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A Spectral Density Function
Approach for Active Layer
Design of Organic Photovoltaic
Cells
Organic photovoltaic cells (OPVCs), having received significant attention over the last
decade, are yet to be established as viable alternatives to conventional solar cells due to
their low power conversion efficiency (PCE). Complex interactions of several phenomena
coupled with the lack of understanding regarding the influence of fabrication conditions
and nanostructure morphology have been major barriers to realizing higher PCE. To this
end, we propose a computational microstructure design framework for designing the
active layer of P3HT:PCBM based OPVCs conforming to the bulk heterojunction (BHJ)
architecture. The framework pivots around the spectral density function (SDF), a fre-
quency space microstructure characterization, and reconstruction methodology, for
microstructure design representation. We validate the applicability of SDF for represent-
ing the active layer morphology in OPVCs using images of the nanostructure obtained by
cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S). SDF enables
a low-dimensional microstructural representation that is crucial in formulating a
parametric-based microstructure optimization scheme. A level-cut Gaussian random field
(GRF, governed by SDF) technique is used to generate reconstructions that serve as rep-
resentative volume elements (RVEs) for structure–performance simulations. A novel
structure–performance (SP) simulation approach is developed using a physics-based per-
formance metric, incident photon to converted electron (IPCE) ratio, to account for the
impact of microstructural features on OPVC performance. Finally, a SDF-based compu-
tational IPCE optimization study incorporating only three design variables results in
36.75% increase in IPCE, underlining the efficacy of the proposed design framework.
[DOI: 10.1115/1.4040912]

1 Introduction

Design of nanostructured material systems (NMSs) [1] has
recently gained impetus due to its potential for developing high
performance metamaterials by cost-effective nanofabrication
techniques [2–6]. A convenient way of categorizing NMSs is
based on the presence of periodicity in the morphology. Periodic
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designs involve deterministic arrangement of identical building
blocks (also known as unit cells), with optimal performance real-
ized through evolutionary algorithms [3,7,8] and topology optimi-
zation [4,9]. However, fabrication of periodic NMSs requires
top–down nanomanufacturing techniques which are often expen-
sive and time consuming to ensure precise material deposition at
nano- and microscales [10]. In contrast to periodic NMSs, a quasi-
random nanostructure contains no periodic arrangement of unit
cells, but a seemingly random material distribution governed by
an underlying spatial correlation. Such structures have been
observed in nature [11–14] as well as artificially synthesized
materials [15–18] using low cost and bottom–up manufacturing
processes [19] (which uses atoms/molecules as the building
blocks, self-assembled to create complex nanostructures) such as
nanowrinkling [2,17].

Organic photovoltaic cells (OPVCs) [20–23] are one such exam-
ple of man-made quasi-random nanostructures. Owing to a series
of advantages such as flexibility, light weight, low production cost,
and lack of heavy metals (environmental friendly), OPVCs have
received significant attention as one of the promising materials for
next generation solar cells [24,25]. The short mean free path (2–10
nm) of the excitons [26] in organic molecules requires that the
locations of exciton creation should be in the vicinity of the elec-
tron donor–acceptor interface for efficient charge separation. It has
been shown that the bulk heterojunction (BHJ) architecture of the
active layer is key to ensure high efficiency due to its quasi-
random nanostructures satisfying the aforementioned short exciton
mean free path limitation [26]. As illustrated in Fig. 1(a), charge
separation at the donor–acceptor interfaces and transport to the
electrodes are critical to high performance of the device. Among
the various electron donor/acceptor combinations investigated pre-
viously, phenyl-C61-butyric-acid-methyl ester (PCBM) inter-
spersed with poly(3-hexylthiophene-2,5-diyl) (P3HT) has been the
“best seller” [27]. To achieve optimal power conversion efficien-
cies (PCEs), several structure and process synthesis parameters,
such as electron donor–acceptor composition, thickness of the
active layer, annealing temperature, and annealing duration, etc.,
need to be optimized simultaneously. Previous efforts only focus
on one or two structure and processing parameters at a time to
search for optimal devices. However, the optimal parameters are
not independent from each other, indicating that better strategies

are needed. Currently, there is no reported methodology to con-
sider the influences of all fabrication conditions simultaneously on
the microstructures or the influences of the microstructures on the
device performance.

To produce cost-effective devices with targeted properties, for-
mulating a holistic material design strategy [28–33] is essential.
Since the device’s microstructure influences its behavior at differ-
ent length scales, microstructure mediated design [30,34] or
microstructure sensitive design [35] has assumed prime impor-
tance. Deconvolving the structure–performance (S–P) relationship
has been the focus of many articles, covering a wide range of
material systems [36–41]. Due to its high dimensionality, one
needs to extract the salient features from a microstructure image
before its influences on material behavior can be studied. Micro-
structure characterization and reconstruction (MCR) [42,43] has
enabled a quantitative approach to analyze microstructural images
and subsequently construct models for investigating S–P relation-
ship. The essence of MCR is its ability to capture significant
microstructural details and subsequently generate statistically
equivalent reconstructions. The widely used MCR approaches
[42] for nondeterministic systems are based on spatial correlation
functions (CRFs) [43–45], descriptor-based methods [40,46], and
machine learning techniques [47–49]. The correlation function
approach captures the microstructure from a probabilistic perspec-
tive but relies on a pixel (voxel in three-dimensional (3D)) swap-
ping strategy for reconstructions and is therefore computationally
prohibitive for microstructural design. Descriptor-based approach
uses a small set of uncorrelated features which embody significant
microstructural detail and has been successfully used for design of
nanocomposite polymers [40,46,50–52], that contain clusters of
filler material dispersed in the polymer matrix. However, this
approach assumes filler aggregates to be ellipsoidal and descrip-
tors are regular geometrical features (aspect ratio, equivalent
radius, etc.), thus, falling short in representing arbitrary geome-
tries encountered in quasi-random NMSs. While machine learning
methods, which are capable of modeling highly nonlinear sys-
tems, have been implemented as MCR tools, the lack of physical
interpretation of parameters learned from these methods has lim-
ited their use in material design.

