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1 Introduction

The Coulomb branches of 3d N’ = 4 gauge theories have long been an object of physical
and mathematical interest. Early physical studies [1, 2] led to the discovery of 3d mirror
symmetry [3-5], and related the Coulomb branch of ADE quiver gauge theories to mod-
uli spaces of monopoles and instantons [6, 7]. Unfortunately, non-perturbative corrections
make the Coulomb branch difficult to analyze directly in non-abelian gauge theory. (Calcu-
lations of instanton corrections in simple non-abelian theories were carried out in e.g. [8, 9],
but quickly became impractical.) This difficulty was recently circumvented in a surprising
confluence of physical [10-13] and mathematical [14-18] work, based on ideas from algebra,
representation theory, and topological quantum field theory.
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Figure 1. The quiver gauge theory 7Ty k, associated with a star quiver with k legs of length IV, has
gauge group (U(N) x [U(N —1) x...x U(1)]¥) /U(1), and hypermultiplet matter in a bifundamental
representation for each edge in the quiver.

In this paper, we will apply some of the recent physical and mathematical techniques
to study the Coulomb branch of star-shaped quiver (or simply “star quiver”) gauge theories
Tnx, shown in figure 1. This gives a new, concrete perspective on generators and rela-
tions for the Ty x Coulomb branch chiral rings, supplementing known physical results and
conjectures [19-27], as well as the recent geometric analysis in [28, 29]. We also explicitly
construct natural deformation quantizations of the chiral rings. !

The 3d theories Ty k first came to prominence due to their relation [31] to 4d N = 2
theories of Class S [11, 19]. Let Tn[Xox] denote the 4d theory of Class S defined by
compactifying the 6d (2,0) SCFT of type Ay_1 on a sphere with k maximal punctures,
and let Ty[Zox x S!] denote its further compactification to three dimensions, a so-called
“Sicilian” 3d N = 4 theory. It was argued by [31] that the star quiver theory Ty is the
3d mirror of Ty[Sox x S (in the limit of zero S? radius). This implies several relations
among moduli spaces:

e The Coulomb branch M¢ of Ty x is isomorphic to the Higgs branch M%}i of Tn[X0.x)
as a complex symplectic manifold. In particular, the rings of holomorphic functions
on the two moduli spaces (which are particular chiral rings of local operators in the
supersymmetric QFT’s) agree in every complex structure

C[M¢] ~ CIM3]. (1.1)

e As hyperkahler manifolds endowed with a Riemannian metric, M¢ and M}l}i will
generally differ. In particular, M depends on dimensionful parameters — the gauge
couplings of the 3d quiver gauge theory — while M‘}f does not. However, M should
be isomorphic to M‘}f in the infrared limit where all gauge couplings are sent to
infinity.

! Another set of examples combining the power of recent Coulomb-branch techniques appeared in [30],
wherein the authors studied balanced quivers of type A and D.



e Though not relevant for this paper, one also expects the Higgs branch of 7Ty k (which
is easy to identify from the quiver as the hyperkahler quotient of k nilpotent cones
in sI(N,C) by a diagonal SU(N) isometry) to correspond to a particular decompact-
ification limit of the Coulomb branch of Tx[Sgx x S!] (which is a type-A Hitchin
system on the k-punctured sphere [32]).

The 4d theories Tn[X0 k] — and in particular the “trinion” theory at k = 3, which
was simply called T in [19] — are principal building blocks in the gluing construction
of Class S theories. Their Higgs branches M}lf were conjecturally used to define a “2d
TQFT valued in holomorphic symplectic varieties” in [20], now fully constructed by [28]
and [29]. However, despite their prominent role, it has been relatively difficult to analyze
the Higgs branches of general theories Ty [Y¢ k] directly, because for N > 3 and k > 3 these
4d theories are non-Lagrangian.

Some of what’s known about the Higgs branches of Ty[%¢ k] includes their dimension

dime M3 = (kN +2)(N — 1), (1.2)
and the existence of an SU(N)¥ hyperkihler isometry. For low N and k, one has [19, 33, 34]
N=2k=3: M¥~C8
N=2k=4: M ~ {minimal nilpotent orbit of D4}, (1.3)
N =3k=3: M3 ~ {minimal nilpotent orbit of Fg},

and for N = 2,3 and general k > 3 the Higgs branches can obtained by a gluing proce-
dure [20, 34], as hyperkéahler reductions of products of (1.3). More generally, a putative set
of generators and (partial) relations for the chiral rings C[M%{] at k = 3 and any N > 3
were uncovered in a series of papers [21-26], nicely summarized in the review [27]. These
putative generators admit a natural generalization to any k > 3, N > 3.

One of our main motivations was to obtain new information about the structure of
the Higgs branches /\/lj%}i via a direct analysis of the corresponding Coulomb branches M¢
of Ty, for general N and k. The Hilbert series of the chiral ring C[M¢] ~ C[M¥] was
computed in [35] with this perspective in mind. However, one can now do much better,
producing actual ring elements and relations among them.

To achieve this, we will follow the “abelianization” approach of [12], which corresponds
to fixed-point localization in the equivariant (co)homology of [13, 15, 16]. The basic idea of
abelianization is to embed the Coulomb-branch chiral ring C[M ] of a non-abelian theory
into a much larger — but much simpler — abelian algebra A

ClMc] — A. (1.4)

In physical terms, A is the local Coulomb-branch chiral ring near a generic point on the
Coulomb branch, where the gauge group has been broken to its maximal torus. The
algebra A has extremely simple generators and relations. Moreover, it has a simple Poisson
structure, a simple deformation quantization, and a simple extension over twister space.
Thus, embedding C[M¢] < A immediately allows one to

o verify relations among elements of C[ M| (chiral ring relations)



e identify the Poisson structure on C[Mc], and its deformation quantization

e extend the algebra C[M¢] over twistor space, and thereby access the hyperkéhler
structure on M¢ .

In the initial work [12], the precise image of the embedding (1.4) was only identified in a
handful of examples; however, at least in principle, a complete combinatorial construction
of the image has since been described by Webster [18].

In the case of Ty k theories, we will identify the putative generators of C[M¢] proposed
by [21-25] (from a 4d Higgs-branch perspective) as elements of 4. We will show how to
explicitly verify and then quantize the conjectured relations among them.

An important insight in the derivation of C[M%] chiral-ring relations in [24] was that
various generators could be “diagonalized,” as tensors for the SU(N)¥ flavor symmetry. We
find that the abelian algebra A plays a surprisingly important role in this diagonalization.
In particular, the eigenvalues of the generators, which are complicated algebraic functions
on the actual moduli space Mg = M‘}f[i, turn out to be extremely simple monomials in the
algebra A. This allows the entire diagonalization procedure to be deformation-quantized.

From the perspective of 4d Higgs branches, the fact that the chiral ring C[M‘}f] admits
a deformation quantization may not be obvious. However, this extra structure is completely
natural (and physical) in 3d Coulomb branches. Indeed, in the recent mathematical/TQFT
constructions of Coulomb branches [12, 13, 15-18], one typically works with quantized
algebras from the very beginning. In physical terms, the Poisson structure in the chiral ring
of 3d N = 4 theories arises from topological descent in the Rozansky-Witten twist [36-38],
and quantization comes from turning on an Omega background [39, 40]. (See also [41, 42].
An analogous quantization arising from an Omega background in four dimensions is familiar
from [43-47].)

We note that when k = 1 or k = 2, the expected relation between the Coulomb
branch of Ty and the Higgs branch of Tn[Yox] breaks down. Neither the 3d nor the
4d theories are CFT’s in this case. Nevertheless, the Coulomb branch of Ty is still a
well-defined hyperkéahler manifold, in fact a smooth manifold. We will see explicitly that
the Coulomb-branch chiral rings of 7y k are consistent with

k=1: Me¢g~T*SL(N,C)//yN,

(1.5)
k=2: M¢g~T'SL(N,C),

where T*SL(N,C)//, 0 is the Kostant-Whittaker symplectic reduction of the cotangent
bundle. The spaces in (1.5) agree perfectly with those assigned to 1- and 2-punctured
spheres by the Moore-Tachikawa TQFT [20].2

One of our initial goals was to prove that the finite set of generators proposed by [21-
26] really do generate the entire chiral ring C[M¢] = C[M%!]. Unfortunately, this remains

2Taking some care with scaling limits, the spaces (1.5) can also be related to the Higgs branches of the
6d (2,0) theory compactified on one- or two-punctured spheres, even though they are not Higgs branches
of 4d CFT’s.



an open question. It appears that identifying a finite set of generators for the Coulomb-
branch chiral ring of a nonabelian 3d theory is a rather difficult problem in general. It
would be useful to develop methods to address this in the future.

1.1 Other connections and future directions

Our work is related to several other ideas that would be interesting to explore. For example:

1. In upcoming work [28], Ginzburg and Kazhdan propose a geometric definition for
the Higgs-branch chiral ring of 4d Tn[¥¢ k] theories. The proposal was shown in [29]
to agree with the mathematical structure of the Coulomb branch in 7y theories.
However, the proposed definition is not elementary: it involves the equivariant co-
homology of a certain perverse sheaf over the affine Grassmannian for SL(N,C). It
would be interesting to decipher how the relevant cohomology classes match the phys-
ically motivated generators and relations of C[M¢] discussed in [21-25] and in this

paper.

2. There are many expected relations among geometric structures on the Higgs and
Coulomb branches of 3d N = 4 theories — for example, relations among cohomology
rings as in Hikita’s conjecture [15, 48, 49], and symplectic duality of module categories
associated to the Higgs and Coulomb chiral rings [50, 51]. It could be interesting to
investigate the structure of these relations for star quivers.

3. The methods in this paper can be extended to 3d quiver gauge theories associated
to other punctured spheres in Class §: non-maximal punctures in type A, as well
as various punctures in type D. The 4d A = 2 theories obtained by gluing spheres
with more general punctures (and in more general types) participate in an intricate
web of dualities, cf. [19, 34, 52-55]; and our methods should allow a comparison of
4d Higgs branches across the dualities.

4. The deformation-quantization C.[M¢] of the Coulomb-branch algebras of star quiv-
ers, which as explained above is natural in 3d, should define the basic building blocks
for a quantized version of Moore-Tachikawa’s “TQFT valued in holomorphic sym-
plectic varieties” [20]. In particular, one should find a TQFT that assigns a quantum
algebra to any punctured 2d surface, with gluing implemented by quantum symplec-
tic reduction.

1.2 Organization

Section 2 is a brief review of known and conjectured relations in C[M¢] for the theories
TNk, as well as a summary of our main results in this paper, including an explicit presen-
tation of a set of “diagonalized” operators in the abelianized algebra A that are expected
to produce all relations in C[M¢]. We present the quantization of these operators and
their relations.

Section 3 reviews the general structure of Coulomb branch chiral rings in 3d N' = 4
gauge theories, and the algebraic techniques used to analyze them. (In appendix A we



connect to the mathematical approach of Braverman-Finkelberg-Nakajima.) Of particular
interest is the abelianized algebra A that contains the chiral ring, as in (1.4), and its
quantization A.. We also define a subalgebra W, C A that, due to Webster [18], helps us
characterize the image of the embedding (1.4).

We then consider some special families of 7y theories, building our way up to the
general case, working almost exclusively with quantum algebras.

Section 4 analyzes “small” star quivers with N = 2 and arbitrarily many legs. For
k = 3 legs we observe how the simple Coulomb branch T*C* ( = the familiar Higgs
branch of the T, trinion theory) is recovered. For all k we identify the moment maps for
the SU(2)* flavor symmetry and a collection of operators furnishing a k-fold fundamental
representation of SU(2)¥. The simultaneous diagonalization of the moment maps and
the k-fold fundamental, accessible via the quantum abelianized algebra A., results in a
dramatic simplification of expressions.

Section 5 considers the complementary family of linear quivers with k = 1 leg but with
N arbitrary. A new feature here is the appearance of antisymmetric tensors of the SU(N)
flavor symmetry. We find that the change of basis that diagonalizes the SU(N) moment
map vastly simplifies the antisymmetric tensors.

In section 6 we then generalize to arbitrary 7 x star quivers. Many properties of their
Coulomb branches may be inferred by combining the results of the previous two sections.
In particular, by working with diagonalized operators, relations among moment maps and
antisymmetric tensors are easy to determine from the one-legged k = 1 analysis.

We conclude with two short sections 7, 8 that connect our general results with some
important and well-studied examples. Namely, we explain how our characterization of
chiral rings for k = 1 and k = 2 quivers relates to the geometric spaces (1.5) (Kostant-
Whittaker reduction and the cotangent bundle of SL(N,C)); and for k = 3 we discuss the
generalizations we have found of chiral-ring relations in 4d A/ = 2 Ty trinion theories.

In the appendices, in addition to collecting various computations and interesting ex-
amples of quantum chiral-ring relations, we include a summary of the BFN construction
C:[Mc] [15, 16], from the perspective of physical TQFT.

2  Summary of results

Before delving into the algebraic analysis of 3d N/ = 4 Coulomb branches, we whet the
reader’s appetite with some results. We review known and conjectured relations in the
chiral rings of Ty theories for k = 3. Then we summarize the general structure found
in this paper for arbitrary k, including quantum generalizations of known relations, and
a handful of new relations that only appear upon quantization. It is believed that the
operators discussed below generate the entire chiral ring, though this has not been proven
(and we do not offer any additional proof that this is the case). It is also still unknown, in

general, whether the relations discussed below are complete.

2.1 k = 3, Ty theories

Much is known about the Coulomb-branch chiral rings of the three-legged 7y 3 quiver gauge
theories, due to their relation to the “trinion” theories T = Tn[¥o3] of Class S [21-27].



The quiver gauge theory Ty 3 has an SU(N)? flavor symmetry acting on the Coulomb
branch, which induces a holomorphic SL(N,C)3 action on the chiral ring C[M¢]. As
reviewed further below in section 3.6, this means that there must exist a triplet of complex
moment map operators in the chiral ring,

o € SI(N,C)*,  a=1,2,3. (2.1)

We denote the components of the moment maps as (ua)ij. Index considerations suggest
that the entire chiral ring is generated by the components of the moment maps as well as
a collection of operators

Qum e NOA DA D, QW eWD)e (WD) ®(WO)* r=12,...,N-1(2.2)

in the r-th antisymmetric tensor representations of SL(NV,C)? and their duals. We de-
note the components of () and Q") as Q(I;])K = QUa-irllingrllkrke] gnd QY])K =
Qliy..iv)[j1...jr][k1..ks]» TesDectively. (We often drop the ‘(r)” when the choice of represen-
tation is unambiguous.) The Q) and Q") are not independent, obeying

1 . . ek
m €i1...in€j1... N k1. . kN Q[ZTHHJN]UTHMJNH rtb] = Q[il~~~ir][j1~~jr][k1-~kr} ) (2'3)
or more succinctly ﬁ €IIETTERK Q(I;BI 'K ngj I_(T). Here € is the totally antisymmetric

tensor of SL(N, C), normalized so that €'V =¢j5 n = 1.

The chiral ring is also graded by charge under a U(1) subgroup of the SU(2) R-
symmetry acting on the Coulomb-branch. For a CFT, this R-charge coincides with di-
mension. The R-charges of the above generators are

1

el =1, [Qu]=1Q"] = (N =), (2.4)
The most important nontrivial relations among the generators are

Tr[(p1)"] = Tr[(p2)"] = Tr[(us)"] ~ n=2,...,N, (2.5)
(1) Q"7 = (p2)? Q™ = (us)*w Q¥ (2.6)

(1) Qi = (12)” jQijrre = (113)* £ Qi

and more generally
(Ml)hli’Q[il]iQ"'ir]JK _ (MQ)[jlj,Q][j/]jQ,,,jr]K _ (Mg)[klk,Q[J[k/]k;Q...kr],

(2.7)

(1)" 15, Quiyiz. i = (12)” 112 Qoo = (13)" 1y QL k] -

The first relation (2.5) says that all the Casimir operators built from the moment maps

are equal. This implies that at generic points on the Coulomb branch, where the moment

maps can be diagonalized, the eigenvalues of u1, po, and s will all coincide. It helps to be

somewhat explicit about this: at generic points on the Coulomb branch there should exist
three invertible matrices (S,)’; such that

Sapia S, = diag(my, ..., my) (2.8)

for all a = 1,2,3, where (my,...,my) is the common set of eigenvalues, satisfying



The second pair of relations (2.6) implies that at generic points on the Coulomb branch
all the tri-fundamental and tri-antifundamental ()’s can be diagonalized, by the same sim-
ilarity transformation that diagonalizes the moment maps. In other words

il k! q’ 7= j =k
(S1)"7(Sa2)! jo(S3)F Q"I = . (2.9)
0 otherwise,
and
_ i, _ -/ _ / ql ’L :j = k
Qi (S 1)7i(S5 1) (S5 g = { . (2.10)
0 otherwise,

for some “eigenvalues” ¢* and g;. Due to (2.7), the remaining Q> Q") operators can
be simultaneously diagonalized exactly the same way, with eigenvalues that we denote

q(IT) = q[il“'i’“] and qY) = iy..i]5 respectively. For example,

(S 3 (S1)72 31 (S2)V (51 (S2)72 111 (S3) 2 e (S3) P21y

« Qilawy _ J 4 il = L] = lkikal -
0 otherwise,

where [ij] = [kl] means these pairs of indices agree modulo the action of the symmet-
ric group.

From the diagonalized perspective, all the information in the chiral ring has been
repackaged in the eigenvalues m;, ¢, q; and the three similarity transformations S,. Re-
lations in this algebra, upon removing the diagonlization, lead to relations amongst the
operators fiq, Q), and Q(r) and if the algebra of eigenvalues is sufficiently simple then this
diagonalization could serve as a convenient avenue for finding chiral-ring relations. This
approach is discussed in detail in [24, 25] and will serve as a motivating principle in much
of our analysis for the more complex theories Ty k.

The remaining known chiral-ring relations may be found in [24-26]. They come in
two basic types, contractions that relate Q5 Qp i to a product of moment maps; and

r

equivalences among products of tri-fundamentals (Q(;))” and the higher anti-symmetric

powers (). The two simplest relations are

N—-1 N-—-{(-1

Qiiji’j’k— - ZCK Z N ten= 1 (Mg)jj/a (2.12)

where ¢y are coefficients of the characteristic polynomial P(z) =det(x1—pu,) = Zévzo coxN 7t
(due to (2.5), these are independent of the choice of a = 1, 2, or 3); and?
1

- Qi1j1k1 Qi2j2k2 ]
(N —1)!

IN_1IN—1kN_—
S QINTIINTUENTY G N1 €kika. k1K

= _Qijk(ﬂ(l))(ili’l (n1)3, - (MiV_Q)iN_l)i’NflEiliQ"'iN‘li :
. (2.13)

j172...JN—1J k1ko..kn_1k
(N — 1)| Qi1j1k1Qi2j2k2 ce QiNfleflkN—lejl’]Q INZ1) gz N =

(N+l)(N 2)

:(_1) ka( ) (11(:“1) . (#i\f 2) 711‘1\;,1)61’1’2 Ay gt

3These expressions agree with (2.8) and (2.9) in [24] upon substituting Q;jx — —Qijx-




A more general version of (2.12) appears in [25, appendix A]. A generalization of (2.13)
was discovered? by [26] for N = 4, and extended to all N in [27]: QUililkiQi2)i2lka] —
—%(ul)(ilillQ[”)ill][jlj?][klkﬂ and similarly for the antifundamentals. This can be written

more suggestively as

21 Qalinlkrgi2)ilka] — _ (i, i), QUi ellkika]
Q Q (1) 2% ) (2.14)
2 Qi 1 Iy Qi) = Quaig)gallbakal 0 ir (1) 55 -

In appendix D we provide a list of miscellaneous relations computed for small N,k
which include variants of (2.13) for different rank tensors as well as variants of (2.14) for
N # 4. We use these computations to predict relations of the very general form

rl Q(il[jl[k’l Qi2j2k2 o Qir)jr]kr} _ i(s(ili’l (Nl)izi’z o (Mq—l)ir)ilrQ[i’lié,..i’r}[jljg...jr}[hkg..,kr}
y . 1
T Qi [ ey Qingioks - - - Qi) jslke] = FQUi it jawwir ot ke der] O (i (H1) i - (7))
(2.15)

forany N and 1 <r < N.
Near generic points on the Coulomb branch where diagonalization is possible, it has
been conjectured [27] that all possible relations reduce to

1 . .

m 67;l~~.7:Nq[ZT+1'"1/N] = q[’bllr] g, (2163)
qq? g =g I = ma,) (2.16b)

1<n<m<r
@i Gin = Qi) ] (Min —Min) s (2.16¢)

1<n<m<r
q'q = H(mi —m;) (for any fixed i), (2.16d)

J#

where o = det(S1) det(S2) det(S3) is the product of determinants of the similarity matrices.
Typically it is assumed that det(S,) = 1, though we will find it convenient to keep the
determinants generic.

As mentioned in the introduction, the construction of the 3d Coulomb-branch chiral
ring C[M¢] will proceed by embedding the ring into an abelianized algebra A, which
is much larger but has canonical generators and relations (see section 3.4). Somewhat
miraculously, we will be able to find explicit similarity transformations S, whose entries
belong to A, and eigenvalues m;, ¢*, ¢; that are simple monomials in A.

2.2 Extending to general k, and quantizing

For k = 3 we will verify that there exist operators in the Coulomb-branch chiral ring
of Tns with all the expected properties and relations outlined above. More so, we will
extend the (putative) generators and relations to general k, and deformation-quantize

4This was found by studying 2d chiral algebras embedded in 4d trinion theories [56, 57], which generalize
the 4d Higgs-branch chiral ring in a different, extremely interesting way.



them. The key to extending the analysis to general k rests in implementing a uniform
diagonalization procedure.

Recall that the quantized Coulomb-branch chiral ring C.[M¢] of Ty is an associative
algebra. For general k, it has an SL(NN, C)¥ symmetry generated by taking commutators
with moment maps {u, 521.5 In analogy with k = 3 above, we also prove that there exist
operators Qf;j”lk and Qg) 5. inCe [M¢] that transform in the k-fold anti-symmetric tensor
representations and their duals,

Q(T) eNDNT®--- @ ANk

r=1,2,....,N—1. (2.17)
QM e (WD) @ (NO)* @ -+ @ (A"O)*

Generalizing the expectations from k = 3, we strongly suspect (but do not prove) that the
moment maps and the @), Q") are a complete set of generators.

Some of the basic relations among these operators are easy to guess and to verify,
even in the quantum setting. In particular, if we define e-shifted moment map operators
fia = pa — (N52e)1, the relations (2.5)-(2.7) become

Tr[(a1)"] = Tr[(a2)"] = ... = Tr(ak)"] n=1,...,N, (2.18)

(ﬂl)[i1,1i,Q[i'}il,z..il,rﬂszk _ (ﬂk)[ik,1i,QI1~~Ik71[i'}ik,Quik,r}

)

(2.19)

! !

(1) i1 Qs pir ) Ioedie = -+ = (k)" [irey @y Tae 1 [ )i 0wt r] -

Thus, in a suitable quantum sense, the “eigenvalues” of the u, are independent of the
choice of leg, and we may expect to diagonalize the moment maps and all the Q,), Q")
operators simultaneously.

We explicitly perform the diagonalization by constructing similarity transformations
Sa, one for each leg. The entries of the S, and their inverses S, 1 take values in the
abelianized quantum algebra A., which contains operators that exist at generic points of
the Coulomb branch. Applying the similarity transformations in the right order we obtain

SafiaS;t = diag(my, ..., my) (independent of a = 1,... k) (2.20)

with Y. m; = 0, as well as
(51)" 1 (82)"25, - . - (Sk) ey QU120 = 51,572, . §"%;q"
Qiraic (ST i (S 21y o (S = 0%4,8%, - 03

The eigenvalues m;, ¢° and ¢; are again elements of the abelianized operator algebra A..

