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ABSTRACT

Organic Photovoltaic Cells (OPVCs), having received
significant attention over the last decade, are yet to be established
as viable alternatives to conventional solar cells due to their low
power conversion efficiency (PCE). Complex interactions of
several phenomena coupled with the lack of understanding
regarding the influence of fabrication conditions and
nanostructure morphology have been major barriers to realizing
higher PCE. To this end, we propose a computational
microstructural design framework addressing the Processing—
Structure—Performance (PSP) linkages for designing the active
layer of P3HT:PCBM based OPVCs conforming to bulk
heterojunction architecture. The framework pivots around the
Spectral Density Function (SDF), a frequency space
microstructure characterization and reconstruction methodology,
for microstructure design representation. Nanostructure images
obtained by novel Scanning Tunneling Microscopy are used to
validate the applicability of SDF for representing active layer
morphology in OPVCs. SDF enables a low dimensional
microstructure representation that is crucial in formulating a
parametrized microstructure optimization scheme. A level-cut
Gaussian Random Field (governed by SDF) technique is used to
generate reconstructions that serve as Representative Volume
Elements (RVESs) for structure-performance simulations. A novel
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structure-performance simulation approach is developed using
physics-based performance metric, Incident Photon to Converted
Electron (IPCE) ratio, to account for the impact of
microstructural features on OPVC performance. Finally, an SDF
based computational IPCE optimization study using metamodels
created using design of computer experiments over three design
variables results in 36.75% increase in IPCE, underlining the
efficacy of proposed design framework.

1. INTRODUCTION

Design of nanostructured material systems (NMSs) [1] has
recently gained impetus due to its potential for developing high
performance metamaterials by cost-effective nanofabrication
techniques [2-6]. A convenient way of categorizing NMSs is
based on the presence of periodicity in the morphology. Periodic
designs involve deterministic arrangement of identical building
blocks (a.k.a. unit cells), with optimal performance realized
through evolutionary algorithms [3, 7, 8] and topology
optimization [4, 9]. However, fabrication of periodic NMSs
requires top-down nanomanufacturing techniques which are
often expensive and time consuming to ensure precise material
deposition at nano- and micro- scales [10]. In contrast to periodic
NMSs, a quasi-random nanostructure contains no periodic
arrangement of unit cells, but a seemingly random material
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distribution governed by an underlying spatial correlation. Such
structures have been observed in nature [11-14] as well as
artificially synthesized materials [15-18] using low cost and
bottom-up manufacturing processes [19] (which uses
atoms/molecules as the building blocks, self-assembled to create
complex nanostructures) such as nanowrinkling [2, 17].

OPVCs [20-23] are one such example of man-made quasi-
random nanostructures. Owing to a series of advantages such as
flexibility, light weight, low production cost, and lack of heavy
metals (environmental friendly), OPVCs have received
significant attention as one of the promising materials for next
generation solar cells [24, 25]. The short mean free path (2-10
nm) of the excitons [26] in organic molecules requires that the
locations of exciton creation should be in the vicinity of the
electron donor-acceptor interface for efficient charge separation.
It has been shown that the bulk heterojunction (BHJ) architecture
of the active layer is key to ensure high efficiency due to its
quasi-random nanostructures satisfying the aforementioned
short exciton mean free path limitation [26]. As illustrated in
Figure 1(a), charge separation at the donor-acceptor interfaces
and transport to the electrodes are critical to high performance of
the device. Among the various electron donor/acceptor
combinations investigated previously, phenyl-C61-Butyric-
Acid-Methyl Ester (PCBM) interspersed with poly(3-
hexylthiophene-2,5-diyl) (P3HT) has been the “best seller” [27].
To achieve optimal PCEs, several structure and process synthesis
parameters, such as electron donor-acceptor composition,
thickness of the active layer, annealing temperature, and
annealing duration etc., need to be optimized simultaneously.
Previous efforts only focus on one or two structure and
processing parameters at a time to search for optimal devices.
However, the optimal parameters are not independent from each
other, indicating that better strategies are needed. Currently, there
is no reported methodology to consider the influences of all
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fabrication conditions simultaneously on the microstructures or
the influences of the microstructures on the device performance.

To produce cost-effective devices with targeted properties,
formulating a holistic material design strategy [28-33] is
essential. Since the device’s microstructure influences its
behavior at different length scales, microstructure mediated
design [30, 34] or microstructure sensitive design [35] has
assumed prime importance. Deconvolving the Structure—
Performance (S-P) relationship has been the focus of many
articles, covering a wide range of material systems [36-41]. Due
to its high dimensionality, one needs to extract the salient
features from a microstructure image before its influences on
material  behavior can be studied. Microstructure
Characterization and Reconstruction (MCR) [42, 43] has
enabled a quantitative approach to analyze microstructural
images and subsequently construct models for investigating S-P
relationship. The essence of MCR is its ability to capture
significant microstructural details and subsequently generate
statistically equivalent reconstructions. The widely used MCR
approaches [42] for non-deterministic systems are based on
spatial correlation functions [43-45], descriptor-based methods
[40, 46] and machine learning techniques [47-49]. The
correlation function approach captures the microstructure from a
probabilistic perspective but relies on a pixel (voxel in 3D)
swapping strategy for reconstructions and is therefore
computationally prohibitive for microstructural design.
Descriptor-based approach uses a small set of uncorrelated
features which embody significant microstructural detail and has
been successfully used for design of nanocomposite polymers
[40, 46, 50-52], that contain clusters of filler material dispersed
in polymer matrix. However, this approach assumes filler
aggregates to be ellipsoidal and descriptors are regular
geometrical features (aspect ratio, equivalent radius etc.), thus,
falling short in representing arbitrary geometries encountered in
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Figure. 1: Variables of interest in Processing-Structure-Performance framework and design scope, (a) A schematic
representation of OPVC with Bulk Heterojunction (BHJ) architecture; (b) a four-step energy conversion mechanism.
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quasi-random NMSs. While machine learning methods, which
are capable of modelling highly nonlinear systems, have been
implemented as MCR tools, the lack of physical interpretation of
parameters learned from these methods has limited their use in
material design.

