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Abstract. We present an improved version of our original cosmological model to explain the
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other mass scale. Like the original, this phenomenological approach is based on an effective
quantum gravitational action, but now depends on the original nonlocal dimensionless scalar
X = −1R only through Y = −1gμνX,μX,ν . Both X and Y are quiescent during the
radiation-dominated (R = 0) era, both only grow logarithmically during matter dominance,
and neither affects the propagation of gravitational radiation. However, while X has the
same sign for gravitationally bound systems as for cosmology, we show that the sign of Y
differs for the two cases: it is positive for cosmology and negative for strongly gravitationally
bound systems. We can therefore enforce the ΛCDM expansion history by making a suitable
choice of the nonlocal distortion function f(Y ) for Y > 0, while ensuring that there is no
change in the heavily constrained solar system phenomenology simply by making f vanish
for Y < 0 without discontinuity. The required f(Y > 0) is determined numerically to have a
strikingly simple exponential form.
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1 Introduction

This work is a continuation, and shares the basis and philosophy, of our original cosmological
model [1–3]. The present cosmological acceleration phase of the universe [4] is a major,
if originally unexpected, feature of late time expansion. An explanation not invoking new
physics or fine tuning is clearly to be preferred; ours was a nonlocal one, based on a function
of the dimensionless scalar X[g] = −1R. The argument was that it represents current
effects of the necessarily abundant infrared gravitons in the early universe [5, 6].

Extensive studies have been made of the theory’s cosmological perturbations [7–12].
There have also been studies of future cosmological evolution [13], solar system con-
straints [14], and the generation of gravitational radiation [15].1

Our original model assumed that X[g] had opposite signs in the cosmological (−) and
the (smaller scale) gravitationally bound (+) contexts. That would prevent — unwanted —
effects in the latter. However, it was recently pointed out that X[g] is negative definite [24].
We overcome this difficulty by a simple modification: replacing X[g] by the (equally nonlocal)
Y [g] ≡ −1[gµν∂µX∂νX], removes the problem without losing the explanation of accelerated
expansion: while both X[g] and Y [g] vanish during radiation domination (R = 0), and only
grow slowly thereafter, Y [g] does have opposite signs in strongly bound matter (Y < 0) and
in the large (Y > 0); so we merely define the nonlocal distortion function f(Y ) to vanish for
Y < 0, and have the proper details for Y > 0, thus restoring the desired behavior throughout.2

An additional, highly desirable property of both the original and the new theories is that
there is no change in the constrained propagation of gravitational radiation [25].

1A similar model has also been proposed which is based on the dimensionful nonlocal scalar −2R [16, 17].
Many studies have been made of the phenomenology of this model [18–23].

2It turns out that enforcing the ΛCDM requires f(Y )→ Y 2 ln(Y ) as Y approaches zero from above. This
means that making f(Y < 0) = 0 leads to no discontinuity in either f(Y ) or f ′(Y ) at Y = 0.
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Section 2 defines our model and discusses how it might emerge from fundamental con-
siderations. It also explains why the new nonlocal scalar Y [g] changes sign from cosmological
to gravitationally bound systems. Section 3 gives an explicit numerical determination of
the nonlocal distortion function f(Y ) to reproduce the ΛCDM expansion history without a
cosmological constant. It also derives an amazingly simple exponential fit to f(Y ). Section 4
presents conclusions.

2 The new model

In this section, we define and discuss the improved model. The original problem and its
remedy are explained. We close with comments on its possible origin in a more fundamental
setting.

2.1 Defining the new model

Our two nonlocal scalars are

X[g] ≡ 1
R , Y [g] ≡ 1 (

gµν∂µX[g]∂νX[g]
)

; ≡ 1√
−g

∂µ

(√
−ggµν∂ν

)
, (2.1)

where −1 is defined by retarded boundary conditions which require that X[g](x), Y [g](x)
and their first derivatives all vanish on the initial value surface. Our nonlocal modification
is defined by the distortion function f(Y ),

Lnonlocal ≡
1

16πG
R
[
1 + f

(
Y [g]

)]√
−g . (2.2)

Just as the original model could be localized through the introduction of two auxiliary scalar
fields [26], the new model requires four auxiliaries,3

Llocal ≡
√
−g

16πG

[
R
(

1 + U + f(Y )
)

+
(
∂µX∂νU + ∂µY ∂νV + V ∂µX∂νX

)
gµν

]
. (2.3)

It is important to bear in mind that the auxiliary scalars do not have arbitrary initial value
data, which would result in new degrees of freedom, half being ghosts [3, 27]. Instead, all
obey retarded boundary conditions, hence introduce no excitations.