(2.21)

All the higher antisymmetric tensors @,y and Q") get diagonalized in a similar way, with
eigenvalues gli1-irl, Qi ..iy] € Ae-

The eigenvalues m;, ¢', q; generate an especially simple quantum algebra. Commuta-
tion with the moment-map eigenvalues measures charges of the ¢ and g;,

, 1 1
[m,mj] =0, [mi, ¢’] = (6] — N>€q] 7 [mi, qj] = —(dij — N)ﬂ}j, (2.22)

5In the quantum setting, saying a symmetry is generated by the moment maps means that the in-

finitesimal action of a Lie algebra generator 17" on any operator O € C.[Mc] is given by the commutator
L[(T, pa), O]. As e — 0, this reduces to a Poisson bracket. See section 3 for more details.
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while products of fundamental ¢’s are related to higher tensor powers via

k—1
qilq’i2 . qir — (_1)T+1 |: H (mlm - min) :|q[lllr} ’ (223&)
1<n<m<r (mi” = My, — €>
_ m;, —m;,, + &)k
G iy - i = (—1)VDEHD) { I ( Ll )> ]qmmir] , (2.23D)
1<n<m<r tm in
In addition, we find
1 6¢1...iNq[iT+1“‘iN] kodd |
(N —=r)! { Ail...iNq[iT“'“iN} keven [ -7 (2.23¢)
k—1
, M — 1
¢'q;i = (—1)NH( ) g
2 m; — mj — &
’ ( - (2.23d)
aiq’ = (—1)N H Mi— My *e (for any fixed i),
oy m; — My
JFi
where Ay, i = —|€iis..in| 18 a fully symmetric N-index tensor, and we have also intro-
duced o = det Sy det Sy...det Sy = [H1§i<j§N(mi —m) K (my; —m; +e) gt gV,

which in our conventions is a nontrivial operator.%

Note that the set of relations (2.23) reduce to the classical expressions in (2.16) as
€ — 0, for k = 3. Moreover, they are consistent with the R-charge assignments

[1a) = [mi] = [e] = 1,
T T 1
Q] = law] = Q"] = [¢"] = Sk =2)r(N =), (2.24)
0] =0.
We also emphasize that the ¢’s do not commute with each other for generic k (though the ¢;

do commute amongst themselves when k = 1). Instead, their commutators are determined
by (2.23a) and (2.23b). For example,

B 26(mi2 — mil)k_l

[¢", ¢ = gl (2.25)

(mil - mi2)2 —¢&?

In principle, relations among the actual chiral-ring operators fiq, Q ), Q") could be
obtained by judiciously applying S, and S, ! to “un-diagonalize” the simple relations (2.23)
above. In practice, this is quite difficult to do — it is known to even be difficult for k = 3,
in the classical ¢ — 0 limit. Nevertheless, we do identify a handful of nontrivial un-
diagonalized relations.

5The element o is almost central in the algebra of eigenvalues. It may also be written as o =

wi [[oijen(me — m;)7%, where wy := [Licicjen(mi —my)(m; —m; + 5)]q1q2--~qN and w_ =

-k
(=) [H1§i<j§N(mi —mj +e¢)(m; — mz)} q1G2 - - - qn are both central, with wyw_ = 1.

11 -



For example, the quantum version of (2.12) for k = 3 is a straightforward generalization

N-1 N-I-1

Qiiji/j’k: (-~ Ce Z N e D) (N2) (2.26)

/=0 m=0

—_

We prove that this quantum relation holds in section 8. Similarly, the quantum version of
the k = 3, N = 4 relation (2.14) is obtained by replacing p1 with fi;:

31

21 QUilinlkr gyiz)ialke] — _ (i o (i ) Q[% in][j1j2] k1 k2]
. (2.27)

/

2! Qi sy Qia)solle) = Qi)™ 12 (A1) )
We find evidence that, for general N and r, the quantized version of (2.15) is given by
T!Q(h[jl[k’lQ’izjzkz o Qi,.)j,.]k7-] _ ié(ili/ (Ial)zz (i Lyir )irQ[igz‘;...i;][jm...j,.}[k»le...k,.}
N ies
(2.28)

Qi1 [k Qiggaks - - - Qin)jslkr] = TQpita...ar ]1j2...j7~}[k1k2...k7~}5i/1(i1(ﬁl)ié

Some further relations among the @’s and p’s for small N and k, generalizing the
products (2.13) to the quantum setting and to k # 3, are summarized in appendix D. As
a simple example, at N = 2 the relation between first and second-order antisymmetric
tensors (which are just products of Levi-Civita tensors when N = 2) un-diagonalizes to

- (7 Q)[“Q” pee k=1
u b2 (MQ)[Zl galks iz Jz]kz} =1 (462+52)5i1i2 hizekike k=3
(2.29)

where (f1Q)"%2% is the contraction of ji, with the corresponding index of Q%% (which
by (2.19) is independent of a), and the ¢;’s are as in (2.26). A natural generalization of
the conjecture in [27] to Ty k is that all relations stem from relations in this algebra of
eigenvalues, although we do not have a general proof that this is the case.

2.3 New quantum relations

Working in the quantized chiral ring also leads to some new identities whose classical limits
vanish. The simplest of these relate commutators of k-fold fundamental tensor operators
to higher tensor powers.

In appendix C.2 we prove that when k < 3 the commutators of fundamental tensors
are anti-symmetric under any exchange of indices”

[Qiliz...ik’ lejz...jk] _ _[leiZ---ik’ Qi1j2---jk] - = _[Qilil--jk7 lej?mik] , (2.30)

and similarly for (QU%2 ik QJliz-Jk) (Qivia..in> Qjrjo..ji)- When k = 3, this suggests a
very simple relation
[Qi1j1k1’ Qizjzk’z] _ gQ[hiz][jljz}[/ﬁkz] (2.31)

"This relation does not hold in such a simple form when k > 3. See appendix C.2 for a counterexample.
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between tri-fundamental and tri-antisymmetric-tensor operators. We have verified (2.31)
by direct computation for N < 4. In the ¢ — 0 limit, (2.31) clearly reduces to a Poisson
bracket {Qi1j1k1’Qi2j2k‘2} — Q[i1i2][j1j2][k1k2]'

For higher-rank tensors, the commutators must be generalized. An obvious choice
would be to consider a full 3-fold antisymmetrization of r copies of @) to get rank-r tensor
operators. Alternatively, based on the general features described in appendix C.3, it is
natural to consider the recursive definition

@[i1j1...k1”i2j2...k2][isjg...ks] — Cyc’{ o Cycg o Cycg (Qilizisé[jl...kl][jz...k2][j3...k3]) : (2.32)

where

Cyc” (AilizisB[jl...kl][jz...kz][jsmks]) — Z(_l)n(“l)ag (AilléisBUl~--k1][j2~~-k2][j3~~~k3]) ’

n=1

(2.33)
o is the r-cycle (1 2...1) and, ¢” means apply o™ to the set {ig,ja,---.,kq}.> We have
checked directly for N < 4 that both full-anti-symmetrization and (2.32) agree with the
form of higher-rank tensors Q'1%2/3 given in the main text, weighted by an appropriate
number of €’s to soak up the R-charge,

@111213 ~ eftQhlals (k =3). (2.34)

3 Review: the Coulomb branch chiral ring

In this section, we review the construction of the Coulomb branch chiral ring C[M¢] of
a 3d N = 4 gauge theory, following recent advances in the math and physics literature.
In particular, we will incorporate mathematical results of Webster’s [18] into the physical
understanding of the chiral ring.

We keep much of the discussion general. We assume that the gauge theory is defined
by a renormalizable Lagrangian, with compact gauge group G coupled to linear matter
(hypermultiplets) in a quaternionic representation R. We further assume that R is a
direct sum of unitary representations

R=R®R" ~T*R. (3.1)

The only additional parameters that the theory may depend on are real gauge couplings,
masses, and FI parameters.

3.1 Generalities

Recall that the Coulomb branch of a 3d N/ = 4 gauge theory is a component of the moduli
space of vacua on which all hypermultiplet vevs vanish, and on which vectormultiplet
scalars generically acquire diagonal vevs, breaking the gauge symmetry G to its maximal

8This is analogous to writing the symmetric group S, as a union of cosets of Z,: S, = Ui, o'Sr_1.

~13 -



torus T. The Coulomb branch is a noncompact hyperkidhler manifold [2, 58|, possibly
singular, of dimension
dimcM¢ = 2rank(G) . (3.2)

In a 3d gauge theory, the Coulomb branch has an exact SU(2)¢ metric isometry that
rotates its CP! of complex structures. Thus it essentially looks the same in every complex
structure. The SU(2)¢ is part of the R-symmetry of the 3d N' = 4 theory, and shows up
classically as a rotation of the triplet of g-valued scalar fields in the vectormultiplet.

For example, in a Ty quiver gauge theory the gauge group is?

G = (UN) x [UN —1) x --- x U)*)/U(1). (3.3)

The dimension of the Coulomb branch is therefore easily computed as

N-1
Tvk :  dimeMe = 2N + 2k( 3 2) — 2= (kN +2)(N —1). (3.4)
=1

In any fixed complex structure, the Coulomb branch is a holomorphic symplectic man-
ifold, i.e. a Kéhler manifold, possibly singular, whose smooth part is endowed with a
non-degenerate holomorphic two-form 2. For every choice of complex structure, there
is a chiral ring of half-BPS local operators whose vevs are holomorphic functions on the
Coulomb branch. We simply denote this ring

C[Mc], (3.5)

suppressing the dependence on complex structure. The holomorphic symplectic form €2
endows the chiral ring with a Poisson bracket, thus turning C[M] into a Poisson algebra.
Physically, the Poisson bracket of operators may be computed by topological descent [38].

3.2 Fibration: scalars and monopoles

In a fixed complex structure, the Coulomb branch moreover has the structure a complex
integrable system.!® Specifically, the Coulomb branch is a singular fibration

T&/ --» Mg
X (3.6)
tc/W,

where tc denotes the complexified Cartan subalgebra of G, W the Weyl group, and Ty the
complexified dual of the maximal torus. Roughly speaking, the base tc/W ~ Crank(G) g
parameterized by the ‘diagonal’ expectation value of a complex vectormultiplet scalar

petcCgc- (3.7)

°The overall U(1) quotient is standard in quivers with no “Aavor nodes” or “framing”; it makes sense
because none of the bifundamental hypermultiplets are charged under the diagonal U(1).

10T his integrable system is a degeneration of the Seiberg-Witten integrable system familiar from 4d N = 2
gauge theory [59-61].
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The complex scalar ¢ combines two of the three real vectormultiplet scalars, as dictated
by the choice of complex structure. Classically, it is forced to take a diagonal vev due
to vacuum equations [p, p!] = 0. Global coordinates on the base come from G-invariant
polynomials (Casimir operators) in ¢, which are the true gauge-invariant operators in a
non-abelian theory.

We call a point ¢ on the base generic if 1) it fully breaks gauge symmetry to the torus
(making all W-bosons massive) and 2) gives a nonzero effective mass to every hypermulti-
plet. Algebraically, these criteria mean that, respectively

My = (o, ) # 0 My = (A ) #0

and . (3.8)
V a € roots(G) V X € weights(R)

Mathematically, one would say that a generic point of t¢/W is in the complement of all
weight and root hyperplanes.

The fiber of the integrable system (3.6) above any generic point of the base is a complex
dual torus Ty ~ (C*)rank(@) Tt is a holomorphic Lagrangian torus with respect to the
holomorphic symplectic structure. The coordinates on the fibers are vevs of chiral monopole
operators. Locally, near a generic point on the base where G is broken to T', one may define
half-BPS abelian monopole operators as (cf. [2, 3, 62])

1 .

VA~ €g2 (A70+Z’Y) (39)

where g is the gauge coupling, A € t is a cocharacter (satisfying e?mid — T ), o € tis the

third real vectormultiplet scalar, v € t are the dual photons (with periodicity 27¢?), and

(, ) is the Cartan-Killing form. The OPE of monopole operators satisfies vavp ~ va4p,

for any cocharacters A and B, so their vevs are just right to produce global functions on

T([\j/ ~ (C*)rank(G)'

The way that the 7Y fibers vary over the base of the Coulomb branch depends quali-

tatively on locations of the root and weight hyperplanes. Roughly speaking,

e The fibers blow up (their volume diverges) above root hyperplanes, where W-bosons
become massless and gauge symmetry is enhanced.

e The fibers collapse above weight hyperplanes, where hypermultiplets become mass-

less.

The precise hyperkahler metric on the fibration acquires non-perturbative quantum cor-
rections that are extremely difficult to compute directly.

3.3 TQFT and non-renormalization

Nevertheless, if one ignores the hyperkahler metric and focuses on Mg as a complex
symplectic manifold, many computations become tractable. In particular, the computation
of the chiral ring C[M¢] and its Poisson structure (as well as its deformation quantization)
reduces to a relatively simple algebra problem.

There are two ways to think about this simplification. In [12] it was argued that the
chiral ring of a 3d N' = 4 gauge theory is independent of the gauge coupling, and thus
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cannot receive nonperturbative quantum corrections, or perturbative corrections beyond
one loop.

Alternatively, one may recognize that the chiral ring C[M¢] belongs to a topological
subsector of the 3d gauge theory. Specifically, the chiral-ring operators are in the coho-
mology of a topological supercharge @), which was discussed long ago in [36], and may
equivalently be characterized as (cf. [13, 15, 38])

- the 3d reduction of the 4d N/ = 2 Donaldson supercharge

- one of the scalars under a diagonal subgroup of SU(2)porentz X SU(2) iz (where SU(2) g
is the R-symmetry that rotates hypermultiplet scalars)

- the “twisted Rozansky-Witten” supercharge, as it plays the same role on the Coulomb
branch that the Rozansky-Witten twist plays for the Higgs branch .

Then the product of chiral-ring operators is topologically protected, and may be computed
using standard TQFT methods. Perhaps surprisingly, the Poisson bracket and deforma-
tion quantization (via Omega background) of chiral-ring operators are also topological in
nature [38].

The TQFT perspective motivated the initial mathematical work [15, 16] on Coulomb
branches. In appendix A, we explain how the mathematical characterization of Coulomb-
branch operators relates to the physics of 3d A/ = 4 theories. The TQFT perspective has
some important computational consequences, which we draw on in what follows.

3.4 The abelianized algebra A

The TQFT derivation of the ring C[M¢] (in appendix A) proceeds via reduction to 1d
quantum mechanics, where C[M] is identified as the equivariant cohomology (or more
technically, Borel-Moore homology) of a certain moduli space. Fixed-point localization
embeds the chiral ring into a much simpler “abelianized” algebra A,

ClMc] < A. (3.10)

Physically speaking, one may think of A as a local algebra of operators near generic points
on the Coulomb branch, where the gauge theory is effectively abelian; this is how the
abelian algebra A arose in [12].!! Similarly, in an Omega-background both C[M¢] and A
are deformation-quantized, and one finds an embedding of associative algebras

C.Mc] > A.. (3.11)

All the computations in this paper will take place in A or A.. We review their structure
here. Since A can be recovered from A, by sending € — 0, it would be sufficient to describe
A.. However, some relations are simpler and more intuitive for A, so we shall start with
the commutative case.

The algebra A can be defined as the local chiral ring, in the neighborhood of a generic
point ¢ on the base of the Coulomb branch, in the sense of (3.8). To make this precise,

1This perspective is directly analogous to abelianization/non-abelianization in 4d A/ = 2 theories [32, 46],
and to localization computations of algebras of line/loop operators therein, cf. [63-65].
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we denote the loci on the base of the Coulomb branch were W-bosons and hypermultiplets
become massless as

A= | (Malp)=0} Cte,  Ar= [J {Mip)=0} Ctc. (3.12)
roots o weights A of R
Then we define
ME =77 ((te\A U AR) /W) € Mc (3.13)

as the open subset of the Coulomb branch sitting above the complement of A and Apg
in the fibration (3.6); and define M2P°! to be the trivial W-cover of M2P¢! (undoing the
quotient by the Weyl group on the base). Then

A= C[M&]. (3.14)

This definition of A makes it obvious that there is an embedding (3.10), since any global
function on M defines a W-invariant local function on Macpel.
The algebra A has two types of generators:

1. Rational functions in the components of the abelian complex scalar ¢ € {t¢, whose
denominators vanish only on A and Ag.
In other words, there are polynomials in ¢ and in the inverted generators
(Ma)~, (M)~

2. Abelian monopole operators v4 as in (3.9), for every cocharacter

A € Hom(U(1),T) ~ 7@ | (3.15)

These operators satisfy relations that are essentially the expected product relations v vg ~
v44+p among monopole operators, with one-loop corrections from hypermultiplets and
W-bosons.

To write down the relations, we first recall that there is a natural integer-valued product

(\A) eZ (3.16)

between weights A and cocharacters. Then the classical relation v4v_4 = 1 among abelian
monopole operators is corrected by hypermultiplets and W-bosons to

H (M)\) [(A,A)]

weights A of R

VA4 = et (3.17)
[T ()"
roots o of G
and more generally
weights A of R
4. (N AN, B) <0
oo — o S AAOB) < (3.18)

H (Ma)min(\<a7A>|7\<a7B>|) '

roots a of G
s.t. (A, AY(A\,B) <0
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The abelianized algebra A simply contains polynomials in ¢, 1/M,, and v4, modulo these

relations:!2

A=C [(Pa {Mojl}aeroot& {M)\_l})\ewts(R)v {UA}AECochars] /(relations (318)) : (319)

3.4.1 Quantization

The quantized algebra A, is similar. It is generated by
1. The components of ¢, and €.

2. The inverted masses (M, + ne)~! and (M) + ne)~! for all n € Z.

(The shifted quantities M, +ne may be understood physically as complex masses of all
the various modes of W-bosons in the presence of an Omega-background, noting that
the Omega-background couples to angular momentum. Similarly, M) + ne are masses
of the modes of hypermultiplets.)

3. The abelian monopole operators v 4.

The parameter ¢ is central; and the components of ¢ (and the (M, ) +ne)~!) all commute
with each other. Otherwise, the generators satisfy two basic sets of relations:

First, note that the components of ¢ can all be picked out by contraction with weights,
e.g. (A, ¢). All linear functions in ¢ arise this way. The commutator of any such linear
function and a monopole operator is

[(As ), va] = e(A, A)va. (3.20)

For example, if G = U(N), one would customarily write ¢ = diag(ei,...,¢n). Both
weights A = (A1,...,An) and cocharacters A = (Ay,..., Ay) are elements of a lattice Z".

(3
The entries of ¢ are picked out by contractions ((0,...,1,...,0),¢) = ¢;, so (3.20) says

[pi,va] = €Aiva. (3.21)

It follows from (3.20) that the inverted masses also satisfy (e.g.) w4 MalJrnE =

1
Ma+(n—{a,A))e VA -
Second, the product of two abelianized monopole operators is given by an appropriately

ordered and shifted version of (3.18):

E.,_ g
H [M + 5] A H [M) + §}<A’B>
Aeweights(R) s.t. Aeweights(R) s.t.
[(AA <A, B)| (A A [>[(A,B)|
vavp — (NAY(N,BY<0 VALE (NAY(N,B)<0 (3 22)
H [Ma]—<a,A) H [Ma]<a’B> ’
ac€roots(G) s.t. a€roots(G) s.t.
[{a, A)|<[(a, B)| [, A)[>[(a, B)|
(o, A)(r,B)<0 (o, A){c,B)<0

12Technically, there are also the obvious relations (a, ) - M3' =1, (X, ) - M;l =1 that follow from the

definitions of M, M.
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where

b—1
[[a+ke) b>0
k=0
o] = ‘12[‘ (a—ke) b<O (3.23)
k=1
1 b=0

is a quantum-corrected power. These relations were derived using abelian mirror symmetry
n [12], but also follow from an equivariant cohomology (TQFT) computation [13, 15].
Altogether, the quantized algebra is

AE =C [% {(Ma +7’l€)71, (M)\ +n8)71}aEroots,)\Ewts(R)mEZ) {’UA}AECOChars} /(re]’s (320)’ (322)) .
(3.24)

3.5 The image of C[Mc] and the algebra W,

Once the Coulomb-branch chiral ring C[M] (resp C.[M(]) is mapped to the abelianized
algebra A (resp. A.), many computations become straightforward. In particular, expected
relations among elements of C.[M¢] can be checked using the simple relations (3.18) in
A.. Nevertheless, the precise image of C.[M¢] in A can be tricky to identify.

A few structural properties of the embedding map were discussed in [12]. For example:

e The image of C.[M¢] must sit in the Weyl-invariant subalgebra A% C A., since
local operators in the full non-abelian gauge theory are gauge invariant.

e In A one finds arbitrarily large negative powers of the masses M, » +ne. In the case
of W-boson masses, this is unavoidable, due to denominators in the products vav_ 4.

1
Mq a+ne

themselves, since operators in C.[M¢] must define (as ¢ — 0) global functions on

In contrast, the image of C.[M¢] in A, cannot contain any of the elements

the Coulomb branch that extend smoothly across the discriminant locus.

It is also known how a basis for C[M] as an infinite-dimensional vector space should
be indexed [10]. Physically, one expects that the elements of C[M ] are monopole operators
V4 p(e) labelled by dominant cocharacters A (equivalently, by Weyl orbits in the cocharacter
lattice) and dressed by polynomials p(p) of ¢ € t¢ that are invariant under the stabilizer
W4 of A in the Weyl group. For example, if A = 0, the “dressing factors” are just standard
Weyl-invariant polynomials C[p]"". Formally, we might write

dressing factors

as a vector space Wa
CiMc] © D ™ . (329)

dominant A

It is unclear whether these structural properties alone can determine how elements of
C[Mc] (or C.[Mc]) embed in A (or A.). However, much stronger constraints on the em-
bedding come from the mathematical/TQFT perspective. In fact, the TQFT construction
of the chiral ring gives — in principle — a complete answer to the embedding problem.
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Namely, elements of C.[M] are identified with equivariant cohomology classes on a cer-
tain moduli space; and the embedding C.[M¢] < A. just expresses these classes in terms
of equivariant fixed points.

It can still be very difficult to explicitly analyze equivariant cohomology classes in
practice. Fortunately, Webster [18] recently outlined a combinatorial calculus that accom-
plishes this task for Coulomb branches. We will discuss the physical meaning of Webster’s
calculus in [66]. In the current paper, we take a pragmatic approach and use one simple
consequence of Webster’s combinatorics: the image of C.[M¢] in A. must always contain
a particular subalgebra W, (defined momentarily),

W, CC.[Mc] C A.. (3.26)

In the case of star quivers Ty, we will identify all expected generators of C.[Mc] as
elements of W.. We in fact suspect that

We >~ C.[M(] (for star quivers), (3.27)

though this is not guaranteed.'?
The algebra W; is defined as follows. One begins with a subalgebra of A. generated
by polynomials in ¢ and by rescaled monopole operators

ua = [ Mooy = [ valMa) V. (3.28)
a€roots(G) a€roots(G)
s.t. (o,A)<0 s.t. (a,A)<0

These u4 monopole operators, carrying additional factors associated to the W-boson
masses, have the nice property that their products never generate denominators: we sim-

ply have
(S 3
uAup = H [M)\ + 5] <>\’A> UA+B H [M)\ + §]<)\7B> 5 (329)
Aeweights(R) s.t. Aeweights(R) s.t.
[(XA)<[(A,B)| (A A)[>[(A,B)]
<)‘7A> <)‘73><0 </\,A> <)\,B><0

with one-loop corrections from the hypermultiplets alone. Otherwise, the usual relations

[<>‘790>7UA] = €<)\7A>UA (330)

continue to hold for any weight A and cocharacter A.

In addition, for each root «, let s, € W denote the corresponding simple reflection.
Recall that the Weyl group is generated by the s,’s. We may adjoin the s, to the algebra of
p’s and u4’s, in such a way that the s,’s satisfy the standard Weyl-group relations among
themselves, and natural commutation relations

SalUA = UAa Sq , Sa f(¢) = f(¢%) Sa s (3.31)

13Unfortunately, some rather complicated combinatorics are required to make up the difference between

W, and C.[Mc] in general. Nevertheless, there are known examples where W, = C.[Mc]. In any pure
gauge theory, this equality follows from results of [67, 68]. In linear quiver gauge theories, all the generators
and relations of C.[Mc] are known explicitly [12, 17, 69], and equality W. = C.[Mc] is also easy to
establish. We thus have some hope that equality may hold for star quivers as well.
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where A“ is the reflected cocharacter, and ¢ is the reflected element of tc. Finally, for
each a, introduce the BGG-Demazure operator'?

Oo = — (50 — 1). (3.32)

The algebra W, is defined as the Weyl-invariant part of an algebra generated by 1) poly-
nomials in ¢; 2) the uy monopole operators; and 3) the BGG-Demazure operators:

W, =C [807 {UA}AecocharS7 {Ha}aEroots] W Cc A.. (3~33)

The relations, which we leave implicit, are of the form (3.29), (3.30), (3.31). Notice that
once Weyl-invariance is imposed, all the s,’s are all projected out, so W, does become an
actual subalgebra of A..

Practically speaking, the role of the Demazure operators 6, is to introduce a few de-
nominators ﬁa, in a controlled way, so that the structural properties of the Coulomb branch
discussed above are actually satisfied. In appendix B we will work through how (3.33) re-
produces the chiral ring W. = C.[M(] in the elementary example of pure G = PSU(2)
gauge theory.

3.6 Flavor symmetry and R-symmetry

We finally comment briefly on symmetries of 3d A/ = 4 theories, in particular those appli-
cable to star quivers.