SDF [2, 5, 6, 53] has emerged as a new method for low-
dimensional, physics aware representation of quasi-random
NMSs. For isotropic materials, SDF is a one-dimensional
function of spatial frequency, calculated as the radial average of
the squared magnitude of Fourier spectrum of a quasi-random
structure [53] and represents the structural correlation in Fourier
space. Analogous to the way correlation functions describe
structural correlations in real space, SDF provides this
description in reciprocal space. Our previous efforts in design of
photonic NMSs with SDF [2, 5, 6] have highlighted its
advantages in representing quasi-random microstructures with a
small number of required design variables. Yu et.al. [6] presented
the first comprehensive MCR study on application of SDF for
quasi-random NMSs used as light trapping structure in thin-film
solar cells. They showed that low-dimensional microstructure
representation enabled by SDF, its direct association with
material functionalities and relationship with processing
conditions, was instrumental in design optimization and led to a
4.7-fold enhancement of single wavelength light absorption. In
another recent article, Lee et.al. [2] integrated a novel wafer scale
nanofabrication procedure, wrinkle lithography, with SDF based
microstructure representation to bridge the processing-structure
and structure-performance relationship for concurrent design of
photonic nanostructures. The study showed that parameters in
SDFs have physical implications closely associated with the
material processing conditions, improving the feasibility of
fabricating the optimal nanostructures obtained from
computational design methods.

In this paper, we investigate the applicability of SDF for
design of the active layer in OPVCs and propose a design
framework built on SDF based Structure—Performance (S-P)
evaluations (Sec. 2). Active layer samples comprising
P3HT:PCBM and conforming to BHJ architecture are fabricated
and imaged using novel cross-sectional Scanning Tunneling
Microscopy and Spectroscopy (XTM/S) (Sec. 3). Further, this
article focuses on establishing S-P relationship by creating
protocols for SDF based microstructure representation (Sec. 4)
and developing a novel, physics-based performance evaluation
strategy (Sec. 5). To demonstrate the wusefulness of
microstructure representation using SDF and the S-P relationship
investigated here, we formulate a performance optimization
problem to determine the optimal microstructure (Sec. 6). State-
of-the-art computational design methods are employed to
improve the efficiency of simulation-based design optimization.
Specifically, Optimal Latin Hypercube Sampling [54] is used to
create a metamodel based on Kriging metamodeling [55],
overcoming the challenges of computational cost and time.
Finally, Sobol sensitivity analysis [56] is used to elucidate the
effect of each design variable (sec. 7).

2. SPECTRAL DENSITY FUNCTION BASED
MICROSTRUCTURE DESIGN FRAMEWORK

Low-dimensional, physics-aware nanostructure
representation is critical for computational design of quasi-
random NMSs. In this section, we first demonstrate SDF to be a
convenient frequency space representation which embodies
significant real space features and assumes simple parametric
form for isotropic materials. Then, an SDF based microstructure
design framework is presented in the context of active layer
design for OPVCs.

2.1 Introduction to Spectral Density Function

SDF is one of the tools developed to characterize the
structural information of a given material. The backbone of SDF
is Fourier Transform (FT). FT decomposes a waveform (e.g. 1D
signal or a 3D image) into a sum of sinusoidal waves of different
frequencies [57]. When the FT operator is applied to a
microstructure image, real space structural features are
represented in the spatial frequency space and enable
identification of spatial correlations. SDF has demonstrated its
ability to characterize intricate heterogeneous microstructures as
well as generate statistically equivalent reconstructions [42]. For
isotropic materials, the shape of radially averaged SDF curve
generally takes a simple parametric form which significantly
reduces the design complexity of an otherwise high dimensional
material structure.

To characterize a microstructure using SDF, a two-phase
image, X, is required. The image must contain high resolution
details at the microstructural level. The Fourier Transform F(k)
of the image is calculated as:

F(k) = F{X} = A,e'% (1)

Here, F{.} represents the FT operator, & is a vector which
represents frequency, i = V(-1), and Ay and @, represent the
magnitude and phase angle of the FT, respectively. For isotropic
materials, the vector k£ can be reduced to a scalar by radially
averaging in the space domain. Thus, the SDF of the
microstructure, p(k), is then calculated by radial averaging of the
squared magnitude of FT.