The U , V Lagrange multipliers, whose variations lead to the equations which, with
retarded boundary conditions, define X[g] and Y [g],

16πG√
−g

δS

δU
= − X +R = 0 =⇒ X[g] =

1
R , (2.4)

16πG√
−g

δS

δV
= − Y + gµνX,µX,ν = 0 =⇒ Y [g] =

1
[
gµνX,µX,ν

]
. (2.5)

Variation with respect to X and Y leads to similar equations for U and V , which are also
solved with retarded boundary conditions,

16πG√
−g

δS

δX
= − U − 2Dµ(V DµX) = 0 =⇒ U [g] = − 2

Dµ(V DµX) , (2.6)

16πG√
−g

δS

δY
= − V +Rf ′(Y ) = 0 =⇒ V [g] =

1
Rf ′(Y ) . (2.7)

3We shall abuse the notation slightly by using the same symbols X and Y for auxiliary scalars in the
localized model (2.3) as for their retarded solutions (2.1).
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Note that all four auxiliary scalars propagate along the characteristic curves of the scalar
d‘Alembertian , so the sound speed should agree with the speed of light, alleviating the
problems which can occur in some modified gravity theories [28]. The gravitational field
equations are,(

Gµν + gµν −DµDν

)(
1 + U + f(Y )

)
+ ∂(µX∂ν)U + ∂(µY ∂ν)V

+ V ∂µX∂νX −
1

2
gµνg

ρσ
(
∂ρX∂σU+∂ρY ∂σV +V ∂ρX∂σX

)
= 8πGTµν ; (2.8)

here parenthesized indices are symmetrized and Tµν is the matter stress-energy tensor without
dark energy.

2.2 The signs of Y

To determine the sign of Y in regions of bound matter, we assume the metric there to be
(quasi-) static, i.e., time-independent and diagonal; it could more generally be stationary,
g0i 6= 0, but the same considerations should still hold with a bit more matrix detail. Then
gµνX,µX,ν → gijX,iX,j is positive in our (−+ ++) convention. We argue next that, instead,
−1 is negative so that there Y < 0 also. Recall that in flat space, −1 acting on a

time independent source reduces, upon time-integration, to ∇−2. But our has the flat-
space −∂2

t form, namely −g00[−g00∇2 − ∂2
t ], except for the overall −g00 and the (irrelevant)

metric dependence of our ∇2; there is also a (strictly positive) factor
√
−g =

√
3g
√
−g00

upstairs. Thus, after time integration, our net inverse Laplacian is 1
∇2 (since g00g00 = 1), a

negative quantity when operating on the positive gijX,iX,j . In section 3 we show, by explicit
computation, that Y is positive in the purely time dependent cosmological region.

Another, global, way of understanding the signs of both X and Y is by taking the flat
space limit. The retarded Green’s function Gret[g](x;x′) which implements −1 reduces,
when gµν → ηµν , to the usual flat

Gret[η](x;x′) = −
δ(t−t′ − 1

c‖~x−~x
′‖)

4π‖~x−~x′‖
. (2.9)

This simple form makes it easy to derive explicit expressions for X and Y . For example, if
the Ricci scalar is a positive constant and the initial value surface is at t = 0,

R(x) =
1

`2
=⇒ X(x) = −c

2t2

2`2
, Y (x) = +

c4t4

12`4
. (2.10)

This situation in which the time dependence of X dominates is relevant to cosmology. On
the other hand, suppose the Ricci scalar is a positive constant within a sphere of radius `,
and we consider some time t much larger than either ` or ‖~x‖ ≡ r,

R(x) =
θ(`−‖~x‖)

`2
=⇒ X(x) = −1

3

[3

2
− r2

2`2

]
θ(`−r)− `

3r
θ(r−`) . (2.11)

The result for X is still negative definite, but the space derivatives dominate,

R(x) =
θ(`−‖~x‖)

`2
=⇒ gµν∂µX∂νX =

(∂X
∂r

)2
=

r2

9`4
θ(`−r) +

`2

9r4
θ(r−`) . (2.12)

