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ABSTRACT 

Organic Photovoltaic Cells (OPVCs), having received 

significant attention over the last decade, are yet to be established 

as viable alternatives to conventional solar cells due to their low 

power conversion efficiency (PCE). Complex interactions of 

several phenomena coupled with the lack of understanding 

regarding the influence of fabrication conditions and 

nanostructure morphology have been major barriers to realizing 

higher PCE.  To this end, we propose a computational 

microstructural design framework addressing the Processing–

Structure–Performance (PSP) linkages for designing the active 

layer of P3HT:PCBM based OPVCs conforming to bulk 

heterojunction architecture. The framework pivots around the 

Spectral Density Function (SDF), a frequency space 

microstructure characterization and reconstruction methodology, 

for microstructure design representation. Nanostructure images 

obtained by novel Scanning Tunneling Microscopy are used to 

validate the applicability of SDF for representing active layer 

morphology in OPVCs. SDF enables a low dimensional 

microstructure representation that is crucial in formulating a 

parametrized microstructure optimization scheme. A level-cut 

Gaussian Random Field (governed by SDF) technique is used to 

generate reconstructions that serve as Representative Volume 

Elements (RVEs) for structure-performance simulations. A novel 
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structure-performance simulation approach is developed using 

physics-based performance metric, Incident Photon to Converted 

Electron (IPCE) ratio, to account for the impact of 

microstructural features on OPVC performance. Finally, an SDF 

based computational IPCE optimization study using metamodels 

created using design of computer experiments over three design 

variables results in 36.75% increase in IPCE, underlining the 

efficacy of proposed design framework. 

1. INTRODUCTION

Design of nanostructured material systems (NMSs) [1] has 

recently gained impetus due to its potential for developing high 

performance metamaterials by cost-effective nanofabrication 

techniques [2-6]. A convenient way of categorizing NMSs is 

based on the presence of periodicity in the morphology. Periodic 

designs involve deterministic arrangement of identical building 

blocks (a.k.a. unit cells), with optimal performance realized 

through evolutionary algorithms [3, 7, 8] and topology 

optimization [4, 9]. However, fabrication of periodic NMSs 

requires top-down nanomanufacturing techniques which are 

often expensive and time consuming to ensure precise material 

deposition at nano- and micro- scales [10]. In contrast to periodic 

NMSs, a quasi-random nanostructure contains no periodic 

arrangement of unit cells, but a seemingly random material 
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distribution governed by an underlying spatial correlation. Such 

structures have been observed in nature [11-14] as well as 

artificially synthesized materials [15-18] using low cost and 

bottom-up manufacturing processes [19] (which uses 

atoms/molecules as the building blocks, self-assembled to create 

complex nanostructures) such as nanowrinkling [2, 17].  

 OPVCs [20-23] are one such example of man-made quasi-

random nanostructures. Owing to a series of advantages such as 

flexibility, light weight, low production cost, and lack of heavy 

metals (environmental friendly), OPVCs have received 

significant attention as one of the promising materials for next 

generation solar cells [24, 25]. The short mean free path (2-10 

nm) of the excitons [26] in organic molecules requires that the 

locations of exciton creation should be in the vicinity of the 

electron donor-acceptor interface for efficient charge separation. 

It has been shown that the bulk heterojunction (BHJ) architecture 

of the active layer is key to ensure high efficiency due to its 

quasi-random nanostructures satisfying the aforementioned 

short exciton mean free path limitation [26]. As illustrated in 

Figure 1(a), charge separation at the donor-acceptor interfaces 

and transport to the electrodes are critical to high performance of 

the device. Among the various electron donor/acceptor 

combinations investigated previously, phenyl-C61-Butyric-

Acid-Methyl Ester (PCBM) interspersed with poly(3-

hexylthiophene-2,5-diyl) (P3HT) has been the “best seller” [27]. 

To achieve optimal PCEs, several structure and process synthesis 

parameters, such as electron donor-acceptor composition, 

thickness of the active layer, annealing temperature, and 

annealing duration etc., need to be optimized simultaneously. 

Previous efforts only focus on one or two structure and 

processing parameters at a time to search for optimal devices. 

However, the optimal parameters are not independent from each 

other, indicating that better strategies are needed. Currently, there 

is no reported methodology to consider the influences of all 

fabrication conditions simultaneously on the microstructures or 

the influences of the microstructures on the device performance.  

 

 To produce cost-effective devices with targeted properties, 

formulating a holistic material design strategy [28-33] is 

essential. Since the device’s microstructure influences its 

behavior at different length scales, microstructure mediated 

design [30, 34] or microstructure sensitive design [35] has 

assumed prime importance. Deconvolving the Structure–

Performance (S-P) relationship has been the focus of many 

articles, covering a wide range of material systems [36-41]. Due 

to its high dimensionality, one needs to extract the salient 

features from a microstructure image before its influences on 

material behavior can be studied. Microstructure 

Characterization and Reconstruction (MCR) [42, 43] has 

enabled a quantitative approach to analyze microstructural 

images and subsequently construct models for investigating S-P 

relationship. The essence of MCR is its ability to capture 

significant microstructural details and subsequently generate 

statistically equivalent reconstructions. The widely used MCR 

approaches [42] for non-deterministic systems are based on 

spatial correlation functions [43-45], descriptor-based methods 

[40, 46] and machine learning techniques [47-49]. The 

correlation function approach captures the microstructure from a 

probabilistic perspective but relies on a pixel (voxel in 3D) 

swapping strategy for reconstructions and is therefore 

computationally prohibitive for microstructural design. 

