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Abstract—Spectrum trading benefits both secondary users
(SUs) and primary users (PUs), while it poses great challenges to
maximize PUs’ revenue, since SUs’ demands are uncertain and
individual SU’s traffic portfolio contains private information. In
this paper, we propose a data-driven spectrum trading scheme
which maximizes PUs’ revenue and preserves SUs’ demand
differential privacy. Briefly, we introduce a novel network ar-
chitecture consisting of the primary service provider (PSP),
the secondary service provider (SSP) and the secondary traffic
estimator and database (STED). Under the proposed architecture,
PSP aggregates available spectrum from PUs, and sells the
spectrum to SSP at fixed wholesale price, directly to SUs at
spot price, or both. The PSP has to accurately estimate SUs’
demands. To estimate SUs’ demand, the STED exploits data-
driven approach to choose sampled SUs to construct the reference
distribution of SUs’ demands, and utilizes reference distribution
to estimate the demand distribution of all SUs. Moreover, the
STED adds noises to preserve the demand differential privacy
of sampled SUs before it answers the demand estimation queries
from the PSP. With the estimated SUs’ demand, we formulate the
revenue maximization problem into a risk-averse optimization,
develop feasible solutions, and verify its effectiveness through
both theoretical proof and simulations.

Index Terms—Spectrum Trading; Differential Privacy; Data-
Driven Modeling; Risk-Averse Stochastic Optimization

I. INTRODUCTION

The last decades have witnessed the proliferation of wireless
smart devices, such as smartphones, touchable tablets, intelli-
gent voice assistants (e.g., Amazon Echo or Google Home),
etc., and the explosion of various wireless services, which
exploit wireless accessing technologies to make people’s daily
life more convenient and comfortable. Correspondingly, there
is a dramatic increase in demand for radio spectrum, while
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most licensed spectrum bands are underutilized in both tem-
poral and spatial domains [1]-[3]. Cognitive radio (CR) is a
promising technology to improve spectrum utilization, which
enables secondary users (SUs) to access the licensed spectrum
opportunistically [1]-[5] when primary users (PUs) are not
active. Due to high economic values of spectrum resources,
CR technology will potentially initiate spectrum trading, which
benefits PUs with monetary gains and SUs with accessing
opportunities to satisfy their service demands. Despite those
benefits, there are many challenges for pushing spectrum
trading in practice. For example, due to hardware limitation of
either PUs’ or SUs’ devices, they may have too limited sens-
ing capability to know some spectrum trading opportunities
nearby [4]-[6]; aiming to maximize the revenue, the PU may
feel challenging to develop optimal selling strategies due to the
SUs’ traffic demand uncertainty; the SU may feel difficult to
preserve its spectrum trading privacy (i.e., the SU’s locations,
true evaluation values of certain spectrum, traffic portfolio,
etc.) [7]-[9], and so on. Those concerns may make PUs or
SUs reluctant to participate in spectrum trading.

To facilitate PUs’ and SUs’ participation and make spec-
trum trading practical, recent studies [4]-[6] have introduced
spectrum trading architectures based on existing wireless
network infrastructure. Under those architectures, primary
service provider (PSP) aggregates vacant spectrum bands from
PUs [6], and sells the spectrum bands to secondary service
provider (SSP) at wholesale price. The SSP will evaluate
the spectrum supply uncertainty [5], [6], make the spectrum
purchasing decision, and further sell the purchased spectrum
to SUs at retailed price. Here, the role of PSP/SSP can
be played by base station in cellular networks, eNodeB in
LTE networks, or mobile virtual network operator (MVNO),
where the PSP/SSP has more sensing power [5], [6] than the
individual SU. Although the spectrum trading architectures
in [4]-[6] help to capture spectrum accessing opportunities,
and the algorithms in [4], [6] mathematically characterize
spectrum supply uncertainty, they ignore the SUs’ traffic
demand uncertainty, which may have negative impact on
PSP’s revenue maximization. That is, without the accurate
knowledge of SUs’ traffic demands, the PSP cannot choose the
optimal selling strategies to maximize its revenue. Moreover,
the approach of using random variables to model the traffic
uncertainty in [4], [6] may be good enough to reflect the PU’s
traffic patterns over a relatively long-term period, but it will not
be able to represent SUs’ traffic demands in real-time manner.