Spectral density function (SDF) [2,5,6,53] has emerged as a
new method for low-dimensional, physics aware representation of

Fig. 1 Variables of interest in processing–structure–performance framework and design scope: (a) A schematic representa-
tion of OPVC with BHJ architecture; (b) a four-step energy conversion mechanism
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quasi-random NMSs. For isotropic materials, SDF is a one-
dimensional (1D) function of spatial frequency, calculated as the
radial average of the squared magnitude of Fourier spectrum of a
quasi-random structure [53] and represents the structural correla-
tion in Fourier space. Analogous to the way correlation functions
describe structural correlations in real space, SDF provides this
description in reciprocal space. Our previous efforts in design of
photonic NMSs with SDF [2,5,6] have highlighted its advantages
in representing quasi-random microstructures with a small number
of required design variables. Yu et al. [6] presented the first com-
prehensive MCR study on application of SDF for quasi-random
NMSs used as light trapping structure in thin-film solar cells.
They showed that low-dimensional microstructure representation
enabled by SDF, its direct association with material functionalities
and relationship with processing conditions, was instrumental in
design optimization and led to a 4.7-fold enhancement of single
wavelength light absorption. In another recent article, Lee et al.
[2] integrated a novel wafer scale nanofabrication procedure,
wrinkle lithography, with SDF-based microstructure representa-
tion to bridge the processing–structure and structure–performance
relationship for concurrent design of photonic nanostructures. The
study showed that parameters in SDFs have physical implications
closely associated with the material processing conditions,
improving the feasibility of fabricating the optimal nanostructures
obtained from computational design methods.

In this paper, we investigate the applicability of SDF for design
of the active layer in OPVCs and propose a design framework
built on SDF-based S–P evaluations (Sec. 2). Active layer samples
comprising P3HT:PCBM and conforming to BHJ architecture are
fabricated and imaged using novel cross-sectional scanning tun-
neling microscopy and spectroscopy (XSTM/S) (Sec. 3). Further,
this article focuses on establishing S–P relationship by creating
protocols for SDF-based microstructure representation (Sec. 4)
and developing a novel, physics-based performance evaluation
strategy (Sec. 5). To demonstrate the usefulness of microstructure
representation using SDF and the S–P relationship investigated
here, we formulate a performance optimization problem to deter-
mine the optimal microstructure (Sec. 6). State-of-the-art compu-
tational design methods are employed to improve the efficiency of
simulation-based design optimization. Specifically, optimal Latin
hypercube sampling (OLHS) [54] is used to create a metamodel
based on Kriging metamodeling [55], overcoming the challenges
of computational cost and time. Finally, Sobol sensitivity analysis
[56] is used to elucidate the effect of each design variable
(Sec. 7).

2 Spectral Density Function-Based Microstructure

Design Framework

Low-dimensional, physics-aware nanostructure representation
is critical for computational design of quasi-random NMSs. In this
section, we first demonstrate SDF to be a convenient frequency
space representation which embodies significant real space fea-
tures and assumes simple parametric form for isotropic materials.
Then, an SDF-based microstructure design framework is pre-
sented in the context of active layer design for OPVCs.

2.1 Introduction to Spectral Density Function. The SDF is
an analytical tool developed to characterize the structural informa-
tion of a given material. The backbone of SDF is the Fourier
transform (FT) which decomposes a waveform (e.g., 1D signal or
a 3D image) into a sum of sinusoidal waves of different frequen-
cies [57]. When the FT operator is applied to a microstructure
image, real space structural features are represented in the spatial
frequency space and enable identification of spatial correlations.
SDF has demonstrated its ability to characterize intricate hetero-
geneous microstructures as well as generate statistically equiva-
lent reconstructions [42]. For isotropic materials, the shape of
radially averaged SDF curve generally takes a simple parametric

form which significantly reduces the design complexity of an oth-
erwise high dimensional material structure.

To characterize a microstructure using SDF, a two-phase
image, X, is required. The image must contain high resolution
details at the microstructural level. The Fourier transform F kð Þ of
the image is calculated as

F kð Þ ¼ F½X� ¼ Akeiøk (1)

Here, F½:� represents the FT operator, k is a vector which repre-
sents frequency, i¼ �(�1), and Ak and Øk represent the magnitude
and phase angle of the FT, respectively. For isotropic materials,
the vector k can be reduced to a scalar by radially averaging in the
spatial frequency domain. Thus, the SDF of the microstructure,
q kð Þ;is then calculated by radial averaging of the squared magni-
tude of FT

q kð Þ ¼

ð2p

0

F kð Þ
�� ��2dh

2p
¼

ð2p

0

Ak
2dh

2p
(2)

This gives a 1D q(k) function.
The resulting SDF plots can take various forms. Two examples

of microstructures and their corresponding 1D SDF plots are
shown in Fig. 2. The widely used two-point CRF is equivalent to
inverse FT of SDF [58], but compared with two-point CRF, SDF
is more convenient in differentiating spatial correlation features as
evidenced in Fig. 2. Figures 2(a) and 2(b) represent two nano-
structures with different structural properties. Figure 2(b) is an
image of an ordered structure and has one distinctly strong corre-
lation at a specific band of spatial frequency (Fig. 2(d)). This fea-
ture is also visible in the insets of Fig. 2(b) by a distinct circle in
the Fourier spectrum. In contrast, Fig. 2(a) is less ordered, and
hence, its SDF is more dispersed over the entire frequency spec-
trum (Fig. 2(c)). These differences in SDF based on structural
changes corroborate the efficacy of SDF in capturing the structural
detail. Furthermore, the SDFs observed in Figs. 2(c) and 2(d) both
assume a simple shape that can be easily parametrized. The para-
metrized SDFs are represented as dashed lines in Figs. 2(c) and
2(d). For Fig. 2(c), it is a truncated Gaussian function, while for
Fig. 2(d) it is a step function. Note that all the SDFs presented in
this study are normalized for ease of comparison and consistency.