Descriptor-based approach uses a small set of uncorrelated 

features which embody significant microstructural detail and has 

been successfully used for design of nanocomposite polymers 

[40, 46, 50-52], that contain clusters of filler material dispersed 

in polymer matrix. However, this approach assumes filler 

aggregates to be ellipsoidal and descriptors are regular 

geometrical features (aspect ratio, equivalent radius etc.), thus, 

falling short in representing arbitrary geometries encountered in 

Figure. 1: Variables of interest in Processing-Structure-Performance framework and design scope, (a) A schematic 

representation of OPVC with Bulk Heterojunction (BHJ) architecture; (b) a four-step energy conversion mechanism. 
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quasi-random NMSs. While machine learning methods, which 

are capable of modelling highly nonlinear systems, have been 

implemented as MCR tools, the lack of physical interpretation of 

parameters learned from these methods has limited their use in 

material design.  

 SDF [2, 5, 6, 53] has emerged as a new method for low-

dimensional, physics aware representation of quasi-random 

NMSs. For isotropic materials, SDF is a one-dimensional 

function of spatial frequency, calculated as the radial average of 

the squared magnitude of Fourier spectrum of a quasi-random 

structure [53] and represents the structural correlation in Fourier 

space. Analogous to the way correlation functions describe 

structural correlations in real space, SDF provides this 

description in reciprocal space. Our previous efforts in design of 

photonic NMSs with SDF [2, 5, 6] have highlighted its 

advantages in representing quasi-random microstructures with a 

small number of required design variables. Yu et.al. [6] presented 

the first comprehensive MCR study on application of SDF for 

quasi-random NMSs used as light trapping structure in thin-film 

solar cells. They showed that low-dimensional microstructure 

representation enabled by SDF, its direct association with 

material functionalities and relationship with processing 

conditions, was instrumental in design optimization and led to a 

4.7-fold enhancement of single wavelength light absorption. In 

another recent article, Lee et.al. [2] integrated a novel wafer scale 

nanofabrication procedure, wrinkle lithography, with SDF based 

microstructure representation to bridge the processing-structure 

and structure-performance relationship for concurrent design of 

photonic nanostructures. The study showed that parameters in 

SDFs have physical implications closely associated with the 

material processing conditions, improving the feasibility of 

fabricating the optimal nanostructures obtained from 

computational design methods. 

In this paper, we investigate the applicability of SDF for 

design of the active layer in OPVCs and propose a design 

framework built on SDF based Structure–Performance (S-P) 

evaluations (Sec. 2). Active layer samples comprising 

P3HT:PCBM and conforming to BHJ architecture are fabricated 

and imaged using novel cross-sectional Scanning Tunneling 

Microscopy and Spectroscopy (XTM/S) (Sec. 3). Further, this 

article focuses on establishing S-P relationship by creating 

protocols for SDF based microstructure representation (Sec. 4) 

and developing a novel, physics-based performance evaluation 

strategy (Sec. 5). To demonstrate the usefulness of 

microstructure representation using SDF and the S-P relationship 

investigated here, we formulate a performance optimization 

problem to determine the optimal microstructure (Sec. 6). State-

of-the-art computational design methods are employed to 

improve the efficiency of simulation-based design optimization. 

Specifically, Optimal Latin Hypercube Sampling [54] is used to 

create a metamodel based on Kriging metamodeling [55], 

overcoming the challenges of computational cost and time. 

Finally, Sobol sensitivity analysis [56] is used to elucidate the 

effect of each design variable (sec. 7).  

 

2. SPECTRAL DENSITY FUNCTION BASED 
MICROSTRUCTURE DESIGN FRAMEWORK  

 

Low-dimensional, physics-aware nanostructure 

representation is critical for computational design of quasi-

random NMSs. In this section, we first demonstrate SDF to be a 

convenient frequency space representation which embodies 

significant real space features and assumes simple parametric 

form for isotropic materials. Then, an SDF based microstructure 

design framework is presented in the context of active layer 

design for OPVCs. 

 

2.1 Introduction to Spectral Density Function 

 

SDF is one of the tools developed to characterize the 

structural information of a given material. The backbone of SDF 

is Fourier Transform (FT). FT decomposes a waveform (e.g. 1D 

signal or a 3D image) into a sum of sinusoidal waves of different 

frequencies [57]. When the FT operator is applied to a 

microstructure image, real space structural features are 

represented in the spatial frequency space and enable 

identification of spatial correlations. SDF has demonstrated its 

ability to characterize intricate heterogeneous microstructures as 

well as generate statistically equivalent reconstructions [42]. For 

isotropic materials, the shape of radially averaged SDF curve 

generally takes a simple parametric form which significantly 

reduces the design complexity of an otherwise high dimensional 

material structure. 

To characterize a microstructure using SDF, a two-phase 

image, X, is required. The image must contain high resolution 

details at the microstructural level. The Fourier Transform F(k) 

of the image is calculated as: 

 𝐹(𝒌) = 𝐹{𝑋} = 𝐴𝑘𝑒𝑖∅𝑘                   (1) 

Here, 𝐹{. } represents the FT operator, k is a vector which 

represents frequency, i = √(-1), and 𝐴𝒌 and ∅𝒌 represent the 

magnitude and phase angle of the FT, respectively. For isotropic 

materials, the vector k can be reduced to a scalar by radially 

averaging in the space domain. Thus, the SDF of the 

microstructure, ρ(k), is then calculated by radial averaging of the 

squared magnitude of FT. 

𝜌(𝑘) =
∫ |𝐹(𝒌)|2𝑑𝜃

2𝜋
0

2𝜋
=  

∫ 𝐴𝒌
2𝑑𝜃

2𝜋
0

2𝜋
  (2) 

This gives a 1-D ρ(k) function.  