ZFMI2a8 [P Ag2ae
p (k) == 21 == 21

This gives a 1-D p(k) function.
The resulting SDF plots can take various forms. A few examples
of 1-D SDF plots and their respective images are shown in Figure
2. The widely used 2-Point Correlation Function (CRF) is
equivalent to inverse FT of SDF [58], but compared with 2-point
CRF, SDF is more convenient in differentiating spatial
correlation features as evidenced in Figure 2. Figure 2a and
Figure 2b represent two nanostructures with different structural
properties. Figure 2b is an image of an ordered structure and has
one distinctly strong correlation at one specific band of spatial
frequency (Figure 2d). This feature is also visible in the insets of
Figure 2b by a distinct circle in the Fourier spectrum. In contrast,
Figure 2a is less ordered and hence its SDF is more dispersed
over the entire frequency spectrum (Figure 2c). These
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Figure 2: Two sample microstructures (a & b) along with
their Fourier spectrum in the insets; (¢ &d) are the 1-D SDFs
of each image. Red dashed line represents the approximated
SDF.

differences in SDF based on structural changes corroborate the
efficacy of SDF in capturing the structural detail. Furthermore,

Figure 2c it is as a truncated Gaussian function, while for Figure
2d it is a step function. Note that all the SDFs presented in this
study are normalized for ease of comparison and consistency.

2.2 SDF based Microstructure Design Framework for OPVC
Active layer

Under the new paradigm of microstructure-sensitive
material design [35, 59], materials are viewed as a complex
structural system that can be optimized for achieving superior
properties (properties under consideration are subject to targeted
application). Using OPVC active layer optimization as an
example, we present here a holistic SDF based microstructure
design framework (Figure 3) that can be employed for design of
quasi-random nano- or microstructural systems based on
Structure-Performance (S-P) relations.

The key idea of the proposed framework is to leverage SDF
as the representation of OPVC microstructures, enabling direct
and inverse S-P mappings. As shown in Figure 3, the framework
is initiated by fabricating samples of NMSs of interest (OPVC
active layer for this article) using a nanofabrication technique
with processing parameters choices based on empirical findings
or literature. State-of-the-art imaging techniques are used to
visualize the nanostructure in the available samples and the type
(form) of SDF is identified. The main advantage of using SDF
for quasi-random NMSs is that it can be easily parametrized
(Sec. 2.1) and provides a more convenient representation for
interpretation and design relative to other design methods [6].

the SDFs observed in Figures 2c¢ and 2d both assume a simple
shape that can be easily parametrized. The parametrized SDFs
are represented as red dashed lines in Figure 2¢ and 2d. For

Since SDF corresponds to the magnitude of FT of the
microstructure, reconstruction can be cast as a phase recovery
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Figure 3: A framework for designing active layer nanostructure in bulk heterojunction OPVC via SDF.
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technique [60]. In this article, reconstruction is accomplished by
level-cutting a Gaussian Random Field (GRF) governed by the
required SDF. Thus, starting from a 2D XSTM/S image, SDF
provides a reduced order microstructure representation (only
three parameters required in this study) for creating statistically
equivalent 3D microstructures which serve as Representative
Volume Element (RVE) for performance evaluation.

To evaluate the performance of a RVE, a model is sought

that accounts for structural features in addition to device physics
and material properties. For OPVCs, the key performance
parameter of interest is the IPCE ratio. To evaluate IPCE
computationally, a novel strategy based on device physics and
nanostructure is developed here. This strategy explicitly states
the influence of nanostructure on known physical phenomena
and establishes the S-P relationship that forms the basis for
performance optimization. However, before the optimization,
creating a metamodel to replace the computationally expensive
and time-consuming S-P model is highly desirable (see Figure
3). Metamodel, created by careful Design of Experiments
(DOE), is essentially a “black-box” that approximates the S-P
simulations. Given the set of design variables and their bounds,
DOE dictates the S-P simulations that must be performed to
determine the corresponding value of objective function (a.k.a.
response). A suitable machine learning model is chosen to
interpolate between known values of response, forming a
metamodel which can be queried at each iteration of the
optimization. In this article, we use Optimal Latin Hypercube
Sampling (OLHS) to create the metamodel based on the Kriging
method, accelerating the search for the optimal design.
Design optimization is performed with the pre-determined
design variables obtained by parametrizing SDF (Sec. 4) along
with the material composition. As mentioned previously, SDF
provides a low-dimensional representation in reciprocal space of
an otherwise high-dimensional nanostructure image, thereby
facilitating a convenient design formulation. In this work, IPCE
is chosen as the objective function with an aim of finding its
maximum value and the corresponding SDF parameters (i.e.
nanostructure). However, it should be noted that the optimum
structure is limited to the same type of material system as the
tested samples because the form of the SDF function used for
optimization is determined based on the fabricated samples. In
the following sections, we elaborate the procedure of
implementing the proposed framework.

3. SAMPLE FABRICATION AND IMAGING

Fullerene-based acceptors, such as PCBM and PC70BM,
have dominated the OPVC field for decades and achieved a
decent PCE of 6.82% [61]. Recent developments with non-
fullerene-based acceptors further push the PCE of OPVCs to
~13% [62, 63]. Nevertheless, the BHJ quasi-random
nanostructure in OPVC is still the dominating design for high
PCE devices. Here, we focus on the most studied P3HT:PCBM
acceptor/donor combination. The methodology and results
presented here are can be extended to all kinds of OPVCs with
BHI architecture.