That reverses the sign of Y from the cosmological case (2.10),

R(x) =
θ(`−‖~x‖)

`2
=⇒ Y (x) = − 1

18

[3

2
− r4

10`4

]
θ(`−r)− 1

18

[12`

5r
− `

2

r2

]
θ(r−`) . (2.13)
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The arguments we have given for Y < 0 are based on ignoring time derivatives of X[g],
and should apply to systems which are strongly gravitationally bound. This should certainly
be valid for the solar system, and even for the formation of large scale structure because
peculiar velocities are expected to be small. However, around denser and/or warmer objects
it may not be valid to ignore time derivatives of X, and this may modify the gravitational
forces in these systems. This may perhaps turn out to be a critical test of our model.

2.3 Unwanted homogeneous solutions

For us the key insight of [24] was that X[g] is negative definite. However, it is worth com-
menting on the additional argument by those authors that matching with the cosmological
solution results in a small time-dependent homogeneous contribution to X[g] inside gravita-
tionally bound systems, extending over Megaparsec distances and even into strongly bound
regions such as the solar system. This would induce a small time dependence in the effective
Newton constant, which violates the constraints from lunar laser ranging.

The effective Newton constant in our model is G× [1 +U + f(Y )] and it is obvious that
the same argument does not necessarily apply to either Y [g] or U [g] because they are sourced
differently from X[g]. On a deeper level, we question the plausibility of time-dependent homo-
geneous solutions carrying cosmological time dependence deep inside gravitationally bound
systems even for X[g]. In general relativity the various gravitational fields also possess time-
dependent homogeneous solutions, yet there is no leakage of cosmological time dependence
inside strongly gravitationally bound systems. The authors of [24] point out that they solved
the scalar problem in the background of precisely such gravitational fields and still found
time dependent solutions, but that is not realistic. The mechanism through which the grav-
itational fields of general relativity manage to avoid exciting time dependent homogeneous
solutions inside bound systems is feedback at the time the structure forms. Structures will
form differently in our model than in general relativity, and this will lead to feedback which
involves the auxiliary scalars as well as the gravitational fields. We think it likely that this
feedback will prevent the excitation of unwanted homogeneous solutions for our model in the
same way as it does in general relativity. However, this potential problem clearly deserves
further study.

2.4 Connection to fundamentals

We do not believe that nonlocality is fundamental; it is rather a conjecture for the most
cosmologically significant part of the quantum gravitational effective action. The underlying
idea [29] is that the problem of the cosmological constant [30, 31] may have no resolution:
general relativity really does have a large, positive cosmological constant, and this is what
started primordial inflation. However, accelerated expansion led to the production of a vast
ensemble of infrared gravitons [32], and the self-gravitation between these gravitons grew
without bound as more and more came into causal contact. This self-gravitation provides a
sort of quantum gravitational friction which slows inflation by an amount that eventually be-
comes nonperturbatively large. No one has yet devised a way of passing beyond perturbation
theory to derive the result but the natural supposition is that this quantum gravitational ef-
fect eventually screened the large bare cosmological constant and brought inflation to a close.

Because what is being cancelled is a constant, whereas the screening mechanism is
dynamical, depending on how many gravitons can see one another as the past light-cone opens
up, it is obvious that the persistence of perfect screening can only occur in one geometry. We
believe this “perfect” geometry is radiation domination, and that the transition to matter

– 4 –
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domination disrupts perfect screening, after which a small fraction of the original large bare
cosmological constant peeks out from under the blanket of infrared gravitons which had
previously completely screened it.

The key nonlocal ingredient in our model is the inverse scalar d‘Alembertian −1 which
can be roughly motivated [33, 34] by the secular growth factors that arise in explicit loop
corrections to gravitational radiation [35, 36] and to gravitational forces [37, 38] on de Sitter
background. For the rest, the Ricci scalar is the simplest curvature scalar upon which it might
act, and the combination in Y [g](x) seems to be the simplest form which both matches the
perturbative secular growth on de Sitter and also changes sign inside strongly gravitationally
bound systems. At this stage there is of course no way to derive the nonlocal distortion
function f(Y ), but simply accepting the model as a residual effect from the gravitational
screening of inflationary gravitons does motivate two of its features which would otherwise
seem parachuted in:

• There is an initial value surface upon which the initial conditions of −1 can be defined;
and

• There are modifications of gravity on large, but not small, distances without fine tuning
or an explicit Λ.