The resulting SDF plots can take various forms. A few examples 

of 1-D SDF plots and their respective images are shown in Figure 

2. The widely used 2-Point Correlation Function (CRF) is 

equivalent to inverse FT of SDF [58], but compared with 2-point 

CRF, SDF is more convenient in differentiating spatial 

correlation features as evidenced in Figure 2. Figure 2a and 

Figure 2b represent two nanostructures with different structural 

properties. Figure 2b is an image of an ordered structure and has 

one distinctly strong correlation at one specific band of spatial 

frequency (Figure 2d). This feature is also visible in the insets of 

Figure 2b by a distinct circle in the Fourier spectrum. In contrast, 

Figure 2a is less ordered and hence its SDF is more dispersed 

over the entire frequency spectrum (Figure 2c). These 
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differences in SDF based on structural changes corroborate the 

efficacy of SDF in capturing the structural detail. Furthermore, 

the SDFs observed in Figures 2c and 2d both assume a simple 

shape that can be easily parametrized. The parametrized SDFs 

are represented as red dashed lines in Figure 2c and 2d. For 

Figure 2c it is as a truncated Gaussian function, while for Figure 

2d it is a step function. Note that all the SDFs presented in this 

study are normalized for ease of comparison and consistency. 

 

2.2 SDF based Microstructure Design Framework for OPVC 

Active layer 

 

Under the new paradigm of microstructure-sensitive 

material design [35, 59], materials are viewed as a complex 

structural system that can be optimized for achieving superior 

properties (properties under consideration are subject to targeted 

application). Using OPVC active layer optimization as an 

example, we present here a holistic SDF based microstructure 

design framework (Figure 3) that can be employed for design of 

quasi-random nano- or microstructural systems based on 

Structure-Performance (S-P) relations. 

 The key idea of the proposed framework is to leverage SDF 

as the representation of OPVC microstructures, enabling direct 

and inverse S-P mappings. As shown in Figure 3, the framework 

is initiated by fabricating samples of NMSs of interest (OPVC 

active layer for this article) using a nanofabrication technique 

with processing parameters choices based on empirical findings 

or literature. State-of-the-art imaging techniques are used to 

visualize the nanostructure in the available samples and the type 

(form) of SDF is identified. The main advantage of using SDF 

for quasi-random NMSs is that it can be easily parametrized 

(Sec. 2.1) and provides a more convenient representation for 

interpretation and design relative to other design methods [6]. 

Since SDF corresponds to the magnitude of FT of the 

microstructure, reconstruction can be cast as a phase recovery 

Figure 2: Two sample microstructures (a & b) along with 

their Fourier spectrum in the insets; (c &d) are the 1-D SDFs 

of each image. Red dashed line represents the approximated 

SDF. 

Figure 3: A framework for designing active layer nanostructure in bulk heterojunction OPVC via SDF. 
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technique [60]. In this article, reconstruction is accomplished by 

level-cutting a Gaussian Random Field (GRF) governed by the 

required SDF. Thus, starting from a 2D XSTM/S image, SDF 

provides a reduced order microstructure representation (only 

three parameters required in this study) for creating statistically 

equivalent 3D microstructures which serve as Representative 

Volume Element (RVE) for performance evaluation.  

To evaluate the performance of a RVE, a model is sought 

that accounts for structural features in addition to device physics 

and material properties. For OPVCs, the key performance 

parameter of interest is the IPCE ratio. To evaluate IPCE 

computationally, a novel strategy based on device physics and 

nanostructure is developed here. This strategy explicitly states 

the influence of nanostructure on known physical phenomena 

and establishes the S-P relationship that forms the basis for 

performance optimization. However, before the optimization, 

creating a metamodel to replace the computationally expensive 

and time-consuming S-P model is highly desirable (see Figure 

3). Metamodel, created by careful Design of Experiments 

(DOE), is essentially a “black-box” that approximates the S-P 

simulations. Given the set of design variables and their bounds, 

DOE dictates the S-P simulations that must be performed to 

determine the corresponding value of objective function (a.k.a. 

response). A suitable machine learning model is chosen to 

interpolate between known values of response, forming a 

metamodel which can be queried at each iteration of the 

optimization. In this article, we use Optimal Latin Hypercube 

Sampling (OLHS) to create the metamodel based on the Kriging 

method, accelerating the search for the optimal design. 

Design optimization is performed with the pre-determined 

design variables obtained by parametrizing SDF (Sec. 4) along 

with the material composition. As mentioned previously, SDF 

provides a low-dimensional representation in reciprocal space of 

an otherwise high-dimensional nanostructure image, thereby 

facilitating a convenient design formulation. In this work, IPCE 

is chosen as the objective function with an aim of finding its 

maximum value and the corresponding SDF parameters (i.e. 

nanostructure). However, it should be noted that the optimum 

structure is limited to the same type of material system as the 

tested samples because the form of the SDF function used for 

optimization is determined based on the fabricated samples. In 

the following sections, we elaborate the procedure of 

implementing the proposed framework. 

 

3. SAMPLE FABRICATION AND IMAGING  
 

Fullerene-based acceptors, such as PCBM and PC70BM, 

have dominated the OPVC field for decades and achieved a 

decent PCE of 6.82% [61]. Recent developments with non-

fullerene-based acceptors further push the PCE of OPVCs to 

~13% [62, 63]. Nevertheless, the BHJ quasi-random 

nanostructure in OPVC is still the dominating design for high 

PCE devices. Here, we focus on the most studied P3HT:PCBM 

acceptor/donor combination. The methodology and results 

presented here are can be extended to all kinds of OPVCs with 

BHJ architecture.  

There are five major parameters for fabricating BHJ active 

layers in OPVC devices: (1) P3HT/PCBM composition; (2) the 

solvent; (3) annealing temperature; (4) annealing duration; and 

(5) thickness of the active layer. In this work, the parameter 

under focus is composition. Annealing temperatures and 

durations are chosen differently for the two cases (Table 1). 