Flavor symmetries act either on the Higgs branch or on the Coulomb branch, as tri-
Hamiltonian isometries. The symmetry group F' acting on the Higgs branch is easy to
identify in a gauge theory, as the normalizer of G in USp(R)

F = Nusp)(@)/G, (3.34)

i.e. the group that acts on hypermultiplets independently of GG. For star quivers, there is
no Higgs flavor symmetry at all, /' = 1. In general, complex mass parameters associated
to the Higgs flavor symmetry (scalars in the F' vector multiplet) can deform the Coulomb-
branch chiral ring; but for star quivers such deformations are absent, and Coulomb branches
are rigid.

In contrast, star quivers have a rich Coulomb-branch flavor symmetry. In the UV, the
Coulomb-branch flavor group K is the Pontryagin dual of m(G)

K = Hom(m(G), U(1)) ~ U(1)r2nk(Z(G) | (3.35)

which is an abelian group with the same rank as the center of G. In the case of star quivers,
we easily find
K~U0)*YD  for Ty (3.36)

¥ The “BGG” stands for Bernstein, Gelfand, and Gelfand. The operators 6, generate the G-equivariant
cohomology of the flag variety (known as the nil-Hecke algebra in representation theory), which is a large
clue to their physical meaning. Another, related, clue is the appearance of the 6, in the work of Gukov
and Witten on surface operators in 4d [43]. We will tie these clues together in [66].
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In the IR the group K may undergo a nonabelian enhancement, controlled by the “bal-
anced” nodes in a given quiver [62, 70, 71], i.e. nodes @ that are coupled to exactly

Ny =2N, hypermultiplets.!®> For star quivers, the nodes on the legs are always balanced,
so there is an IR enhancement
K ~ SU(N)k. (3.37)

In addition, in two special cases the central node is balanced as well, leading to

(N, k) = (2,4) K =80(8)

2

Since the chiral ring C[M ] is insensitive to RG flow, the fully enhanced IR symmetry
group K will act on it. More so, since C[M] is a holomorphic object, the complexifi-
cation K¢ will actually act. This action is generated by complex moment map operators
p € CIM¢] @ Lie(K)*, which are related to the K currents by supersymmetry. In partic-
ular, for star quivers, (3.37) implies that one is guaranteed to find k separate sl(N,C)*-
valued moment maps p = (u1, p2, - . ., k) in the chiral ring. They generate the action via
Poisson brackets.

The K¢ action extends to the quantized chiral ring C.[Mc], where it is generated
by taking commutators (rather than Poisson brackets) with moment maps. Explicitly, if
T € sI(N,C)X is a generator of the Lie algebra, and we denote by ur = (T, u) € C.[M(]
the contraction of 1" and u, there must be commutation relations

[, prr] = EMT T > (3.39)

and the infinitesimal 1" action on any other operator O is

T -O0= %[NT, 0]. (3.40)

In addition to flavor symmetries, 3d N' = 4 gauge theories with linear matter also have
an SU(2)c xSU(2) g R-symmetry. The two factors act on the Coulomb and Higgs branches,
respectively, but in a way that rotates the hyperkihler CP’s of complex structures rather
than as tri-holomorphic isometries. The SU(2)¢ acting on the Coulomb branch is important
to us. Any fixed complex structure on the Coulomb branch is preserved by a U(1)g
subgroup of SU(2)¢, which induces into a complexified C* action on the chiral ring C[M¢].
The C* action extends to the quantized C.[M¢], in such a way that the quantization
parameter € and all moment maps canonically have charge'®

(W] =le] =1. (3.41)

The R-charges of some other expected operators were summarized in (2.24).

151t is worth noting that there can be yet further enhancement beyond the naive consideration of balanced
nodes. For example, in the theory 753 discussed below there is an obvious SU(2)® Coulomb-branch flavor
symmetry. However, this theory is 3d mirror to a theory of 8 free half-hypermultiplets with Higgs-branch
flavor symmetry USp(4), which should be equal to the Coulomb-branch flavor symmetry of 72,3. Indeed,
the Coulomb branch of T3 3 is T*C* ~ C® which has a full USp(4) worth of hyperkihler isometries.

16\We are working in conventions where the minimal charge of a C* representation is %
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Figure 2. The (N, k) = (2,4) quiver.

In the abelianized chiral ring A., the complex ¢ scalars also necessarily have [¢] = 1. It
then follows from monopole products (3.22) (or in fact the simpler commutative (3.17)) that

wil=5 | X Al X el (3.42)

weights A or R roots a of G

This is consistent with physical expectations for monopole charges [62, 70, 71].

If a 3d N = 4 gauge theory flows to a CFT, the C* charges of chiral-ring operators
coincide with their conformal dimensions, and must therefore be strictly positive. Star
quivers flow to CF'T’s when N > 2 and k > 3; in this case the positivity of R-charges is
manifest in (2.24).

4 Short quivers (N = 2)

We now begin chiral-ring computations in earnest. Many features of general Ty star
quiver theories already appear in “short” quivers that have N = 2, i.e. an arbitrary number
k of legs of length one surrounding a central node. (See figure 2 for k = 4.) These theories
are especially computationally friendly, and we work through them in detail as a warm-up
for later material.'”

41 k=3: Mg ~C8

We begin with the three-legged quiver 73 3. In this case the dual 4d theory of Class S is
the basic A; trinion theory, i.e. a theory of free half-hypermultiplets in the tri-fundamental
representation of the SU(2)? flavor symmetry [19].!® Correspondingly, we expect to find a

simple 3d Coulomb branch
M~ C8. (4.1)

The way this arises from a 3d perspective turns out to be rather nontrivial.

17Coulomb branches of T2,x theories were also recently studies in [72], mainly using Hilbert series. There
the authors investigated the effect of gauging discrete global symmetries.

'8The theory of eight free (half-)hypermultiplets, the 3d mirror of 75,3, actually has a larger Higgs flavor
symmetry group than this naive SU(2)%. Indeed, the full symmetry group is USp(4), corresponding to
the hyperkihler isometries of T*C* ~ C®. The 36 generators of (the complexification of) USp(4) fit into
a (complex) moment map built out of all the independent bilinears in the coordinates of T*C*. This
enhancement is not a general feature and only appears because the dual theory in this case is free.
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Naively, the gauge group of 733 is U(2) x U(1)3. The hypermultiplets sit in three
fundamental representations of U(2), each charged under a separate U(1). As discussed
in section 3.1, the a diagonal U(1)giag subgroup of U(2) x U(1)3 acts trivially on the
hypermultiplets, so the true gauge group is actually a quotient

G = [U(2) x U(l)g] /U1 diag - (4.2)
Correspondingly, the cocharacter lattice that will label monopole charges is
cochar(G) = Hom(U(1),T) = Z° / Zgjag , (4.3)

which we may understand as 5-tuples of integers

)
U U U(D)
A= (A1 A By, By, By ) € cochar(U(2)) x cochar(U(1)?) (4.4)

modulo the 1-dimensional sublattice generated by Agins = (1,1;1,1,1). In other words,

two cocharacters A, A’ € Z5 are equivalent if they differ by an integer multiple of Adiag-
Dually, the weight lattice of G may be identified with 5-tuples of integers that sum to zero

weights(G) = Hom(T,U(1))

45
— A= (AL A XL A, X)) €75 st AL+ Ao+ M + Ay + A =0} (4.5)

Note that there is a well-defined product ( , ) : weights(G) x cochar(G) — Z. In particular,
(A, Agiag) = 0 for any weight A\. The matter representation may now be written as R =
R & R*, with weights of R chosen to be

1,0;-1,0,0 1,0;0,-1,0 1,0;0,0, -1
( ) ) SR

weights(R) = {
(0,1;-1,0,0) (0,1;0,—1,0) (0,1;0,0,—1)

4.1.1 The A, and W, algebras

Our first step in constructing the Coulomb branch is to identify the abelianized algebra
A, from section 3.4, which contains all putative Coulomb-branch operators. We work from
the outset with its quantized version. As described in section 3.4, there are three types of
generators:

1. Polynomials in Omega-background parameter ¢, the complex scalars ¢f, a = 1,2,3
corresponding to the U(1) factors in G, and the diagonal components (a1, p22) of
the complex scalar corresponding to the U(2) factor.

Due to the U(1)giag quotient, we should restrict to polynomials that are invariant un-
der a simultaneous translation of all the ¢’s. It is natural to think of such polynomials
as generated by weights of G, i.e. by the linear functions

(N @) = A2 + Aawas + Mot + Nyo? + Ny A € weights(G) . (4.7)

The constraint A\; + A2 + A} + A5 + A5 = 0 guarantees that (A, ¢) is invariant under
translations.
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2. The inverted masses (M, + ne)~! for all roots a of G and all n € Z. Here the only
nonzero roots are a = +(1, —1; 0,0, 0), corresponding to the U(2) factor, so we adjoin

elements of the form 1

. 4.8
P21 — Y22 + NE ( )

Similarly, we adjoin inverted hypermultiplet masses (M +ne) ™" for all weights (4.6).

3. The abelian monopole operators v4 labelled by cocharacters A € cochar(G) as above.
All monopole operators with diagonal cocharacter vnay;,, = V(nnin,nn) are central in
the algebra, and we impose the relations

'U(n,n;n,n,n) =1 Vn. (4.9)

The next intermediary step is to construct the subalgebra W. C A. from section 3.5.
It will help us decide which elements of A, are actual chiral-ring operators.
To this end, we introduce the rescaled monopole operators u4 as in (3.28), whose

products contain no denominators. For example, we have

U(+1,0;B1,B2,B3) — +(ip22 — 8021)U(i170;B1,Bz,Ba) (4.10)

U(0,+1;By,B2,B3) = (P21 — ¥22)V(0,41;B,,B,,Bs)

for any By, Bo, Bs. etc. We also introduce the single Weyl reflection s that generates the
Weyl group Zs. It satisfies s> = 1 and acts on monopoles by reflecting their cocharacters:

SU(Ay,Ag;B1,Ba,Bs) = U(A2,A1;B1,B2,B3)S  SUW(A1,An;B1,Ba,Bs) = U(Ag,Ay;By,Ba,Bs)S  (4.11)

Similarly, s¢{ = ¢fs and sp21 = ¢225. The corresponding BGG-Demazure operator is

6 = @2;@2 (s —1). Recall that W; is the Weyl-symmetric part of C[p,u4, 6].

Some important elements of W., which are assured to belong to the full chiral ring
C.[Mc], are'?

[£0u(+1,0,B,,B5,B3)|W = V(1,0:B1,B5,B5) + V(0,41:B1,B5,Bs) - (4.12)

These are the undressed nonabelian monopole operators labelled by a fundamental cochar-
acter on the central U(2) node. The dressed nonabelian monopoles are simply

[W(21,0:1,B2,8:)[W = U(x1,0:81,B,B3) + U(0,£1:B1,B.Bs) - (4.13)

In addition, W, contains monopoles charged only under the legs (which are trivially Weyl-
invariant)

[U(O,O;Bl,Bg,Bg)]W = U(0,0;B1,B2,B3) — Y(0,0;B1,B2,B3) » (4.14)

and all Weyl-invariant polynomials in the ¢’s. These are all the operators we will need to
generate C.[M]!

9Here we use [...]Jw to denote a sum over the Weyl group, proportional to the projection of [...] to
Weyl-invariant operators.
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4.1.2 Moment maps

The theory 753 has an SU(2)3 flavor symmetry acting on its Coulomb branch (described
in section 3.6), and a corresponding SL(2, C)? symmetry in the chiral ring. This symmetry
should be generated by three sl(2, C)*-valued complex moment maps p,, a = 1,2, 3.

Each of these moment maps is associated to a leg of the quiver. Each leg

2 @ (4.15)

looks like a copy of T[SU(2)] theory, and effectively treats the central node as a flavor

symmetry. We may therefore import well known results from the chiral ring of T[SU(2)]
(studied e.g. in [12, 71]) to identify the moment maps.

The raising and lowering operators in the moment maps turn out to be instances
of (4.14)

V11jE = V(0,0;41,0,0) » Vfi = 1(0,0;0,41,0) » V1SjE = 0(0,0;0,0%1) - (4.16)
We may check expected sl(2, C) commutation relations. A quick application of (3.22) yields
Vi Vi =0, (4.17)

as well as

Vit =V = 6% (01— 0 —€/2) (22— 01 —€/2) — (21— p§ +¢/2) (022 — 1 +¢/2)]
:€5ab(2(,0£11—(p21—g022) . (4.18)

Similarly, (3.20) implies
(205 — 21 — pa2), £VF] = £26%e(£ V) (4.19)

therefore {Vl‘”, V7,208 — w21 — ©22}3_, can be identified as three mutually commuting
5[(2,C) triples. These operators fit into moment maps as

e _ 2 — 2—¢/2 Vit
fa = fa — E]l (7 euf ;P_Q?/ i y a : (4.20)
2 -V ©21/2 + p22/2 — ¢} — /2

The shift by § is included for later convenience. It does not affect the action generated by
the moment map; in particular, letting H = (§ %) € sl(2,C) be the Cartan element we
find (H, pa) = (H, fta) = Te(Hpg) = Te(Hjg ) = 20§ — 21 — 922

Note that, using the general R-charge formula (3.42), we have

[1a) = [V&5] = [205 — a1 — 22] = 1 (4.21)

as required for moment maps.
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Operator Expression 1 Expression 2 Expression 3

Q222 Q111 (9U 1,0;0,0 0))W V(1,0;0,0,0) T Y(0,1;0,0,0) | Y(~1,0,—1,—1,—1) T V(0,-1;—1,-1,—1)
Q"™ = —Qan (Ou 0100w | V(101,00 T 90,1:1,00) | Y(-1,00,-1,-1) + V(0,-1:0,-1,-1)
Q*"? = —Qix (9u(1 0; 0,1,0))W U(1,0;0,1,0) T ¥(0,1;0,1,0) U(-1,0;—1,0,—1) T V(0,—1;—1,0,—1)
Q% = —Qu1 (Ou(1,0,0,0,1))w V(1,0,0,0,1) T 0(0,1,00,1) | V(~1,0;-1,-1,0) T V(0,~1;—1,-1,0)

QM = Qa2 | —(Ou(—1,0,-1,00)W | v(1,001,1) + V(0,1:0,1,1) V(1,0:-1,0,0) T V(0,~1;-1,0,0)

Q"™ = Qa2 | —(0u(—1,00,-1,0)W | V(1.0:1,0,1) T V(0,1:1,0,1) V(-1,0;0,—1,0) T Y(0,-1;0,—1,0)

Q'"? = Qan —(0u(—1,0:0,0,—1)W | V(1,0:1,1,0) T Y(0,1;1,1,0) U(-1,0;0,0,—1) T V(0,—1;0,0,—1)
QM = —Qax _(gu(fl,O;0,0,0))W U(1,0;1,1,1) T V(0,151,1,1) V(-1,0,0,0,0) T V(0,—1;0,0,0)

Table 1. Expressions for the eight operators furnishing a tri-fundamental representation of the
SL(2,C)3 action on the chiral ring of the 7z 3 star quiver. These eight operators generate the entire
chiral ring. The first expression of the operator is in terms of the Weyl symmetrized image of a
rescaled monopole operator under the BGG-Demazure operator 6. The second two expressions are
related to one another by adding a diagonal cocharacter Agiag.

4.1.3 Tri-fundamentals

Having identified the moment maps, we may organize the chiral ring into SL(2, C)? repre-
sentations. It is easy to check using (3.22) that the operator

Q% :=v(1,00,0,0) + Y(0,1:0,00) » (4.22)
which is of type (4.12), is a “tri”-lowest-weight vector. Namely,
[-V2,Q°*2) =0 Va=1,2,3. (4.23)

By acting with raising operators on Q??? we then produce an entire eight-dimensional
tri-fundamental representation. For example,

1
Q"% = g[Ver, Q%] = v(1,0.1,0,0) + Y(0,1:1,0,0) »
1
7[‘/11+7 Q122] =0 ’
i (4.24)
Q112 = E[V12+7 Q122] = 0(1,0;1,1,0) T V(0,1;1,1,0) >
1
QM = g[ Q" = V(1,0;1,1,1) T Y(0,1;1,1,1) »
etc. The complete list of operators in this representation is summarized in table 1.
Alternatively, we could have observed that Q222 := —(v(~1,0,0,0,0) +v(0,-1:0,0,0)) Is a tri-

highest-weight vector, which generates an eight-dimensional tri-antifundamental represen-
tation. However, it is equivalent to the tri-fundamental above. In particular, since cochar-
acters (4.4) that differ by a multiple of Agiae are equivalent, we actually have Q222 = QM
and more generally

€irj1 6i2j26i3j3QJ1]2j3 = Qiu'gz’g . (4.25)
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We also note that the R-charge formula (3.42) quickly implies that

1

[Q125] = [Qiyigis) = 3 (4.26)

4.1.4 Relations

Using the above expressions for the tri-fundamental operators, it is a straightforward ap-
plication of (3.20) and (3.22) to find additional relations satisfied by the @’s and pu’s.
For example, there are commutation relations

122 222
[Q7%, Q7] = [v(1,0:1,0,0) T Y(0,151,0,0)> V(1,0:0,0,0) T V(0,1:0,0,0)]
1 1
p21—p1+€/2 p21—p1—€/2
- — VAN V(11
(21 —p22) (P22 — P21 —€) (@21*9022)(9022730214%)+(¢21 ('022) (1,1;1,0,0)

=0; (4.27)

similarly,

111 222
(@ Q7] = [v(=1,00,0,0)+¥(0,-1:0,0,0) ¥(1,00,0,0) +(0,1;0,0,0)]

3 3
[I w21 —¢t+e/2 [I w21 —¢i—¢/2
a=1 a=1
= — YN 4.28
(9021 —4,022)(9022—9021 —E) (4,021 —9022)(9022—§021 +5) +(('021 SO22) ( )
and more generally
[thzi:a7 Qj1j2j3] — gl 22 33 (4'29)
Sending & — 0, these recover the Poisson brackets {Q/%2% QJ1/213} = i1l ei2iz2¢isls ex-

pected from the duality of 733 with free half-hypermultiplets in 4d.
We may also consider contractions between moment maps and ’s. Schematically
writing

Qilizis = v(1,0.B + V(0,1;B4, i1 > (430)

i1igis)

we use (3.22) to find

s g o .. s Ly ©21 — Y22
()"0 Q"% = (1) % QM = (Ji3)*w Q™" = T (V101 1g1) — V(O1Bryiyig)]
(4.31)
More generally, for all n > 0, we may contract with powers of the moment maps to get
(ﬂ?lz)ili,Qi/igig — (ﬁg)iQi’Qili/% _ (ﬂg)igi’Qilizi,

Y21 — P22 \" n
- (%) [v(lvO;Biﬂzis) +(=1) U(OﬂhBilizis)]' (4.32)

Note that the r.h.s. of (4.31) contains an alternative dressed version of the fundamental
nonabelian monopole operators.
Finally, we can recover the moment maps themselves as contractions of Q)’s,

1/ . . .
3 (Qmem;ig + 55”1”1) = ()" (4.33)

and similarly for (,ug)i?ié and (/Lg)i3i/3.
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It is straightforward but tedious to show that the Q2% operators generate all of
We. In this case we know from duality with free half-hypermultiplets in 4d that these
tri-fundamental operators really generate the entire chiral ring C.[M¢]. Since W; is nec-
essarily contained in C.[M], there is no choice but to have

as desired in (3.27).

4.2 Diagonalization for k = 3

The 72,3 theory provides a first, nontrivial example of the diagonalization procedure that
was previewed in section 2.2.

4.2.1 Moment maps

Let’s first consider the moment maps associated to each leg of the quiver. In the “classical”
limit e — 0, we expect the Casimir operators built out of any of the moment maps to depend
only on the ¢9; scalars on the central node. Indeed, viewing each leg as a copy of T[SU(2)]
theory as in (4.15), we know from [12, 71] that the Casimirs depend only on the mass
parameters associated to the |2 | flavor node, and these masses become the o; scalars upon
gauging the U(2) symmetry to tie the quiver together. In particular, in the & — 0 limit
we expect
Te(u}) = Te(ug) = () ¥n 0. (4.35)

This relation is also well known from the dual perspective of 4d N = 2 trinion theories. It
implies in particular that at generic points on the Coulomb branch all the moment maps
should have coincident eigenvalues.

In the current quantum setting, we can similarly compute traces of powers of the
quantum moment-map operators (4.20). Using the e-shifted moment maps fi,, we find

Tr(fin) = Tr(fiz) = Tr(ig) = —¢
Te() = Te(i3) = Te(i) = 3 (o1 — o).

This similarly suggests that we may “generically” be able to diagonalize the quantum

(4.36)

moment maps, and find coincident eigenvalues. In the quantum setting, “generically” will
mean working in the abelianized algebra A..
In order to diagonalize fi,, it is helpful to find its eigenvectors. Using (3.22) we find

that the vectors2’
vt v
77% — | p21—pf+e/2 , 773 = | wp22—pf+e/2 , (4.37)
1 1

which are related by the Zy Weyl symmetry, satisfy (with no summation over a)

1 1
~ a a ~ a a
fani = (021 — @)t fanz = 5 (022 — @) (4.38)
20Here and below we use the convention that a rational function % of noncommutative operators is meant
to be read with the denominator to the left of the numerator, i.e. %a.
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We thus arrange them into a matrix suggestively denoted S; ! = (n¢n$). With a little bit
of work, it is possible to find a (two-sided) inverse of this matrix:

V' pa1—pf—g/2
S — P21 P22 $21—$22 4.39
a -V pa2—pF—€/2 ’ ( )
P22 —p21 P22—P21

which, not too surprisingly, takes the form of two row vectors that are related by action of
the Weyl group. With these matrices, it follows that

1
(a1 — 0
SufiaS; ! = [ 202~ e22) = fiding - 4.40

It is worth noting that by choosing an ordering of the eigenvectors nf{,n5 the Weyl
symmetry is explicitly broken and so any objects obtained by acting with S, or S, ! should
not be expected to be Weyl invariant. It is also worth noting that the components of 5,
and S, ! commute with S, Sljl and iy for a # b, as well as with [igiag-

An immediate application of this diagonalization is to obtain the polynomial invariants
of the moment map Tr[(fi,)"] for all n > 0. Using the S matrices we now have

Tr[(fia)"] = Tr{(S5  fidiagSa)"] = TrIS; ™ (ficiag)" Sa] - (4.41)

Unfortunately, when ¢ # 0, the trace is no longer cyclic. Nonetheless, it is straightforward
to compute the diagonal components:

(S (idiag)™Sa)'1 = =27 (21 — 022)" " (022 — 9§ +¢/2) — (—1)" (21 — ¢ +¢/2)] ,
(Sz  (fidiag)™Sa)?2 = 27" (021 — 022)" (021 — 0 — €/2) — (=1)*(p22 — ¥ — €/2)] ,

quickly leading to

1 n
on—1 - n even
=T (P21 — P22) 4 (4.42)

Tr((fa)"] = {

—e5it (P21 — 22)" ' modd.
These explicitly only dependent on € and the scalars on the central node for all n and a, so
Tr[()"] = Tr[(f2)"] = Tr[(23)"]  Vn=0. (4.43)

4.2.2 Tri-fundamentals

Having diagonalized the moment maps, we may hope to diagonalize the tri-(anti)fundamen-
tals Q1%2% and Q;,4,i, with the same S,, S, ! matrices. Indeed, the quantum relation (4.31),
which generalizes the well-known 4d trinion relations (2.6), strongly suggests that this
is possible.

Let us therefore define

g2 = (81)" 1 (82)2 52 (53)% 50 QM Giyiais 1= Quaga (ST i1 (S31) 20 (8314
(4.44)
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Somewhat amazingly, a straightforward computation reveals
qiliﬂ?’ = (5ili5i2i5i3iqi (4.45)
where
ql = V(1,0,0,0,0) » q2 = 1(0,1;0,0,0) (4-46)

are simple abelian monopole operators in A, charged only under the central node! This
parallels the fact that the moment-map eigenvalues (4.40) were scalars on the central node.

Similarly,
Givigiy = 0'310%3,0",Gi (4.47)
where
3 3
P21 — P22 — € P22 — Y21 — €
q = - 3( ) 0(71,0;0,0,0) ) q2 = — 3( ) 7)(07,1;07070) . (448)
Hl(‘ml - +¢/2) Hl(som — o +¢€/2)
a= a=

Notice that the magnetic charge of ¢’,q; under the central U(2) node matches the
charges of the Q%% (; i, operators as representations of the SL(2,C)3 flavor symme-
try. In particular, the ¢*’s have magnetic charges corresponding to weights of the funda-
mental representation of U(2), and the ¢;’s have magnetic charges corresponding to the
antifundamental representation.?!

The lack of perfect symmetry between ¢* and ¢; (in particular, the more complicated
prefactors for ¢;) is due to our particular choice of similarity matrices Sy, S;!. In our
conventions, the determinants are nontrivial,??