Therefore, following the framework of spectrum trading
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Fig. 1. Tllustrative examples for the traffic demand privacy breach of SUs in spectrum trading.

architectures in [4]-[6], in this paper, we further introduce
a new entity, called secondary traffic estimator and database
(STED), which is responsible for estimating the SUs’ traffic
demands in real-time manner and answering PSP’s queries
about SUs’ traffic demands as shown in Fig. 1. Considering
the large population of SUs in the PSP’s coverage boundary,
it is not efficient to crowdsource SUs’ traffic demands by
collecting each SU’s demands in terms of time consumption
and communication overhead. Thus, we propose to let the
STED employ data-driven approach to collect sampled SUs’
demands, construct reference demand distribution from sam-
pled demands, and leverage reference distribution to estimate
the demand distribution of all SUs.

Now, the leftover challenge hindering spectrum trading is
the traffic privacy preservation of the sampled SUs. Taking
the query procedure of SUs’ demands shown in Fig. 1 as
an example, the SU’s traffic portfolio privacy is breached
as follows. For Query 1, the PSP will send a query about
SUs’ demand to STED, and the query is what the SUs’
demand distribution is, if the price for spectrum accessing
is $15/MHz. The STED will respond to this query with a
traffic demand distribution of SUs at the cost of $15/MHz (e.g.,
30% SUs would like to purchase S0M and 70% SUs would
like to purchase 150M from 100 SUs in total). If a new SU,
Alice, joins the group and she would like to purchase 50M at
$15/MHz, the STED will update the SUs’ demand distribution
to the PSP’s query (i.e.,30.7% SUs would like to purchase
50M, 60.3% SUs would like to purchase 150M from 100 SUs
in total). From the differences of distributions, the PSP will
derive that Alice would like to purchase 50M at $15/MHz
or above. Through multiple queries, the PSP can easily learn
Alice’s traffic demand profile, which not only discloses Alice’s
true evaluation values of spectrum resources [10], but also
classifies her personal traffic demands (e.g., voice, video, web
browsing, social networking, online gaming, etc.) at different
price levels.

In order to protect SUs’ traffic demand differential privacy
(DP) [9], [11], [12], in this paper, we assume the STED
is trustworthy, and entitle the STED to transform the SUs’
demand distribution by adding noises before it responds to
the PSP’s queries. Instead of brutally hammering data-driven
approach and DP together, we melt SUs’ traffic demand DP
into data-driven based spectrum trading, and mathematically

prove its effectiveness. Based on that, we propose a novel data-
driven based spectrum trading scheme with secondary users’
differential privacy preservation (3DPP), whose objective is
maximizing the PSP’s revenue. Our salient contributions are
summarized as follows.

e We propose a novel spectrum trading architecture con-
sisting of the PSP, the SSP, and the STED. Under the
proposed architecture, PSP aggregates available spectrum
from PUs, and sells the spectrum to the SSP at fixed
wholesale price, directly to SUs at spot price, or both
as shown in Fig. 2. To optimally split the spectrum
sold to SSP/SUs, the PSP sends queries to the STED to
estimate SUs’ demands. The STED will jointly employ
data-driven approach and DP preserving techniques to
choose sampled SUs, collect their traffic demands, and
respond to the PSP’s queries.

e« We propose a novel 3DPP spectrum trading scheme,
which entitles the STED to construct reference distri-
bution Py from sampled SUs’ demands via data-driven
approach. We employ data-driven risk-averse modeling
to characterize the uncertainty of SUs’ traffic demands,
and ensure the uncertainty distance between the reference
distribution Py and the real traffic demand distribution of
all SUs P is close enough. Besides, we let the STED add
noises drawn from Laplace distribution to Py, and further
establish a SUs’ traffic demand reference distribution
under e-DP, ;.