3 Enforcing the ΛCDM expansion history

In this section, we solve for the distortion function f(Y ) which supports the ΛCDM expansion
history without dark energy. We begin by specializing the model to cosmology, then describe
the procedure for numerically determining the required f(Y ). The section closes with a very
simple and accurate exponential fit to this function.

3.1 The cosmological sector

Cosmology’s geometry is well described by a scale factor a(t),

ds2 = −dt2 + a2(t)d~x·d~x , (3.1)

whose expansion is quantified by the Hubble and first slow roll parameters,

H ≡ ȧ

a
, ε ≡ − Ḣ

H2
. (3.2)

In this geometry the nonzero covariant derivative operators become,

−→ −
( d
dt

)2
− 3H

d

dt
, D0D0 −→

( d
dt

)2
, DiDj −→ gijH

d

dt
. (3.3)

The time-time component of the gravitational field equations (2.8) is,

3H
( d
dt

+H
)(

1 + U + f(Y )
)

+
1

2

(
ẊU̇ + Ẏ V̇ + Ẋ2

)
= 8πGρ , (3.4)

where ρ is the energy density without dark energy. The space-space component is gij times,

−
(
d2

dt2
+ 2H

d

dt
+ 2Ḣ + 3H2

)(
1 + U + f(Y )

)
+

1

2

(
ẊU̇ + Ẏ V̇ + Ẋ2

)
= 8πGp , (3.5)

– 5 –
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where p is the pressure, also without dark energy.
The best time variable is N ≡ ln(a0

a ), the number of e-foldings until the present. The
various differentials and derivatives then simplify,

dN = −Hdt , d

dt
= −H d

dN
,

d2

dt2
= H2

( d2

dN2
+ ε

d

dN

)
. (3.6)

We seek to determine the function f(Y ) to enforce the ΛCDM expansion history without a
cosmological constant. This means the Hubble parameter, energy density and pressure take
the forms,

H2 = H2
0

(
Ωre

4N + Ωme
3N + ΩΛ

)
≡ H2

0×H̃2 , (3.7)

8πGρ = 3H2
0

(
Ωre

4N + Ωme
3N
)
≡ H2

0×ρ̃ , (3.8)

8πGp = 3H2
0 ×

1

3
Ωre

4N ≡ H2
0×p̃ , (3.9)

where H0 is the current value of the Hubble parameter and Ωr, Ωm and ΩΛ = 1− Ωr − Ωm

are the ΛCDM fractions of the energy density in radiation, matter and vacuum energy.4 In
this notation the scalar equations are,[

H̃e−3NX ′
]′

= −12
(

1− 1

2
ε
)
H̃e−3N ,

[
H̃e−3NY ′

]′
= H̃e−3NX ′

2
, (3.10)[

H̃e−3NV ′
]′

= −12
(

1− 1

2
ε
)
H̃e−3Nf ′(Y ) , U ′ = −2X ′V , (3.11)

where a prime denotes differentiation with respect to the natural argument — Y for f(Y )
and N for H̃(N), X(N), Y (N), U(N) and V (N). Note that equations (3.10) give explicit
integral expressions for X ′(N) and Y ′(N),

X ′(N) =
e3N

H̃(N)

∫ ∞
N
dN ′

e−3N ′

H̃(N ′)

[
3Ωme

3N ′ + 12ΩΛ

]
, (3.12)

Y ′(N) = − e3N

H̃(N)

∫ ∞
N
dN ′ e−3N ′H̃(N ′)

[
X ′(N ′)

]2
. (3.13)

Figure 1 shows X(N) and Y (N) and their derivatives. Since X ′(N) and Y ′(N) have definite
signs here, both X and Y are monotonic, hence invertible.