2.2 Spectral Density Function-Based Microstructure
Design Framework for Organic Photovoltaic Cell Active
Layer. Under the new paradigm of microstructure-sensitive mate-
rial design [35,59], materials are viewed as a complex structural
systems that can be optimized for achieving superior properties
(properties under consideration are subject to targeted applica-
tion). Using OPVC active layer optimization as an example, we
present here a holistic SDF-based microstructure design frame-
work (Fig. 3) that can be employed for design of quasi-random
nano- or microstructural systems based on S–P relations.

The key idea of the proposed framework is to leverage SDF as
the representation of OPVC microstructures, enabling direct and
inverse S–P mappings. As shown in Fig. 3, the framework is initi-
ated by fabricating samples of NMSs of interest (OPVC active
layer for this article) using a nanofabrication technique with proc-
essing parameters choices based on empirical findings or litera-
ture. State-of-the-art imaging techniques are used to visualize the
nanostructure in the available samples and the type (form) of SDF
is identified. The main advantage of using SDF for quasi-random
NMSs is that it can be easily parametrized (Sec. 2.1) and provides
a more convenient representation for interpretation and design rel-
ative to other design methods [6]. Since SDF corresponds to the
magnitude of FT of the microstructure, reconstruction can be cast
as a phase recovery technique [60]. In this article, reconstruction
is accomplished by level-cutting a Gaussian random field (GRF)
governed by the required SDF. Thus, starting from a two-

Journal of Mechanical Design NOVEMBER 2018, Vol. 140 / 111408-3

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 09/08/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dimensional (2D) XSTM/S image, SDF provides a reduced-order
microstructure representation (only three parameters required in
this study) for creating statistically equivalent 3D microstructures
which serve as representative volume element (RVE) for perform-
ance evaluation.

To evaluate the performance of a RVE, a model is sought that
accounts for structural features in addition to device physics and
material properties. For OPVCs, the key performance parameter
of interest is the incident photon to converted electron (IPCE)
ratio. To evaluate IPCE computationally, a novel strategy based

Fig. 2 Two sample microstructures (a) and (b) along with their Fourier spectrum in the insets;
(c) and (d) are the final 1-D SDFs of each image. Dashed line represents the approximated
SDF.

Fig. 3 A framework for designing active layer nanostructure in BHJ OPVC via SDF
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on device physics and nanostructure is developed here. This strat-
egy explicitly states the influence of nanostructure on known
physical phenomena and establishes the S–P relationship that
forms the basis for performance optimization. However, before
the optimization, creating a metamodel to replace the computa-
tionally expensive and time-consuming S–P model is highly desir-
able (see Fig. 3). Metamodel, created by careful design of
experiments (DOE), is essentially a “black-box” that approxi-
mates the S–P simulations. Given the set of design variables and
their bounds, DOE dictates the S–P simulations that must be per-
formed to determine the corresponding value of objective function
(also known as response). A suitable machine learning model is
chosen to interpolate between known values of response, forming
a metamodel which can be queried at each iteration of the optimi-
zation. In this article, we use OLHS to create the metamodel based
on the Kriging method, accelerating the search for the optimal
design.

Design optimization is performed with the predetermined
design variables obtained by parametrizing SDF (Sec. 4) along
with the material composition. As mentioned previously, SDF
provides a low-dimensional representation in reciprocal space of
an otherwise high-dimensional nanostructure image, thereby facil-
itating a convenient design formulation. In this work, IPCE is cho-
sen as the objective function with an aim of finding its maximum
value and the corresponding SDF parameters (i.e., nanostructure).
However, it should be noted that the optimum structure is limited
to the same type of material system as the fabricated samples
because the form of the SDF function used for optimization is
determined based on the fabricated samples. In the following sec-
tions, we elaborate the procedure of implementing the proposed
framework.

3 Sample Fabrication and Imaging

Fullerene-based acceptors, such as PCBM and PC70BM, have
dominated the OPVC field for decades and achieved a decent PCE
of 6.82% [61]. Recent developments with nonfullerene-based
acceptors further push the PCE of OPVCs to �13% [62,63].
Nevertheless, the BHJ quasi-random nanostructure in OPVC is
still the dominating design for high PCE devices. Here, we focus
on the most studied P3HT:PCBM acceptor/donor combination.
The methodology and results presented here can be extended to
all kinds of OPVCs with BHJ architecture.

There are five major parameters for fabricating BHJ active
layers in OPVC devices: (1) P3HT/PCBM composition; (2) the
solvent; (3) annealing temperature; (4) annealing duration; (5)
thickness of the active layer (see Fig. 1). In this work, the parame-
ter under focus is composition. Annealing temperatures and dura-
tions are chosen differently for the two cases (Table 1). Other
processing parameters are kept the same.

P3HT (Solaris Chem, Inc., Saint-Lazare, QC, Canada) and PCBM
(purity >99.5%, Solaris Chem, Inc.) are first prepared into separate
1.78 wt % precursor solutions with chlorobenzene (purity �99.5%,
Sigma–Aldrich, St Louis, MO). Final solutions with desired
P3HT:PCBM weight ratios of 1:1 and 2:1, are made by mixing the
precursor solutions with corresponding amounts. The solutions were
then spin coated onto the Si(100) substrate at �1000 rpm for 1 min.
The P3HT:PCBM/Si(100) is annealed at 100 �C for 20 min for the
1:1 sample, and at 150 �C for 5 min for the 2:1 sample, respectively.
Table 1 summarizes these conditions for the two cases.