. , 1
det S1 = €;(51)"1(51)" 2 = mv(o,o;—l,o,m
dot S71 o= e (Sp (ST = PR T e (449)

2
I (¢20 — ¢} +5/2)

and similarly for the other S, and S,;!. We could have chosen the determinants to be
1, but only at the expense of introducing roots in the matrix entries. We strongly prefer
instead to use matrix entries that are manifestly elements of the algebra A..

Despite the determinants being nontrivial, they do satisfy

det S, det ;' =det S, ! detS, =1. (4.50)
Moreover, the products of determinants
V(1 1.
o = det S; det Sy det Sy = —HUI_ (4.51)
(p22 — 21)
_ 3
ot =det Sy det Syt det Sy = (22 — p21) U(-1,-1:0.0,0) » (4.52)

e

(p2i — @1 +€/2)

2
I1
i=la

are relatively simple expressions, only involving monopoles charged under the central node.

1

21Being more careful, we should talk about magnetic charge under U(2) as a representation (or weight
spaces) of the Langlands dual group. However, U(2) is self-dual, so there is no distinction.

22The determinant of a matrix with non-commutative entries is not canonically defined. Here we use
row-determinants, defined for a general n X n matrix as det X = eil,”inXil 1. X,
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4.2.3 Algebra of eigenvalues

Let us end the discussion of 733 by explicitly describing some relations in the algebra of
eigenvalues, giving a simple example of the structure in section 2.2.
We have found moment map and tri-fundamental eigenvalues

my = —mgy = (P21 — p22)/2, 7" = v(1,00,0,) » 7* = v(0,150,0,0) » (4.53)

and antifundamentals g1 ~ v(_1,0.0,0,0), 42 ~ V(0,~1,0,0,0) given by (4.48). These satisfy

A 1 . A 1
el = (307 - 1) el sl == (305 -1) 20, (154)
as well as ( 2 ( 2
mi — ms mi1 — mo + €
qléh = ma Q1q1 = M1 — ma )
(mg —mq)? (mg —my +€)? (4.55)
2 — My 2 — My
q2QQ = Q2q2 = .
mo —MmMyp — € mo — My
Fundamentals and antifundamentals are related by gqi0 = v(g1,0,00) = ¢* and quo =
—0(1,0,0,0,0) = —q', or more simply
eijq] = ;0 . (4.56)

The product of determinants o is not quite central, but it is very close. Namely, the
operator wt = v(1,1,0,0,0) does commute with all the eigenvalues mi,q', q; , and we have

o= (pa2 — p21)~°
We emphasize that (4.56) is a diagonalized form of the chiral-ring relation (4.25). In the

w.

diagonalized basis, the product of determinants ¢ is required to pass between fundamental
and antifundamental operators.

4.3 (U(2) x U(1)%)/U(1) theory

The structures we found above at k = 3 generalize in a surprisingly straightforward way
to general k. At k = 3, the algebra C.[M¢] was freely generated by the tri-fundamental
operators Q2% (in particular, moment maps could be recovered as products of Q’s), in
correspondence with the fact that the Coulomb branch itself is a flat space Mo = C8. For
k < 3 there are additional relations among the @Q’s; while for k > 3 we will need both @’s
and moment maps as independent generators. However, the embedding of C.[M(¢] into
the abelian algebra A. and the process of diagonalization look almost identical.

We note that, in contrast, the Higgs branches of the corresponding 4d Class S theories
T2[¥0 k) are not usually described in a manner that is uniform for all k. By decomposing
the k-punctured sphere into k — 2 pairs of pants,

k—2
Sox =~ | =6Y (4.57)
a=1

one finds that the 4d Higgs branch is a holomorphic symplectic quotient

k—2
M~ [ I1 c8] J/SL(2,C)k=3. (4.58)

a=1
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However, there are many different ways to choose a decomposition (4.57), and so many
ways to express the same quotient (4.58); none is canonical, and none makes the generators
and relations of the chiral ring manifest. (The combinatorics of the spaces (4.58) were
studied carefully by [73].) The current 3d-Coulomb-branch perspective thus has some
marked advantages.

The gauge group of the 75y theory is a diagonal quotient (U(2) x U(1)¥)/U(1)giag-
Correspondingly, the cocharacter and weight lattices are

cochar(G) = {A = (A1, A9 B, ..., Bx) € Z*"?} (1, 1;1,...,1) ~ ZXM?/7, (4.59)
weights(G) = {\ = (A1, A3 A, .o, M) € ZKP2 st A+ Ao + S0, N, = 0} ~ ZKTL . (4.60)

As before, we denote by (p21, p22) the diagonal vectormultiplet scalars on the central U(2)
node, and by ¢ the U(1) scalar on the a-th leg. They may be collected into a vector
© = (pa1,022;01,...,0%). We split the hypermultiplet representation as R = R ® R*,
where

(1,0;—1,0,...,0) (1,0;0,—1,...,0) ... (1,0;0,0,...,—1)

weights(R) = {
(0,1;-1,0,...,0) (0,1;0,—1,...,0) ... (0,1;0,0,...,—1)

} . (4.61)

The abelian algebra A, is then generated by
1 1
P21 — P22 +ne o — @§ +ne’

@, va, (462)

modulo the usual relations (3.20)—(3.22). The monopoles of diagonal cocharacter v, =
U(1,1:1,..,1) are central and are all set equal to 1. The subalgebra W. that is contained
in the chiral ring (and which we conjecture is equal to the chiral ring) is generated just

as in section 4.1.1 by the rescaled monopoles u4, the Weyl reflection s (s> = 1) and the
1

BGG-Demazure operator 8 = R

(s —1). In particular, we have
Yt1,0,B) = +(p22 — 9021)”(i1,0;§) ’ Yo,+1;,8) = +(p21 — 9022)”(0¢1;§) ’ (4.63)

Y0,0:8) = Y(0,0;5)
for any B = (By, ..., By).

4.3.1 Moment maps and k-fold fundamentals

There is now an SL(2, C)¥ action on the Coulomb-branch chiral ring, generated by moment
maps associated to each “IT'[SU(2)]” leg (4.15). Since the moment maps on separate legs are
decoupled, they take exactly the same form (4.20) as for k = 3 (but now witha = 1,...,k).
In particular, the sl(2,C) triplets are

Ea = ‘/ia+ = /U(O,O;O,...,l,..‘,o) 9 F(L — —‘/1 o= _U(070§07~~~7—1,...,0) , Ha = 2()0% - @21 — 9022 .
(4.64)
Also in analogy with the k = 3 case, we find that the Weyl-symmetrized operators

Q%% = (Bu(1,0,0,...0))W = V(1,00,...0) T V(0,1:0,....0) s

3 (4.65)
Q2.2 = (—1)¥ Y(Ou—100...0)w = (—1)1([”(—1,0;0,.4.,0) + v(0,-10,...,0)]
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are lowest-weight and highest-weight, respectively, for every sl(2,C) triple. They generate
a k-fold fundamental representation Q% and a k-fold antifundamental Qiy,....ip.» With
indices 71,...,7, taking the values 1 and 2. The operators in these representations are
given by straightforward generalizations of the expressions in table 1. Explicitly,

11890 __ .
Q = (0U(1,0:2—i1,2—i2,...2—i)) = V(1,0:2—i1,2—iz,....2—it) T V(0,152—i1,2—in,....2—ix) »  (4-66)

and similarly for Q;,i,..s,.. The fundamental and antifundamental operators are manifestly
related by

€irgy - - - eikijjlmjk = Qil...ik . (4.67)
4.3.2 Diagonalization

Since the moment maps for general k look identical to those at k = 3, we easily general-
ize (4.43) to

1 ( _ n

. . 5= (P21 — P22) n even
Te[()") = ... = Te[()" = 4 7 (4.68)

—F(S@l — p22) n odd.

More explicitly, for each leg a = 1, ...,k we may introduce pairs of matrices

VlaJr VllhL -Vi w21 —pf—€/2
-1 _ —09te/2 —pite/2 — | e21—¢ P21~

Sa = ( p21 9‘11 /2 p22 #f e/ ) ) So = 31V1a32 @222,1@111,2;/2 ) (4.69)

p22—P21 P22 —pP21

satisfying S,S, ! = 5,15, = 1 and the components of S& commute with the components
of Sbi, fiy and figiag for a # b. These matrices diagonalize the moment maps to

1 —
ﬂdiag = SaﬂaS;1 = 2((,021 9022) 1 0 Va=1,...,k. (470)
0 3 (P22 — 1)

Now consider applying the operator S} ® ... ® Sk to Q"% (resp. Sl_1 R...® Slzl to
Qi,..i.)- In complete analogy with the k = 3 result, we find

($1)51 - (S5, Q7 = 6. 3",

—1\j1 —1Yjx i i (4.71)
Q1o (ST )iy - (S Ve = 0%40 - 0" iyeqwr
with eigenvalues
1 2
T = Y00 T =v14)> (4.72)
(p21 — 22 + ) (p22 — a1 + &)
QI - - 'U(_Lo;ﬁ') 9 (]2 - - U(07_1;6) . (473)

k Kk
1 (P21 = i +2/2) 11 (922 =i +/2)

Again, rather beautifully, the eigenvalues involve abelian monopole operators charged only
under the central node.
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Let us analyze the subalgebra of A, that is generated by the eigenvalues, as we did for

72,3 above. With moment-map eigenvalues m; = —mg = (w21 — ¥22)/2, we find that
k-1 k-1
mip—m mi1—mg+ &
q1ql:(m11_m22)_6 gt = 1m1_2m2)
4.74
2 (ma —mq)*! o (mg —my +e)<! )
q94=—""" q2q9° =
mo —Mmy — € mo — My
and similarly
q10 = (—1)k_1”(o,1;6) = (—1)k_1q2 420 = —Y1,0,6) = —q', (4.75)
where
o = (det S1)(det Sy) ... (det Si) = —— LD (4.76)
= 1 2) .- k) = , .
(22 — 1)k
k
-1 _ (22 — 21) )
7 T3k U(=1,-130) °
[T I1 (p2i — ¢f +¢/2)
i=1a=1
For odd k, we may write (4.75) as
cijg’ =qo  or gl =¢lo; (4.77a)
but for even k we require a slight modification
Aijqj =qo or @AY =¢go! (4.77D)
where
y 0 -1

As before, the product of determinants is very close to central. We may write ¢ =
(022 — @o1)¥wt, where wt = V(1,1;0) is actually central in the algebra of eigenvalues.
4.3.3 Un-diagonalization

The chiral ring relation €;,, . .. €;,j, @'« = Q;,. ;. and the diagonalized relations (4.77)
are intertwined by acting with the similarity transformations S1®...®5Sk. This relationship
is neatly summarized in the commutative diagram of figure 3.

We may also consider applying figiag to 84, ... 0%,¢" and then un-diagonalizing. By
choosing to contact S; 1 with fldiag, We find

(STH™5 - (S )™ (diag) 51673 - - - 67%iq" = (fin)" 5, Q7. (4.79)

However, since contracting S} U with fidiag Was an arbitrary choice (i.e. we could have
contracted any of the S; 1), it follows that

()", Q™ = L = (i)™ 5, Q1% (4.80a)
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k
® ejaia
a=1

Q- - Qir s
A

y k
Q) €aia
a=1
S o & (q—1yi —1y; . it
® (8a)" ia || ® (Sa)ay & (Sa ) 4| & (Sa) ju
a=1 a=1 a=1 a=1
— — <
s 1.1
0.6] 1 J
Y <—— Or <— y
qi/ q]/
o_lej/i/ N

+—" or +—

Figure 3. Commutative diagram relating the k-fold fundamental and antifundmental operators
in the standard basis and the “basis of eigenvectors” of the moment map. The arrow under ) S,
® S, ! and the determinants indicate which side to act on. (The distinction is only relevant when
¢ is nonzero.) For the bottom arrows, e is used for odd k and A is used for even k.

A similar argument can also be used in applying fi to @, . s to obtain
Qjr.id (1) iy = - = Qiy_ji ()i, - (4.80b)

When analyzing 4d Higgs branches of trinion theories, equations (4.80) are usually a
starting point, used to deduce the fact that the ) tensors can be diagonalized. Here, in the
3d Coulomb-branch analysis, it is actually easier to describe the explicit diagonalization
first, and then deduce (4.80).

5 One-legged quivers (k = 1)

With the 75y quivers well understood, we now consider the other extreme: the 7Ty star
quivers that have just a single leg, of arbitrary length:

------ OO -

This is a linear quiver, with gauge group
G=(UN)xUN—-1) x...xU(1))/U(1) diag (5.2)

and flavor symmetry SU(N). The Coulomb branch of such quivers was studied in [7], where
it was related to a moduli space of PSU(N) monopoles. The quantized Coulomb-branch
chiral ring of linear quivers was analyzed in detail in [12]. Our main (novel) goal here is to
describe the diagonalization of the moment map associated to the flavor symmetry of this
quiver, we will then upgrade our analysis to general Ty k theories in section 6.

— 36 —



We note that the Tn 1 star quiver is a small modification of the T'[SU(N)] quiver [71]:

v H (D). -

Namely, Tn 1 is obtained from T'[SU(N)| by gauging the terminal node. The Coulomb
branch of T[SU(N)] is the nilpotent cone in sl(N,C), and is fully parameterized by vevs

of the moment-map operators. The Coulomb branch of Ty ; is just a little bit bigger, and
the corresponding chiral ring contains operators @Q°,Q; in fundamental/antifundamental
representations of the SU(N) flavor symmetry in addition to the moment map itself. This
conforms with the general expectations for Ty theories. Indeed, we will also identify
operators Q[il“‘”},Q[ihwiT] in arbitrary antisymmetric tensor powers of the fundamen-
tal/antifundamental; though when k = 1 these can all be generated from the basic @, Q;.

An alternative mathematical description of the Coulomb branch of the Ty,; theory is
as a Kostant-Whittaker symplectic reduction

Me ~T*SL(N,C)//y N ~ CN7! x SL(N,C). (5.4)

In section 7.1, we will use our understanding of the algebra C.[M¢] to explain how (5.4)
comes about.

5.1 Conventions

Abstractly, the cocharacter lattice of G is ARG +1)/ Liag. We will write cocharacters as

A= (d’N;(_l;Nfl,...,C_il), an GZn, (55)
where each @, = (an1,. .., ann) corresponds to the U(n) cocharacter on the n-th node; and
we identify any two cocharacters whose difference is a multiple of Agiae = (T; 1,..., 1).

It is also useful to introduce basis elements for the cocharacter lattice (prior to the
quotient by Agiag). For 1 <n < N and 1 < a < n, let

na = (0;...;(0,...,1,...,0);...;0) (5.6)
(03

denote the cocharacter with a,, = 1 and all other entries set to zero.
The weight lattice is 7N +1)=1 " containing elements

A= (AN AN-1, .- M), An EZ", (5.7)
constrained so that the total sum of entries in the A\ vector is zero. We can use differences
of the eny’s from (5.6) (now re-interpreted as weights) as a basis for the weight lattice.
The hypermultiplets sit in bifundamental representations associated to the edges of the
Tn quiver. We choose to split the representation as R = R @© R*, such that the weights
of R are

weights(R) = {em — en,m} , (5.8)

with2<n<N,1<a<n,and1<pg<n-—1.
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Generalizing the notation of section 4.1, we also introduce complex scalars g, =
(@n1,- .-, ¢nn) for each U(n) node. They may be assembled in a vector

¢ = (Pn;PN-1,...,$1) € cochar(G) ® C. (5.9)
The contractions of ¢ with weights (or roots) are then given by
My = (\¢) = Ay BN+ Av_1-BN-1+ ...+ Mg (5.10)

and are naturally invariant under simultaneous shifts of each component of ¢.
The abelian algebra A, is now determined systematically as described in section 3.4.
It is generated by the components of ¢ and by abelian monopoles operators v4, as well as
the inverted roots
1

Pna — Png T PE

n=1....N, 1<a<p<n, peZ, (5.11)

and inverted weights (M) + pe)~! with A an element of (5.8), i.e.

! neo . N, YTLoon
Pna — Pn—18 T PE 8=1,....,n—1

per. (5.12)

The subalgebra W, C C.[M(], which is actually equal to the chiral ring in this case,
is built from ¢’s and the rescaled monopoles w4, as well as BGG-Demazure operators
corresponding to simple reflections in the Weyl group. For 7Tx,1 quivers the Weyl group is
a product

N
W =] S» (5.13)
n=2

and the simple reflections will be labelled s,;, withn=2,... Nandi=1,...,n—1, with
corresponding BGG-Demazure operators 6,,;.

5.2 Moment map and diagonalization

The Coulomb-branch flavor symmetry of Ty, is SU(N). Correspondingly, the chiral ring
must contain a complex moment map p € sl(N,C)* generating a complexified SL(N, C)
action. Borrowing results of [12] for the T[SU(N)] quiver (5.3), we find that the Chevalley-
Serre generators of sI(N,C) are

E,=Vr , F,=-V,, H,=2%,-®, 1 —®,;1 (1<n<N-1) (514)

forn=1,...,N — 1, where

n

V= Z Vtena = U(G....(10..0)...0) T eyl images (5.15)

a=1

are nonabelian monopoles operators with fundamental (or antifundamental) magnetic
charge on the n-th node of the quiver, and

n
o, = Z Pna (516)
a=1
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are Weyl-invariant sums of the scalars on the n-th node. It is clear that ®,, belong to W,;
and we can see that V. also belong to W. by writing them as

Vni X [Gnn_l Ce Hngﬁnluiem] W (5.17)

where [...Jy as usual denotes symmetrization over the Weyl group.
The Chevalley-Serre generators can be used to construct the complex moment map
operator, which altogether takes the form

fri=p—("5te) 1=

Py _N(I)N_%E Vi V[2+1] V[Jtrfm]
-V Py— 01— %y —N-le Vi VN1
Viga —Vy Oy —Pr— Oy —Fte ... ‘/[;—1:3]
(- )N 1V& 1:1] (_1)N72V[&71:2] (_1)N73V[17vf1:3] %Q)N_(I)Nfl_%5
(5.18)
We have included the constant shift by ( ) 1 for convenience. The general form of the
raising and lowering operators is given by
n n—1
nn’] Z Z Zvi (enaten—1p+...4e /() (5‘19)
a=1p=1 (=1
= U(@...5(£10...0);(£10...0)5...:(£10...0);T:....0) T Weyl images (5.20)

It turns out that, in the abelianized algebra A., the moment map can be explicitly
diagonalized. Recall that working in A is the quantum equivalent of working at “generic”
points in the Coulomb branch. With a bit of work, we find right eigenvectors

—1N-2
2: z: Z Ven_1aten—2p+...+eact+enn
_ =1 YNi — et + 5/2
N—l N—2 2

- Z Ven_1a+en—2p+-+eac

DS PN Pw-nate/2

. 5 T - 7@ 21
i N—1N—2 ) wn; = <80N1 N) (5 )
Z Z Ven_1aten— 28
o1 PN (e /2
N-—1
Z Ven_1a
o—1 —Da +€/2

1

for : = 1,...,n, which generalize the N = 2 formulas (4.37). Note that the eigenvectors
and their eigenvalues are permuted by the Sy Weyl symmetry associated to the terminal

@ node of the quiver. We assemble these eigenvectors into a similarity transformation

e <r]1 Ng - 77N) . (5.22)
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Its two-sided inverse is given by

X1
X2
S=1. , (5.23)
XN
with rows
N-1N-2 2 [ /1;[ (‘PNi_‘P(Nl)a’_g/z)] V—(en—1aten—2p+...teacterr)
« (67
( 1)N+1 Z
a=1 B=1 (=1 o}gﬁ(‘ﬁN@ ONa)
Xi = No1 [ [T (eni—ev-1 ,—5/2)] Voenia
o' F#a
2 I (ovi— )
O[//¢7:
N-1
HI(SDNZ P(N-1)a—E/2)
a=
[T (¢ni—@Nar)
Oé”#i
(5.24)
The diagonal form of the moment map thus becomes
on1 — PN /N 0 . 0
0 on2 — PN/N ... 0
fiding = SRS~ = : : . : . (5.25)
0 0 .. NN — ‘I)N/N

It is worth noting that the determinants of the similarity transformations are given by

vt L<.H<N<%0Nj - %DNi)] UG 1)
det§ = ——C bt 0 gep gt = L2 . (5.26)
[T (enj—oni) NoN-1
1<i<j<N 1:[ (oNi — p(N=1)a T €/2)

i=1 a=1

which generalize the N = 2 expressions. Just as in section 4.2.2, det S and det S~!
defined as row-determinants, e.g. det S := eil,,_iNSill ... S n. The determinants satisfy

det S det S™' =det S7! det S =1. (5.27)
There seems to be no way to restore symmetry between det S and det S~! (or make them

unimodular) while keeping S and S~! valued in A. — restoring symmetry would intro-
duce roots.
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5.3 Tensor operators

As mentioned at the beginning of this section, the chiral ring of 77 x contains additional op-
erators in arbitrary antisymmetric tensor powers of the fundamental and antifundamental
representations of SL(N, C). We would like to identify them as elements of the abelianized
algebra A. (more precisely, as element of W), and then investigate how the similarity
matrices act on them.

In building the moment map, we used monopole operators charged under all nodes of
the quiver except the first U(/V) node. So, let us now consider

N
QN = V= Z Vena = Y((10..0)3:.:0) T Weyl images , (5.28)

a=1

with fundamental magnetic charge on the U(N) node. Comparing with the N = 2 anal-
ysis from section 4, it is natural to guess that the operator QY generates a fundamental
representation.?? We prove in appendix C.1 that it is indeed a lowest-weight vector, in the
sense that

[F, Vi =0 Vn (5.29)

The remaining operators in the fundamental representation may be expressed as Weyl-

symmetric sums

N-1 %

N —
Q’L — ‘/[EZ] = Z Z e UQNQ'FeNflﬁ‘i-...-‘reig (5‘30)
a=1 g=1 (=1

= Y((10...0)5(10...0),...,(10...0), § ,..,0) T (Weyl images) .
N N—-1 i i—1

In other words, the @° are nonabelian monopole operators with fundamental magnetic
charge on the U(N) node through the U(7) node.

The antifundamental representation is similar. It is generated by the highest-weight
vector @y = —Vj, and more generally contains Weyl-symmetric sums

N—-1 7

N
Qi = (_1)N7i+1 Z Z va(eNaJreN,w#“Jrei() (531)

a=1 =1 ¢=1
— N—i+1 .
= (=D ”((710...0);(710...0),...,(710...0),,51,...,0) + (Weyl images) .
N—1 i i—

N —

In order to construct higher antisymmetric tensor representations A"[J, we consider
monopole operators whose magnetic charges on the various nodes are those of antisymmet-
ric tensors. For example, a collection of operators Q2% (1 <41 < ig < N) furnishing the

BWithout knowledge of the N = 2 results, another easy way to obtain the fundamental and antifunda-
mental operators is by decomposing the adjoint representation of SU(N + 1) into SU(NV) irreducibles. By
inspection of (5.18), it follows that the fundamental (resp. antifundamental) representation is generated
by the operator Q~ = V3 (resp. Qn = —Vy).
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representation A?C] may be constructed as Weyl-symmetric sums

[inia] _ _
Q = VeNay FeNag T F€Cigy FCigyg+€in 15+ Fei ¢

1<al<ap<N  1<y1<y2<i 1<6<in—1  1<(<iy
(5.32)
= 7Y((110...0);(110...0),...,(110...0),(10...0),...,(10...0),3...,0) +(Weyl images) . (5.33)
N N-1 io ig—1 i1
The operators Q[112%] in the A3 representation are sums over the Weyl images of v Aliyigig)?
where

Afiyinis] = ((111(J)V. ..0); (111N0.1..0),...,(111q. ..0),(110...0),...,
- i

(110...0),(10...0),...,(10...0),6,...,0)7 (5.34)
12 i1
and more generally the operators Q[il"'ir] in the A" representation may be constructed
as sums over the Weyl images of (—l)rflvA[il'_'iT] (when 1 <1y <... <14, < N) with

N N N
A =D G+ > bt Y (5.35)

n=ti n=to n=t,

The process must stop at » = N, where the cocharacter

is saturated with 1’s. In fact, Apa. N = Adiag 1S equivalent to the trivial cocharacter, so
QU = (~1)V oy, = (~1)V L

We prove in appendix C.1 that the operators QIV-N—1N=r]

are indeed lowest-weight
vectors for the SL(N, C) action generated by the moment map. From there it is straightfor-
ward to check (by taking commutators with the moment map) that the remaining operators
in each A"(J representation (and its dual) are of the form given here.