There are five major parameters for fabricating BHJ active
layers in OPVC devices: (1) P3BHT/PCBM composition; (2) the
solvent; (3) annealing temperature; (4) annealing duration; and
(5) thickness of the active layer. In this work, the parameter
under focus is composition. Annealing temperatures and
durations are chosen differently for the two cases (Table 1).
Other processing parameters are kept the same.

P3HT (Solaris Chem Inc.) and PCBM (purity >99.5%,
Solaris Chem Inc.) are first prepared into separate 1.78 weight %
precursor solutions with chlorobenzene (purity >99.5%, Sigma-
Aldrich). Final solutions with desired P3HT:PCBM weight ratios
of 1:1 and 2:1, are made by mixing the precursor solutions with
corresponding amounts. The solutions were then spin coated
onto the Si(100) substrate at ~1000 rpm for 1 minute. The
P3HT:PCBM/Si(100) is annealed at 100 °C for 20 minutes for
the 1:1 sample, and at 150 °C for 5 min for the 2:1 sample,
respectively. Table 1 summarizes these conditions for the two
cases.

Scanning Tunneling Microscopy and Spectroscopy

(STM/S) is used to distinguish different organic molecules. More
precisely, the OPVC active layers are imaged with cross-
sectional STM/S (XSTM/S) [64], which has also been
successfully applied to OPVCs [65] and organometallic
perovskites [66]. In the XSTM/S imaging, the sample is cut into
desired shape and fractured in an ultra-high vacuum (UHV)
environment to ensure a contamination-free cross-section
surface is exposed for the STM measurement. Figure 4 shows a
100 nm x 100 nm dI/dV mapping of P3HT:PCBM (Case 2)
sample. Based on the dI/dV point spectra, the green regions
denote the P3HT-rich domains while the blue regions represent
the PCBM-rich domains. Note that, here the brightness and
contrast are arbitrarily chosen.
To consistently assign regions as P3HT-rich and PCBM-rich, the
following procedure is employed. The dI/dV signal from Figure
4a is first plotted into histogram, as illustrated in Figure 4b. This
histogram cannot be fit by a single Gaussian function rather two
Gaussian peaks suitably represent the distribution, indicating
that the data contains two main values, reflecting the two
molecules, together with Gaussian noises. By determining the
peak positions, one could further determine the mid-point
between the two peak values. Then, 1 and 0 are assigned to each
pixel respectively based on whether the dI/dV signal in each
pixel is larger or smaller than the mid-point value between the
two Gaussian peaks. Using this procedure, we can systematically
assign the domains for further analyses. The resulting binarized
digital images of both cases are presented later in Figure 5
(Section 4.1).

Table 1: Summary of processing conditions of the two cases

Weight Ratio (P3HT:PCBM) 1:1 2:1

Annealing temperature & time 100° C for 20 mins ~ 150° C for 5 mins
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Figure 4: (a) dI/dV mapping of P3HT:PCBM active layer. 100 nm x 100 nm scan size. Brightness and contrast are set
arbitrarily. (b) Histogram fitted with two Gaussian functions. Dashed lines indicate the positions of the two Gaussian peaks.
Solid line indicates the mid-point between the two Gaussian peak values. (c¢) Digital values (1 and 0) are assigned based on the

dI/dV values in each pixel compared to the solid line in (b).

4. ACTIVE LAYER CHARACTERIZATION AND
RECONSTRUCTION USING SPECTRAL DENSITY
FUNCTION

This section examines the form of SDF for the two-
dimensional STM images of the fabricated active layer samples.
Further, an analytical reconstruction method based on level-
cutting a Gaussian Random Field is implemented for
constructing three-dimensional RVEs, and the associated
computational time is discussed.

STM image of nano Structures

Power Spectral Density Function

8 0 12 14
10"

1
)

Spatial Frequency (m™ Spatial Frequency (m™!)

Figure S: Comparison of SDF of the two cases under study. (a)
and (b) are binarized STM images of sizes 120 nm x 120 nm
(Case 1) and 100 nm x 100 nm (Case 2) respectively. Both
images are 450 x 450 pixels in size; (c¢) and (d) are the SDFs
(solid line) of cases 1 and 2, respectively. In (c¢) and (d) the
dotted line represents the approximations of the SDFs for each
case.

4.1 Characterization

We attempt to characterize the images of the two Cases,
introduced in Section 3, acquired by the STM imaging technique
and subsequent post-processing. Figure 5a and 5b show the
binarized STM images for Case 1 and Case 2, respectively. The
solid lines in Figure 5c¢ and 5d respectively correspond to the
SDFs of Case 1 and Case 2. Although the two SDFs have a
unique peak point and the decay that follows, the underlying
form remains the same. This observation suggests that the
triangular type SDF is sufficient for the considered materials and
the corresponding fabrication conditions. This form of SDF can
be easily approximated by a custom function which is governed
by two parameters: peak point and decay factor (which is a
multiplication factor in the exponential decay following the
peak). For design optimization and exploration purposes, we can
vary these variables to obtain different SDFs for reconstruction
of the new designs of nanostructures. The dotted lines in Figures
5c and 5d represent the approximated function that concurs very
well with the original SDFs.