+ We mathematically prove that the 3DPP scheme is able
to preserve the sampled SUs’ traffic demands under e-
DP, the references distribution under e-DP, [P, and real
distribution P satisfy the data-driven requirements, and
the uncertainty distance between the two distributions is
close enough, i.e., P(d;(Py,P < 0)) > 17exp(f%v+
Ve) for Kantorovich metric. Similar proof is applicable
for other distribution distance metrics'.

o Based on the modeling above, we formulate the
PSP’s revenue maximization into a risk-averse two-stage
stochastic problem (RA-SP). To resolve the problem,
we utilize (-structure probability metric to construct
confidence set, and convert the problem into a traditional
two-stage robust optimization. We develop algorithms

IPlease refer to Sec. IV for details
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Fig. 2. The spectrum trading procedure of 3DPP.

for feasible solutions and verify the effectiveness of the
proposed 3DPP by simulations.

II. SYSTEM DESCRIPTION AND 3DPP OUTLINE
A. System Model and Adversary Model

Our proposed spectrum trading market consists of the PSP,
the STED, the SSP, and N' = {1,2,---,4,--- ,N} SUs
as shown in Fig. 2. As introduced in Sec. I, the PSP and
the SSP are entities similar to MVNOs, and the STED is a
trustworthy database server for SUs, which can collect the
traffic demand information from SUs, and temporarily store
it. The PSP is entitled to aggregate vacant spectrum resources
from M = {1,2,---,4,---,M} PUs with unequal sized
bandwidth W = {Wy, Wy, --- ,W;,--- , Wi}, and sell those
available spectrum bands for monetary gains.

Similar to power market/cloud resource market in smart
grid/cloud computing systems, the PSP has the following
spectrum trading options: (i) selling available spectrum to
the SSP at fixed wholesale price, i.e., c; (ii) selling available
spectrum bands to the SUs directly at spot price, i.e., b; or
(iii) dividing available spectrum resources and selling to both.
Thus, before splitting the spectrum and deciding the selling
strategy, the PSP will send queries about SUs’ demands to the
STED as shown in Fig. 1. Due to the large number of SUs
within the PSP’s coverage, the STED will sample some SUs,
build up a reference traffic demand distribution of SUs, and
respond to the PSP’s queries.

The adversaries could be the dishonest PSP or eavesdrop-
ping attackers, who are always monitoring the information

TABLE 1
THE LIST OF NOTATIONS

Symbol Definition

N Sets of SUs

M Sets of PUs

w Sets of unequal sized bandwidth

c Fixed wholesale price that PSP sells to SSP
b Spot price that PSP sells to STED

P Real traffic demand distribution of all SUs
Po Reference distribution from sampled SUs.
Py Distribution after STED adds noise

€ DP parameter

Af 11 sensitivity of a function f in DP

5 Binary variable to indicate if W} is assigned to STED

13 Random variable of SUs’ traffic demands
D Confidence set

n Confidence level

de¢ Distribution distance under (-structure probability metric
0 Tolerance of the distance between two distributions
\% Number of sampled SUs

Q The sample space of &

%) The dimension of 2

exchange between the PSP and the STED. As shown in
Fig. 1, without enforcing any privacy preserving schemes,
the adversaries can easily learn the sampled SUs’ traffic
demand profiles. That may help the adversaries make some
illegal monetary gains, or even launch jamming attacks on
some valuable services of chosen SUs. It also makes the SUs
reluctant to participate in spectrum trading. The meaning of
the notations are shown in TABLE 1.

B. 3DPP Outline

To preserve the sampled SUs’ DP, it takes four steps
for the PSP to sell the available spectrum to SUs at spot
price b as shown in Fig. 1. Firstly, the PSP sends queries
about SUs’ demands to the STED. Secondly, STED samples
some SUs, and constructs a reference demand distribution
Py from sampled SUs’ demands. The STED needs to ensure
the uncertainty distance between the reference distribution P
and the real traffic demand distribution of all SUs PP is close
enough. Thirdly, the STED adds noises drawn from Laplace
distribution to Py, and establishes a SUs’ traffic demand
reference distribution P/,, which achieves e-DP. Meanwhile,
the STED needs to guarantee that [P is close enough to P, so
that P}, satisfies both data-driven and e-DP requirements. Then,
the STED responds to the PSP’s queries with P}, Finally, based
on [P}, the PSP decides how much spectrum needs to be sold
to the SUs directly at b, and how much spectrum need to be
sold to the SSP at ¢ to maximize its revenue.