Other processing parameters are kept the same. 

 P3HT (Solaris Chem Inc.) and PCBM (purity >99.5%, 

Solaris Chem Inc.) are first prepared into separate 1.78 weight % 

precursor solutions with chlorobenzene (purity ≥99.5%, Sigma-

Aldrich). Final solutions with desired P3HT:PCBM weight ratios 

of 1:1 and 2:1, are made by mixing the precursor solutions with 

corresponding amounts. The solutions were then spin coated 

onto the Si(100) substrate at ~1000 rpm for 1 minute. The 

P3HT:PCBM/Si(100) is annealed at 100 °C for 20 minutes for 

the 1:1 sample, and at 150 °C for 5 min for the 2:1 sample, 

respectively. Table 1 summarizes these conditions for the two 

cases. 

Scanning Tunneling Microscopy and Spectroscopy 

(STM/S) is used to distinguish different organic molecules. More 

precisely, the OPVC active layers are imaged with cross-

sectional STM/S (XSTM/S) [64], which has also been 

successfully applied to OPVCs [65] and organometallic 

perovskites [66]. In the XSTM/S imaging, the sample is cut into 

desired shape and fractured in an ultra-high vacuum (UHV) 

environment to ensure a contamination-free cross-section 

surface is exposed for the STM measurement. Figure 4 shows a 

100 nm × 100 nm dI/dV mapping of P3HT:PCBM (Case 2) 

sample. Based on the dI/dV point spectra, the green regions 

denote the P3HT-rich domains while the blue regions represent 

the PCBM-rich domains. Note that, here the brightness and 

contrast are arbitrarily chosen.  

To consistently assign regions as P3HT-rich and PCBM-rich, the 

following procedure is employed. The dI/dV signal from Figure 

4a is first plotted into histogram, as illustrated in Figure 4b. This 

histogram cannot be fit by a single Gaussian function rather two 

Gaussian peaks suitably represent the distribution, indicating 

that the data contains two main values, reflecting the two 

molecules, together with Gaussian noises. By determining the 

peak positions, one could further determine the mid-point 

between the two peak values. Then, 1 and 0 are assigned to each 

pixel respectively based on whether the dI/dV signal in each 

pixel is larger or smaller than the mid-point value between the 

two Gaussian peaks. Using this procedure, we can systematically 

assign the domains for further analyses. The resulting binarized 

digital images of both cases are presented later in Figure 5 

(Section 4.1). 

 

 

Table 1: Summary of processing conditions of the two cases 
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4. ACTIVE LAYER CHARACTERIZATION AND 

RECONSTRUCTION USING SPECTRAL DENSITY 
FUNCTION 

  
This section examines the form of SDF for the two-

dimensional STM images of the fabricated active layer samples. 

Further, an analytical reconstruction method based on level-

cutting a Gaussian Random Field is implemented for 

constructing three-dimensional RVEs, and the associated 

computational time is discussed. 

 

 

4.1 Characterization 

 

We attempt to characterize the images of the two Cases, 

introduced in Section 3, acquired by the STM imaging technique 

and subsequent post-processing. Figure 5a and 5b show the 

binarized STM images for Case 1 and Case 2, respectively. The 

solid lines in Figure 5c and 5d respectively correspond to the 

SDFs of Case 1 and Case 2. Although the two SDFs have a 

unique peak point and the decay that follows, the underlying 

form remains the same. This observation suggests that the 

triangular type SDF is sufficient for the considered materials and 

the corresponding fabrication conditions. This form of SDF can 

be easily approximated by a custom function which is governed 

by two parameters: peak point and decay factor (which is a 

multiplication factor in the exponential decay following the 

peak). For design optimization and exploration purposes, we can 

vary these variables to obtain different SDFs for reconstruction 

of the new designs of nanostructures. The dotted lines in Figures 

5c and 5d represent the approximated function that concurs very 

well with the original SDFs. 

 

 

4.2 Identifying the size of RVE 

 

To attain accuracy and avoid unwanted computational cost, 

it is essential that we determine the appropriate RVE size, for the 

material system of interest. We set 2-Point CRF as our property 

of interest to find the RVE size. We start with an STM image of 

160 nm × 160 nm and observe its 2 Point CRF. Then we reduce 

our window size so that we only observe 90 % (~144 nm) of the 

original image, and then calculate the 2-Point CRF. We continue 

narrowing the window of observation (decreasing 10 % at a time) 

until the 2-Point CRF deviates significantly from the original 

image, as shown in Figure 6. The Mean Absolute Percentage 

Error (MAPE) of the curves exceeds 10 % if the size of the 

Figure 4: (a) dI/dV mapping of P3HT:PCBM active layer. 100 nm × 100 nm scan size. Brightness and contrast are set 

arbitrarily. (b) Histogram fitted with two Gaussian functions. Dashed lines indicate the positions of the two Gaussian peaks. 

Solid line indicates the mid-point between the two Gaussian peak values. (c) Digital values (1 and 0) are assigned based on the 

dI/dV values in each pixel compared to the solid line in (b). 

Figure 5: Comparison of SDF of the two cases under study. (a) 

and (b) are binarized STM images of sizes 120 nm x 120 nm 

(Case 1) and 100 nm x 100 nm (Case 2) respectively. Both 

images are 450 x 450 pixels in size; (c) and (d) are the SDFs 

(solid line) of cases 1 and 2, respectively. In (c) and (d) the 

dotted line represents the approximations of the SDFs for each 

case. 
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window goes below 60 % (which is equal to 96 nm). Hence, 100 

nm is selected as the size of our RVE. 

 

4.3 Microstructure Reconstruction based on SDF 

 

Accurate structure-performance evaluations require digital 

3D structures, so it is essential to generate 3D structures from the 

SDF in the most cost-effective way possible. The efficacy of 

using SDF for characterization has already been established in 

section 4.1. In this section, the process of using SDF to create 

statistically equivalent 3D structures is elaborated. 

