to find

σmin
def
= inf {σ | ∃η ∈M, s.t. σ satisfies (6) and (7)} . (10)

Note that equations (6) and (7) involve two variables σ
and τ . It is not easy to handle them simultaneously. A

simplification we can make is to first set τ to 1 and find

the minimum σ such that the first equation (6) and the

inequality EB,Z [η
′(B + σZ;Fy, Fλ)] ≤ δ hold. Once we
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Figure 2: Comparison of MSEs obtained by three regulariza-

tion sequences: LASSO, BHq and the oracle optimal design,

under different SNR and sparsity levels. Here, p = 1024,

δ = 0.64. The red curves show the theoretical minimum MSE

that can be achieved by using the oracle optimal sequences.

get σmin, the corresponding τ can then be obtained via (7):

τ = (1− 1
δ
EB,Z [η

′(B+σminZ;Fy, Fτλ)])
−1 and λ is in turn

updated to be λ/τ . After this replacement, (6) and (7) will be

both satisfied. It is not difficult to show that this procedure

will lead to the same σmin as defined in (10). Therefore, the

remaining task is to solve, for every candidate σ, the following

problem:

min
η∈M

EB,Z [(η(B + σZ)−B)2] (11)

s.t. EB,Z [η
′(B + σZ)] ≤ δ.

Thanks to the convexity of M, we can show that (11)

is an infinite-dimensional convex optimization problem. In

practice, we can discretize over R to solve a finite-dimensional

approximation. If the minimum value of (11) is smaller than

δ(σ2 − σ2
w), then it can be shown that σmin < σ and vice

versa. Clearly, we only need to search for σmin over a compact

set: [σw,
√
σ2
w + 1

δ
E[B2], since from (6), we know σ2 ≥ σ2

w

and also σ2 = σ2
w + 1

δ
E[B2] when η ≡ 0. As a result, we

can do a binary search over [σw,
√
σ2
w + 1

δ
E[B2] to find the

minimum σ. Once we find the optimal η(y) and (σmin, τ),
we know from Proposition 2 that the corresponding λ can be

represented as: λ ∼ |Y |−η(|Y |)
τ

, with Y ∼ B + σminZ.

In Fig. 2, we compare the MSEs achieved by our optimal

design with those obtained by LASSO and the BHq sequences

proposed [5], at different SNR and sparsity levels. For fair

comparison, we optimize the parameters of the BHq and

LASSO sequences. It can be seen from the figure that the

empirical minimum MSEs match well with theoretical ones.

We observe from Fig. 2a that, under low SNRs, the BHq

sequence can lead to very similar performance as the oracle

optimal design. However, at higher SNR levels, the optimal

design outperforms the BHq sequence, while it gets close to

LASSO. To unravel the underlying reason for this, we plot in

Fig. 3 the distributions of the λ-sequences associated with the

optimal design and the BHq design, respectively. It turns out

that, in the low SNR case, the optimal design and BHq have

similar distributions; at higher SNRs, the distribution of the
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Figure 3: Comparison of distributions of two regularization

sequences in Fig. 2a: (a)-(b): SNR = 1, (c)-(d): SNR = 10.

optimal design is close to a delta-like distribution similar to

LASSO.

Note that for small sparsity-level ρ, LASSO can outperform

BHq and achieve performance close to that of the optimal

sequence, but it is prone to higher bias when ρ grows. From

Fig. 2b, we can find that LASSO’s performance degrades

much faster than the other two as ρ increases, This is be-

cause LASSO’s penalization is not adaptive to the underlying

sparsity levels [5].

B. Multiple Testing with Maximum Power

Next we consider using SLOPE for variable selection. For

a given level of type-I error, we want to find the optimal

regularization sequence to achieve the highest possible power.

As we have shown in the last section, in the asymptotic

region, this is equivalent to optimizing over η ∈ M. Let

ythresh = supy≥0 {y | η(y) = 0}. It follows from Theorem

1 that, in order to ensure Ptype-I = α, we need to have
ythresh

σ
= Φ−1(1 − α

2 ), where Φ(·) is the CDF of the standard

normal distribution. Similarly, we can compute the power of

the test as P(|β
σ
+ Z| ≥ Φ−1(1 − α

2 )). It can be shown

that for any fixed β, P(|β
σ

+ Z| ≥ Φ−1(1 − α
2 )) is a

nonincreasing function of σ. Thus, under a given type-I error

rate α, maximizing the power is equivalent to minimizing σ.

Similar to the procedure described in Sec. III-A, we can

traverse through a bounded set of σ to find σmin. The dif-

ference here is that we need to enforce additional constraints

that guarantee Ptype-I = α. We omit further details, which can

be found in [12]. In Fig.4, we compare the FDR curve of the

optimal design with that of the BHq sequence. We verify that

the optimal design indeed dominates the BHq sequence and

that the empirical FDR curve matches well with theoretical

prediction.



0.5 0.6 0.7 0.8 0.9 1

0.4

0.6

0.8

Power

FDR

 

 

Min FDR

Optimal

BHq

Figure 4: Hypothesis testing using oracle optimal and BHq

sequences. Here, p = 1024, βi
i.i.d.
∼ (1−ρ)δ(0)+ρN (µ0, σ

2
0)

with ρ = 0.25, µ0 = 2.125 and σ0 = 0, wi
i.i.d.
∼ N (0, σ2)

with σ = 0.25. The results are average over 100 realizations.

APPENDIX

In this appendix, we briefly describe the procedure for

constructing the limiting scalar function η(·;Fy, Fλ) in Propo-

sition 1. The procedure, as summarized in Algorithm 1, can

be viewed as the asymptotic limit of a fast algorithm proposed

in [1], [2] for solving (3). Here, λ(y) can be intuitively

understood as a function that assigns each y a regularization

strength λ and G(y) just thresholds y using the assigned λ.

This is exactly in the same spirit of magnitude-dependent

regularization applied in SLOPE. The WHILE LOOP in Step

2-14 is essentially an adjustment of G(y) obtained in Step 1:

within certain intervals [yL, yR], the original G(y) is replaced

by E (G(y) | y ∈ [yL, yR]). The WHILE LOOP ends until G(y)
is nondecreasing.

For illustrations, we consider the simplest scenario when

FY is continuous and when G(y) as obtained in Step 1 is

nondecreasing. In this case, WHILE LOOP in Step 2-14 will not

be executed. It follows that

η(y;Fy, Fλ) = sign(y)max{0, |y| − F−1
λ [F|y|(|y|)]}.

Clearly, this reduces to the soft-thresholding function associate

with LASSO, with the regularization parameter given by

F−1
λ [F|y|(|y|)] ≡ λ. Illustrations of several more complicated

examples can be found in [12].
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