Following this spectrum trading procedure, in the next sec-
tion, we formulate the PSP’s revenue maximization problem
under data-driven and DP constraints, i.e., 3DPP. In Sec. IV,
we theoretically prove that P{ is close enough to P, which
means the proposed 3DPP has data-driven and DP properties.
We also develop solutions to 3DPP problem in Sec. IV.
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III. 3DPP PROBLEM FORMULATION

In this section, we first present the preliminaries on DP, and
then formulate the PSP’s revenue maximization problem under
data-driven and DP constraints.

A. Preliminaries on Differential Privacy

DP is a formal definition of data privacy, which ensures
that any sequence of output from data set (e.g., responses to
queries) is “essentially”” equally likely to occur, no matter any
individual is present or absent [9], [13], [14]. DP keeps the
characteristic of the whole data set, and preserves information
privacy of each individual. The definition of e-DP is as follows.

Definition 1 Differential Privacy: Let A denote a random-
ized algorithm. We take the output as r and the input as z,
ie., A(z) = r. For all z,z" C NI¥l satisfied ||z — 2'|| < 1,

Pr(r|x)

lOgPr(r|x’) <e. (1)
Then we call A is e-DP. The parameter € represents the degree
of DP offered, which is the upper bond of the differences
between true A(z) and A(z"). A smaller value of e implies
the stronger privacy guarantee and perturbation noise, and a
larger value of e implies a weaker privacy guarantee while
having higher data utility.

Definition 2 [;-sensitivity of a function f: The l;-sensitivity
of a function f : NIXI=R g

Af = f (@) — f(")]1 )

max
z,x'GN‘X‘.
[lz—2'|[1=1

The [; sensitivity of a function f captures the magnitude
by which a single individuals data can change the function
f in the worst case, and therefore, intuitively, the uncertainty
in the response that we must introduce in order to hide the
participation of a single individual [13].

Definition 3 The Laplace Distribution and the Laplace
Mechanism: The Laplace Distribution (centered at 0) with
scale b is the PDF (Probability Density of Function) is :
||

1
Lap(x[b) = %CXP(—T) 3)

In the following paper, we will write Lap(b) simply to
denote a random variable X ~ Lap(b). The Laplace
M echanism simply computes f, and perturb each coordinate
with noise drawn from the Laplace distribution. The scale of
the noise will be calibrated to the sensitivity of f. The Laplace
Mechanism Aj, is defined as

Ap(z, f(),€) = f(z) + (Y1, Ya),

where Y; are i.i.d random variables drawn from Lap(Af/e).
The proof of Laplace mechanism reserves e-DP is shown
in [13].

B. PSP’s Revenue Maximization Formulation

Let «; be a binary variable indicating if W; is directly
sold to SUs, where v; = 1 if W; is directly sold to SUs,
and 0, otherwise. Thus, the PSP’s revenue gained from selling
spectrum to the SSP can be written as Z]Ail Wi (1 — ),

where 1 — v, represents the spectrum sold to the SSP at fixed
price c. Besides, let random variable £ denote the uncertain
demands from all SUs, and & follows distribution P. Then,
b(min(z;vil Wﬂg,{)) is the PSP’s revenue gained from
selling spectrum to SUs directly?. Here, due to the uncertainty
of SUs’ demands, if the spectrum supply from the PSP (i.e.,
the spectrum bands that the PSP decided to sell to SUs
directly) is more than SUs’ actual total traffic demand, i.e.,
Zjﬂil Wi~; > &, the revenue for the PSP is b§. Otherwise,
if the spectrum supply from the PSP is less than SUs’ actual
traffic demand, i.e. Zjil W;~; < &, the revenue for the PSP
is Zg]\/; Wi

Putting those two parts together, the PSP’s revenue maxi-
mization can be formulated as follows.

M M
— Z Wiy + Z cW;
j=1 j=1

max
’Y —
M
n bEﬂ»(min(Z Wm,g)>, &)
j=1
s.t.: v €{0,1},j=1,---, M, 5

N
§=> dii=1,---,N, (6)
=1

where «y; is binary variable, and (6) represents the total traffic
demand of all SUs.