Scanning tunneling microscopy and spectroscopy (STM/S) is
used to distinguish different organic molecules. More precisely,

the OPVC active layers are imaged with XSTM/S [64], which has
also been successfully applied to OPVCs [65] and organometallic
perovskites [66]. In the XSTM/S imaging, the sample is cut into
desired shape and fractured in an ultra-high vacuum environment
to ensure a contamination-free cross section surface is exposed for
the STM measurement. Figure 4 shows a 100 nm� 100 nm dI/dV
mapping of P3HT:PCBM (case 2) sample. Based on the dI/dV
point spectra, the green regions denote the P3HT-rich domains
while the blue regions represent the PCBM-rich domains. Note
that, here the brightness and contrast are arbitrarily chosen.

To consistently assign regions as P3HT-rich and PCBM-rich,
the following procedure is employed. The dI/dV signal from
Fig. 4(a) is first plotted into histogram, as illustrated in Fig. 4(b).
This histogram cannot be fit by a single Gaussian function; rather
two Gaussian peaks suitably represent the distribution, indicating
that the data contains two main values, reflecting the two mole-
cules, together with Gaussian noises. By determining the peak
positions, one could further estimate a threshold to demarcate the
two peak values. Then, 1 and 0 are assigned to each pixel, respec-
tively, based on whether the dI/dV signal in each pixel is larger or
smaller than the threshold. Using this procedure, we can system-
atically assign the domains for further analyses. The resulting
binarized digital images of both cases are presented later in Fig. 5
(Sec. 4.1).

4 Active Layer Characterization and Reconstruction

Using Spectral Density Function

This section examines the form of SDF for the two-dimensional
STM images of the fabricated active layer samples. Further, an
analytical reconstruction method based on level-cutting a Gaus-
sian random field is implemented for constructing three-
dimensional RVEs, and the associated computational time is
discussed.

4.1 Characterization. We attempt to characterize the images
of the two cases, introduced in Sec. 3, acquired by the STM imag-
ing technique and subsequent post-processing. Figures 5(a) and
5(b) show the binarized STM images for cases 1 and 2, respec-
tively. The solid lines in Figs. 5(c) and 5(d), respectively, corre-
spond to the SDFs of cases 1 and 2. Although the two SDFs have
a unique peak point and the decay that follows, the underlying
form remains the same. This observation suggests that the triangu-
lar type SDF is sufficient for the considered materials and the cor-
responding fabrication conditions. This form of SDF can be easily
approximated by a function which is governed by two parameters:
peak point and decay factor (which is a multiplication factor in
the exponential decay following the peak). The dotted lines in
Figs. 5(c) and 5(d) represent the approximated function that con-
curs with the original SDFs. These parameters constitute the
design variables to be used for optimization and exploration pur-
poses, as we can vary these variables to obtain different SDFs for
reconstruction of the new designs of nanostructures.

To assess whether SDF sufficiently captures the complex
microstructure morphology for the samples in this study, an exam-
ple of validation test is presented here. Using the SDF of a 100 nm
STM/S image of case 2, a 2D image was reconstructed. Some
common CRFs of both the original and reconstructed image are
shown in Fig. 6. In this figure, it is evident that SDF and two-
point CRF (S2ðrÞ) match well, while minor differences at higher
order CRFs such as two-point cluster CRF (C2ðrÞ) and two-point
lineal path function (LðrÞ), were observed. From design optimiza-
tion perspective, such small discrepancies in the correlation func-
tion may not impact the optimal design solution as long as the
design trend is captured correctly in structure-performance
mapping.

4.2 Identifying Representative Volume Element Size. To
attain accuracy and minimize computational cost, it is essential

Table 1 Summary of processing conditions of the two cases

Case 1 Case 2

Weight ratio (P3HT:PCBM) 1:1 2:1
Annealing temperature and time 100 �C for 20 min 150 �C for 5 min
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that we determine the appropriate RVE size, for the material sys-
tem of interest. We set two-point CRF as our property of interest
to find the RVE size. We start with an STM image of
160 nm� 160 nm and observe its two-point CRF. Then we reduce
our window size so that we only observe 90% (�144 nm) of the
original image, and then calculate the two-point CRF. We con-
tinue narrowing the window of observation (decreasing 10% at a
time) until the two-point CRF deviates significantly from the orig-
inal image, as shown in Fig. 7. The Mean Absolute Percentage
Error (MAPE) of the curves exceeds 10% if the size of the win-
dow goes below 60% (which is equal to 96 nm). Hence, 100 nm is
selected as the size of our RVE.

4.3 Microstructure Reconstruction Based on Spectral
Density Function. Accurate structure-performance evaluations
require digital 3D structures, so it is essential to generate 3D struc-
tures from the SDF in the most cost-effective way possible. The
efficacy of using SDF for characterization has already been estab-
lished in Sec. 4.1. In this section, the process of using SDF to cre-
ate statistically equivalent 3D structures is elaborated.

Realizing the microstructure as a multi-variate sample taken
from an underlying GRF [42], it can be concluded that the recon-
struction of statistically equivalent microstructures can be
achieved by finding that GRF. After finding the GRF, microstruc-
tures are reconstructed by taking realizations of these GRFs and

Fig. 4 (a) dI/dV mapping of P3HT:PCBM active layer: 100 nm 3 100 nm scan size. Brightness and contrast are set arbitrarily.
(b) Histogram fitted with two Gaussian functions. Dashed lines indicate the positions of the two Gaussian peaks. Solid line
indicates the midpoint between the two Gaussian peak values. (c) Digital values (1 and 0) are assigned based on the dI/dV val-
ues in each pixel compared to the solid line in (b).