Realizing the microstructure as a multi-variate sample 

taken from an underlying Gaussian Random Field (GRF) [42], it 

can be concluded that the reconstruction of statistically 

equivalent microstructures can be achieved by finding that GRF. 

After finding the GRF, microstructures are reconstructed by 

taking realizations of these GRFs and then level cutting them 

based on a threshold which is the filler volume fraction of the 

original image.  

For realizing the GRF, the Cahn’s scheme [42] is utilized. 

It is an analytical approach for generating realizations from a 

GRF that has same SDF as the original microstructure. The 

governing equation is: 

𝑌(𝒓) = (
2

𝑁
)

1

2 ∑ 𝑐𝑜𝑠 (𝑘𝑖𝒌̂𝑖
𝑁
𝑖=1 ∙ 𝒓 + ∅𝒊)    (3) 

       

where 𝒌̂𝑖 and ∅𝒊 are uniformly distributed on unit circle, 

and [0,2π], respectively. 𝑘𝑖 is a random variable whose 

probability density function, P(k), is determined by the SDF: 

𝑃(𝑘) = 𝜌(𝑘)𝑘2 for a 3D GRF, and ρ(k)k for a 2D GRF. After 

the generation of GRF, the final structure is extracted by carrying 

out a level cut based on the desired threshold. The number of 

samples N plays a critical role in the reconstruction. As we 

increase N, the statistical accuracy of the final image increases, 

but so does the computational cost. The result of the accuracy of 

reconstruction is shown in Figure 7 along with the effects on 

computation time. The reconstruction using 𝑁 = 104and 𝑁 =
5 x 104 do not match either the height or peak point location on 

x-axis. The reconstruction using 𝑁 = 5 x 105 captures the 

feature of the curve more accurately. A sweet spot of 𝑁 =
5 x 105 is identified to be the appropriate and affordable 

sampling size with a good degree of accuracy. 

To check the robustness of the methodology, two 

realizations are produced of the STM image of Case 1. SDF 

along with volume fraction is taken as input. Figure 8 

quantitatively compares the two reconstructed SDFs with the 

SDF of the original image. For an enhanced pictorial 

representation of nanostructure, we reproduce the reconstructed 

image from one of the two realizations in Figure 9. The 

reconstructed image qualitatively replicates the main 

characteristics of the original image. 

Extending our tests to 3D, a cube of size 80 × 80 × 80 pixels 

was created using an arbitrary SDF and volume fraction of 0.3. 

As seen in Figure 10a, the SDF of the reconstructed image 

matches well with that of the original. The 3D reconstructed 

structure is shown in Figure 10b. Resolution of the structure can 

be improved by increasing the size of reconstruction, the tradeoff 

Figure 7: The effect of increasing sampling on accuracy of 

reconstruction with the time consumed for reconstruction at the 

bottom. 𝐍 =  𝟏𝟎𝟑 is taken the reference, and the other two 

reconstruction times are in comparison to the first one. 

Figure 8: SDF of original image along with two reconstructed 

images 

Figure 6: 2 Point correlation function observed at different 

window sizes. The sizes of the windows vary from 100% (i.e. 

160nm) to 40% (i.e. 64nm). 
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being an increase in the computational time. So, this size has 

been set as standard for optimization. 

 

5. STRUCTURE-PERFORMANCE MODELING USING 
A NOVEL ANALYTICAL EQUATION 

 
This section provides the details of the novel approach for 

finding the IPCE of an OPVC structure considering the 

microstructural features. The first half explains the physics-

based theory behind the novel equation, while the second part 

lists down the assumptions along with presenting three test cases 

for the pre-validation of our approach.  

 
5.1 Theory of light to electron conversion efficiency of an 

OPVC 

 

Here, a microscopic equation is developed for the first time 

to predict the device performance for a given 3D reconstructed 

microstructure. Under the finite element scheme, the equation 

for estimating performance from the microstructure can start 

with counting the number of collected electrons/holes per unit 

time through a summation of contributions from each volume 

element (voxel) over the whole active layer as: 

𝑛(𝜆)

𝛥𝑡
= ∫

𝑣 
( 

𝐼(𝜆)

ℎ 
c

𝜆

 𝑒−(t−z)𝛼(𝜆)𝑑𝑥𝑑y… 

           𝑃𝑒𝑥(𝜆) 𝑑𝑧 ) ( 𝑒
−

𝑑

𝜉𝑒𝑥) (𝑃𝑠𝑒𝑝) (𝑒
−

𝑆𝐴
𝜉ℎ  𝑒

−
𝑆𝐶
𝜉𝑒   𝑃𝑐𝑜𝑙)                (4) 

The four parentheses in Eq. (4) represent the four steps 

illustrated in Fig. 1: (i) light absorption (exciton creation); (ii) 

Exciton diffusion; (iii) charge separation; and (iv) charge 

diffusion & collection. Here t is the thickness of the active layer; 

α(λ) is the absorption coefficient of active layer as function of 

the light wavelength, λ; P refers to probability for exciton 

creation (ex), for charge separation (sep), and for charge 

collection (col); d is the distance to the nearest interface from the 

location of the exciton creation; ξ the diffusion lengths of exciton 

(ex); of hole (h); and of electron (e); S are the lengths of the path 

to anode (A); and to cathode (C). In this equation, the 

recombination behaviors of the charges are simply assumed to 

follow exponential decay over the distance it moves. 

From previous study the value of ξₑ (diffusion length for 

electron) is found to be ~340 nm [78]; the value of 𝜉ℎ (diffusion 

length for hole) is found to be ~90 nm [67]; the value of 𝜉𝑒𝑥  

(diffusion length for exciton) is found to be 5.4 ± 0.7 nm [68] 

and α(λ) (absorption coefficient) is measured and could be found 

in [69].  