4.2 Identifying the size of RVE

To attain accuracy and avoid unwanted computational cost,
it is essential that we determine the appropriate RVE size, for the
material system of interest. We set 2-Point CRF as our property
of interest to find the RVE size. We start with an STM image of
160 nm x 160 nm and observe its 2 Point CRF. Then we reduce
our window size so that we only observe 90 % (~144 nm) of the
original image, and then calculate the 2-Point CRF. We continue
narrowing the window of observation (decreasing 10 % at a time)
until the 2-Point CRF deviates significantly from the original
image, as shown in Figure 6. The Mean Absolute Percentage
Error (MAPE) of the curves exceeds 10 % if the size of the
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window goes below 60 % (which is equal to 96 nm). Hence, 100
nm is selected as the size of our RVE.

4.3 Microstructure Reconstruction based on SDF

Accurate structure-performance evaluations require digital
3D structures, so it is essential to generate 3D structures from the
SDF in the most cost-effective way possible. The efficacy of
using SDF for characterization has already been established in
section 4.1. In this section, the process of using SDF to create
statistically equivalent 3D structures is elaborated.

Realizing the microstructure as a multi-variate sample
taken from an underlying Gaussian Random Field (GRF) [42], it
can be concluded that the reconstruction of statistically
equivalent microstructures can be achieved by finding that GRF.
After finding the GRF, microstructures are reconstructed by
taking realizations of these GRFs and then level cutting them
based on a threshold which is the filler volume fraction of the
original image.

For realizing the GRF, the Cahn’s scheme [42] is utilized.
It is an analytical approach for generating realizations from a
GRF that has same SDF as the original microstructure. The
governing equation is:

1 P

Y(r) = ()2 Tl cosCkik; T+ ;) 3)

where k; and @; are uniformly distributed on unit circle,
and [0,2x], respectively. k; is a random variable whose
probability density function, P(k), is determined by the SDF:
P(k) = p(k)k? for a 3D GRF, and p(k)k for a 2D GRF. After
the generation of GREF, the final structure is extracted by carrying
out a level cut based on the desired threshold. The number of
samples N plays a critical role in the reconstruction. As we
increase N, the statistical accuracy of the final image increases,
but so does the computational cost. The result of the accuracy of
reconstruction is shown in Figure 7 along with the effects on

reconstruction times are in comparison to the first one.

computation time. The reconstruction using N = 10*and N =
5 x 10* do not match either the height or peak point location on
x-axis. The reconstruction using N = 5x10° captures the
feature of the curve more accurately. A sweet spot of N =
5x10°is identified to be the appropriate and affordable
sampling size with a good degree of accuracy.

To check the robustness of the methodology, two
realizations are produced of the STM image of Case 1. SDF
along with volume fraction is taken as input. Figure 8
quantitatively compares the two reconstructed SDFs with the
SDF of the original image. For an enhanced pictorial
representation of nanostructure, we reproduce the reconstructed
image from one of the two realizations in Figure 9. The
reconstructed image qualitatively replicates the main
characteristics of the original image.

Extending our tests to 3D, a cube of size 80 x 80 x 80 pixels
was created using an arbitrary SDF and volume fraction of 0.3.
As seen in Figure 10a, the SDF of the reconstructed image
matches well with that of the original. The 3D reconstructed
structure is shown in Figure 10b. Resolution of the structure can
be improved by increasing the size of reconstruction, the tradeoff
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Figure 8: SDF of original image along with two reconstructed
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Figure 9: a) STM image b) Reconstructed Image (both images
of size 450 x 450 pixels)

being an increase in the computational time. So, this size has
been set as standard for optimization.

5. STRUCTURE-PERFORMANCE MODELING USING
A NOVEL ANALYTICAL EQUATION

This section provides the details of the novel approach for
finding the IPCE of an OPVC structure considering the
microstructural features. The first half explains the physics-
based theory behind the novel equation, while the second part
lists down the assumptions along with presenting three test cases
for the pre-validation of our approach.

5.1 Theory of light to electron conversion efficiency of an
OPVC

Here, a microscopic equation is developed for the first time
to predict the device performance for a given 3D reconstructed
microstructure. Under the finite element scheme, the equation
for estimating performance from the microstructure can start
with counting the number of collected electrons/holes per unit
time through a summation of contributions from each volume
element (voxel) over the whole active layer as:

@ ]

SDF

5 10 15 20 25 30 £ w0

Spatial Frequency

Figure 10: (a) SDF of original image in comparison with the
SDF of reconstructed 3-D image/structure. (Note that both y-
axes are normalized for each graph); (b) 3-D Realization of
the reconstruction.

n@) _ 1A —(t-a@)
" _fv( h% e dxdy...

d _Sa _Sc
Pex(/l) dz ) ( [E) (Psep) (6 th e_g Pcol) (4)

The four parentheses in Eq. (4) represent the four steps
illustrated in Fig. 1: (i) light absorption (exciton creation); (ii)
Exciton diffusion; (iii) charge separation; and (iv) charge
diffusion & collection. Here t is the thickness of the active layer;
a(A) is the absorption coefficient of active layer as function of
the light wavelength, A; P refers to probability for exciton
creation (ex), for charge separation (sep), and for charge
collection (col); d is the distance to the nearest interface from the
location of the exciton creation; & the diffusion lengths of exciton
(ex); of hole (h); and of electron (e); S are the lengths of the path
to anode (A); and to cathode (C). In this equation, the
recombination behaviors of the charges are simply assumed to
follow exponential decay over the distance it moves.