C. Data-Driven Based PSP’s Revenue Optimization

Given the huge number of SUs within PSP’s coverage, the
STED cannot collect traffic demand information from every
possible SU, i.e., the STED is generally difficult to obtain the
true probability distribution of all SUs’ demand P. Instead, we
allow the STED to collect the traffic demands from a series of
sampled SUs, and construct reference demand distribution P.
For a given set of sampled SU data, it is easy for us to construct
a histogram to fit the SUs’ traffic demand. For example, we can
set N intervals to fit the total traffic demand of sampled SUs in
each interval to be Ly, --+,L,, -++, Ly with L = EnN:1 L,.
For instance, L; is the number of SUs who would like to
access spectrum on price $15/MHZ, Ly is the number of SUs
who would like to access spectrum on price $20/MHZ, etc..
Based on this, we can construct an reference distribution for
the uncertain total traffic demand of all consumers in particular
time period of a day as p{ = Ly/L, -+, p) = L,/L, ---,
and p%; = Ly/L. For simplicity, we let Py = p?,p9, -+, p%
represent the corresponding reference distribution. Since Py
may not be 100% represents the unique true SUs’ demand
distribution P, we employ risk-averse stochastic optimization
approaches (RA-SP) allowing distribution ambiguity [15] to
reformulate the PSP’s revenue maximization problem in (4).
Instead of deriving a true distribution for &, this optimization
approach derives a confidence set D, and allows the distribu-
tion ambiguity to be within set D with a certain confidence

’In this paper, we assume the aggregated spectrum resources can be
perfectly split to satisfy SUs’ traffic demands.
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level (e.g., 99%). The data-driven based RA-SP for the PSP’s
revenue maximization is formulated as follows.

M M
— Z Wi + Z cW;
=1 =1

max
¥
+ mm bEp (mln Z Wiv;,€ ) , @)
s.t.: constraints (5) and (6).

We use a distribution distance measurement proposed in
[16], [17] to quantify the distance of distributions. Specifically,
a predefined distance measure d(Py,P) is constructed on
confidence set D, where PP is the true distribution and P is
the ambiguous distribution conducted from sampled SUs. The
distance d¢ and confidence set D can be defined as follows,

D = {P:d¢(Po,P) < 6}, (8)
d¢(Po,P) = sup | | hdPy — / hdIP". )
heH Q

Here, d¢(-,-) represents the distance under ¢ structure prob-
ability metric, 6 denotes the tolerance, and H is a family of
real-valued bounded measurable functions on {2 (the sample
space on &). Tolerance 6 is correlated to data size, i.e., the
number of SUs” demand samples. It can be easily inferred
that the more demand samples that the STED can collect, the
tighter D would be, and the closer ambiguous distribution Py
would be to P. More details of (-structure probability metric
is introduced in the next Section.

D. 3DPP: Data-Driven Based PSP’s Revenue Optimization
under e-DP

To protect the sampled SUs’ traffic demand profiles, the
STED will employ Laplace mechanism to add noises into
Py. Here, we denote P, as the distribution after employing
Laplace mechanism, and pj as its density of probability
function accordingly. According to the definition of ¢-DP,
we have p;, < pge®. Thus, the data-driven based PSP’s
revenue maximization under e-DP, i.e., 3DPP problem, can
be reformulated as follows.

M M
— Z CW]"Y]' + Z CWJ'
j=1 j=1

max
v
+ Ié}feun bEp (mm Z Wivj, § ), (10)
s.t.: (5), (6)
D' = {P: d(Fo, P) < 0}, (1

d¢(Py,P) = sup
hEH

/hdIP’{)—/hdIP". (12)
Q Q

1V. 3DPP PROOF AND SOLUTIONS

This section is organized as follows. First, we present
how to determine converge rate under (-structure probability
structure. We show the relation between DP parameter € and
distribution tolerance 6 in {-structure probability structure, and

Fig. 3.  Wasserstein metrics (one-dimensional case).

Fig. 4. Uniform metric

prove our DP mechanism satisfies the requirement of data-
driven, which is d¢(P,P) < 6. Second, we reformulate the
problem under (-structure probability metrics, and convert it
to a traditional two-stage robust optimization. We develop
algorithms to solve the problem w.r.t. different probability
metrics.