3.2 The reconstruction procedure

The two gravitational field equations are,

−3(∂N − 1)
[
U + f(Y )

]
+

1

2

[
X ′U ′ + Y ′V ′ +X ′

2
]

= −3ΩΛ

H̃2
, (3.14)

−
(
∂2
N − (2− ε)∂N + 3− 2ε

)[
U + f(Y )

]
+

1

2

[
X ′U ′ + Y ′V ′ +X ′

2
]

=
3ΩΛ

H̃2
. (3.15)

As for the original model [2], the first step in constructing a nonlocal distortion function
which supports the ΛCDM expansion history is to take the difference of (3.14) and (3.15),

(∂N − 3 + ε)(∂N − 2)
[
U + f(Y )

]
= −6ΩΛ

H̃2
. (3.16)

4We use Ωm/Ωr ≡ 1 + zeq ' 3403, Ωm ' 0.3153 and ΩΛ ' 0.6847 [39].
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Figure 1. The left hand graphs show numerical simulations of X ′(N) and Y ′(N) as defined by (3.12)–
(3.13). The right hand graphs give their integrals.

This can be integrated to give exactly the same result as for the original model [2],

U + f(Y ) = −6ΩΛe
2N

∫ ∞
N
dN ′

eN
′

H̃(N ′)

∫ ∞
N ′
dN ′′

e−3N ′′

H̃(N ′′)
≡ g(N) . (3.17)

The next step is to derive a differential equation for the function,

G(N) ≡ Y ′(N)

X ′(N)
f ′
(
Y (N)

)
− g′(N)

X ′(N)
. (3.18)

Differentiating relation (3.17), using (3.11) and dividing by X ′(N) gives,

− 2V (N) +G(N) = 0 . (3.19)

Acting ∂2
N − (3− ε)∂N on (3.19) and using relation (3.11) produces,

(∂N − 3 + ε)∂NG+ 24
(

1− 1

2
ε
)X ′
Y ′
G = −24

(
1− 1

2
ε
) g′
Y ′

. (3.20)

The procedure from this point is clear: we numerically solve (3.20) for G(N), extract
∂Nf(Y ) = Y ′ × f ′(Y ) using relation (3.18), numerically integrate to recover f(Y ) as a
function of N , and finally exploit the one-to-one relation between Y and N to numerically
express f(Y ) as a function of Y .

3.3 Solution for f(Y )

The initial conditions at large N follow from exact results, derived in appendix A, by re-
taining only the leading dependence on ΩΛ. Because ΩΛ is irrelevant until late times, ex-
pressions (A.1)–(A.9) are accurate to three digits for N > 2. The functions we need for

– 7 –
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equation (3.20) can be usefully expanded in powers of the variable y ≡ (1 + zeq)e
−N ,

ε −→ +2− 1

2
y +

1

2
y2 − 1

2
y3 +O(y4) , (3.21)

X ′ −→ +
3

2
y − 5

4
y2 +

35

32
y3 − 63

64
y4 +O(y5) , (3.22)

Y ′ −→ −3

4
y2 +

33

32
y3 − 367

320
y4 +

4577

3840
y5 +O(y6) , (3.23)

g′ −→ ΩΛΩ3
r

Ω4
r

{
4

5
y4 − 11

14
y5 +

429

560
y6 − 142

192
y7 +O(y8)

}
. (3.24)

Because 1 + zeq ' 3403 ' exp[+8.132] is so large, these expansions are only accurate for
N > 10. Employing the expansions (3.21)–(3.24) allows us to factorize the large N limiting
form of the differential operator in equation (3.20),

F1(y)
d

dN

{
F2(y)

d

dN

[
F3(y)G

]}
= F4(y) , (3.25)

where the four factors are,

F1(y) =
1

y4

[
1+

3

8
y− 13

960
y2− 13

4608
y3 + . . .

]
, (3.26)

F2(y) = y7

[
1− 5

4
y+

1151

960
y2 − 6071

5760
y3 + . . .

]
, (3.27)

F3(y) =
1

y3

[
1+

7

8
y+

47

960
y2+

137

23040
y3 + . . .

]
, (3.28)

F4(y) =
ΩΛΩ3

r

Ω4
m

{
32

5
y3− 136

35
y4+

3869

1050
y5− 2587

720
y6 + . . .