From previous study the value of & (diffusion length for
electron) is found to be ~340 nm [78]; the value of &, (diffusion
length for hole) is found to be ~90 nm [67]; the value of &,
(diffusion length for exciton) is found to be 5.4 + 0.7 nm [68]
and a(A) (absorption coefficient) is measured and could be found
in [69].

Among the variables in Eq. (4), the probability of exciton
creation, P,,(A), and the absorption coefficient, a(X), could be
related to each other through the following relationship:

Pp=1— e o@®4z )

This relationship is deduced by assuming:
no. of photon absorbed
P (A) = ( )

no. of Photon incident

<n0. of exciton created )

(6)

no. of photon absorbed

where the second term is closely related to the internal quantum
efficiency, which is very close to 100 % in many cases [70] and
assumed to be 1 here. On the other hand, the first term is closely
related to the photon absorption coefficient, I(z) = I, e~%Wz,

Thus Eq. (4) could be expressed as:

n@ _ I -2
= fv( h% e dxdy...

d _Sa _Sc
(1 — e a4z )dZ ) ( e_a> (Psep) (6 {Z e_fg Pcol) (7)

We compute the IPCE, which is the number of electrons
.. A 1
collected per photon incident, as: IPCE(A) = %W where
—ZA
hy
A represents the area of the sample illuminated by light. In this
simulation, it is assumed that the whole sample surface is

illuminated by light, indicating the sample surface area is A. The
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final working equation for evaluating IPCE from nanostructure
is expressed as the summation over every voxel:

(e 9aW (1 — gma@az)45)
IPCE()) = _d -4 %
@) Z(e gex) (Prep) (e f:e 2 pw,) (8)

where, z, d, Sp, and S¢ of each voxel are determined from
the nanostructure. Eq. 8 is used to evaluate the performance of
the OPVCs with the known quasi-random nanostructures in this
study.

5.2 3-D Structure Performance Simulation

To evaluate the IPCE for a 3D binary structure, some
assumptions are made: (i) no void space exists in the structure —
the whole space is filled by either one of the two materials: P3HT
and PCBM; (ii) only P3HT is responsible for creating excitons
upon light absorption. This condition is based on the fact that in
the solar spectrum wavelength range, P3HT has 2-5 times larger
absorption coefficient compared to PCBM. For simplification,
both Py, and P are set to 1 which being mere multiplication
factors, will not affect the optimization. A is chosen to be 510 nm,
at which P3HT has the highest absorption coefficient (a(1) =
4.3 x 10°m™1) [69]. Consideration of the whole wavelength
range of solar spectrum can be easily implemented in the future.

Under these assumptions, there are four major parameters
viz., z, d, S4 and S at each voxel, required for optimizing the
IPCE. In our 3D binary model, P3HT is assigned with Os or black
regions, while PCBM is assigned as 1s or white regions. Figure
11 illustrates these distances with an exciton created at the
shaded cell and corresponding distances. First, excitons are
created (step (1) in Section 5.1) at the shaded cell with the light
intensity determined by the depth of this cell: t-z. After creation,
the exciton diffuses to the nearest interface (step (2) in Section
5.1) with a distance d. When the exciton dissociates into electron
and hole at the interface, the hole diffuses towards the anode
through the shortest path in the black medium (step (4) in Section

Figure 11: A sample of structure with an excited particle at
the center (shaded cell). Yellow arrow represents light’s path
towards the prospective region; Blue represents exciton’s
path; Orange represents electron’s path; Red represents
hole’s path

VF=0.2764 “ ’\ VF=0.2764 o |‘\ VF=0. 65

JN
- \-i'”.""—w
-.}". R |

(b1) (b2) (b3)

Fig. 12: Testing our performance model. (al-a3) are input
parameters: SDF and volume fraction; (b1-b3) are
random cross-sectional slices of the reconstructed
structure.

5.1), S4, while the electron diffuses towards cathode through the
shortest path in the white medium (step (4) in the section 5.1),
Se.

To explain the contribution of each of the three factors,
Peak Point, Decay and VF, we randomly created three test
structures for a basic preliminary verification of our model. The
input parameters along with the cross-sectional slices of the
resulting structure are shown in Figure 12. The performance
results are broken down in Table 2. As seen in the table, test 1
and test 2 both have same VF, but different IPCE. This is because
of the difference in the dispersion of the material which is caused
by the different SDF inputted. The SDF in the test 1 has faster
decay rate, thus, test 1 has larger clusters in real space; while the
SDF in the test 2 has slower decay rate, infers to smaller clusters
in real space. This results in larger average d and S¢ in test 1 than
that in test 2. With the same VF, the exciton creation is in the
same order in the two test cases, thus the higher IPCE found in
test 2 is attributed to the shorter average diffusion lengths, as
shown in Eq. 8. On the other hand, comparing test 2 and 3, which
have the same SDF but different VF, the difference in VF
dominates the IPCE value. With similar microstructure texture
due to the same SDF input, the test 2 has higher amount of P3HT
molecules (lower VF), hence higher IPCE. It is worth noting that
even test 2 and 3 have same SDF input, their average diffusion

Table 2: Average values of d, S, & S¢ are tabulated for the
three cases presented in Figure 1w. Exciton generated is the
number of elements in the structure that will contribute
towards performance.