A. Converge Rate under (-structure Probability Metrics

As described in Sec.II, we employ three different (-structure
probability metrics and solve our problem under these con-
straints correspondingly. We define p(x,y) as the distance
between two variables x and y, and @ as the dimension of ).
P = L(x) represents random variables x follows distribution
P. We denote V' as the size of sampled SUs. The metrics are
shown as follows.

o Kantorovich metric: denoted as dx(P,Q), H =
{h : |||l < 1}, where ||h]l, : = sup{h(z) —
h(y)/p(z,y):x # wyin Q}. By the Kantorovich-
Rubinstein theorem. the Kantorovich metric is equivalent
to the Wasserstein metric. In particular, when 2 = R, let
d,, denote the Wasserstein metric, then

00
dy(P,Q) = / F(z) -

— 00

G(a)ldz,  (13)

where I’ and G are the distribution function derived from
P9 and IP; respectively. It is illustrated in Fig 3.

o Fortet-Mourier metric: denoted as dpy(P,Q),
Ho= {h : lhlle < 1} where [[hllo =
sup{h(z) — h(y)/c(z,y): = # yinQ} and
c(zy) = ple,y)ymax{l, p(z,a)?", p(y,a)?~'}

for some p > 1 and a € (). Note that when p = 1,
Fortet-Mourier metric is the same as Kantorovich
metric. The Fortet-mourier metric is usually utilized
as a generalization of Kantorovich metric, with the
application on mass transportation problems.
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o Uniform metric: denoted as dy (P, Q),
H = {I[(—,,t € R"}. According to the definition,
we have dy (P, Q) = sup, |[P°(z < t),Q(z < t)|. It is
illustrated in Fig 4, where F' and G are the distribution
function derived from PP and Q, respectively.

From the definition of metrics above, we can derive the
convergence property and convergence rate accordingly. By
utilizing Dvoretzky-Kiefer-Wolfowitz inequality, the conver-
gence rate of dg (Pp,P) is shown as follows [18].

Proposition 1 For a general dimension case (i.e., n=1),

2
P(dx (Po,P) < 6) > 1 — exp ( - "V). (14)

2
For a high dimension case (i.e., n > 1), and any a > 0, there
is a constant C,, that could satisfies

15)

2
P(dxc (Po,P) < 6) > 1 — Caexp ( 92‘/)

Then we prove the converge rate between distribution with
Laplace mechanism P{ and real distribution P under Kan-
torovich metric as follows.

Proposition 2 For a general dimension case (i.e., n>1),

, 02V
P(dk (Py,P) < 6) > 1 —exp “o9gz ¢) (16)
Proof: Let us define a set

B:={peP):dp(uP) >0}, (17)

where P(€2) is the set of all probability measures defined on €.
Let C(£2) be the set of bounded continuous function ¢ — R.
Therefore, following the definitions, for each ¢ € C(Q), we
have

P(dy (P),P) > 6) = Pr(P) € B) (18)
< Pr( ¢dP) > inf / ¢du> (19)
Q neB Jq

_ : V[ ¢d]1)0€€
Vit o) £ (7o)

<
(i pres(eem)
<
<

< exp (20)

Il
@
e}
i)

1 Ve pi
- Vi _ = o etB(€)
exp V;relfB{/chdu VlogE (e 1 )})
(21

~ exp (22)

—V inf {/ gzbdu—log/ e€e¢d]P’})
reB | Jo Q
= exp (v inf {/ (j)du—log/ e?dP — e}> , (23)
HeB (Ja Q

where (18) follows the definition of B, inequality (19) is
from the fact that Py € B, and p is the one distribution in
B that satisfies the minimum of fQ ¢du,(20) follows from
the Chebyshev’s exponential inequality [19], and (21) follows
from the definition of Pg.

Now we define A(u) := supyecy fo ddp — log [, e?dP.
Thus, following the definition of C(2), there exists a series
¢n, such that lim,, o [, ¢dp—log [, e?dP = A(p). For any
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Fig. 5. Total revenue of PSP under different probability distance metrics.

Algorithm 1 Algorithm1: Procedure of Solving 3DPP

1: Input: Historical data &1,£5,- - - ,&n from sample SUs. Set
€ as the privacy parameter. Set ) as the confidence level
of D.

2: Out: Objective value of the 7.

3: STED receives the number of sampled SUs under different
traffic demand, i.e..&q, - - -, &n.

4: STED adds Laplace noise to the original data set of sam-
ple SUs. &, =&, +(Y1,---,Y}), where Y; are i.i.d random
variables drawn from Lap(Af/e).