}
. (3.29)

Expression (3.25) is a second order differential equation and possesses two homogeneous
solutions. However, only one of these falls off for large N ,

Gh(N) =
1

F3(y)
= y3 − 7

8
y4 +

43

60
y5 − 85

144
y6 +O(y7) . (3.30)

The large N limiting form of G(N) can be inferred from (3.25),

G(N) −→ ΩΛΩ3
r

Ω4
m

{
32

35
Gh(N) ln(y) +

5

14
y4 − 1247

4200
y5 +

71117

302400
y6 +O(y7)

}
. (3.31)

This provides the initial conditions to evolve (3.20) from finite N .
The expansion (3.31) fixes the small Y behavior of f(Y ),

f(Y ) =
ΩΛΩ3

r

Ω4
m

{
−128

105
Y 2 ln(Y ) +O(Y 2)

}
. (3.32)

This means that making f(Y ) vanish for all Y < 0 leads to no discontinuity in either f(Y )
or f ′(Y ) at Y = 0. Numerical evolution gives the result for general Y > 0, which is depicted
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Figure 2. The left hand graph shows a numerical simulation of f(Y ) as a function of the evolution
variable N . The right hand graph also gives f(Y ), but now as a function of its natural argument Y .
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Figure 3. The left hand graph shows that ln[f(Y )] is nearly a straight line. The right hand graph
compares the full numerical determination of f(Y ) (in solid, blue) to the resulting exponential fit (3.33)
(in dashed, yellow).

in figure 2. Figure 3 shows that f(Y ) is well fit by the strikingly simple form, duly matched
to (3.32) at small Y ,5

f(Y ) ' exp
[
1.1
(
Y − 16.7

)]
. (3.33)

4 Discussion

We have presented a simple variant of our original model [1] to explain the current phase
of cosmic acceleration without dark energy. Like its ancestor, the new model is based on
augmenting the Hilbert action by the addition of R times a function of a dimensionless,
nonlocal scalar; only the scalar has changed from X[g] = −1R to Y [g] = −1gµν∂µX∂νX.
Both X[g] and Y [g] are quiescent during radiation domination, and thereafter only grow
logarithmically, which provides a natural explanation for why the onset of acceleration is
delayed to late in cosmic history. Both scalars also vanish for gravitational radiation which
means that they do not affect the — tightly constrained — propagation velocity [25].

Because section 3 employed the parameter ΩΛ to make our model reproduce the ΛCDM
expansion history, one might question our claim of no fine tuning. However, it is best to view
fine tuning from the perspective of how precisely the parameters of the Lagrangian must be
adjusted to explain late time acceleration. Our model (2.2) amounts to replacing the standard

5Note that this form only pertains for positive Y somewhat greater than zero. We still require f(Y ) to
vanish as in (3.32) as Y → 0+, and to vanish for all Y ≤ 0.
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Figure 4. The left hand graph compares Y ′(N) (solid blue) with −X ′(N) (dashed yellow). The right
hand graph compares Y (N) (solid blue) with −X(N) (dashed yellow).

R term of general relativity by R+R× f(Y ), where Y [g] obeys (2.1). In this model nothing
needs to be done to delay the onset of acceleration until very late in cosmological history; that
happens naturally because Y [g] is sourced by R, which vanishes during radiation domination,
and because Y [g] only grows logarithmically after the transition to matter domination. Nor
are there any new scales; the function f(Y ) is dimensionless, as is Y [g] itself. As long as f(Y )
grows with Y there will be a phase of late time acceleration. Just how little the old model [1]
changes with variations of the nonlocal distortion function has already been explored [9] and
would not differ in the new model. Contrast this with the two local alternatives of general
relativity with a cosmological constant or a scalar quintessence model,

R −→ R− 2Λ , (4.1)

R −→ R− 1

2
∂µϕ∂νϕg

µν − V (ϕ) . (4.2)

In the first case (4.1) the dimensionful parameter Λ must be fine-tuned to make the dimen-
sionless product GΛ ' 10−122 vanish to 122 decimal places! A similar amount of fine tuning
must be imposed on the potential V (ϕ) of quintessence models (4.2). From this perspective,
our model is indeed a non-fine-tuned one!

Figure 4 shows that Y is close to −X for cosmology. This made it simple to determine
the nonlocal distortion function f(Y ) numerically in order to reproduce exactly the ΛCDM
expansion history without dark energy. That was done in section 3, with results shown on
figure 2. An unexpected consequence was the simple exponential approximation (3.33) for
f(Y ), whose accuracy can be seen from figure 3.