Similarly, the dual representations A"J contain operators Qi...i,) that are Weyl sums
of the negative cocharacters —Ay;, ;1 from (5.35). A beautiful relation between the A"(J
operators and the AN~ operators comes from using the fact that two cocharacters that
differ by a multiple of the diagonal Agi,s = (I;1,...,1) are equivalent. By subtracting
Adiag from (5.35), we obtain a cocharacter A, ;] — Adiag that is in the same Weyl orbit
as 7A[51,-~,%N7T]’ where {i1,...,i,} and {i1,...,iny—,} are complementary ordered subsets
of {1,...,N}. For example, taking N =5 and [i1io] = [24] we find

Apay = ((11000); (1100), (100), (10), (0))
Apa) — Adiag = —((00111); (0011), (011), (01), (1)) (5.37)
W _((11100); (1100), (110), (10), (1)) = —Apss -

With the overall signs chosen above, this translates to a general operator relation

1 /
Senr@ =Qr, (5.38)

where I, I' are multi-indices of size N — r and r, respectively.
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We note that all the Q1] and Qi ...i,) operators belong to the subalgebra W C A..
This can be shown directly by generalizing (5.17) to express Qli1-r] as a Weyl-average of the
rescaled monopole operator u Ay i) hit with an appropriate number of BGG-Demazure
operators. For n > 1, set

@%k) = (enkz cee 9n29n1) s (en(nf2) s an(nfk)en(nfk:fl))(Gn(nfl) s en(nkarl)en(nfk))

(5.39)
andn=1
o =1, (5.40)
then for 1 <i1 <... <4 <N
r 2 1
[/UA[il-uir]]W X [GZ(T) e 62(2)@’51)”*’4[11”.1'7‘]]{/[/ ? (541)

from which it follows that Q! and @Q; belong to W.. Alternatively, this follows from
the facts that 1) QY = V3 and Qy = —Vj are elements of W; due to (5.17); 2) the
remaining %, Q; in the (anti)fundamental representations are elements of W. because
they are obtained from QV, Qy by taking commutators with moment maps; and 3) the
higher tensors Q[i1-r] Q[iy...i,) are in We because they can be written as products of the
Q' Q; — see (5.51) below.

5.4 New basis for the tensors

For k = 1, the ) operators are already “diagonalized.” Nevertheless, it is natural to ask
how they are represented in the basis of eigenvectors of the moment map. The results will
help us later in section 6 to diagonalize the @’s for general Ty x quivers.
Let us define
¢ =589,Q", g = Qi(S™)Y, (5.42)

and more generally
¢/ =SV, 5700 ar = Qu(STHIy, L (5T, (5.43)

where I = [i1...4,|, J = [j1...Jjr] are antisymmetric multi-indices. By direct evaluation of
the r.h.s., we find that®*
1;[.(@1\/1‘ —¢Nj tE)
¢ =Vey  G=—y Ve - (5.44)
[T (eni — p(n=1)a +€/2)

a=1

In this basis, the magnetic charge has been fully shifted to the U(N) node! The (anti)fun-
damental ¢* (¢;) are magnetically charged in a (anti)fundamental representation of U(N).

Similarly, we find for higher tensors that

Veni,+-+eni,

[T (oni, —onin)’
in,im €Il
nm

¢ = (-1 (5.45a)

24We have checked (5.43) and instances of (5.45) explicitly for N > 5, though do not yet have a general
proof for all N.
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and, with the same general form but a more complicated prefactor,

[ I1 (@Nim_@Nin):| [ IT (eni, —¢ni, +¢)

im€l ip€le
_ N(r—1)+1 n<m
qr=(-1) H N_ U—(eni; +--Feniy) *

1
in€l 1(()0Nin_()0(Nfl)a+€/2)

a=

(5.45D)
Once again, all magnetic charge has shifted to the U(N) node, and has been abelianized.
The base-changed A"[J operators now have magnetic charges in the A"[J representations
of the central U(NN).25
Just as in the N = 2 theories of section 4,, the asymmetry in prefactors of (5.45) is
a result of asymmetry in our choice of similarity transformations. In the new basis, the
relation between fundamental and antifundamental powers is expressed as

1 / 1
r__ + I P -1 _

q = (N—r)!qje det S, jernd det S qr (5.46)
where I is a multi-index of length 7 and I’ is of length N — r. Thus, the “undiagonalized”
relation (5.38) is corrected by determinants.

In the new basis it is fairly easy to relate the fundamental ¢’, g; to higher tensor powers.

Letting I = {i1,...,i,}, we find by direct computation that

Y(r,0....,0)

g = ‘ HEI(SDNim — ¥Nip ) (PNin = PNip — €) (5.47)
inyim
n<m
and
I (eni —onj +e)
g --a = (1" ] N,fdc V(—&1,5,...0) * (5.48)
el al;ll (oNi — p(N=1)a T €/2)
where I, = {1,..., N}\I is the complementary subset, and &; € Z" is a vector with 1

entries for positions in I and zeroes elsewhere.?® Combining these formulas with (5.45),
we arrive at

o . 1 o

qquz o q'L'r _ (_1)r+1 H :|q[21...zr} (5.49&)

inimel PNin = PNim — &

n<m
and .

Girdis - -- @i, = (=1)VVEED) T ] Qlir..iv] - (5.49b)

inimel PNim = PNin

n<m

These expressions will be used momentarily to determine how to express Q! and Q; in
terms of products of Q" and Q;.

Z5We note again that when referring to magnetic charge (i.e. a cocharacter) as a representation, we mean a
representation of the Langlands-dual group. Here U(N) is its own Langlands-dual, so there is no confusion.
26Tt is interesting to note that the ¢;’s commute amongst themselves, this feature does not persist for k > 1.
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5.5 Relations

As mentioned at the beginning of this section, we expect the chiral ring C.[M ] of the one-
legged quiver Ty,1 to be generated by the moment map and the fundamental Q"’s alone.
In principle, the relations between fundamental Q%’s and higher tensors can be obtained by
carefully applying quantum similarity transformations to the simple relations (5.49) above.

As a preliminary step, it is helpful to move the denominators on the right side of
(say) (5.49a) to the left side. By multiplying both sides on the left and commuting the
factors pn; — ;i through some of the ¢'’s, we can bring the relation to the form

¢ [ IT (enin - @Nin)}qw[ IT (enio — @Nm)} g (N — e )gT = (1)
In>11 i >12
(5.50)
This is suggestive of an un-diagonalized relation

Pl Qi (pQ) QM = (=) QT (5.51)

where (A"Q)" := (i")";@Q’. At least classically, (5.51) diagonalized precisely to (5.50). By
explicit computation for N < 4 and r < N, we find that (5.51) holds even at the quantum
level and we conjecture that this relation holds for all V and r. (The explicit computations
appear in appendix D.)

By working out the explicit commutation relations between the components of
S, 871 q%, g, one could imagine deriving (5.51) from (5.50) in full generality. We do not
do this here. The analogous formula for antifundamentals is given by

Qi (Q)i - .- (QE™ 1) = (=)D, (5.52)

where (Qi"); := Q;(A");.
We also expect additional relations obtained from (5.51) and (5.52) via (signed) per-
mutations of the (7"Q)* and (Qf"); factors.?”

6 The general case

The structure we found for “short” k-legged quivers in section 4 and “long” single-legged
quivers in section 5 generalizes in a straightforward way to general Ty star quivers.
Indeed, analyzing general Ty x quivers is largely a matter of bookkeeping.

2TTo better understand these formulae, consider the contraction of ji with Q. Taking the form of ji given
above and diligently using (3.22), one finds that this contraction is a telescoping sum, and

N1/(G—1)! 1 "
(B"Q) = Z (SONaNJ - N¢'N> VA, ;- (5.53)
a=1
A nearly identical formula appears for the antifundamental operator (Q); := [ﬂ'/ij/; one simply tacks

on an appropriate factor of (cpNaN‘j - %@N — (N — 1)6) to each abelianized monopole found in @;. The
main feature of note is that the coefficients in each of these expressions only depend on the scalars on the
central node. When moving onto multi-legged quivers this will greatly simplify computations. In particular,
the operation of contracting a moment map (with its respective tensor index) will have the same result
regardless of which moment map is used.
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We shall describe the general results here, starting with the identification of moment
maps and fundamental/antifundamental tensors (and higher tensors) as elements of the
abelianized algebra W, C A.; then diagonalizing the tensors; and finally using diagonalized
relations to derive (or motivate) a general collection of relations in C.[Mc¢].

6.1 Conventions
The gauge group of Ty k is

k
G = [U(N) x JTUN = 1)a x UN = 2)g x -+ x U(l)a] JU(1)ding - (6.1)

a=1

Correspondingly, the cocharacter lattice is (ZV +EN(N —1y/ Zdiag- When needed, we write

explicit cocharacters as vectors
A= (An; AN (.. AL A%y, A2 A L AY) € cochar(G) (6.2)

subject to an identification A ~ A’ if A—A’is a multiple of Agiag = (T;... ;1) (ie. the vector
with every entry equal to 1). Here Ay = (An1,...,ANN) is the cocharacter associated
to the central U(N) node of the quiver, while A% = (4%,,..., A% ) is the cocharacter

associated to the U(n) node on the a-th leg, with 1 <n < N—1land1<a<k. Ina
similar way, we denote the diagonal gauge scalars as

0= (BN; BNty s P Bots e By Bty BY) € cochar(G) @ C (6.3)

where Fn = (¢na))_q and G2 = (p2, )0, for 1 <n < N —1.

As before, it is helpful to introduce basis vectors for the unquotiented cocharacter
lattice. Let eyo be the cocharacter with Ay, = 1 and all remaining entries (Ayg and
all fffl) set to zero. Similarly, let e? , be the cocharacter with A% = 1 and all remaining
entries set to zero.

The weight lattice of G is Z +ENW ~D=1 consisting of vectors

A= (AN AN 1A X AT XS LK) € weights(G) (6.4)

whose entries sum to zero. We can interpret differences of the ey, €2, as elements of the
weight lattice. The weights of the hypermultiplet representation R = R & R* are taken
to be

weights(R) = {ena — e}“\,,m} 1<a<k U {eh, — 62715} 1<a<k - (6.5)
1<a<N 2<n<N-1
1<B<N-1 1<a<n
1<B<n—1

The abelianized algebra A, is generated in the usual way by the entries of ¢, monopole
operators v4, inverted roots

1 1
PNa — PN TDPE  Phg—¢hst+DpeE

(a#B), (6.6)
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and inverted weights

1 1
ONa— P 15T PE Qe — 9L 15 +pE

(6.7)

The subalgebra WV, in which we will find all the components of our moment maps and k-fold
tensors, is generated by ¢, rescaled monopoles u 4, simple Weyl reflections sy, s%,, (on the
central U(N) node and the U(n), nodes on the a-th leg, respectively), and corresponding
BGG-Demazure operators 0nq, 05,

6.2 Moment maps and tensor operators

The chiral ring now has a ch::1 SL(N,C), action, generated by moment maps g, a =
1,...,k. These moment maps are associated to each leg of the star quiver, and are de-
coupled from each other. Indeed, each p, may be identified as a copy of (5.18) from sec-
tion 5.2. Explicitly, for each n =1,...,N —1 and a = 1, ...,k we may define nonabelian

monopole operators
n

V#i = Z Vtea (6.8)

a=1
with (anti)fundamental magnetic charge for U(n),. Since V,2* oc [62, ;... 08500 Ut | —

it is an element of W,. Similarly, we introduce Weyl-symmetric scalars

N n
Oy =) ona,  PL=D) ¢, (6.9)
a=1 a=1

on each node. Then the Chevalley-Serre generators of SL(N, C), are

EC=V,  Fi=_Vo, HI=202-9%% ,-®2 ., (n=1,...,N-1), (6.10)

n—1""

with the convention that ®% = ®y and ®y = 0. They fit into the e-shifted moment maps
fiq just as in (5.18). Since each fi, only contains monopoles (and scalars) charged under
nodes on the a-th leg, the components of the moment maps commute with each other,
[(fia)" o, (716)"5,] = 0 (a # D).

Generalizing sections 4 and 5, the operators in k-fold fundamental and antifundamental
representations now arise from adding magnetic charge on the central node. Let

N
Vi = Z Viena = [QNNfl ... gNluienl]W eW. (6.11)

a=1

be the nonabelian monopoles of (anti)fundamental magnetic charge on the central node.
Then we show in appendix C.1 that

QVN-N = vif, Qnn.n = (-1 Vy (6.12)

are simultaneous lowest-weight and highest-weight vectors (respectively) for every copy
of SL(N,C),. By taking repeated commutators with the moment-map components E¢
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(resp. F%), they generate k-fold fundamental and (resp. antifundamental) representations
of SL(N, (C)k. We denote the remaining operators in these representations as

Qi Qii,  1<ig<N. (6.13)

Following the pattern of section 5.3, we find that Q"% is a nonabelian monopole oper-
ator with fundamental magnetic charge for the central U(N) node as well as the U(n —
1)a, ..., U(iq)q nodes of each a-th leg. The operators @, . s, are similar, involving antifun-
damental magnetic charges instead.

To find the higher k-fold antisymmetric tensor representations, we repeat the same
process, starting with nonabelian monopole operators that have the corresponding k-fold
antisymmetric magnetic charge on the central node. Namely, for any 1 < r < N, we may
consider the Weyl-averaged operator

Q[N—T,N—T—&-l,...,N][N—r,N—r-i—l,...,N]...[N—r,N—r—Q—l,..,N} (614)

= (-1

where

AN—r,N=r+1,..,N|[N=r,N—r+1,..,N]..[N—r,N—r+1,..,N] = Z €Na Z Z Z €na

a=1a=1n=N-r+a—1
(6.15)

This is again a simultaneous lowest-weight vector for every SL(N, C), action, and generates
an entire k-fold r-th antisymmetric power representation A"} ®- - -®@ A"Og. The remaining
operators in the representation may be denoted

QN (6.16)

with antisymmetric multi-indices I, = [i{,...,i?]. They have various combinations of

magnetic charge in the < r-th antisymmetric representations, on various legs nodes, gen-
eralizing (5.35). Explicitly, if 1 < < ... <% < N and I, = [i{...4%] then

Q- — (_1)k(r_1)[UA11.<.1k]W’
where

An.n = Z ENa + Z i Z €ha (6.17)

a=1 a=1n=i2

Similarly, the dual tensors powers of the antifundamental representation A"(J; ® - - - ®
ATy are defined to satisfy

k K
1 1
(® EEJGIQ>Q11[2..-Ik = Q1o i s Q2 — Qs de ( ® me%la) , (6.18)

a=1 a=1

which is a natural genealization of (5.38). By a generalization of (5.41), it follows that
QM+Ie and Q1. .1, are all elements of W;.
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We will assume that the chiral ring C.[M] is entirely generated by the components of
the moment maps fi,, and the operators in the various tensor representations Q7' and
Qr1,..1,- Since these operators are all in W, they must (by the discussion in section 3.5)
belong to C.[M¢]. We do not have a general proof that they generate.

Let us also take a moment to summarize R-charges of various operators. Using the
general formula (3.42), we find that

[Ha] =1
Q) = [Q1y.4] = 5k~ (N ~ 1) (6.19)
Q] = Q] = 50~ 2r(N —v)  |E| =7,

where in the final row we have the A"[J; ® - - - ® A"l operators and their duals.

6.3 Diagonalization and diagonalized relations

Since the moment maps fi, on different legs decouple from each other, the quantum simi-
larity transformations S,, S, ! that diagonalize fi, are simply obtained by specializing the
formulas (5.22), (5.23) to the a-th leg. (In other words, starting from (5.22), (5.23) we
simply replace na — ¢, and epq, — €2, to get S, and S;1.) Then for every a,

on1 — PN /N 0 0
0 ons — ON/N ... 0
fidiag = SaftaS, " = : : . : : (6.20)
0 0 ... NN — q)N/N

Note that the eigenvalues m; 1= on; — %Q) n~ are independent of the choice of leg, as they
only contain scalars on the central node.
Just as in the 73 k theories of section 4, the matrix elements of the S, and S I commute
with the components of fi;, Sp and Sy Lfor b # a as well as with the components of figiag-
We can now use the similarity transformations to diagonalize the k-fold tensor opera-
tors. By generalizing explicit computations for low values of k and N, we find that

(51)"5,(82)jy - .. (Sk) 'k, Q12T = 57,6, . §",q"

L o T (6.21)
Qjrgoie (ST )i (95120 o (S )i = 0%,0%, - i
with .
1;['(%01\/@' —pNjt+€)
¢ =vVenis 6= Ve - (6.22)
[T I (pvi = ofn_1ya +/2)

This is a rather amazing simplification. One could have guessed that diagonalization should
be possible from the chiral-ring relations (6.32) and (6.33) below. A nice surprise, however,
is that the eigenvalues ¢’, q; are extremely simple elements of the abelianized algebra A.,
containing abelian monopoles charged only under the central node.
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Similarly, we can use S, and S, ! to diagonalize the operators in the A"[(J; ®- - - @ A"
and A" ® -+ ® A"Og. Letting I = [i1...4,] be an antisymmetric multi-index and I, =
{1....N}\I its complement (as a set), we find eigenvalues

I_ (- v (6.23)
€= [1 (enin —@ni, )k N TFeNis '
in,im €L
n<m
k k
{ II (@Nm—wvin)] { II (eni, —ni,+€)
imel ip€le
_ N(r—1)+1 n<m
QI—(_I) (r=1) H kK N_1 V—eniy ——€Niy -
in€l H1 Hl(wNin_(P((lN—l)a—i_E/Q)
a=1 a=

(6.24)

Again, these are proportional to abelian monopole operators on the central node alone,
with magnetic charges corresponding to a weight space in a single copy of the A"[J or A"[J
representation.

The eigenvalues m;, g7, g satisfy the relations that were anticipated back in section 2.2.
It follows easily from the part of A, associated to the central node that

. 1 A 1
Moreover, introducing the product of row-determinants

U(T;ﬁ;.,.;ﬁ) - U(T;ﬁ;...;ﬁ)

[T (enj—en I (my—my)k
1<i<j<N 1<i<j<N

o = det S;det Sy ---det S = , (626)

(noting that o is not quite central among the eigenvalues, though wt := V(A.5,....0) is), we
obtain the simple relations

1 Eil...iNq[i’“'“iN] kodd |
m { Ail...iNq[ir+l.“iN] k even - q[il...ir](j-? (627)

with A;,. iy = —|€iy.in|- These are the diagonalized versions of (6.18). The passage be-
tween fundamental and antifundamental representations, before and after diagonalization,
is summarized in the commutative diagram of figure 4.

Straightforward algebra in A, also gives us

da=-DV]] ms =y}
A m; —mj —¢&

1)N H (mz — m] + €)k_1
g T

(for any fixed i), (6.28)

aq' = (-

and relates products of (anti)fundamental ¢*, ¢; to higher tensor powers as

S ) . k1 o
qlquQ o qz,« _ (_1)r+1 |: H (m’Lm mln) 6):| q[z1...zr] 7

1<n<m<r (ml" = Mim =

ot (6.29)

Qi1 iy - - - Qi = (_1)(N1)(r+1)[ H (mi, —my,, +¢

(my,, —m;,)

:|Q[i1...iT} .

1<n<m<r
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s Qi

A 1 A
X r€al,

— or —

=

k
% { l(det sal)} ey 4 { Hl(det sal)} Ay
a= a=
— or —

Figure 4. Commutative diagram relating the k-fold rank r antisymmetric tensor operators and
rank N — r antisymmetric tensor operators in the standard basis and the “basis of eigenvectors” of
the moment map. I,, I’ should be understood as multi-indices of size r and J,, J’ as multi-indices
of size N —r. The arrow under @ A" Sa, @ A" S, ! and the determinants indicate which side to
act on. For the bottom arrows, € is used for odd k and A is used for even k.

We also point out that the R-charges of the eigenvalues m;, ¢!, q; are the same as
the R-charges of the original operators u, Q1< Qp, . 1. This follows from the general
computation of R-charges (3.42) in A, but is not entirely obvious from the formulas above.
In particular,

=1, ld']=lar] = %(k =2)r(N—r)  (f[[=r). (6.30)

6.4 Un-diagonalized relations

Many of the relations in the quantum chiral ring C.[Mc¢] of Ty k follow immediately from
the diagonalization above, and from discussions in the previous sections.

First, since each of the moment maps diagonalize to figiag, it follows that they should
satisfy

Tr[(f1)"] = Tr[(f2)"] = ... = Tr[(juc)"] (6.31)
for all n > 0.2 Another set of relations that follows immediately from the earlier comments,
in particular the derivation of (4.80), is

(ﬂln)ili’Qi/i2Mik - = (ﬂkn)iki/QiliQH,i’
- 7 _ .
(") i Qitig.ige = - - = (" )i Qirig..iv

28This property holds trivially when e = 0, but it holds in general despite the fact that the cyclic property

(6.32)

of the trace isn’t guaranteed for € # 0. In a similar fashion to the N = 2 analysis of section 4, these traces
must be Weyl-symmetric polynomials in the scalars on the central U(N) node and in e. Since all the legs
are attached to the same central node, these traces must match.
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as well as

QU () = = QN ) -
Qitig.i(11")" iy = -+ = Qiyigoir ()" i -
These relations naturally extend to any rank and one finds that
(jir n) i, QN ze il e — (ﬂkn)[ik,li,Qlllg...Ik,l[i’}...ikyr] 630
(ﬂln)l/[il,lQ[z‘/}il,g...il,r]fz...fk == (") i1 @I Iy T2 [i].ire o] .
and
QU2 ivallzfic(fmyinal, = — QR Tiea [l iter] (il 65)
Qlfitiy p...i1 o) Io. I (ﬂln)llil,l] = .. =Qnh e [l i) (ﬁkn)ilim .
where Iy, = {ig1,. .. %}

Finally, in analogy with (5.51) at k = 1, we expect to be able to relate products
of fundamental @)’s to higher tensor powers. Heuristically, this should come from un-
diagonalizing (6.29). We can write (say) the first equation in (6.29) more suggestively as

" ( IT Gonin — <PNz'n)> q"” ( IT Gonin — @Nin)> c g (N — PN e

in>11 in>i2
(6.36)
= [ H (PN — @Nin)k_ll q' .
i7L7i7YLeI
n<m

Just as in the k = 1 case, the Lh.s. classically arises (up to a numerical factor) from
diagonalizing?”
(MT’—lQ)[h[iz--[ik (MT_QQ)jlj}ujk o Qkﬂkz]---kk] (6.37)

while the r.h.s. classically arises (up to a numerical factor) from diagonalizing

() (17 (DOl QU R e B (6.38)

1

together these imply that, at least classically, there should be a relation of the form

(Mr—lQ)[i1[i2...[’ik (MT—QQ)j1j2...jk . Qk&]k‘z}...k‘k]
o ()1 (A (DT el QST (6.39)

1

and similarly for the antifundamentals

Qirlis)ind - - QB ™) s e (QU ™ ks ki

s (1) (PO

fir (11 k) (6.39b)

o Qi 1.kt (1)1

where the constants of proportionality are purely numerical.

Note that due to (6.32), (6.33), there is an unambiguous meaning to the operators (ﬁ"Q)“iZ”'ik,
(Qan)rtzte (ﬂnQ)ilizmik and (Qﬁn)iliQ...ik for all n.
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The quantum corrections to these relations are highly nontrivial. In the quantum case,
we expect a general form

(ﬂrle)[il[7;2~~-[ik(ﬂT*2Q)j1.72~~~jk o le]kﬂmkﬂ = (Tl)[il'“kl][illn_kll]Q[ill"‘kll]"'[ik"'kk] (6.40&)
and

Qpirfinfin - - Q"o Q™ Vghald = Qi) fietod (TFF1 4y (6.40D)

for some tensors Ty,T} constructed out of iy, with R-charge 3(k —1)r(r — 1). The tensors
Tl,fl can be quite complicated and we have not yet found a general formula for them.
Appendix D contains examples of relations (6.40) for several small values of N, k and r.
See also (2.29).

We do expect several additional relations among the moment maps and tensor oper-
ators. They are increasingly difficult to guess; though once a putative relation is written
down, it is straightforward to verify using the abelianized algebra A.. (In principle, all
relations in C.[M¢] are induced from the embedding of generators into A..) One family
of additional relations should correspond to un-diagonalizing (6.28). They should relate
partial contractions of the multi-index operators Q'tQ 1.1, to moment maps. Specific
examples of such relations at k = 2 and k = 3 are discussed in sections 7 and 8. For k = 3
we will also propose a special set of relations between products of fundamentals and higher
antisymmetric tensor operators, anticipated in (2.28).

7 Geometry of one- and two-legged quivers

As mentioned in the introduction, the Coulomb branches of one- and two-legged star quivers
coincide with well known geometric spaces. Namely, the Coulomb branch of Ty is the
cotangent bundle of the complex group SL(N, C),

Tnz : Me ~T*SL(N,C), (7.1)

while the Coulomb branch of 7y is the so-called Kostant-Whittaker reduction of
T*SL(N, C),
Tni @ Mg ~T*SL(N,C)//yMN. (7.2)

These are precisely the spaces assigned to one- and two-punctured spheres by the
Moore-Tachikawa TQFT [20]. (Taking some care with scaling limits, these spaces
can also be related to Higgs branches of the 6d (2,0) theory compactified on one- or
two-punctured spheres.)