Average d 4.3 nm 1.77 nm 2.76 nm

Excitons generated 370483 370483 179200

Average S, 61.6 nm 60.4 nm 80.5 nm

Average S¢ 96.0 nm 82.5nm 65.2 nm

IPCE 4,97 % 841% 3.04 %
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lengths are affected by the VF. Thus, simultaneously optimizing
the IPCE with consideration of both SDF and VF is critical and
will be discussed in later sections.

6. DESIGN FORMULATION AND METAMODELING

With the S-P relationship established through IPCE (Eq. 8),
design formulation can be cast as an optimization problem to find
the active layer nanostructure that delivers highest IPCE. Due to
the short exciton diffusion length (~10 nm), the state-of-the-art
OPVC nanostructure follows the BHIJ architecture with the
electron donor and acceptor domains in ~10 nm scale in the
active layer. Ideally, to have all four major charge carrier
processes optimized, the nanostructures in BHJ should possess
the following characteristics: (a) thickness identical to the light
absorption depth (typically ~hundreds of nm to a micron), to best
utilize the light flux; (b) the length scale of the nanostructures is
of the order of the exciton mean free path (~10 nm); (c)
maximizing effective interfacial charge separation volumes for
efficient charge separation; and (d) minimizing the isolated
domains where there is no path to electrodes for charge
collection.

We leverage the low-dimensional structure representation
enabled by SDF to formulate a design paradigm using a small set
of variables. The active layer thickness is determined by the size
of RVE, 100 nm (Sec. 4.2), while the SDF parameters—Peak
Point and Decay — account for structural characteristics that
control the charge separation and transport phenomenon
discussed above. Further, the assumption that exciton generation
is restricted to P3HT molecules necessitates the inclusion of
donor/acceptor composition as an additional design variable.
Here, PCBM volume fraction is chosen as the composition
design variable. Note that composition also plays a critical role
in level cutting the GRF for the reconstruction. Thus, only three
variables are required: two from SDF and one as the PCBM
volume fraction.

07 T T T T T T T T .l

— SDF usingupperbound values
05k ~—— SDFusinglowerboundvalues
Approximated SDF of Case 1

05 1

03

SDF

02t 4

01

] 5 10 15 20 25 30 35 40 45
Arbitrary Units
Figure 13: SDF curves are plotted using the upper bounds

and lower bounds of design variables of SDF. SDF of Case 1
is also plotted for reference.
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The bounds for design variables are selected by analyzing
the SDF of the two fabricated samples (Table 1) to estimate the
three SDF parameters. Then a broad range for each of the three
parameters is selected to ensure diverse SDF curves. Figure 14
plots the SDF obtained by setting parameters to their lower and
upper bounds, along with the SDF of Case 1 for comparison.
Previous studies, focusing only on active layer composition,
have revealed that the ideal PCBM volume fraction (VF) is 0.37
approximately [25, 71]. To explore a wider range of values
around the optimum, we allow VF to vary between 0.15 and
0.75. With the objective of maximizing IPCE ratio, the design
formulation along with the design variables and their
corresponding bounds are summarized in Table 3. The
optimization problem can be stated as:

max IPCE = f(p,d,vf)

w.r.t p, d,vf

s.t. 2<p<10 )
1<d<12

0.15 <vf <0.75
Where p = peak point, d = decay, and vf = volume fraction.

Since optimization is an iterative process, it requires
several S-P simulations (constructing RVE for current value of
design variables and evaluating the IPCE ratio). For an
80x80x80 voxels RVE, reconstruction requires several minutes,
implying that one iteration will need the same time. To overcome
this computational burden and accelerate optimization, a
metamodel is used.

A metamodel is created by sampling design space
efficiently using DOE, followed by an appropriate machine
learning method to interpolate and form a continuous input-
output mapping in design space. One of the main hurdles in
choosing sampling points is to ensure that the design space is
thoroughly explored with the minimum number of samples. For
the selection of these sampling points, we use OLHS. The main
advantages of OLHS include minimization of Integrated Mean
Square Error, maximization of minimum distances between
samples, and maximizing entropy [72]. Since there are three
design variables, 56 space filling samples are obtained from
OLHS and corresponding S-P simulations were performed. The
machine learning technique used to create the metamodel is
Gaussian Process (GP), which is a special case of Kriging
method. The main advantage of using Kriging method is that it
provides the most accurate results for highly nonlinear models
with small number of variables compared to Polynomial
Regression, Radial basis Function or multivariate Adaptive
Regression Splines [73]. 45 randomly-selected samples are used
in creating the metamodel while 11 are used for cross-validation.