Fig. 5 Comparing SDF of the two cases mentioned in Table 1. (a) and (b) are binarized STM
images of sizes 100 nm 3 100 nm, for cases 1 and 2, respectively. (c) and (d) are the SDFs (solid
line) of cases 1 and 2, respectively. In (c) and (d), the dotted line represent the approximations
of the SDFs for each case.
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then level cutting them based on a threshold which is the volume
fraction (VF) of white phase in the original image.

For realizing the GRF, the Cahn’s scheme [42] is utilized. It is
an analytical approach for generating realizations from a GRF that
has same SDF as the original microstructure. The governing equa-
tion is:

Y rð Þ ¼ 2

N

� �1
2XN

i¼1

cosðkik̂i � rþ ØiÞ (3)

where k̂i and Øi are uniformly distributed on unit circle, and
[0,2p], respectively. ki is a random variable whose probability
density function, PðkÞ, is determined by the SDF: PðkÞ ¼ q kð Þk2

for a 3D GRF, and q kð Þk for a 2D GRF. After the generation of
GRF, the final structure is extracted by carrying out a level cut
based on the desired threshold. The number of samples N plays a
critical role in the reconstruction. As we increase N, the statistical
accuracy of the final image increases, but so does the computa-
tional cost. The result of the accuracy of reconstruction is shown
in Fig. 8 along with the effects on consumption time. The recon-
struction using N ¼ 103 and N ¼ 104 do not match either the
height or peak point location on the x-axis. The reconstruction
using N ¼ 105 captures the feature of the curve more accurately
and identified to be the appropriate and affordable sampling size
with a good degree of accuracy.

To check the robustness of the methodology, two realizations
are produced of the STM image of case 1. SDF along with volume
fraction is taken as input. Figure 9 quantitatively compares the
two reconstructed SDFs with the SDF of the original image. For
an enhanced pictorial representation of nanostructure, we repro-
duce the reconstructed image from one of the two realizations in
Fig. 10. The reconstructed image qualitatively replicates the main
characteristics of the original image.

Extending our tests to 3D, a cube of size 80� 80� 80 pixel3

was created using an arbitrary SDF and volume fraction of 0.3. As
seen in Fig. 11(a), the SDF of the reconstructed image matches
well with that of the original. The 3D reconstructed structure is

shown in Fig. 11(b). Resolution of the structure can be improved
by increasing the size of reconstruction, the tradeoff being an
increase in the computational time. So, this size has been set as
standard for optimization.

5 Structure–Performance Modeling Using an

Analytical Equation

This section provides the details of a novel approach for finding
the IPCE of a OPVC structure considering the microstructural fea-
tures. The first half explains the physics-based theory behind the
novel equation, while the second part lists down the assumptions
along with presenting three test cases for the prevalidation of our
approach.

Fig. 6 Comparison of CRFs of an original image with a reconstructed image using SDF

Fig. 7 Two-point CRF observed at different window sizes. The
sizes of the windows vary from 100% (i.e., 160 nm) to 40% (i.e.,
64 nm).
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5.1 Theory of Light to Electron Conversion Efficiency in
an Organic Photovoltaic Cell. Here, a microscopic equation is
developed for the first time to predict the device performance for
a given 3D reconstructed microstructure. Under the finite element
scheme, the equation for estimating performance from the micro-
structure can start with counting the number of collected elec-
trons/holes per unit time through a summation of contributions
from each volume element (voxel) over the whole active layer as

n kð Þ
Dt
¼
X I kð Þ

h c
k

e� t�zð Þa kð ÞDxDyPex kð Þ
 !

� e�
d

nex

� �
Psepð Þ e

�SA
nh e�

SC
ne Pcol

� �
(4)

The four parentheses in Eq. (4) represent the four steps illustrated
in Fig. 1: (i) light absorption (exciton creation); (ii) exciton diffu-
sion; (iii) charge separation; (iv) charge diffusion and collection.
Here, t is the thickness of the active layer; a(k) is the absorption
coefficient of active layer as function of the light wavelength, k; P
refers to probability for exciton creation (ex), for charge separa-
tion (sep), and for charge collection (col); d is the distance to the

Fig. 8 The effect of increasing sampling on accuracy of reconstruction with the time consumed for reconstruction at the bot-
tom. N 5 103 is taken the reference, and the other two reconstruction times are in comparison to the first one.

Fig. 9 SDF of original image along with two reconstructed
images

Fig. 10 (a) Initial image (of size 450 pixels 3 450 pixels) (b) Reconstructed (of size 450
pixels 3 450 pixels)
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nearest interface from the location of the exciton creation; n the dif-
fusion lengths of exciton (ex); of hole (h); and of electron (e); S are
the lengths of the path to anode (A); and to cathode (C). In this
equation, the recombination behaviors of the charges are simply
assumed to follow exponential decay over the distance it moves.

From previous study, the value of ne (diffusion length for elec-
tron) is found to be �340 nm [67]; value of nh (diffusion length for
hole) is found to be �90 nm [67]; the value of nex (diffusion length
for exciton) is found to be 5.460.7 nm [68] and a(k) (absorption
coefficient) is measured and could be found in Ref. [69].

Among the variables in Eq. (4), the probability of exciton crea-
tion, Pex(k), and the absorption coefficient, a(k), could be related
to each other through the following relationship:

Pex ¼ 1� e�a kð ÞDz (5)

This relationship is deduced by assuming:

Pex kð Þ ¼ no: of photon absorbed

no: of photon incident

� �
� no: of exciton created

no: of photon absorbed

� �
(6)

where the second term is closely related to the internal quantum
efficiency, which is very close to 100% in many cases [70], so it
is assumed to be 1 here. On the other hand, the first term is closely
related to the photon absorption coefficient, I zð Þ ¼ Ioe�a kð Þz.