In this section, we use the generators and relations of chiral rings from sections 5-6 to
explain how (7.1) and (7.2) come about.

7.1 Kostant-Whittaker reduction

To discuss the geometry of one-legged quivers, we begin by recalling what the Kostant-
Whittaker reduction T*SL(N, C)//,, 9 means. In physics, this space has played a major in
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the analysis of “punctures” in 4d A/ = 2 theories of class S, and in the Nahm pole boundary
condition of 4d N = 4 theories.

First, T*SL(N,C) is the cotangent bundle of the complex group SL(N,C). It is
canonically a complex symplectic space. The cotangent bundle is trivial, so we have
T*SL(N,C) ~ sl(N,C)* x SL(N,C). However, it is naturally trivial in not one but two
different ways, which correspond to identifying the fiber at the identity 1 € SL(N,C)
with either left-invariant or right-invariant one-forms on the group. A convenient way to
parameterize points of T*SL(N, C) is in terms of triples

pr,r € sl(N,C)*, g € SL(N,C), }
' 1Lg = GHR '
Here puy, and pug are the complex moment maps for the action of left and right multiplication

of SL(V,C) on itself, extended to T*SL(N,C) as complex Hamiltonian actions. Either
moment map can be used to parameterize the fiber at 1; ur,ur correspond precisely to

T*SL(N,C) = {m,g,m st (7.3)

the left-invariant and right-invariant trivializations of the cotangent bundle.
Under the action of left and right multiplication, the triplet (ur, g, ur) transforms as

(ue>9:1r) = (gLuLgy's 9r9: HR) (7.4)
ke, 9, 1r) 2% (L, 99R, 95 HRIR) - .
The group 91 C SL(N,C) is a subgroup of unipotent matrices, i.e. the exponential
of a nilpotent subalgebra of sl(IN,C). We take it to contain upper-triangular matrices of

the form
1 ni2 n1g -+ min
0 1 mno3 -+ nan
n=|\. ) , eMN. (7.5)
o0 0 --- 1

We assume that 91 acts on SL(N,C) on the right. Then the moment map for the induced
Hamiltonian 91 action on T*SL(N, C) may be identified as the strictly-lower-triangular part
of ugr € sl(N,C)*.

The holomorphic symplectic quotient T*SL(N, C) //,; M is now constructed in two steps.
First, one fixes the complex moment map for the 91 action to a generic character 1.
Explicitly, this means fixing the form of ugr to be

P ok % *
pp=| 0 Y2 % x| (7.6)

00 .- l/JNfl *
with fixed nonzero complex numbers 1,...,9¥n_1 below the diagonal. Note that the
form (7.6) is invariant under the right O action, which takes pr — n~'upn. Second, one
quotients by the 91 action, obtaining the space

My = (T*SL(N, (C)\MR:(TG)) /M = T*SL(N,C)//yN. (7.7)

With the restriction (7.6), the 9t action is free, so M, is smooth.
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Note that
dimg(My) = dime(T*SL(N, C)) — 2dime(N) = (N +2)(N —1). (7.8)

Moreover, M, is complex symplectic, with holomorphic symplectic structure induced from
T*SL(N,C). And there is still a Hamiltonian SL(N,C) action on My, induced from the
left action on T*SL(N, C); its moment map is uz. The complex symplectic geometry of
My, is independent of the precise value of the 1);’s as long as they are nonzero, so it is
convenient to take ¢ = (¢1,...,¥n-1) = (1,...,1). We want to check that My—; is
equivalent to the Coulomb branch of Ty ;.

There are several ways to describe the ring of functions on M,;. Since C[My] the ring
of functions on the quotient (7.7), it is equivalent to M-invariant functions on the restriction

C[My] = C[T*SL(N,C)|, (7.6)]8th

e (7.9)
The M-invariants are generated by
e the entries of the moment map u, and

e the entries in the first column gy of the SL(V, C) matrix g
(since g — gn preserves g(1)).

Now compare this to the quantized chiral ring C.[Mc¢] of the Ty 1 quiver from section 5.
The chiral ring is generated by a moment map i = p — %51 for the SL(N,C) flavor
symmetry and a set of operators {Q’ i]il in the fundamental representation. (All anti-
fundamental Q; and higher tensor powers Q,Q; can be constructed from p and Q° by
using (5.38) and (5.51).) We identify

Ql
pL=p, guy=Q°=| : (ase = 0). (7.10)

QN
Dimension-counting shows that there should be a relation among the entries of u and
g)- We find it as follows. Note that the first column of every matrix ((ML)kg)(l) =

(9(nr)") (1) is M-invariant. Moreover, due to the form (7.6) of g, the first column of
g(ug)¥ is a linear combination of the k-th column of g and some of the previous columns

(9(pr)") 1) = (b1t .. V) g1y + # 90 + # 91y + - -- (0<k<N-1). (7.11)

This implies that if we construct an N x N matrix X with columns

X = (9(1) (gr)ay --- (Q(MR)N_l)u)) = <9(1) HLI) - (ML)N_lgu)) (7.12)

we will get

det X = (N1 =2 pn_1)detg = N TN T2y . (7.13)
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This is the relation. Specializing to ¢ = 1, we simply have

det X = det (g(l) HLY(1) - -- (/QLL)Nilg(l)) =1. (7.14)

Rather beautifully, upon identifying 7, = p and g(1) = Q°, this coincides with the ¢ — 0
limit of the quantum relation (5.51) we found in section 5.5. Namely, (5.51) with r =
N implies
det ((ﬂN_lQ)’ . (1Q)" Q') —1. (7.15)
An alternative way to describe the ring of functions on M, involves taking a slice
through the orbits of the (free) N action on T*SL(N, C)’u3=(7-6)’ i.e. gauge fixing. This
description often appears in the literature, particularly in [20]. We can completely gauge-fix
the M action by forcing the upper-diagonal part of g in (7.6) to take the form

000 -+ 0 =
$1 00 -~ 0
090 - 0 a3
pr=| . . (7.16)
000 -+ 0 ayn

0 00 -+ %yt O

where most entries above the diagonal, except the first N — 1 entries of the last column,
are set to zero. This is the so-called Kostant slice (or maximal Slodowy slice) in sl(N, C)*.
The entries x1,...,2rny_1 are independent functions on M,,. Using this parameterization of
pr and moreover specializing 1) = 1 we find that the matrix X from (7.12) simply becomes

X=g. (7.17)

Therefore,
My=1 =~ {(g,21,...,xn-1)} = SL(N,C) x CN~1. (7.18)

Unfortunately, this description makes the holomorphic symplectic structure of M, rather
obscure.

Comparing to the Coulomb branch of 7Ty ; from section 5, some quick computations
indicate that the chiral-ring operators given there are already adapted to a gauge-fixed
version of My,. In particular, defining the matrix

X=(Q (Qr ... (i"7'Q) (7.19)

(which satisfies det X = 1, and which we expect to equal g after gauge-fixing), we find that
in the € — 0 limit

0 10 ---0
—C9 01 ---0
c3 00 ---0
XX = . , e (7.20)

(-D)N¥2cy 300 -1
(-D)N"ley 00 -+ 0
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where ¢; are the Casimir operators of fi, cf. appendix D.1. The expression (7.20) is not the
Kostant slice (7.16) on the nose, but is related to it by a simple transformation, namely
transposing and conjugating with the longest element of the Weyl group. The same trans-
formation appears in the analysis of two-legged quivers below, cf. (7.30), and accounts for
a difference in conventions in defining the right SL(V, C) action on T*SL(N, C).

The computation of X ~!iX can be carried out even at € # 0, but the result does not
follow an easily recognizable pattern. For small values of N we find:

e 1
N:2: X_1~X:
K (—02—}1520>’
2e 10
N=3: XX =| —o-3* 01|,
Cg-i—%&c—%—gESOO
3e 100
1~ —co + Ze? 010
N =4 XX = s 7.21
! c3+ Secy — BB 001 (7.21)
—cy — 3ecg — 2eey + 1 00 0

7.2 The cotangent bundle

For two-legged (k = 2) quivers, we expect the Coulomb branch to be even simpler: clas-
sically, M¢c ~ T*SL(N,C). We gave a description of this cotangent bundle in (7.3), in
terms of an SL(N,C) element g and moment maps ur, ugr for the left and right actions
of SL(N, C) on itself, extended to T*SL(N,C) as Hamiltonian actions. Here we’ll explain
how holomorphic functions on T*SL(N,C) match the structure of the Coulomb-branch
chiral ring.

In the quantum chiral ring C.[M¢] of a two-legged quiver, we already have two
SL(N,C) moment maps fij, fiz. It is natural to identify these with ur,pur — modulo a
slight reparameterization that we’ll explain below. In addition, the chiral ring contains
bi-fundamental tensors Q% and bi-antifundamental tensors Q;; for left and right SL(N, C)
actions. We expect to identify one or the other of these with the group element g.

The tensor operators in k = 2 theories turn out to satisfy some special relations
that are the key to making this identification. First we note that the general R-charge
formula (6.19) implies that the bi-(anti)fundamentals and all other higher antisymmetric
tensors have R-charge exactly zero

Q7] = [Qy] = Q"] =[Qu]=0. (7.22)

This is consistent with the natural C* scaling action on T*SL(N, C), which acts on g with
weight zero and the cotangent fibers uy, (or pgr) with weight 1, also scaling the holomorphic
symplectic form with weight 1.

The R-charges (7.22) allow for simple contraction relations on a single index

QUQuj = (—1)N&'y, QUQij = (—1)No (7.23)
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that un-diagonalize (6.28) with no need for a moment map on the r.h.s. In addition, all
the higher tensor operators can be built in a simple way from the bi-(anti)fundamentals,
again without involving moment maps. Namely, if we let [ = [i;...4,] and J = [j1...j]
denote fully antisymmetric multi-indices, then
Q[i1[j1Qi2j2 . Qir]jT} _ (_1)%r(r71)%Q1J? Q[il[leing L Qir]jr} _ (_1)%7‘(7"71)%QIJ,
(7.24)
where the Lh.s. has a full antisymmetrization on each set of indices. We have checked these
relations explicitly in the quantum algebra for N < 4 (see appendix D.2.3), and infer the
general form shown here.
Thanks to (7.24) and the universal relations (6.18), we find that all antifundamentals
Q;; and all higher tensors Q" Qs can be written in terms of the basic bifundamental
operators Q%. Under the general assumption (made throughout this paper) that the chiral
ring C.[Mc] is generated by moment maps fi, and the entire collection of tensor oper-
ators, this observation implies that for k = 2 quivers the generators fii, i and Q% are
actually sufficient.
Now, if we set r = N in (7.24), we get the specialization
Q[il[leizh .. .QiN]jN] — (_1)%N(N_1)%eil---iNejl---jN ] (7.25)
In the classical £ — 0 limit, this ensures that det Q¥ = (—1)%N(N71). At € # 0 we must be
more careful about defining the determinant. It is convenient to introduce anti-diagonal
matrices K;j = 0; Ny1—j = K satisfying Kinjk = §;F

K=|. . (7.26)

(This is the longest element of the SL(N,C) Weyl group.) Then, defining
g’ = QU Ky, (7.27)
we find that g naturally has a unit row-determinant, even at € # 0
det g = €1,iy.ing" 1922 gV N = 1. (7.28)

We identify this g with (a quantization of) the SL(V,C) matrix in the expected Coulomb
branch T*SL(N, C). We also note that, due to (7.22), g has a two-sided inverse given by

(95 = (DNKT Q. (7.29)

It remains to carefully identify the left and right moment maps ur,, pg for T*SL(N, C)

(in the presentation give by (7.3)) in terms of fi; and fi2. We propose to set, both for ¢ = 0
and ¢ # 0,

pr=p1, pr=Ki3K. (7.30)
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In other words, (ug)’; = /lévﬂ_j N+1—i- The universal relations (6.32) involving moment-

map contractions with @)’s then imply
() 7 Q" = (72 Q7 (7.31)
which conveniently translates (using (7.27), (7.30)) to

nrg = (prg")", (7.32)

and in the e — 0 limit reproduces the relation urg = gug in (7.3). For ¢ # 0, we have
explicitly recovered a quantization of T*SL(N, C).

We remark that the matrix K here, together with transposition, plays the role of
intertwining the SL(NV, C)¥ action on C.[M(] that is most natural for general Ty ) quiv-
ers (namely, with every SL(V,C) acting as a left multiplication) with the SL(N,C)r x
SL(N, C)g action by left and right multiplication that is more natural when k = 2.

8 Relations for trinion theories

In section 6, we identified moment maps and antisymmetric tensor operators as elements of
the abelianized algebra A., for general Ty i star quivers. We then derived and/or verified
several universal families of relations among the moment maps and tensor operators, which
hold for all N and k. In this section, we specialize to k = 3, i.e. the star quivers related
to trinion theories T of Class §. We quickly compare the universal relations to know
T relations in the literature, and then discuss how to quantize and generalize several
additional relations from the literature that are special for k = 3.
We mainly follow [24] and [26] as references for known Ty relations, at € = 0.

8.1 TUniversal relations

Relations (6.31)—(6.35) in section 6 give us

Tr[(f2)"] = Tr[(f2)"] = Tr[(f23)"] (8.1)

as well as

(3)
. | (is) (8.2)
()" iQujk = (fi2)’ j Qg = (fis)" kQij
Qi (i) s = Qi (i)’ j = (73)* kQijw (fiz)" &,
and more generally, for higher-rank tensors
(ﬂl)[ili/Q[z’/]ig...ir]JK — (ﬂ2)[j1j/QI[j/]j2...jr]K — (ﬂg)[klk/QI‘][k/]k2“'kr], (8'3)

(1) 15, Qintin. iy = (2) 1 Qo i = (183)" by QLo ko, ] »

with identical formulas for contractions from the right. As ¢ — 0, the shifted moment
maps fi, become ordinary moment maps u,, and these relations reduce to the well known
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eqs. (2.4)—(2.6) of [24]. As argued in section 6 via diagonalization, relations (8.2)—(8.3)
still hold if the moment maps are replaced by their n-th powers.
We also always have (6.18) relating fundamental and antifundamental tensors, namely

1 ’ ’ ’
QIJK = 7(]\[ — r)‘3 QI/J/KIEI IGJ JEK K s (84)

where I, J, K are multi-indices of length r and I’, J’, K’ are multi-indices of length N — r.

1 IJK
WGI’IGJ’JGK’KQ K = Qg

8.2 Contractions and Casimirs

One of the special relations we find for k = 3 is a quantized version of (2.7) in [24]. It takes

the form
- N-1 N—i—1 ‘ ‘
Q7 Qije = ()N > ez > (i L (5 (8.5)
=0 m=0
where ¢, are coefficients the characteristic equation of fi,
N
Py(t) = det(t + fia + (N — i)6;;6) = Y _[t]’cn—p,a- (8.6)
=0

This Capelli-like determinant is used to ensure that the ¢, , are central elements; they can
be expressed in terms of the Tr[(fi5)"] just as with ordinary determinants. Several of the
¢y are listed in appendix D.1, as explicit elements of the abelianized algebra A.. As noted
in [24], (8.1) implies that

o1 = Cpo = Cp3 =i ¢y (8.7)
and so

Pi(t) = P(t) = Ps(t). (88)

The verification of (8.5) will closely mirror [24]. Consider the operator RY;; =
Qiiji/j/k. This operator clearly transforms as a bi-adjoint (with possible traces) of
SL(N,C)? and trivially under the third SL(N,C). From (6.32) and (6.33) we have

(ﬂl)ii//Ri”ji/]‘/ = (ﬂl)ini/Ri‘ji//j/ Ri//‘ji/j/ (ﬂl)ii// = Rilji//j/ (ﬂl)i//i’ (89)
and similarly for fig, fiz. At the classical level this would imply that R commutes with ji;
and f[io as matrices but that is not necessarily the case for € # 0. In order to show that this
indeed is the case, note that since Q¥* is a fundamental and Qijk is an antifundamental it
follows that

()" o, Q%] = & [5ii”QiNjk - 51"1,"%@2']‘19} ;

~ -7/ -7/ 7 (810)
[(f1)" i, Qijr) = —¢ [5Z iQinjr — 6" z‘%Qz’jk}
Putting these together we find that
[(fin) ', R ) = [(711) 7, Q" 7% Q1]
1 - . 11 ~ N ..
=5 {[(Ml)zi”aQZ % Qu o) +(fin)! i’aQUin”j’k]}
S(N?_1) (8.11)

T 2N { (Qijk@i’ﬂ”’f _Qi/ijij’k> + (Qilijij’k _Qiiji’j’k) }
=0
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as desired. An identical computation shows that R commutes with jio. From the fact that
R commutes with both fi; and fis and its tensor structure, it must be that R is a polynomial
in fi1, fig with some prefactors that commute with everything. Furthermore, the R-charge
of @ implies that this can be a polynomial of degree at most N — 1. Equation (6.32) can
be written as (i1 ® 1 — 1 ® fi2) R = 0 and so, since P(ji1) = P(fi2), one finds that such a
polynomial is given by

P(i N-1 N-I-1
Roc'ul—oc ¢y Z (N (8.12)

H1= =0 m=

[e=]

We claim the constant of proportionality is (—1)¥, which has been verified explicitly for
low values of N, resulting in the proposed formula (8.5). In the classical limit, the modified
Capelli determinant becomes the usual determinant and so the coefficients ¢, take their
classical values, in agreement with (2.7) of [24].

8.3 Fundamentals and higher tensors

At k = 3 there are also a beautiful set of relations between products of tri-fundamental
operators and higher-rank tensors, which un-diagonalize (6.29).

One example of such a relation was proposed®” in (2.8) and (2.9) in [24]; namely,
at e =0,

i1J1k1 yi2jaka IN—1JN—1kN-1,.. . . .
Q Q e Q €j1j2-..iN—1jCkika...kn_1k

= (N = D1Quu () (1) . (ufY 72 Vet

L . 8.13
631]2--~]N—1J6k1k2-~~7€1\7—1k ( )

Qi1j1k1 Qi2j2k2 s QiNfleflkal
(N+1)(N—2)

= ()TN S DI ()i (A e i

where pQ = § is just the identity matrix. One can permute p1 — pg — usz to obtain other,
similar relations.

For the N = 4 trinion theory, a generalization of (8.13) appears in table 3 of [26]
(discovered by the chiral-algebra analysis of [56, 57].) With our normalization conventions,
the relation takes the form

QUilinlk giialhe] — _ () yin, gl lkako]
2 ' (N =4). (8.14)

1,
Qirlialkr Qi)jalka) = 5 (1) (12 Qin)ig)ln sk

Notice that if we were to read this as an N=3 relation, it would reduce to (8.13) after
contractions with Levi-Civita tensors and an application of (8.4).

30The expressions we write here agree with (2.8) and (2.9) in [24] upon substituting Qijx — — Q.
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We propose a uniform generalization of (8.13) and (8.14). Namely, from explicit com-
putations at low values of N, we find that

Q(m[jl[kl Qi2j2k2 o in)jr]kr] _ i%é(ilii (ﬂl)izié o (ﬂ?lﬂ—l)z;)i/rQ[i’lié...i’r][j1j2...jr}[k1k2...k,«}
1 it ~ N\ r—1Nd!
Qs [j1 [k Qizgoha - - - Qig)jalkr] = £ 3 Qlitiy. i)l gillbka- k10 (i (A1) 245 - (g DETRY
(8.15)

Moreover, these are relations that hold in the quantized chiral ring C.[M¢]. Some explicit
instances of (8.15) are listed in appendix D. Appendix D holds several more examples of
relations between products of fundamentals and higher antisymmetric tensors, particularly
of the form

(i QL (@) Q) = (T ) QTR (8.16)

for appropriate tensors 7|y ) built out of the moment map fi1. We do not yet have a
general formula for T(y ., for all N and r.

Some additional quantum relations among the @’s with vanishing classical limits are
summarized in section 2.3, and detailed in appendix C.
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A C.[Mc] and A, in the BFN construction

The abelianized algebra A. is related to fixed-point localization in the mathematical defi-
nition of the Coulomb branch proposed by Braverman, Finkelberg, and Nakajima [15, 16].
To provide some context, we review some aspects of the physical interpretation of the BFN
construction and the appearance of A, therein. For further discussion see [13] (where an
analogous construction of C[M¢] via equivariant cohomology appears) and the upcom-
ing [66].

The analysis here is directly analogous to physical constructions of the category of
't Hooft (or Wilson-"t Hooft) operators in topologically twisted 4d N = 4 (or N' = 2)
super-Yang-Mills theory. Line operators in 4d are the dimensional lifts of local operators
in 3d. The categories were studied in [74] and [75] (generalized in [43]), and identified as
categories of sheaves on particular versions of the space Mcyc) that appears below.

The BFN construction arises physically by considering a 3d N/ = 4 gauge theory on
spacetime C x R, with a particular half-BPS boundary condition B near spatial infinity
on C

Neumann b.c. on the vectormultiplet,
B : (A.1)

Dirichlet b.c. on the chiral half of the hypermultiplets in R*
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We recall that the full hypermultiplets are in a quaternionic representation (3.1) that is
split (not necessarily uniquely) into two unitary representations R & R*; this boundary
condition thus sets half of the hypermultiplets to zero.

This setup may roughly be imagined as a 3d theory on a solid cylinder (figure 5).
We may also think of this 3d theory as a 1d A/ = 4 quantum mechanics whose fields are
various sections of bundles on C, obeying the boundary condition. If we further work in
the cohomology of the twisted Rozansky-Witten supercharge Qgrw (whose local operators
contain elements of C[M]), we may restrict (localize) the fields in the quantum mechanics
to sections of bundles that solve the Qrw BPS equations. After a bit of work, and a
translation to algebraic language, this yields gauged N’ =4 QM on

M pairs (E, X), where E is a holomorphic G¢ bundle on C (A2)
e and X is a holomorphic section of an associated R-bundle '
with a gauge group?!
G = holomorphic G¢ gauge transformations on C. (A.3)

The Hilbert space of the quantum mechanics, in the Q) gy twist, should be the G-equivariant
de Rham cohomology of M [76].32 Turning on the Omega background further corre-
sponds to working equivariantly with respect to the U(1). spatial rotation group of C,
which is an ordinary symmetry of the moduli space M|c). We find a Hilbert space

H = Hg, ). M) - (A.4)

While this may look foreboding, a bit of thought shows that M ¢ is contractible to a point
where F is the trivial bundle and X is the zero-section. Similarly, G is contractible to G, so

H =~ HE,y). (p) = Clio,e]™ (A.5)

just consists of Weyl-invariant polynomials in the equivariant weights ¢ € {¢ and e.

Now consider local operators of the 3d theory, inserted at a point (0,0) € C x R. A
state-operator correspondence in TQFT would identify the vector space of local operators
with the Hilbert space on a sphere S? surrounding the point (0,0) € C x R. From the
perspective of N' = 4 QM, it is convenient to deform S? to the boundary of a cylindrical
slab, as on the right side of figure 5. We then obtain a description of the Hilbert space as

3In the mathematics literature, C is usually replaced by a formal disc (so that holomorphic sections
look like Taylor series rather than polynomials), and the gauge group is usually denoted G = G¢[O], where
O = CJ#] is the ring of formal Taylor series. We will not be careful about such distinctions here, as we are
merely trying to give an overview.

32Gince Mg is infinite-dimensional, physics would dictate that L? de Rham cohomology be used. In
the mathematics literature, Borel-Moore homology, i.e. “homology with closed support,” is employed in-
stead, as it is better behaved on spaces such as Mcuc)/ G’ encountered below, which are generalizations of
affine Grassmannians. It is fairly clear by now that mathematical computations in Borel-Moore homology,
such as (A.?), agree with physical expectations about the structure of local operators. Nevertheless, a
fundamental understanding of why Borel-Moore homology is natural in QFT still seems to be missing.
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Figure 5. Left: 3d N' = 4 theory on C x R with a boundary condition B at infinity, reinterpreted
as 1d ' = 4 quantum mechanics. Right: surrounding a local operator with a topological S? that
has been deformed to two closely separated copies of C (the boundary of a cylindrical slab).

the cohomology of a moduli space of solutions to the Q ry-BPS equations on this deformed
S?, ie.

pairs (E, X) and (E', X') as in (A.2), together with
o — (B, X))

that identifies these data away from the origin

Micug) = { a gauge transformation g : (E, X) (A.6)

C*

Here g is a holomorphic gauge transformation on C*, which is allowed to be singular at
the origin, where a putative local operator is inserted. We then obtain the vector space of
local operators in () gy-cohomology as

CcMc] = HéxQ’xU(l)g(M[CUC])
~ Heyy. Micua /9) s (A7)

where G, G’ are the groups of regular (holomorphic) gauge transformations on the top and
bottom copies of C, and U(1). as usual is the spatial rotation group. In a nutshell, (A.7)
is the BFN construction.