7. DESIGN OPTIMIZATION AND SENSITIVITY
ANALYSIS

This section discusses the use of the two DOE models for
understanding the effect of design variables on the design
performance i.e., IPCE. In the this model all design variables -
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Figure 14: The effect of VF and decay on performance with
Peak Point fixed

peak point, decay and volume fraction (VF) are included. Global
sensitivity analysis using this model reveals the effects of all the
variables on performance.

As mentioned in Section 6, 45 randomly-selected samples
from OLHS design were used for creating the Kriging
metamodel with all four design variables while 11 were used for
cross-validation. The R-Squared value based on validation
points is 0.9792, which indicates a fair fit. Because of the highly
nonlinear response of the metamodel, Genetic Algorithm(GA) is
applied to obtain the global maximum IPCE. To test accuracy,
multiple starting designs were selected. For all starting points
considered in this study, the optimization routine converges to
the same optimal point (Peak Point =2, Decay = 12, VF =0.2764
and IPCE = 8.41%). This result relates to a 36.75% increase in
IPCE ratio compared to Case 1 which has an IPCE ratio of
6.15%. A RVE is reconstructed using the optimal microstructure
design variables and its IPCE ratio is computed. Compared to
8.41% from the metamodel, the reconstructed RVE results in an
IPCE ratio of 8.19%, reinforcing the fact that the metamodel
used here is sufficiently accurate.

Next, we analyze the effect of each variable in the
performance model using the variance-based sensitivity analysis
(a.k.a. Sobol analysis [56]). This analysis consists of two indices
for each variable i: First order sensitivity (S;), and Total order
sensitivity (Sr;). S; essentially incorporates the effect of variable
x; alone on the response while S;; incorporates the total effect of

variable x;, including the interaction effect with other variables

Table 3: Sobol indices for all design variables

Peak Point| Decay VF
S; (MAIN effect) 0.0033 0.1426 0.8253
Sr; (TOTAL effect) 0.0116 0.1710 0.8479

[56]. The Sobol indices for all four design variables are listed in
Table 3. We note that VF is the most influential design variable
as it has the greatest first order and total effect. Similar
conclusions can also be deduced by plotting the variation of
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IPCE ratio w.r.t. Decay and VF (see Figure 14). It further
confirms the optimal value of VF (0.2764), which translates to a
composition of P3HT:PCBM = 1.92:1 (using densities of P3HT
and PCBM as 1.1 g/cm® and 1.5 g/cm?, respectively [74]).

8. CONCLUSION AND FUTURE WORK

This article introduced an SDF based microstructure design
framework to accelerate the development of quasi-random
NMSs. Instead of following the conventional trial-and—error
approach to materials design, the proposed framework enables
physics-based, cost-effective design strategy by leveraging
physics-aware SDF, an MCR technique capable of representing
arbitrary geometries whose distribution is governed by an
underlying spatial correlation. The focus of this paper is on
implementing the proposed framework for the active layer
design in OPVC. Active layer samples conforming to BHJ
architecture are fabricated using spin-coating technique,
followed by annealing and their microstructure is captured by
novel XSTM/S technique. By using SDF to represent these
microstructural images, we confirm that the nanostructure in the
OPVC active layer can be parametrized using the SDF with only
two variables — Peak Point & Decay, providing a low-
dimensional representation of an otherwise infinite-dimensional
microstructural image. Accurate 3D RVEs are obtained by level-
cutting GRFs and the associated computational cost for different
sample sizes is discussed. A novel S-P simulation model is
developed using the IPCE ratio as the metric to evaluate OPVC
performance computationally. In addition to accounting for the
physical processes and material properties influencing energy
conversion as already established in literature, our proposed
IPCE evaluation takes the impact of active layer morphology
explicitly into account and delineates its effects on each physical
process. The distance to nearest donor/acceptor interface (d),
shortest path to anode (S;) and cathode (S;) are the three
morphological variables influencing IPCE. Procedure to
evaluate these variables is discussed, followed by IPCE
computation to establish S-P linkage. Our results also
demonstrate the effectiveness of using SDF for design
representation and the use of computationally guided methods to
expedite microstructural design optimization involving
expensive S-P simulations. A metamodel created using OLHS
and Kriging method is used to accelerate the iterative
optimization problem, which is formulated with the objective of
maximizing IPCE using only three design variables — two from
SDF plus the PCBM volume fraction. The optimal
microstructure has an IPCE of 8.41%, a 36.75% increase
compared to fabricated sample (Case 1). Global sensitivity
analysis using Sobol indices shows that PCBM volume fraction
is the most influential design variable followed by Decay (which
controls the dispersion of PCBM).

Future work will involve establishing P-S linkage, which
necessitates Coarse-Grained Molecular Dynamics (CGMD)
simulations for microscopic examination of morphology and
construction of atomic-resolution structural realizations of
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interfaces and molecular alignment. A wider range of fabrication
techniques and processing conditions will be explored and the
corresponding forms of SDF will be identified. With the help of
CGMD for studying processing-structure relations, the full
processing-structure-property (PSP) linkages will be established,
and a goal-oriented design methodology will enable optimizing
OPVC performance with due consideration of the necessary
processing conditions, thus ensuring manufacturing feasibility of
the optimized nanostructures. Finally, the obtained optimal
nanostructure will be fabricated using a suitable bottom-up
nanofabrication technique and its performance will be validated
experimentally.
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