Thus, Eq. (4) could be expressed as:

n kð Þ
Dt
¼
X I kð Þ

h c
k

e� t�zð Þa kð ÞDxDy 1� e�a kð ÞDz
� � !

� e�
d

nex

� �
Psepð Þ e

�SA
nh e�

SC
ne Pcol

� �
(7)

We compute the IPCE, which is the number of electrons collected

per incident photon, as: IPCE kð Þ ¼ n kð Þ=Dt ð1=ðI kð Þ=h c
kÞÞA,

where A represents the area of the sample illuminated by light. In
this simulation, it is assumed that the whole sample surface is illu-
minated by light, indicating the sample surface area is A. The final
working equation for evaluating IPCE from nanostructure is
expressed as the summation over every voxel

IPCE kð Þ ¼ 1

A
…
X 

e� t�zð Þa kð ÞDxDy 1� e�a kð ÞDz
� �� �

� e�
d

nex

� �
Psepð Þ e

�SA
nh e�

SC
ne Pcol

� �!
(8)

where, z, d, SA, and SC of each voxel are determined from the
nanostructure. Equation (8) is used to evaluate the performance of
the OPVCs with the known quasi-random nanostructures in this
study.

5.2 Three-Dimensional Structure Performance Simula-
tion. To evaluate the IPCE for a 3D binary structure, some
assumptions are made: (i) no void space exists in the structure—
the whole space is filled by either one of the two materials: P3HT
and PCBM; (ii) only P3HT is responsible for creating excitons
upon light absorption. This condition is based on the fact that in
the solar spectrum wavelength range, P3HT has 2–5 times larger
absorption coefficient compared to PCBM. For simplification,
both Psep and Pcol are set to 1 which being mere multiplication
factors, will not affect the optimization. k is chosen to be 510 nm,
at which P3HT has the highest absorption coefficient
(a kð Þ ¼ 4:3� 106m�1) [69]. Consideration of the whole wave-
length range of solar spectrum can be easily implemented in the
future.

Under these assumptions, there are four major parameters viz.,
z, d, SA; and SC at each voxel, required for optimizing the IPCE.
In our 3D binary model, P3HT is assigned with 0 s or black
regions, while PCBM is assigned as 1 s or white regions. Figure 12
illustrates these distances with an exciton created at the shaded
cell and corresponding distances. First, excitons are created (step
(1) in Fig. 1) at the shaded cell with the light intensity determined
by the depth of this cell: t–z. After creation, the exciton diffuses to
the nearest interface (step (2) in Fig. 1) with a distance d. When

Fig. 11 (a) SDF of original image in comparison with the SDF of reconstructed 3D image/
structure and (b) 3D realization of the reconstruction

Fig. 12 A sample structure with an excited particle at the cen-
ter (shaded cell). Yellow arrow represents light’s path toward
the prospective region; blue represents exciton’s path; orange
represents electron’s path; red represents hole’s path. For
interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.
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the exciton dissociates into electron and hole at the interface (step
(3) in Fig. 1), the hole diffuses toward the anode through the
shortest path in the black medium (step (4) in Fig. 1), SA, while
the electron diffuses toward cathode through the shortest path in
the white medium (step (4) in the Fig. 1), SC.

To explain the contribution of each of the three factors, peak
point, decay, and VF, we randomly created three test structures
for a basic preliminary verification of our model. The input
parameters along with the cross-sectional slices of the resulting
structure are shown in Fig. 13. The performance results are broken
down in Table 2. As seen in the table, tests 1 and 2 have same VF,
but different IPCE. This is because of the difference in the disper-
sion of the material which is caused by the different SDFs. The
SDF in the test 1 has faster decay rate, thus, test 1 has larger clus-
ters in real space; while the SDF in the test 2 has slower decay
rate, leading to smaller clusters in real space. This results in larger
average d and SC in test 1 than that in test 2. With the same VF,
the exciton creation is in the same order in the two test cases, thus
the higher IPCE found in test 2 is attributed to the shorter average
diffusion lengths, as shown in Eq. (8). On the other hand, compar-
ing tests 2 and 3, which have the same SDF but different VF, the
difference in VF dominates the IPCE value. With similar micro-
structure texture due to the same SDF input, test 2 has higher
amount of P3HT molecules (lower VF), hence higher IPCE. It is
worth noting that even tests 2 and 3 have same SDF input, their
average diffusion lengths are affected by the VF. Thus, simultane-
ously optimizing the IPCE with consideration of both SDF and
VF is critical and will be discussed in Sec. 7.

6 Design Formulation and Metamodeling

With the S–P relationship established through IPCE (Eq. (8)),
design formulation can be cast as an optimization problem to find
the active layer nanostructure that delivers highest IPCE. Due to
the short exciton diffusion length (�10 nm), the state-of-the-art
OPVC nanostructure follows the BHJ architecture with the elec-
tron donor and acceptor domains in �10 nm scale in the active
layer. Ideally, to have all four major charge carrier processes opti-
mized, the nanostructures in BHJ should possess the following
characteristics: (a) thickness identical to the light absorption depth
(typically approximately hundreds of namometers to a micron), to
best utilize the light flux; (b) the length scale of the nanostructures
is of the order of the exciton mean free path (�10 nm); (c) maxi-
mizing effective interfacial charge separation volumes for effi-
cient charge separation; (d) minimizing the isolated domains
where there is no path to electrodes for charge collection.

Fig. 13 Testing our performance model. (a1–a3) are input parameters: SDF and volume fraction; (b1–b3) are random cross-
sectional slices of the reconstructed structure.