There are several highly nontrivial aspects of the formal definition (A.7). In contrast
to (A.5), the space Mcyuc)/G’ is not contractible; it has highly nontrivial topology, as
it must in order for (A.7) to contain monopole operators. Moreover, the OPE of local
operators in the algebra C.[Mc] does not correspond to a cup product in cohomology.
Rather, it naturally corresponds to an operation known as the convolution product, which
results from colliding and merging two of the “spheres” surrounding local operators in
figure 5. Both the cohomology classes in (A.7) and their convolution product can be
difficult to describe explicitly.

A useful tool in equivariant cohomology is fixed-point localization. Letting T' C G
denote the maximal torus as usual, one finds that the 7' x U(1). fixed points of Mcyuc)/G’
are isolated and actually quite easy to describe: they are points (E, X), (£, X’) where X =
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X' = 0 are zero-sections, E is trivial, and E’ is obtained from E by a gauge transformation
g(z) = 24, A € cochar(G) . (A.8)

(Here “z” is the local coordinate on C, and we are using A € Hom(U(1),T') to define a mero-

4 means diag(z41, ..., z4V).)

morphic gauge transformation. For example, if G = U(N), z
Thus the fixed points are labelled by cocharacters — just right to correspond to abelian
monopole operators!

Let F denote the fixed point set of the T x U(1)s action on Mcyc)/G'. We just
explained that F ~ cochar(G) is isomorphic to the cocharacter lattice. The equivariant
cohomology of the fixed point set just contains a copy of H;xU(l)g (point) = CJy, ¢] for every
point in F, i.e. H;Z.:XU(l)e (F) ~ (C[go,e, {UA}AECOChar(G)]' Its “localized” version inverts all
weights (A, @) + ne (for any A in the weight lattice of G),

* ocC 1
HT><U(1)5 (]:)1 = (C[QO’ &, {UA}Aecochar(G)v <>\ ] s (Ag)

@) + ne

from which we see that our abelianized algebra A, from (3.24) sits inside
A: C Hp oy (F)°° (A.10)

The only difference between A, and Hi . (F)¢ (as vector spaces) is that in A, we only
inverted roots M, + ne and weights M) + ne where \ € weights(R); whereas the localized
cohomology indiscriminately inverts all weights. The localization theorem provides the map

C:[Mc] = Hi ). Micugy/G) = Hiuy. (F)° (A.11)

When this is carefully interpreted using Borel-Moore homology (see Footnote 32), one finds
that the image actually lies inside A.,

C.Mc] = A.. (A.12)

In other words, only the roots M, + ne need to be inverted.

It is hardly obvious mathematically that the maps (A.11), (A.12) are embeddings of
algebras (under the convolution product) rather than just vector spaces. The compatibility
of fixed-point localization with the convolution product was proved by [16].

B PSU(2) Coulomb branch via Demazure operators

Here we wish to give the simplest possible example of how the algebra W. from section 3.5
fully reproduces the quantized Coulomb branch chiral ring. We consider 3d N = 4 pure
gauge theory with G = PSU(2) (and R = @). The mathematics of this example (in fact of
any pure gauge theory) first appeared in [67], and were connected with the physics of 3d
N = 4 theories in [14].

The Coulomb branch of PSU(2) gauge theory is the centered moduli space of two SU(2)
monopoles [2], known as the Atiyah-Hitchin manifold [77]. As a holomorphic symplectic
manifold, it is cut out of C? by the equation

U? —dV2 =4, (B.1)
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and has a holomorphic symplectic form induced from the holomorphic 3-form on C3?,

dd A dV
Q=" B.2
ST (B.2)

In terms of the 3d N = 4 theory, ® = %Tr(qSQ) is the generator of gauge-invariant polyno-

mials in the complex scalar ¢ € gc; V is a nonabelian monopole operator of fundamental
charge (labelled by the fundamental cocharacter ‘1), and U is a dressed monopole operator.

The quantized ring of functions C.[M¢] was described in [12]. It is generated by
operators U, V, ® with commutation relations

[®,V]=2eU — 2V, [®,U] =20V -2V, [U,V]=—cU?, (B.3)

and a central constraint

U? +eUV —dV2 =4, (B.4)

Let’s see how these arise from abelianization.
The abelianized complex scalar ¢ is (‘5 Ep) € t¢, and the full abelianized algebra can

be generated from ¢, !, and the abelian monopole operators v, = vy and v_ = v_; of
unit cocharacters,
AE = C[(pa V4, l:| ) (B5)
¥
with relations
[, v1] = tevy, viv_ = _71, v_vy = b (B.6)
p(p —¢) o(p +¢)

following from (3.20), (3.22). Note that here the W-boson masses are M, = +¢, and it is

1

sufficient to invert ¢ because all other denominators e

can be obtained by commutation

with vy :
1

@+ ne

- <—1>"<wv>“;<w+>" | (B.7)

The subalgebra W, is obtained by considering polynomials in ¢ and the rescaled
monopole operators (3.28)

Uy = —PU4, u_ = Qu_, (B.8)
which obey the extremely simple algebra
[p,us] = teug, Upu— =u_uy = 1. (B.9)

We then throw in the Demazure operator

1
0="(s-1), (B.10)

where s is the simple reflection that generates the Weyl group, and acts as su+ = uss,
sf(¢) = f(—p)s. The definition of the W, algebra (3.33) says to take the Weyl-invariant
part of the polynomials in ¢, uy, and 6:

W. = Clp,ux, 0" ~ (s +1)Clp,ux,0)(s +1). (B.11)
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Consider the sorts of elements this contains. The Weyl-invariant functions of ¢ and
u4 include
P = 2, U:=uy+u_. (B.12)

With the Demazure operator, we may also construct an operator
. . 1
V := (Weyl-invariant part of u; ) = —(u— —uy) = vy 4+ v_. (B.13)
¥

The Weyl-invariant part of the Demazure operator itself is zero; and we cannot apply the
Demazure operator multiple times because it is nilpotent #? = 0. It turns out that the
entire algebra W. is generated by the three Weyl-invariant operators above,

W. = C[®,U,V] C A. (B.14)

with relations among them induced from the relations in A.. The reader may check that the
these relations perfectly match (B.3) and (B.4) above, so that W, ~ C.[M(] as claimed.

C Some basic quantum identities

In this appendix, we collect some basic results on commutation relations between moment
maps and the tensor operators @), Q). as well as among the tensor operators themselves.
We work exclusively in the quantized chiral rings.

C.1 Highest and lowest weight vectors

We first show, by means of (3.20) and (3.22), that QVVV (resp. Qnn..n) is a lowest

(resp. highest) weight vector of a fundamental (resp. antifundamental) representation

for each SU(N) action, and then generalize to higher antisymmetric powers. Due to the

permutation symmetry between the different legs, it suffices to consider the case of k = 1.
As described in section 6, QY = VJ, i.e.

N
QN => vk, (C.1)
a=1
(6%
where v]j\c,a ‘= Utey, Is the abelian monopole with cocharacter ey, = ((0... £1

..0);0;...;0). Using (3.20), it follows that

1
(@8] = (8% = 7 ) o ©2)
for all o and so
() QYY) = e (8%, = 5 ) @Y, ©3)

which precisely matches the weight of the lowest weight vector of a fundamental represen-
tation.
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Now consider the lowering operators V.-, which can be expressed as

V., = z": (N (C4)
a=1

+

where v,

= VUie,, 1S the abelian monopole with cocharacter +e,,, i.e. a unit of funda-
mental magnetic charge (in the a-th weight space) for the U(n) node. To see that QY

commutes with these operators, it suffices to notice that

[V Vel = 0 (C.5)
for all n, 8,a. For n < N this follows from (3.20) by noting that the set of weights that
pair nontrivially with both cocharacter is completely empty. For n = N, it is suffices to
note that the only weight that pairs nontrivially with both cocharacters yield 4+1 for both
cocharacters. Thus, Q" is a lowest weight vector of SU(N). A completely analogous proof
shows that Qu is a highest weight vector of a antifundamental representation.

Now consider the operator QVN=1-N=+1] degeribed in the main body of the text,
we show that this operator is indeed a lowest weight vector of a rank r antisymmetric
tensor for each SU(N) factor. We will express cocharacters of the gauge group as A =
(@n;dNn—1,...,d1) where @, € Z". Choose a subset I C {1,2,...,n} of size r < n and set
€r; € Z" to be the vector with 1 for each i € I}, and 0 otherwise. With this notation, we
can write

NN-1..N—r| _
Q! = > Vgt oy ) (C.6)
(R T T} AR
It is worth noting that for » = 1 this reduces to Q" and for » = N the only cocharacter is
Adiag. From this presentation it should be clear that

N
~\T —1..N—r i r —1..N—r
(i), QYN = o (3Tt = G AT e
i=N—r+1

so this operator certainly has the proper weight to be a lowest weight vector of a rank r
antisymmetric tensor representation of SU(N). To see that it is a lowest weight vector, we
appeal to (5.51); in particular we write

Q[NN—I...N—T—H] _ :I:T!/]T_IQ[N[LT_QQN_I o QN_T—H]. (C.S)
From this expression it is clear that
[Vn77 Q[NN*I...N*T+1]] -0 (Cg)

for all n < N — 7 + 1 since the Q° furnish a fundamental representation. (By noticing all
of the abelianized monopoles making up QIWN-L.N=r+1] are either uncharged or have the
same charge as the abelianized monopoles appearing in these V,~.) To see that this extends
to the remaining n we compute:
[Vn_a Q[NN—l...N—r+1]] _ (—1>N(T+1)[Vn_, ﬂrQ[Nﬁr—lQN—l o QN—T+1]]
_ (_I)N(r—f—l)gﬂr—lQ[Nﬂr—QQN—l L N=lgnelgren=N=20n-1 QN+

=0
(C.10)
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where the last line follows because n — 1 appears twice in the anti-symmetrization. In
principle it should be possible to show that QWN-1-N=r+1] is o lowest weight vector
directly from applying (3.22) but this would be a rather nontrivial process. It is worth
noting that a completely analogous proof shows that Qny_1..nv—r4+1] 1S @ highest weight
vector of a rank r antifundamental tensor representation, as desired.

C.2 Index swaps

We next investigate a series of identities of the form
[Qi1i2~--ik’ Qj1j2~--jk] — _[leiQ---ik, thz-njk] , (C.ll)

capturing the antisymmetry of the commutator of two fundamental tensors under a swap
of any two indices. (Here it is shown for i1 <> ji, but by symmetry of the legs of the star
quiver, any swap i, <> j, behaves the same way.) For k = 3 this will motivate a conjectured
quantum relation between Q1) and the antisymmetric tensor @ () in appendix C.3. When-
ever an identity (C.11) holds, it should also hold upon replacing Q*'*?" with Qi iy. iy;
but we shall focus on the relations with Q%% for simplicity.

A quick computation shows (C.11) relation cannot hold for all k. For example in the
(N,k) = (2,4) theory we have

[QU1IL, 2222) 4 (@211, Q1222) = (@) — @) (C.12)

Nonetheless, we will prove that (C.11) does hold for k < 3.
We go about this in several steps. First we show that antisymmetry (C.11) holds if

[Q1i2e Qi1d2Tk] = (C.13)
for all iq,42,...,%k,j2,- .-, jk. Then we show that (C.13) holds for all i1, i9, ..., ik, j2, - -,
Jx if

[QNig..,ik’ QNj2~-vjk] -0 (C.14)

for all i9,...,ik,Jo2,...,Jk. We finish the proof by showing that, indeed, (C.14) holds
for k < 3. It is worth noting that (C.11), (C.13), and (C.14) hold trivially for k = 1.
Furthermore, for k =2 (C.11) implies that all of those commutators must vanish.

Step 1. We show (C.13) implies (C.11) via induction on |i; — j1|. Without loss of gener-
ality assume i1 < j1, the base case is then j; — 771 = 0 which follows from the assumption
that [Q1%2% Q"J2-Jk] = (. Now, for j; —i; = n we compute:

[Qi1i2---ik’ Q(i1+n)j2---jk] _ [Qm‘z---ik’ [‘/ziin’ Q(il+n—1)j2---jk]]/€

= ([[Qlllzlk Vli ] Q(i1+n*1)j2~--jk]
» Vii4nlb

VAL [QUt, QUi D] ) /e
= [Vt [Q(il+n_1)7;2--~ik, Q1720 Je,

i1+n’

(C.15)
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where the second line follows form the Jacobi identity and the third follows from the induc-
tive hypothesis and the action of V11 . Applying the Jacobi identity a second time yields

i1+n°

[thz-..ik,Q(i1+n)j2--~jk] - ([[V1+ Q(i1+n*1)i2~.-ik]7Qi1j2-~jk]]

11+n?
QU [V Qi) fe - (C116)
— 7[Q(il+n)i2--~ik’ Qiljz...jk]’
where the last line follows form the action of Vziin

Step 2. To show that (C.14) implies (C.13), we use induction on N — i1, the base case
i1 = N holds assuming (C.14) is true. We compute:

[Qili}--ik’ Qi1j2---jk] — [[Vz1+’ Q(il-i-l)iz---ik]7 Qi1j2---jk]/6
_ ([V1+ [Q(i1+1)i2...ik7Qiljg..‘jk“ _ [Q(’ilJrl)ig...ik’ [‘/fﬁJr?Qile”'jk]]) Je

i1 )
= [V [QUI ik, Qi) e
_ [V1+ [Q(i1+1)i2...ik7 [‘/Zi-‘r,Q(i1+1)j2...jk]]]/€2

i1

- {V” <[[Q(z’1+1)z‘2...z'k V1T, QUi+ izdi] 4 [y 1+ {Q(z‘ﬁl)iz...z‘k’Q(z‘ﬁl)jg...jk]])} /&2

i1’ v Vi 1

1 i14+1)22...9 1 i1+1)j2...7 2 1 11%2...1 i1+1)72...7
_ [V + HQ( 1+1)i2 k7Vz‘1+]7Q( 1+1)j2 Jk]]/8 — —[V- + [Q 12 ka( 1+1)j2 Jk]]/g

i1 0 1
_ (Hvl—l- Qiﬂg...ik} Q(i1+1)j2...jk] 4 [Qilig...ik [V1+ Q(il—i-l)jg...jk]]) Je
) ? 11

21 )

— _[Qili?nik’ Qi1j2~--jk]7 (0-17)

where only the Jacobi identity (lines 1 — 2, 3 — 4, 5 — 6), the SU(N) action (lines 1, 2
—3,3,4— 5,6 — 7) and the inductive hypothesis (line 4 — 5) were used. Therefore
[Qiliz...ik’ Qlljgjk] — 0

Step 3. We now move on to showing that (C.14) holds for k = 2, 3, starting with k = 2.
For k = 2 we can assume j» < N and since Q™ is only charged under the central node
it suffices to check j, = N — 1. We are then interested in the commutator [QVY, QVVN—1].

This commutator takes the following (schematic) form:

N N-1

QNN QNN-1] = Z Z[UA%,UA%JFB%] (C.18)

a1,02=1 =1

where Bj is the analog of the A, but for the N — 1 node on the a-th leg of the quiver.
When a7 = ag this commutator must vanish, so we are interested in

00y Uy 152+ 04y Va3 (€19
for ay # ag. A quick application of (3.22) yields

VAa;+Aay+B3

UAO‘l UAaQ"‘B,(Qi‘ B UAa1+B[23UAO‘2 = ( (020)

¥PNaz — 90N041)
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and therefore
[040,s Vg, + B3] + VA0, 04, +53] = 0 (C.21)

for ay # ag and therefore [QVY, QN72] = 0 for all jo. To see this extends to [QV71, QV72],

we induct on N — j;. We can further assume jo < j1, this yields

(@, QY] = [V Q1) @]

- _[[QNjQ’ Vj21+]’ QNj1+1] _ [[Qle+1a QNjQ], ‘/;21+] (C.22)
=0

where the second line follows from the Jacobi identiy and the third by the SU(N) action
and the inductive hypothesis.
Now consider k = 3, we hope to show that

[QNj1k1,QNj2k2] =0 (023)

via induction in a similar fashion as the k = 2 computation, it suffices to check the base
cases as the induction will follow identically to the above. We can assume that j; < jo
giving us two cases to check, depending on which of ki, ko is larger. When ki < ko, the
base case of induction translates to

(@YY, @Mk =0, (C.24)

which follows from the case where jo = ko = N — 1. We compute:

N N-1
1

NNN ANN—1N—1j _ [ ,

Q ,Q | = 3 g y Eﬁ 1[UAoq’UAOQ+B§2+Bg$] + [UAaQ’UAa1+B§2+Bg3]'
a1 7Fo= 2,P3—

(C.25)
Another quick application of (3.22) yields
S . b — (wzvaﬂrsozvafsﬁvfmzfso?vfmg)v -
Aoy PAay+Bj, +B3, T VAay +BF, +B5, (PNaz —PNay) Aay +Aay +B5, + B,
(C.26)
therefore
[VAays Vag,+B2 +83 |+ [VAay Vag 482 453 ] =0 (C.27)
as desired.
When ko < ki, the base case of induction similarly translates to
QY QYN = 0 (©23)

which follows from k; = jo = 0. We compute:

N N-1
1
NNN-1 ANN-1N
@ ,Q = 3 ; , ; [UAQIJngBaUAaﬁBgQ] + [UAQ2+B?33’UAQ1+B§2]’
a1 Fag=1 fa,83=1
(C.29)
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and by applying (3.22) we find that

2 3
(PN 18 — Pv-15)
(QDNOQ - SDNOQ)

VAo, +B3, YAay+B3, — VAo +B3 VAay +B T

VAo, +Aay+B2 +B3 (C-30)
which implies that

Vg B3 ,UAx B2 + |:’U4 B3 ,UA B2 =0 C.31
a1 B3 ’ g 621| ag B3 ’ aq Bo ’ ( )
as desired.

The k > 4 cases. The above analysis shows why antisymmetry (C.11) cannot hold
as written for k > 4. Consider the commutator [QNVN-N QNN=1-N=11"this has the

schematic form

N N-1
1
NN..N ANN—1..N—1
@ Q@ | = 3 Z Z [UAQI»UAQQ+B§2+...+BI[;I(]
arFaz=1fs,...,fk=1
+ [Vaq, UAa1+B§2+...+ng]‘ (C.32)

Applying (3.22) yields
VAo, UAO‘Q +B§2 +'“+ng B UAal +B§2 +“'+B]§k VAo

k k
< [T ¢Nay —PN-18. —5/2> - < ONas —¢N—1ﬁa+€/2>
2

a=2 a=

VAo, +Aay+B3 +.. 4B,
(C.33)

(SDNOQ _(:ONal)(QONCH —¥YNas _5)

The numerator in the above expression vanishes when ¢ o, —¢Nq, = € and so the vanishing

of [QNN-+N QNN—L-N=1] hinges on the fact that

Kk K
< II ¥Na, — oN-18. — 8/2) — ( [T oNas — ©N-18, +€/2>

a=2 a=2

C.34
(PNay — PNay — €) ( )

is invariant under a; <> ao. Unfortunately, for k > 4 this need not be the case.

Triviality of k = 1. What happens for k = 1?7 In this case, just as above, induction
reduces the problem to computing one commutator: [Q", QV~!]. We compute:

VAa;+Aay+B}

UAO‘l ,UAocQ‘i’B/lg - /UAa1+B}j,/UAa2 = ( (035)

PNaz — @Nal) ‘

After tracing through the above steps, it follows that [Q”, Q¥ ~!] = 0 and therefore
[Q", Q%] =0 (C.36)

for all i1,49! This fact can also be deduced by reducing SU(N + 1) to SU(N), whereby the
Q' are realized as raising operators which are required to commute with one another.
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C.3 Generating antisymmetric powers

In the case of k = 3, the antisymmetry (C.11) of the commutator [Q/1%1 Q?2/2k2] under
an interchange of any pair of indices (i1 <> ia, or ji <> ja, or k1 <> ko) implies that the
commutator itself transforms as a 3-fold 2-index antisymmetric tensor representation of
SU(N)3. We conjecture that in fact

[Qi1j1k1’ Qi2j2k2] — EQ[i1i2Mjlj2Hk1k2] (C.37)

where QUiri2llini2lk1k2] gre the 2-index antisymmetric tensor operators described in the main
text. This identity has been verified explicitly for N < 4.

From this data, it is rather suggestive to guess that all higher antisymmetric tensor
operators could be constructed from iterated commutators but this simply cannot be the
case. In particular, for NV = 3 a short computation shows that

[Q211, [Q222; Q333H — 52‘/11— (038)

which clearly does not vanish despite having a repeated index.
Nonetheless, we can consider something slightly more complex. In particular, it is
straightforward to check that

QiliﬂsQUlkﬂ[J'2’€2Hj3k3] + leizisQ[klil][j2k‘2}[j3k3] + Qk1i2i3Q[i1j1][j2k2}[j3k3] (C.39)

is antisymmetric under the interchange iy <> j1 and i1 <> k1. With this in mind, define

3
Cycg(QilizisQUlkﬂ[j2k2}[j3k3]) — Z Ug(QiliziB,Q[jlkl][hkz}[1'3’?3}) (C.40)

n=1
where is the three cycle o is the 3-cycle (123) and o7 (Q"171k1Qli2islli27slk2ksl) means apply
0" to the set {i4,ja, ka}. From the above, it follows that Cyc3(Qi1%2iQUirkillizk=1lisksly jg
totally antisymmetric in {44, jq, ko } and, if we require this operation be linear, Cyci and
Cycg commute with one another with (Cyc2)2 = 3Cyc3. This suggests the definition

QUtkillizzkallisisks] . — Cye3 o Cyced o Cycd(Qir72is Qlirkillizke]lisks]) (C.41)

which, by construction, furnishes a 3-fold 3-index antisymmetric tensor representation.
This construction can be extended to any rank tensor by defining

Cycg(AilizisB[jl---kll[j2---k2][j3---k3}) — Z(_l)n(r—l)ag(Ai1i2i3B[j1---kll[j2---k2][j3---k3])’ (C.42)

n=1

where o is the r-cycle (12...r) and ¢} means apply ¢” to the set {iq, ja,...,kq}. Clearly,
the resulting operator is totally antisymmetric in {ig, ja,...,kq} and if we require this
operation to be linear we come to the definition

Qlivin--killizjz---kallisdsks] .= Cycr o Cych o Cych(QM1i2is QUir-HFllia--kallis..-ks]). (C.43)

Although the above operators furnish the appropriate representation to agree with the
3-fold antisymmetric tensor operators found in the primary text, it is not clear whether
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these operators are identical, up a simple prefactor, or whether there is a nontrivial re-
lationship between the two (e.g. some contraction of moment maps with the indices of
QUiiv-Fillizjz--kellisjs.-ks]) What can be said is that

Cyc% ° Cycg ° Cycg(QiliQiBleijB) _ 4[Qi1i2i3’ Qj1j2j3] — 4€Q[i1j1”izj2][i3j3}, (C.44)

which follows the antisymmetry of the commutators found above. The general form of this
relationship could provide a systematic approach to constructing the higher tensor opera-
tors from the fundamentals. It would also be worthwhile to understand how this procedure
compares to completely antisymmetrizing a product of fundamentals. This agreement is
obvious for r = 2, since Zy ~ S2 and so these processes are identical, but for higher r the
relationship is much less clear.

D Characteristic polynomials and higher tensors

In this appendix we recall the definition of the Capelli determinant that is used to define
characteristic polynomials and Casimir operators in a non-commutative algebra. Then
we collect some computations of relations among (quantum) k-fold fundamental operators
Q(r) and higher tensors that should correspond to un-diagonalizing relations of the form

qilqig o qir _ (_1)r+1 H |:(mzm mln) q[zl...zr] 7 (D].)

1<n<m<r (mi" = Mg, = 8)
as in (2.23a), (2.23b).

D.1 Quantum characteristic polynomials

Here we review the Capelli determinant that is used to compute the characteristic polyno-
mial of quantum moment maps.

At & = 0, the moment-map operators j, for the SL(N,C)¥ action on the Coulomb
branch chiral ring have characteristic polynomials

N
det(t 4+ p1) = det(t + p2) = ... = det(t + px) = ZCN_gtg. (D.2)
=0

Thinking of each moment map as an element of sl(N,C)*, the coefficients ¢; are polyno-
mials in the Casimir operators of the enveloping algebra Usl(N,C). In particular, the ¢,
are invariant under the SL(N,C) action; they Poisson-commute with all the individual
components of the p,.