Among the variables in Eq. (4), the probability of exciton 

creation, 𝑃𝑒𝑥(λ), and the absorption coefficient, α(λ), could be 

related to each other through the following relationship: 

𝑃𝑒𝑥 =  1 −  𝑒−𝛼(𝜆) 𝛥𝑧                      (5) 

This relationship is deduced by assuming: 

𝑃𝑒𝑥(𝜆) = ( 
𝑛𝑜.  𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 

𝑛𝑜.  𝑜𝑓 𝑃ℎ𝑜𝑡𝑜𝑛 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
) 𝑥 … 

 (
𝑛𝑜.  𝑜𝑓 𝑒𝑥𝑐𝑖𝑡𝑜𝑛 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

𝑛𝑜.  𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
)                          (6) 

where the second term is closely related to the internal quantum 

efficiency, which is very close to 100 % in many cases [70] and 

assumed to be 1 here. On the other hand, the first term is closely 

related to the photon absorption coefficient, 𝐼(𝑧) =  𝐼𝑜 𝑒
−𝛼(𝜆)𝑧. 

Thus Eq. (4) could be expressed as: 
𝑛(𝜆)

𝛥𝑡
= ∫𝑣( 

𝐼(𝜆)

ℎ 
c

𝜆

 𝑒−(t−z)𝛼(𝜆) 𝑑𝑥𝑑y… 

 (1 − 𝑒−𝛼(𝜆) 𝛥z )𝑑𝑧 ) ( 𝑒
−

𝑑

𝜉𝑒𝑥) (𝑃𝑠𝑒𝑝) (𝑒
−

𝑆𝐴
𝜉ℎ  𝑒

−
𝑆𝐶
𝜉𝑒   𝑃𝑐𝑜𝑙)      (7) 

We compute the IPCE, which is the number of electrons 

collected per photon incident, as: 𝐼𝑃𝐶𝐸(𝜆) =
𝑛(𝜆)

𝛥𝑡

1
𝐼(𝜆)

ℎ
𝑐
𝜆

𝐴
 where 

A represents the area of the sample illuminated by light. In this 

simulation, it is assumed that the whole sample surface is 

illuminated by light, indicating the sample surface area is A. The 

Figure 9: a) STM image b) Reconstructed Image (both images 

of size 450 x 450 pixels) 

Figure 10: (a) SDF of original image in comparison with the 

SDF of reconstructed 3-D image/structure. (Note that both y-

axes are normalized for each graph); (b) 3-D Realization of 

the reconstruction. 
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final working equation for evaluating IPCE from nanostructure 

is expressed as the summation over every voxel: 

𝐼𝑃𝐶𝐸(𝜆) = ∑

(  𝑒−(t−z)𝛼(𝜆)(1 − 𝑒−𝛼(𝜆) 𝛥z )𝛥𝑧 ) …

( 𝑒
−

𝑑

𝜉𝑒𝑥) (𝑃𝑠𝑒𝑝) (𝑒
−

𝑆𝐴
𝜉ℎ  𝑒

−
𝑆𝐶
𝜉𝑒   𝑃𝑐𝑜𝑙)

       (8) 

where, z, d, SA, and SC of each voxel are determined from 

the nanostructure. Eq. 8 is used to evaluate the performance of 

the OPVCs with the known quasi-random nanostructures in this 

study. 

 

5.2 3-D Structure Performance Simulation 

 

To evaluate the IPCE for a 3D binary structure, some 

assumptions are made: (i) no void space exists in the structure – 

the whole space is filled by either one of the two materials: P3HT 

and PCBM; (ii) only P3HT is responsible for creating excitons 

upon light absorption. This condition is based on the fact that in 

the solar spectrum wavelength range, P3HT has 2-5 times larger 

absorption coefficient compared to PCBM. For simplification, 

both 𝑃sep and 𝑃col are set to 1 which being mere multiplication 

factors, will not affect the optimization. λ is chosen to be 510 nm, 

at which P3HT has the highest absorption coefficient (𝛼(𝜆) =
4.3 × 106 𝑚−1) [69]. Consideration of the whole wavelength 

range of solar spectrum can be easily implemented in the future. 

Under these assumptions, there are four major parameters 

viz., z, 𝑑, 𝑆𝐴 and 𝑆𝐶  at each voxel, required for optimizing the 

IPCE. In our 3D binary model, P3HT is assigned with 0s or black 

regions, while PCBM is assigned as 1s or white regions. Figure 

11 illustrates these distances with an exciton created at the 

shaded cell and corresponding distances. First, excitons are 

created (step (1) in Section 5.1) at the shaded cell with the light 

intensity determined by the depth of this cell: t-z. After creation, 

the exciton diffuses to the nearest interface (step (2) in Section 

5.1) with a distance d. When the exciton dissociates into electron 

and hole at the interface, the hole diffuses towards the anode 

through the shortest path in the black medium (step (4) in Section 

5.1), 𝑆𝐴, while the electron diffuses towards cathode through the 

shortest path in the white medium (step (4) in the section 5.1), 

𝑆𝐶 . 