The new model differs from the original one in that Y (unlike X) changes sign from
cosmology (with Y > 0) to strongly gravitationally bound systems (with Y < 0). Because
cosmology only fixes f(Y ) for Y ≥ 0, with f(0) = 0, simply assuming f(Y ) = 0 for Y < 0
protects the model from changing the heavily constrained physics of the solar system. The
huge advantages of this model can be seen by comparison with F (R) theories of gravity, which
must invoke ever more exotic physics such as the chameleon mechanism [40] to evade solar
system constraints. Note also that the only stable choice of F (R) which exactly reproduces
the ΛCDM expansion history is F (R) = R− 2Λ [41].

Now that the nonlocal distortion function f(Y ) has been fixed the model is complete.
Because f(Y ) has been chosen to exactly reproduce the ΛCDM expansion history, with
no changes inside gravitationally bound systems, tests of the model must come from its
predictions for cosmological perturbations and the growth of structures. Stability is another
important constraint to study.
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Finally, we return to the presumed local sources of our model, the gravitons of primordial
inflation. Their loop effects can grow non-perturbatively strongly during the primordial
inflation era [36], and −1 does correctly capture this growth on de Sitter background, but it
is clearly a major unsolved problem to follow their temporal effects in any detail. We have no
explanation, other than simplicity and dimensionlessness, for the combination X = −1R,
nor can we justify the appearance of Y . It might, however, be worth noting that nonlocal
realizations of MOdified Newtonian Dynamics (MOND) [42–44] involve a similar nonlocal
scalar [45, 46]. This raises the hope that there is a master effective action describing the full
range of cosmic history from the build-up of gravitational back-reaction during inflation, and
giving rise to both the present model and to MOND as residual effects.

For now we can strictly only offer our phenomenological (but dimensionless) construc-
tion. Nevertheless, the presumed inflationary origin does provide two vital answers that
otherwise seem unnatural: the existence of an initial value surface from which one may
launch the initial conditions defining our inverse differential operators, i.e., the propagators,
and why the corrections only modify classical general relativity on cosmological, rather than
on the smaller (bound matter) scales, where no “improvement” is needed!
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A Exact expressions to leading order in ΩΛ

Expressions for X(N), Y (N) and g(N) simplify dramatically for large N when ΩΛ becomes
negligible relative to Ωme

3N and Ωre
4N . Setting ΩΛ = 0 and making the change of variable

y ≡ Ωm
Ωr
e−N in expression (3.12) reduces X ′(N) to an elementary function,

X ′(N) −→ 3

y
√

1+y

∫ y

0

y′dy′√
1+y′

=
2(z−1)(z+2)

z(z+1)
, (A.1)

where z ≡
√

1 + y. Integrating expression (A.1) gives,

X(N) −→ −2
(z−1

z+1

)
− 4 ln

(1

2
z+

1

2

)
. (A.2)

Setting ΩΛ = 0 in expression (3.13) similarly reduces Y ′(N) to an elementary function,

Y ′(N) −→ −1

y
√

1+y

∫ y

0
dy′
√

1+y′
[
X ′(N ′)

]2
, (A.3)

=
−8

z(z+1)

[
1

3

(
z2+z−11

)
+

2

z+1
+

4 ln(1
2z+ 1

2)

z−1

]
. (A.4)

Integrating (A.4) to get Y (N) produces a dilogarithm in addition to elementary functions,

Y (N) −→ 8

(z+1)2
− 112

3(z+1)
+
[16

3
− 32z

z2−1

]
ln
(1

2
z+

1

2

)
+

37

24

+ 8 ln2
(1

2
z+

1

2

)
+ 16Li2

(1

2
− 1

2
z
)
, (A.5)
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where

Li2(x) ≡ −
∫ x

0
dt

ln(1−t)
t

. (A.6)

The function g(N) actually vanishes with ΩΛ so its large N limit derives from preserving
the initial factor in (3.17),

g(N) −→ −6ΩΛΩ3
r

Ω4
my

2

∫ y

0

dy′√
1+y′

∫ y′

0
dy′′

y′′4√
1+y′′

, (A.7)

= −ΩΛΩ3
r

Ω4
m

(z−1)4

105

[
28z2 + 112z + 156 +

64

z+1
+

32

(z+1)2

]
. (A.8)

Differentiating this gives,

g′(N) −→ ΩΛΩ3
r

Ω4
m

(z−1)4

105

[
84z2 + 336z + 508 +

352

z
+

96

z(z+1)
+

96

z(z + 1)2

]
. (A.9)

All of these expressions are accurate to three digits for N > 2.
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