In the quantum case, at € # 0, we would similarly like to identify a characteristic poly-
nomial whose coefficients are SL(N, C) invariants, in that they commute with all individual
components of the p,. The naive determinant det(¢ + u,) does not have this property. (It
is also not well defined.) The solution, however, is well known: we must use a Capelli
shifted determinant instead. We recall how this works.
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Given a matrix E = (E;;) whose elements are noncommutative operators that satisfy
the gl(N,C) commutation relations,
[Eij, Ei] = (86 Eu — 6uEjk), (D.3)

define the shifted matrix E = E + ¢(N — 4)d;;. The Capelli determinant of E is then
given by
detE = EillEiQQ - .EiNNGiIiQ"'iN, (D4)

and the characteristic equation is then defined as usual:
Pp(t) = det(t + E) . (D.5)

The coefficients of (D.5) are central in the algebra (D.3).
A particularly natural way to parameterize the coefficients ¢; of the quantum charac-
teristic polynomial is as

N
det(t+ E) = [ten—s (D.6)
(=0
where, just as in the main body of the text,

b—1
[[(a+ke) b>0
k=0
o] = ‘ﬁ (a—ke) b<O’ (D7)
k=1
1 b=0

Notice that ¢g = 1 and ey = detE.

We use (D.6) to define the ¢;’s for the quantum moment map operators fi,, namely
— N
det(t + fis) = 3. en_¢[t]*. Just as in the classical (¢ = 0) case, the coefficients ¢, do not

(=0
depend on which leg a we choose. This is consistent with the fact that the eigenvalues of

the quantum moment maps, described in the main text, are independent of a.

We write down some explicit expressions for the ¢,’s in Ty k theories with N < 4 in
table 2. Note that they depend only on the scalars ¢y, associated to the central node of
the star quiver.

D.2 Fundamentals and higher tensors

As described in the main text, it is expected that by taking appropriate antisymmetric
combinations of the (anti)fundamental operators Q%2 it should be possible to construct
the higher rank tensor operators — thereby, un-diagonalizing relations such as

i ' M, —mi, )] G
¢q®.qm = ] [( o i) 5)]‘1[1"'”7 (D.8)

1<n<m<r (mln = M —

)k—l

= ()W) T [(m — M, t €

(mim — mzn) :| liy...ir] 5 ( 9)

4i1 9y - - - 95,
1<n<m<r

from (2.23).
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c1 —€ —3¢ —6e
2 1< 2 2 [ & 2 2
ca | T [ w2a—®2/2) —3( 2 X (@30 —@3p)” —6¢ =5 X X (P10 —pap)” — 56¢
a=1 a=1B>a a=1pB>a
4
3 £ 1T (i)
cs N/A [I (@:m - 4’3/3) TP )
o=t +e 3 I (p1a — ¢ag)” — 8€3>
a=1 >«
1
C4 N/A N/A H (@404_(1)4/4)
a=1

Table 2. Coefficients of (Capelli corrected) characteristic equation for the SL(N, C) moment maps,
for N = 2,3,4, in terms the scalars ¢y, on the central node. Keeping with the notation of the
main text, @y is the sum of the py,.

Specifically, in the theory Ty k we expect a relation of the form

(r!)k(ﬁf*lQ)[i(l,l)[i(2,1)~~~[i(k,1) o ([LQ)i(l,Tfl)i(2,rfl)"'i(k,'r71)Qi(l,T)}i(Z,'r)]"'i(k,T)}

— (T(aNJ{Jl))[i(a,l)"'i(a,'rfl)i(am)} . (DIO)

N -/
a1y Ha,r— 1) a,m)]

i1,y 31— 1) 5, [ 1y 1)) (B, 1) -+ E e, r— 1) (k)]
% Q (1,1)--4(1,r=1)(1,7) (a,1)""Ya,r—1)%a,r) (k,1) -k, r=1)(k,7) ,

where the r.h.s. involves a contraction on the a-th leg with some tensor T(“Nkr). (By
symmetry of the legs, T(aNkr) should look essentially the same for any a.) Similarly, for
antifundamental tensors, we expect

k ~(r—2 ~r—1\1 3
(r!) Q[i(l,l)[i(2,1)---[i(k7r)"'(Q'u(r ))i(l,r—l)i(2,r—l)"'i(k,r—l)(Q/’LT )Zu’r)]z@’r)] faen)]

- Q[i(l,l)---i(l,rfl)i(l,'r)]---[i,(ayl)---i,(ayrfl)il(a’,.)]"-[i(k,l)---i(k,rfl)i(k,'r)] (D.11)

X (Ta )[i/(u.,l)"'i/(u.,rfl)i/(a,r)] . . .
(vavr) [Z(a,l)---Z(a,r—l)l(a,r)]

for some tensors T(“N k) This appendix collects some direct computations of such relations.
The computations suggest that, up to a numerical prefactor,

Yl =i it _yir) = (T )

)[il---irﬂir]

(D.12)

REARTAR

(T k)
Unfortunately, we have not yet identified an expression for T(aN Kr) that is valid all (N, k, r).

We also include a set of similar relations obtained without inclusion of i, namely

(r!)kQ[i(l,l)[i(2,1)-~~[i(k,1) o Qi(1,r—1)i(2,r—1)~~-i(k,r—1)Qiu,r)]i(z,r)}~~i(k,r)}

— <S?N7kﬂ"))Ma’l)"'i“”*l)i(“ﬂ[l”m,l)~--i’<a,T_1)i’(a,r>] (D.13)
o« Q[i(l,l),..i(l’r,l)i(lw)]...[i’(ayl).‘.i’(mril)i’(ayr)]...[i<k71)...i(k,T,Di(k’T)]
and similarly
(r!)kQ[i(l,l)[i(2,1)~~~[i(k,1) e Qi(l,rfl)i(Z,rfl)---i(k,r—l)Qi(l’r)]i@m)}...i(k”r)]
= Q[i(Ll)...i<1,T_1)i(l,T)]‘..[i’(ayl)...i’(am_l)i’(aw)]...[’i(kJ)...i(kyT_l)i(k,T)} (D.14)
X (~€N,k,r))[i/(a’l)mi/(a’r_l)i/(a’ﬂ][i(a,l)‘..i(ayr,l)i(ayr)]

for tensors S?N,kx) and S?N,k,r)'

— 76 —



The k = 3 theories are known to be related to T theories. There are many relations
in the literature [24, 26] of the form

(T!)2Q(i(1,l)[i(Z,l)[i(S,l) N ‘Qi(l,r-fl)i(2,r71)i(3,r71)Qi(l,'r))i(lr)}i(?),r)]

— 1 [i(1,1)-21,r—1)8(1,m)] .. . . [il(l,l)'"izl,rfl)izl,r)]"'[i(371)"'i(3a7‘—1)i(3»'f)]

(P(NJ’)) [Zl(l,l)"'Zl(l,'rfl)lzl,r)]Q
. (D.15)
(r!) Q(i(l,l)[im,l)[i(a,l) e Qi(l,r—1)i<2,v-—1>i(3n-71>Qi(l,m)i(z,rﬂiw,rﬂ

By )i

= Q[izl,l)“‘il(l,r—l)il(l,r)]'“[i(3a1)"'7;(377“—1)Z'(377‘)] (P(NJ' [i(l,l)~~'i(1,r71)i(1,r)]

for r =2,3,..., N. There are identical relations when other indices are symmetrized (with
the others antisymmetrized) and P!, P! are replaced by an appropriate tensor. Wherever
possible, we will compare the form of P with known or conjectured results.

D21 N=2

For N = 2 the only interesting case of the above relation is for r = 2 and so the result
must be proportional to ¢!@.D%1.2) | )2 The general form of the relation should be

(/NN i i
€D ) oo

(2!)k(ﬂQ)[i(1,1)~--[i(k,1) Qi(1,2)]~~-i(k,2)] — (T(12,k,2) ) lic1,1)%(1,2)]

[it1,1)%(1,2)

nko.. ) 7). ) — ¢ ) ) ) 71 01,1y 1,2)] . )
(21) Q[l(l,n---[l(k,n(QM)Z(1,2)]---Z<1<,2)] T Gl gyitne 0 Claeniae) (T(27k72)) L2 li(1,1)81,2)]

(D.16)
and similarly
(2!)kQ[i(1,1)~'[i(k,1)Qi(l,Q)]"'i(k,Q)] - (5(12 kQ))[i(m)i(mﬂ[iz i )]eih,nih,a) L €D U2)
Ky 1,1)%(1,2

1) .2)]

Nko.. . . . — ey S gl S
(21 Q[Z(1,1)~--[@(k,1)Q@(1,2)]~--l(k,2)] = Clyiag ez(kvlﬁ(k»?)(S(?ykv?)) [i1,0i1,2)] -

(D.17)

There are typically many expressions for the tensors of interest arising from relations
amongst traces of powers of the moment map. We label the ambiguity by the numbers
w, z. We do not do this for N =3 or N = 4.

For k =1 we find

2(3Q) Q™ = €2 2Q, (Q)iy = €iris

20l Q) — 20 B , (D.18)
= iy @ip) =0
which corresponds to the assignment
(T 1)) = 2ty (T8 )80 = Seiibey;
1, i it 9 il (2,1,2) [iii2] = 5 142 (D.19)
(5(12,1,2))[i1i2} i) = 0 (5(22,1,2))[i,1i/2] finia] = 0

whose one independent component is 1 for both T(12 1) and fé 1) For k = 2 these relations
start to become nontrivial:
4(;‘1@)[%1,1)[i(2,1)Qi(1,2)]i<2,2)] = 2b(1,1)4(1,2) ¢h(2,1)4(2,2)

- (D.20)
4Q[i(1,1)[i(2,1)(Qu)i(l,z)]i(z,z)] = €€y 1yi(1,2) Ci2,1)i(2,2)
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as well as

4Q[i(1,1)[i(2,1)Qi(l,z)}i(z,z)] — _92£1,1%1,2) (h2,1)%(2,2) ( )
D.21
4Q[i(1,1>[i(2,1)Qi(1,2)}i<2,z)] = _Qei(l,l)i(l,Z)6i(2,1)i(2,2) .
Thus we have relations with
[ ~ \1 1 z
(Tho) ™ iy = (22 = 2000 5 (1) 2y + 287 1,80 = Seet ey, (D.22)
-~ AN -/ -/ -/ -/ 1 / / ’
(T(12,272))[l112] [i1de] = (22 - 2)5[21[i1 (ﬂl)ZQ]iz] + Zd[ll [2'1(SZ ]22] - 566 n 2€i1ida
for any number z as well as
(5’1 )[iliﬂ gy = —ei”QeZ/ p
~(127272) [i/ z,}[ 1 2] g 2 (D23)
(5(2,2,2)) 12 [7:17:2] = —€l 2€i1i2 .
For k = 3 there are similar relations with
(T(12,372))[i1i2][i/1i’} = (46" (i, (ﬂ%)mi’] + (22 — 2)55[“[1/1 (ﬁl)iz]ig] + ze25ln i 5i2]i/2])
1
( 462+E ) iz €l il
2 1°2
T i N g (D.24)
(T(12,3,2))[ 2][1112} (45[ [zl(ﬂl) }12] + (22 — 2)55[ Liiy (1) 2]i2] + 2241 iy 0 211’2})
= *(—402 +€ )Ezliééiliz
2
for any number z and
(Sla,3,2) " iyig) = —4((22 = 2001 5 (Bn) ) + 201 1 67)yy)) = —2e€" ey (D.25)
(5(2,3,2))[i,1i/}[i1i2] = _4(<2Z - 2)(5[“[1’1 (ﬂl)ZQ]z’Q] + Z(S[ll [2’152211’2]) = —256i/1il262-1i2 .
For k = 4 the form of the tensors becomes
(T(12,4,2))[i1i2][i’1i’2] = ((2w—24)5t" (i, (ﬂ?)w]ig] +wedl i, (ﬂ%)iﬂig] —2¢2ln @, (ﬂl)iQ]ig])
= —%5(1202 —62)6i1i262-/1i/2
7 it il i i 2N TRy (D-26)
(T a2 42 5,10 = ((2w—24)60, (53)%2), +wedly, (57)%) s, — 26201, (1))
= —%5(1202 —e2)eliagy
for any numbers w, z and
(S(12,472))[i”'2][i/1i/2} 4(5[ 1[ ( ) i2] i] + (22: + 6) 5[“[1 (~ ) 2], i) + 2’825[“[/5”} /])
= —(4ey — 3e%)€M ey
_ , v (D.27)

— 450 li1 ([L%)Zé]w] + (22 + 6)55[Z [i1 (,L]1)Z2} o] T 22610 li1 5i/2}i2])
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For k = 5 the form of the tensors becomes
(T2 2 iy = 1661 i (i) 2Ly + (20— 48)26 1 iy (1)) iy +we61 1y (7))
+(22’—2)6 (5[“ (i ([1,1)12}7;/]4-28 (5[21 [7/1(5 2}7/2]

1
:5(1605 24e%cy+et)elri2e € i,

(To5.2) % 12 1681 5, (1) 2+ (20— 48) 20, () 21y + wePalhy, (7)) o
+(22—2)e 3l 1[il(,ul)”ﬂi?]+2546[11[i1512}i2]
= %(1603 —24e%cy et )2 €iyin
for any numbers w, z and
(S50 2igiy, = (2w +32)81 5 (A)")y) + wed™ (1))
+ (22 + 8)e20l y (f1n) 2y + 283001 5 571,)
_ L = e16c — 45y ey ) (D.29)
(5(12,5,2))“12[1‘@2] = ((2w +32) 5[Z i () ia) + wedln Uiy (ﬂ%)%]z@]
+ (22 + 8)e 5[“[2‘1(,“1) 2]2'2] + ze35lh a 5i/2]i2])
= e(16¢y — 4e%)e2¢;,5, .
Finally, the form of (D.15) for N = 2 is given by
(2)2QUanlenlicn Qiay)ie)lies)
— —9stia oy (A1) 2), i 2)]6‘21,1%,2)ei(z,l)i(zm €i(3.17(3,2)
(D.30)

2
(2) Q(i(l,l)[i(2,1)[i(S,l)Qi(l,Z))i(2,2)]i(3,2)}
— [ill 1 17 ill 2 } . . . .
= 26700 iy 4 () 2 i(1,2)) iy 1yi(1,2) 2D i2) S i) |
We also find a similar relation for k = 5:
(2)2QlavlenlicnlinnlicnQin)ielicliulics)]

— _5(1'(1,1) [i(l,l)/ (gﬂi’ + 66 ) (1, 2)) ]6 (1 1) (1 2) 62(2 D2, z)ez(s 1)4(3,2) 61(4 1)¢(4, 2)61@ 1)%(5,2)

4
(2) Q(i(l lice,nlianlianlis, 1)Qi(1 2) )ic2,2)li(3,2))4(4,2))i(5,2)]
— [ 1,1 1,2 ]
=8 )(1( 1)(8,“1 + 6e” Nl) ( ) i(1,2))€ 2(1 1) (1 2) €iga,1)i(2,2) €i(3,1)%(3,2) Ci(a,1)i(a,2) Ci(5,1)i5,2)
(D.31)
D22 N=3

For N = 3 there are two nontrivial r’s of interest.
For » = 2 the general relation is given by

(2!)1{(’[162)[i(l,l)"'[i(k,l)Qi(l,Q)}'"i(kﬂ)] — (T(13 k’2))[%(1 i, 2)][ Q[i/(1,1>i/(1,2>]“'[i(k,l)i(kﬂ)}

i) i,2)]

k ~ . ~1 [ il ]
2D @iy 1y lireny @iy ). iae ) = Q[ih,l)i’(l,z)]--~[i<k,1>i<k,2>}(T(S,k,Z)) EED Y i)
(D.32)
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We find the following relations at k = 1:

2(3Q)1 Q™ = —QI ™ 2Qy, (Qf1)iy) = Qpiriy)

L (D.33)
201" Q" =0 2Q(i, Qi) =0
which corresponds to the tensors
(T(g 12 ))[ ][, i) = sl L ia] | ) (T(37172))[ "][mz} — sl [il(si’z}w] (D.34)
and
(5(13 ))[2112} [ihd5] — 0 (5(1371’2))[1112] [i132] = 0. (D35)
The k = 2 versions of these tensors are
(Ts22)" gy = 2015 (7)) (D.36)
(T(E,Q,z))[lllzé] finia) = 20005, (f12)"2)
and
Sl [iliQ] il = *2(5[“ i 67:2}1-/
(SG3,2,2)" *lig 1,0y (D.37)

(S(3 2 2))[ ][111 1= _25[il1 [2151/2}z2} :
For k = 3 they become

(T<13v372>)[i”2][i'1i'21 = (26[“[ (fn

(T(13,3,2))[i1i2][i1i2] = (26[Z [i1 (i

)2l = 2070) "y (7)) — 42615 (7)) (D.38)
)2l — 2(1) g, ()2 ) — 426, (1))

=D >—l[\'>

and
1 1117 ) )
(Sta,3.2) iy = 420 0%y (D.39)
(5(13372))[%112][“1.2} = 455[11[“512}1.2] )

The relations encoded by (D.39) reduce to the T3 relations (2.7) in the classical ¢ — 0
limit, after contracting with an additional Levi-Civita tensor.
The general r = 3 relations can be written as

(3!)k(ﬂ2Q) [i1,1) -l 1) (/]Q)i(l,z) (k,2) Qi(1,3)]---i(k,3)]

= (T(la,k,:s))[i“’”"“’?)”lﬁ)l ,

Z‘/ 7:/ i/ i . . .
i 1yt 2y 3)16[ il liogyie)ios)]

(3')kQ . . (QN) . (Q~2)1(1,3)]--~i(k,3)] (D.40)
' [, ligen) H i(1,2) - B(k,2) \CH

= [/11i/12i/13}

T Cligy 1y i) ,s) T Sl iy, 3)]( (3k3)) WO | iae)ias)]
and

(3!)kQ[i(1,1)'"[i(kql)Qi(m)~~i(k,2)Qi(1,3>]--~i(k,3)]
— (Sl )[1(1 1,23l , 6[ (1,1)2'{1,2)2"(1,3)] o 6[i(k,1)i(k,2)i(k,3)}
(3.k,3) [i11.1)8(1.2)%(1.3)]
(D.41)

(3!) Q[i(l,l)-“[i(k,l)Q'L(I,Z)---Z(k,2)Q’l(173)]--~l(k73)]

[ill 1 ill 2 ill 3 ]
D' D ]

ol
[i{1,1)%1,2) 1)) " €l 1)i(,2)(1,3)] <S(37k,3))
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At k =1, the tensors are given by

. 1 ...
1 [zzz],,w,:iZZZ g r
(T3,2,3)" " i) TR (D.42)

1 (i i4] e
(T(3,1,3)) 17273 [i1i2i3] = 56 17273 €414qi5

and

(5(13’173))[1'12'22'3] i i) = 0 (5(13,173))[i12‘/2i3][i1i2i3] =0. (D43)
At k = 2, the tensors are given by
iLini 1 7 .y
(T(13,2,3))[“2213][i’ g — (363 + —gcy — 2€3> 61122%361"1 .

11515] 3! 3 ihih

(D.44)

~ oty 7 i1 et
(T(13,2,3))[11z213][ili2i3} Yl <3C3 + 5802 - 253) €123 64 iy

and
(Sta.2)™ ™ iyiyiy) = =€ i (.45
(5(13’2,3))[%#2%] [iizis] = € 1 '
At k = 3, the tensors are given by

o 1 1426
(T(13’3’3))[111223] i) = —5(2703 + 463)61”22361"11‘52"3

(D.46)

s i il i 1 o
(Ts3.3) "W isinig) = §(27C:2; + 463) €2 ey
and
i1io 1 L
(5(137373))[111213} o 7(12502 + 7263)€Z”2Z3Ei/ p

-/
1%2%3

] p—
®oal (D.47)

1 e
(12eco + 726325 ¢;, 4,5, .

1 )[iliQiS] livizis] = 5

(S(333)
The relations akin to (D.15) occur at r = 2,3. We find that for r = 2
(Q)QQ(i<1,1)[i(2,1>[i(3,1)Qi(l,z))i(z,z)]i<3,2)]

_ _ o980, ~ Vi1,2)) 11,10 2) i, nie2)lienis)]
= 25 ( )[7“(1,1)’(’[1,1) 12172)]Q (1,1)7(1,2)

) (D.48)
(2) Q(i(1,1)[i(2,1)[i(3,1)Qi(l,z))i@,z)]i(s,z)]
—_ [ill 1 7 i/l 2 ]
*QQ[ifl,l)i{Lg)}[7?(2,1)73(2,2)][i(3,1)i(3,2)}5 o )(1(1,1)(/“) 2 i(1,2))
and for » = 3 we find
(6)2Q(i(1,1)[i(2,1)[i(3,1)Qiu,z)i(z,z)i(:s,z) Qiu,s))i(z,g)]i(g,:s)]

— 56 . 7 \5(1,2) ~2Yi(1,3)) 1,1 801,2)801,3) £i(2,1)(2,2)5(2,3) £1(3,1)1(3,2)1(3,3
= —6stang (f)eny | (@F)e) eonitaiendenienics donieio

20),. ) ) ) . ) i(1,3))3(2,3)]4(3,3)]
(6) Q(lu,w[l(w[l(s,l)Q2<1,2)2<2,2>2<3,2>Q( VIEDTES

— (1,1 5 i) 52)41.3) o o
= —65" )(i(lyl)(ﬂl) & )1(1,2) (7)) i(1,3))Gizl,l)il(l’mi'(l’& €i(2,1)i(2,2)(2,3) €i(3,1)1(3,2)%(3,3) *
(D.49)
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D.23 N=4

There are three ranks of tensor relations of interest for N = 4 theories, r = 2, 3,4. We only

have complete data for k = 1. In this case, at » = 2 we find
2(aQ) Q" = — Q] 2!1Qp, (Qf)iy) = —Qiyiy)
and
Q@ =0 21Q}i, Qi) = 0.
The r = 3 relations are given by
31(72Q) (3Q) Q™ = Ql21s] 31Q, (QM)iy (Qi%) i) = Qlivinis]
and
BQMQRQYM =0 31Q);,Q1,Qiy = 0.
Finally, the r = 4 relations are given by
A(EQ Q)= (AQ)1 Q™) = ehaivn
Qi (Qf)in (Q%)is Q%) iy) = €irinigis
and
21Q1QRQPQM =0 41Q);,Q1,Qi; Qi) = 0.
For k = 2 we have found that
(21)2QMl@nliel = _gQlinllizp] (2D Qs 11, @112 = —2Qisj1)linse]
as well as
(3!)2Q[i1[i2QJ'1j2Qkﬂk2] — _GQ[i1j1k1][i2j2k2]
(3D Q1iy 12 Qjrjo Qreakea] = —6Qiy ju k] [injoko]
and
(41)2Qliliz @iz Qkike hlla) — 9qhritkil gizjakala
(4!)2Q[i1[i2leszkleQzl]lg} = 24€;, k111 €injokals -

Additionally, we find the relations corresponding to the tensors:

(2202 gy = 207 5 (1)
(T(a2.2) 42 5,00y = 200, (1)),
Finally, for k = 3 we find relations with
(Stas2) " igay = 40158y
(5(147372))[1/11'2][1.”2] — 45l i 51’2]@]

~ 82 —

(D.50)

(D.51)

(D.52)

(D.53)

(D.54)

(D.55)

(D.56)

(D.57)

(D.58)

(D.59)

(D.60)



and

We also find the relations
(Q)QQ(Z'(1,1)[Z'(2,1>[i(3,1)Qi(1,2))i<2,2)]i(3,2)]

— _os50an. = Vi1,2)) [i(1,1) 0,2l nie)lisnis,)]
= —26\U >[Z(171),(M1)< )"(1,2)]Q( )%(1,2)

) (D.61)
(2) Q(i(1,1)[i(2,1)[i(3,1)Qi(l,z))i(z,z)]i(s,z)]

— [ill 1 1 ill 2 }
- 2Q[i'(1,1)i'(1,2)}[i<2,1)i<2,2)][i(3,1)i(3,2>}5 * )(i(1,1)('u1) D02

(3!)2Q(i(1,1) [i(Z,l) [i(3,1) Qi(1,2)7:(2’2)7:(3’2) Qi(l’g))i(m)]i(gﬁ)]

— _es5Gany = \(1,2) . ~2Yi(1,3)) [ill,l il1,2 il1,3 1li2,1)%2,2)82,)][i(3,1)1(3,2)¥(3,3)]

N20,. . , o . . .
(3') Q(l(1,1>[l(2,1>[l(3,1)QZ(1,2)2(2,2)2<3,2)QZ(LB))W,S)]Z(&?))]

—_ [illl 7 i,12 . ~2 Z./13}
= 0Q4i, ity )i g i nic2ieslieieies)? o (1) i () 095

(D.62)
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