To explain the contribution of each of the three factors, 

Peak Point, Decay and VF, we randomly created three test 

structures for a basic preliminary verification of our model. The 

input parameters along with the cross-sectional slices of the 

resulting structure are shown in Figure 12. The performance 

results are broken down in Table 2. As seen in the table, test 1 

and test 2 both have same VF, but different IPCE. This is because 

of the difference in the dispersion of the material which is caused 

by the different SDF inputted. The SDF in the test 1 has faster 

decay rate, thus, test 1 has larger clusters in real space; while the 

SDF in the test 2 has slower decay rate, infers to smaller clusters 

in real space. This results in larger average d and SC in test 1 than 

that in test 2. With the same VF, the exciton creation is in the 

same order in the two test cases, thus the higher IPCE found in 

test 2 is attributed to the shorter average diffusion lengths, as 

shown in Eq. 8. On the other hand, comparing test 2 and 3, which 

have the same SDF but different VF, the difference in VF 

dominates the IPCE value. With similar microstructure texture 

due to the same SDF input, the test 2 has higher amount of P3HT 

molecules (lower VF), hence higher IPCE. It is worth noting that 

even test 2 and 3 have same SDF input, their average diffusion 

Figure 11: A sample of structure with an excited particle at 

the center (shaded cell). Yellow arrow represents light’s path 

towards the prospective region; Blue represents exciton’s 

path; Orange represents electron’s path; Red represents 

hole’s path 

Fig. 12: Testing our performance model. (a1-a3) are input 

parameters: SDF and volume fraction; (b1-b3) are 

random cross-sectional slices of the reconstructed 

structure. 

Table 2: Average values of 𝐝, 𝐒𝐀 & 𝐒𝐂 are tabulated for the 

three cases presented in Figure 1w. Exciton generated is the 

number of elements in the structure that will contribute 

towards performance. 

9 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 11/26/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

lengths are affected by the VF. Thus, simultaneously optimizing 

the IPCE with consideration of both SDF and VF is critical and 

will be discussed in later sections. 

 

 

6. DESIGN FORMULATION AND METAMODELING 
 

With the S-P relationship established through IPCE (Eq. 8), 

design formulation can be cast as an optimization problem to find 

the active layer nanostructure that delivers highest IPCE. Due to 

the short exciton diffusion length (~10 nm), the state-of-the-art 

OPVC nanostructure follows the BHJ architecture with the 

electron donor and acceptor domains in ~10 nm scale in the 

active layer. Ideally, to have all four major charge carrier 

processes optimized, the nanostructures in BHJ should possess 

the following characteristics: (a) thickness identical to the light 

absorption depth (typically ~hundreds of nm to a micron), to best 

utilize the light flux; (b) the length scale of the nanostructures is 

of the order of the exciton mean free path (~10 nm); (c) 

maximizing effective interfacial charge separation volumes for 

efficient charge separation; and (d) minimizing the isolated 

domains where there is no path to electrodes for charge 

collection.  

We leverage the low-dimensional structure representation 

enabled by SDF to formulate a design paradigm using a small set 

of variables. The active layer thickness is determined by the size 

of RVE, 100 nm (Sec. 4.2), while the SDF parameters–Peak 

Point and Decay – account for structural characteristics that 

control the charge separation and transport phenomenon 

discussed above. Further, the assumption that exciton generation 

is restricted to P3HT molecules necessitates the inclusion of 

donor/acceptor composition as an additional design variable. 

Here, PCBM volume fraction is chosen as the composition 

design variable. Note that composition also plays a critical role 

in level cutting the GRF for the reconstruction. Thus, only three 

variables are required: two from SDF and one as the PCBM 

volume fraction. 

 

The bounds for design variables are selected by analyzing 

the SDF of the two fabricated samples (Table 1) to estimate the 

three SDF parameters. Then a broad range for each of the three 

parameters is selected to ensure diverse SDF curves. Figure 14 

plots the SDF obtained by setting parameters to their lower and 

upper bounds, along with the SDF of Case 1 for comparison. 

Previous studies, focusing only on active layer composition, 

have revealed that the ideal PCBM volume fraction (VF) is 0.37 

approximately [25, 71]. To explore a wider range of values 

around the optimum, we allow VF to vary between 0.15 and 

0.75. With the objective of maximizing IPCE ratio, the design 

formulation along with the design variables and their 

corresponding bounds are summarized in Table 3. The 

optimization problem can be stated as: 

 

max 𝐼𝑃𝐶𝐸 = 𝑓(𝑝, 𝑑, 𝑣𝑓) 

w.r.t 𝑝, 𝑑, 𝑣𝑓 

s.t. 2 ≤ 𝑝 ≤ 10                             (9) 

1 ≤ 𝑑 ≤ 12 

0.15 ≤ 𝑣𝑓 ≤ 0.75 

Where 𝑝 = peak point, 𝑑 = decay, and 𝑣𝑓 = volume fraction. 

Since optimization is an iterative process, it requires 

several S-P simulations (constructing RVE for current value of 

design variables and evaluating the IPCE ratio). For an 

80×80×80 voxels RVE, reconstruction requires several minutes, 

implying that one iteration will need the same time. To overcome 

this computational burden and accelerate optimization, a 

metamodel is used. 

A metamodel is created by sampling design space 

efficiently using DOE, followed by an appropriate machine 

learning method to interpolate and form a continuous input-

output mapping in design space. One of the main hurdles in 

choosing sampling points is to ensure that the design space is 

thoroughly explored with the minimum number of samples. For 

the selection of these sampling points, we use OLHS. The main 

advantages of OLHS include minimization of Integrated Mean 

Square Error, maximization of minimum distances between 

samples, and maximizing entropy [72]. Since there are three 

design variables, 56 space filling samples are obtained from 

OLHS and corresponding S-P simulations were performed. The 

machine learning technique used to create the metamodel is 

Gaussian Process (GP), which is a special case of Kriging 

method. The main advantage of using Kriging method is that it 

provides the most accurate results for highly nonlinear models 

with small number of variables compared to Polynomial 

Regression, Radial basis Function or multivariate Adaptive 

Regression Splines [73]. 45 randomly-selected samples are used 

in creating the metamodel while 11 are used for cross-validation. 