Table 2 Average values of d , SA, and SC are tabulated for the
three cases presented in Fig. 13. Exciton generated is the num-
ber of P3HT voxels in the structure that will contribute toward
performance.

Test 1 Test 2 Test 3

Average d 4.3 1.77 nm 2.76 nm
Excitons generated 370,483 370,483 179,200
Average SA 61.6 nm 60.4 nm 80.5 nm
Average Sc 96.0 nm 82.5 nm 65.2 nm
IPCE 4.97% 8.41% 3.04%

Fig. 14 SDF curves are plotted using the upper bounds and
lower bounds of design variables of SDF. SDF of case 1 is also
plotted for reference.
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We leverage the low-dimensional structure representation
enabled by SDF to formulate a design paradigm using a small set
of variables. The active layer thickness is determined by the size
of RVE, 100 nm (Sec. 4.2), while the SDF parameters—peak
point and decay—account for structural characteristics that con-
trol the charge separation and transport phenomenon discussed
above. Further, the assumption that exciton generation is restricted
to P3HT molecules necessitates the inclusion of donor/acceptor
composition as an additional design variable. Here, PCBM vol-
ume fraction is chosen as the composition design variable. Note
that composition also plays a critical role in level cutting the GRF
for the reconstruction. Thus, only three variables are required: two
from SDF plus the PCBM volume fraction.

The bounds for design variables are selected by analyzing the
SDF of the two fabricated samples (Table 1) to estimate the three
SDF parameters. Then, a broad range for each of the three param-
eters is selected to ensure diverse SDF curves. Figure 14 plots the
SDF obtained by setting parameters to their lower and upper
bounds, along with the SDF of case 1 for comparison. Previous
studies, focusing only on active layer composition, have revealed
that the ideal PCBM VF is 0.37 approximately [25,71]. To explore
a wider range of values around the optimum, we allow VF to vary
between 0.15 and 0.75. With the objective of maximizing IPCE
ratio, the optimization problem can be stated as

max IPCE ¼ f ðp; d; vf Þ
with respect to p; d; vf

s:t: 2 	 p 	 10

1 	 d 	 12

0:15 	 vf 	 0:75

(9)

where p ¼ peak point, d ¼ decay, and vf ¼ volume fraction.
Since optimization is an iterative process, it requires several

S–P simulations (constructing RVE for current value of design
variables and evaluating the IPCE ratio). For an 80� 80� 80
voxels RVE, reconstruction requires several minutes, implying that
one iteration will need the same time. To overcome this computa-
tional burden and accelerate optimization, a metamodel is used.

A metamodel is created by sampling design space efficiently
using DOE, followed by an appropriate machine learning method
to interpolate and form a continuous input–output mapping in
design space. One of the main hurdles in choosing sampling
points is to ensure that the design space is thoroughly explored
with the minimum number of samples. For the selection of these
sampling points, we use OLHS. The main advantages of OLHS
include minimization of integrated mean square error, maximiza-
tion of minimum distances between samples, and maximizing
entropy [72]. Since there are three design variables, 56 space fill-
ing samples are obtained from OLHS and corresponding S–P sim-
ulations were performed. The machine learning technique used to
create the metamodel is Gaussian process (GP), which is a special
case of Kriging method. The main advantage of using Kriging
method is that it provides the most accurate results for highly non-
linear models with small number of variables compared to polyno-
mial regression, radial basis function or multivariate adaptive
regression splines [73]. Over 45 randomly selected samples are
used in creating the metamodel while 11 are used for cross-
validation.

7 Design Optimization and Sensitivity Analysis

This section discusses the use of the two DOE models for
understanding the effect of design variables on the design per-
formance, i.e., IPCE. In the first model (Sec. 7.1), all design
variables—peak point, decay, and VF are included. Global sensi-
tivity analysis using this model reveals the effects of all the varia-
bles on performance. In the second model, the material
composition (volume fraction) is fixed, and the metamodel is

created over three SDF parameters as inputs to closely examine
the effects of material morphology on performance. Optimal
design of the microstructure is obtained subsequently using the
metamodel.

7.1 Effect of All Design Variables on Incident Photon to
Converted Electron Ratio and the Optimal Design. As men-
tioned in Sec. 6, 45 randomly selected samples from OLHS design
were used for creating the Kriging metamodel with all four design
variables while 11 were used for cross-validation. The R-squared
value based on validation points is 0.9792, which indicates a fair
fit. Because of the highly nonlinear response of the metamodel,
genetic algorithm (GA) is applied to obtain the global maximum
IPCE. To test accuracy, multiple starting designs were selected.
For all starting points considered in this study, the optimization
routine converges to the same optimal point (peak point¼ 2,
decay¼ 12, VF¼ 0.2764 and IPCE¼ 8.41%). This result relates
to a 36.75% increase in IPCE ratio compared to case 1 which has
an IPCE ratio of 6.15%. A RVE is reconstructed using the optimal
microstructure design variables and its IPCE ratio is computed.
Compared to 8.41% from the metamodel, the reconstructed RVE
results in an IPCE ratio of 8.19%, reinforcing the fact that the
metamodel used here is sufficiently accurate.

Next, we analyze the effect of each variable in the performance
model using the variance-based sensitivity analysis (also known
as Sobol analysis [56]). This analysis consists of two indices for
each variable i: first-order sensitivity (Si), and total-order sensitiv-
ity (STi). Si essentially incorporates the effect of variable xi alone
on the response while Sij incorporates the total effect of variable
xi, including the interaction effect with other variables [56]. The
Sobol indices for all three design variables are listed in Table 3.
We note that VF is the most influential design variable as it has
the greatest first-order and total effect. Similar conclusions can
also be deduced by plotting the variation of IPCE ratio with
respect to decay and VF (see Fig. 15). It further confirms the opti-
mal value of VF (0.2764), which translates to a composition of
P3HT:PCBM¼ 1.92:1 (using densities of P3HT and PCBM as
1.1 g/cm3 and 1.5 g/cm3, respectively [74]).

Table 3 Sobol indices for all design variables

Peak point Decay VF

Si (MAIN effect) 0.0033 0.1426 0.8253
STi (TOTAL effect) 0.0116 0.17010 0.8479

Fig. 15 The effect of VF and decay on performance with peak
point fixed
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7.2 Effect of Spectral Density Function on Incident Photon
to Converted Electron Ratio and the Optimal Design. To get a
deeper understanding on the effects of two SDF parameters on
OPVC performance, we constrain the VF to 0.2764 and create a
metamodel using only the two SDF parameters—peak point and
decay. We maintain the range of these variables as mentioned in
Eq. (9) for comparison. OLHS is used to obtain 30 samples for
creating the metamodel using the Kriging technique and six for
validation. The R-squared value for this model is 0.973, which
suggests a good fit.

Optimization is run with different starting designs and all cases
converge to the optimal IPCE value of 8.24% at (peak point¼ 10,
and decay¼ 11.05). A RVE reconstructed with optimal SDF
parameters leads to IPCE ratio of 8.27%, showing good agreement
with the value obtained from the metamodel as well as the optimal
IPCE ratio obtained in Sec. 7.1. The maximum and minimum
IPCE ratio observed in the samples for creating the metamodel is
8.24% and 3.68%, respectively. This demonstrates that for VF
fixed at 0.2764, IPCE ratio can be varied as much as 120% by
varying the SDF parameters within the bounds indicated in
Eq. (9). We plot the SDFs and nanostructures corresponding to
the two limiting cases described above in Fig. 16. As seen in the
Fig. 16(c) with the largest IPCE ratio (best design), PCBM is dis-
tributed more evenly compared to the large agglomerations in
nanostructure with the lowest IPCE ratio shown in Fig. 16(d). The
uniform distribution of PCBM reduces the distance traveled by
exciton toward the nearest donor/acceptor interface, d. Lower the
distance d, greater the IPCE as evident from Eq. (8). Uniform dis-
tribution of PCBM also creates paths for the holes and electrons
to reach the anode and cathode using P3HT and PCBM, respec-
tively. However, for the nanostructure with lowest IPCE
(Fig. 16(d)), there is high probability that holes and electron may
not be able to reach the anode or cathode due to a lack of contigu-
ous path in either media.

8 Conclusion and Future Work

This article introduced an SDF based microstructure design
framework to accelerate the development of quasi-random NMSs.

Instead of following the conventional trial–and–error approach to
materials design, the proposed framework enables physics-based,
cost-effective design strategy by leveraging physics-aware SDF, a
MCR technique capable of representing arbitrary geometries
whose distribution is governed by an underlying spatial correla-
tion. The focus of this paper is on implementing the proposed
framework for the active layer design in OPVC. Active layer sam-
ples conforming to BHJ architecture are fabricated using spin-
coating technique, followed by annealing and their microstructure
is captured by novel XSTM/S technique. By using SDF to repre-
sent these microstructural images, we confirm that the nanostruc-
ture in the OPVC active layer can be parametrized using the SDF
with only two variables—peak point and decay, providing a low-
dimensional representation of an otherwise infinite-dimensional
microstructural image. Accurate 3D RVEs are obtained by level-
cutting GRFs and the associated computational cost for different
sample sizes is discussed. A novel S–P simulation model is devel-
oped using the IPCE ratio as the metric to evaluate OPVC per-
formance computationally. In addition to accounting for the
physical processes and material properties influencing energy con-
version as already established in literature, our proposed IPCE
evaluation takes the impact of active layer morphology explicitly
into account and delineates its effects on each physical process.
The distance to nearest donor/acceptor interface (d), shortest path
to anode ðSAÞ and cathode ðSCÞ are the three morphological varia-
bles influencing IPCE. Procedure to evaluate these variables is
discussed, followed by IPCE computation to establish S–P link-
age. Our results also demonstrate the effectiveness of using SDF
for design representation and the use of computationally guided
methods to expedite microstructural design optimization involv-
ing expensive S–P simulations. A metamodel created using OLHS
and Kriging method is used to accelerate the iterative optimization
problem, which is formulated with the objective of maximizing
IPCE using only three design variables—two from SDF plus the
PCBM volume fraction. The optimal microstructure has an IPCE
of 8.41%, a 36.75% increase compared to fabricated sample (case
1). Global sensitivity analysis using Sobol indices shows that
PCBM volume fraction is the most influential design variable fol-
lowed by Decay (which controls the dispersion of PCBM).

Fig. 16 The SDF and 3D slices of nanostructures with highest (a) and (c) and lowest (b) and
(d) IPCE ratio. White regions comprise PCBM while black regions are occupied by P3HT.
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Future work will involve establishing P–S linkage, which
necessitates coarse-grained molecular dynamics simulations for
microscopic examination of morphology and construction of
atomic-resolution structural realizations of interfaces and molecu-
lar alignment. A wider range of fabrication techniques and proc-
essing conditions will be explored and the corresponding forms of
SDF will be identified. With the help of coarse-grained molecular
dynamics for studying processing–structure relations, the
processing–structure–property linkages will be established, and a
goal-oriented design methodology will enable optimizing OPVC
performance with due consideration of the necessary processing
conditions, thus ensuring manufacturing feasibility of the opti-
mized nanostructures. Finally, the optimal nanostructure will be
fabricated using a suitable bottom-up nanofabrication technique
and its performance will be validated experimentally.
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