 

7. DESIGN OPTIMIZATION AND SENSITIVITY 
ANALYSIS 
 

This section discusses the use of the two DOE models for 

understanding the effect of design variables on the design 

performance i.e., IPCE. In the this model all design variables - 

Figure 13: SDF curves are plotted using the upper bounds 

and lower bounds of design variables of SDF. SDF of Case 1 

is also plotted for reference. 
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peak point, decay and volume fraction (VF) are included. Global 

sensitivity analysis using this model reveals the effects of all the 

variables on performance.  

 

As mentioned in Section 6, 45 randomly-selected samples 

from OLHS design were used for creating the Kriging 

metamodel with all four design variables while 11 were used for 

cross-validation. The R-Squared value based on validation 

points is 0.9792, which indicates a fair fit. Because of the highly 

nonlinear response of the metamodel, Genetic Algorithm(GA) is 

applied to obtain the global maximum IPCE. To test accuracy, 

multiple starting designs were selected. For all starting points 

considered in this study, the optimization routine converges to 

the same optimal point (Peak Point = 2, Decay = 12, VF = 0.2764 

and IPCE = 8.41%). This result relates to a 36.75% increase in 

IPCE ratio compared to Case 1 which has an IPCE ratio of 

6.15%. A RVE is reconstructed using the optimal microstructure 

design variables and its IPCE ratio is computed. Compared to 

8.41% from the metamodel, the reconstructed RVE results in an 

IPCE ratio of 8.19%, reinforcing the fact that the metamodel 

used here is sufficiently accurate.  

 Next, we analyze the effect of each variable in the 

performance model using the variance-based sensitivity analysis 

(a.k.a. Sobol analysis [56]). This analysis consists of two indices 

for each variable i: First order sensitivity (𝑆𝑖), and Total order 

sensitivity (𝑆𝑇𝑖). 𝑆𝑖 essentially incorporates the effect of variable 

𝑥𝑖 alone on the response while 𝑆𝑖𝑗  incorporates the total effect of 

variable 𝑥𝑖, including the interaction effect with other variables 

[56]. The Sobol indices for all four design variables are listed in 

Table 3. We note that VF is the most influential design variable 

as it has the greatest first order and total effect. Similar 

conclusions can also be deduced by plotting the variation of 

IPCE ratio w.r.t. Decay and VF (see Figure 14). It further 

confirms the optimal value of VF (0.2764), which translates to a 

composition of P3HT:PCBM = 1.92:1 (using densities of P3HT 

and PCBM as 1.1 g/cm3 and 1.5 g/cm3, respectively [74]). 

 

 

8. CONCLUSION AND FUTURE WORK 
 

This article introduced an SDF based microstructure design 

framework to accelerate the development of quasi-random 

NMSs. Instead of following the conventional trial–and–error 

approach to materials design, the proposed framework enables 

physics-based, cost-effective design strategy by leveraging 

physics-aware SDF, an MCR technique capable of representing 

arbitrary geometries whose distribution is governed by an 

underlying spatial correlation. The focus of this paper is on 

implementing the proposed framework for the active layer 

design in OPVC. Active layer samples conforming to BHJ 

architecture are fabricated using spin-coating technique, 

followed by annealing and their microstructure is captured by 

novel XSTM/S technique. By using SDF to represent these 

microstructural images, we confirm that the nanostructure in the 

OPVC active layer can be parametrized using the SDF with only 

two variables – Peak Point & Decay, providing a low-

dimensional representation of an otherwise infinite-dimensional 

microstructural image. Accurate 3D RVEs are obtained by level-

cutting GRFs and the associated computational cost for different 

sample sizes is discussed. A novel S-P simulation model is 

developed using the IPCE ratio as the metric to evaluate OPVC 

performance computationally. In addition to accounting for the 

physical processes and material properties influencing energy 

conversion as already established in literature, our proposed 

IPCE evaluation takes the impact of active layer morphology 

explicitly into account and delineates its effects on each physical 

process. The distance to nearest donor/acceptor interface (d), 

shortest path to anode (𝑆𝐴) and cathode (𝑆𝐶) are the three 

morphological variables influencing IPCE. Procedure to 

evaluate these variables is discussed, followed by IPCE 

computation to establish S-P linkage. Our results also 

demonstrate the effectiveness of using SDF for design 

representation and the use of computationally guided methods to 

expedite microstructural design optimization involving 

expensive S-P simulations. A metamodel created using OLHS 

and Kriging method is used to accelerate the iterative 

optimization problem, which is formulated with the objective of 

maximizing IPCE using only three design variables – two from 

SDF plus the PCBM volume fraction. The optimal 

microstructure has an IPCE of 8.41%, a 36.75% increase 

compared to fabricated sample (Case 1). Global sensitivity 

analysis using Sobol indices shows that PCBM volume fraction 

is the most influential design variable followed by Decay (which 

controls the dispersion of PCBM). 

Future work will involve establishing P-S linkage, which 

necessitates Coarse-Grained Molecular Dynamics (CGMD) 

simulations for microscopic examination of morphology and 

construction of atomic-resolution structural realizations of 

Table 3: Sobol indices for all design variables 

Figure 14: The effect of VF and decay on performance with 

Peak Point fixed 
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interfaces and molecular alignment. A wider range of fabrication 

techniques and processing conditions will be explored and the 

corresponding forms of SDF will be identified. With the help of 

CGMD for studying processing-structure relations, the full 

processing-structure-property (PSP) linkages will be established, 

and a goal-oriented design methodology will enable optimizing 

OPVC performance with due consideration of the necessary 

processing conditions, thus ensuring manufacturing feasibility of 

the optimized nanostructures. Finally, the obtained optimal 

nanostructure will be fabricated using a suitable bottom-up 

nanofabrication technique and its performance will be validated 

experimentally. 
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