5: STED reports the processed data &/, to PSP.

6: Obtain the reference distribution P((§) and tolerance 6
based on the data received from STED.

7: STED uses the reformulation (SP-M) or (SP-U) to solve
the problem.

8: Output the solution.

small positive number 6’ > 0, there exists a constant number
no such that A(p) — ([, dndp — log [, e4dP) < 0 for any
n > ng. Therefore, according to (23), we use substitute ¢,
for ¢, then we have

Pr(P;, € B)

< exp <—v inf {/ d)du—log/ e?dP — e}) (24)
reB (Ja Q

< exp (—V inf {A(p) —e— 9/}) (25)
neB
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According to Lemma 6.2.13 in [20], we have

A(M) = dKL (M7 P)

where dg, (i, P) is the discrete case KL-divergence defined
as » . In(p;/p;)p;. For the case 1 € B, with (17), we have
di (i, P) > 0. Moreover, in “Particular case 5” in [21], we
have

(26)

dK (/’L’ P) <o V 2dKL (Ma P)

hold for Vi € P(§2). Consequently, following (27), we have

27

dgr (1, P) > 6%/ (227) . (28)
Combining (25), (26), (28), we have
02

Pr(P, € B) < exp (—V (W —€— 9')) . (29)

Let ' = \/V for any arbitrary small positive A. Then, we
have

P (dx (P, P) = 6)
02
= Pr (P, € B) < exp (—V (W - 6) + A) . (30)

Since A can be arbitrarily small, we have P(dy(Py,P < 6)) >
1- exp(—%V + Ve).

With convergence rate (30), we can calculate the toler-
ance 6 accordingly. For instance, in Kantorovich metric, we
assume the confidence level is 7. Therefore P(d,(Py,P <

9)) > 1 — exp(— LV + Ve) = n according to (30), and

207

0 = @/ 2log(eV /(1 —n))/V. |

Similar proof is applicable for other metrics. For example,

following the proof procedure of Proposition 2 in our work

and using Corollary 1 in [15], it is easy to prove that under
Fortet-Mourier metric, we have

2

02V
P(dpa(Ph,P) < 6) > 1 — exp ( — oo ev), 31)

where A = max{1, 2P~ !}. Due to the page limits, we omit
the detailed proof procedure.

B. Problem Reformulation under (-Probability Metrics, and
Solutions

We denote z = Z]M=1 Wi, o = Z;w:l W; where « is a
constant. The sample space is Q = {£1,&2,- -+ ,{n}. Then the
formulation can be simplified as

N

m;?x —cr+ H;iin b ;pi (min (CU, §Z)) + ca (32)
s.t. x € ]0,al, (33)
(34)

sz' =1,

N N
max Y hipf, — Y hipi < 0,%h; ¢ [[hl¢ <1, (39)
=1

i=1

where the |h||¢ is defined according to different metric. In
Kantorovich metric, |h,—hy| < p(¢7,¢Y). The constraint (34),
(35) can be summarized as ZZ aih; <by,l=1,--- L. To
reformulate the constraint, we consider the problem

N N
min Z hiploi — Z h;p;, (36)
i i=1 i=1
N
s.t. > auh; <by,l=1,--- L. (37)
i=1
Its dual problem is represented as
L
min Z bruy, (38)
=1

!
s.t. Zailul >py, —pisVi=1,---,N, (39)
=1

where u is the dual variable. Accordingly, the formulation can

be reformulated as follows
N

max cr + Hll)lin b;pZ (mln(ﬂc, fz)) + ca, (40)
(SP-M) st =z €0,al (41)
N !
S opi=1) bu <0, (42)
i=1 1=1
L
> auw > pp, —pi,Vi=1,--- ,N. (43)

L l=1 . .
For the uniform metric, we can have the reformulation from
the Uniform metric definition

N

max cxr + H:ll)lin b ;pl (mln (as, 51)) + ca (44)
(SP-U) st z€[0,a] (45)
N
> pi=1, (46)
i=1
l
> (o, —pi)| <OVI=1,--- L. (47)
i=1

The formulation SP-M and SP-U can be solved by L-shape
algorithm which is described in [22]. We summarize the
procedure of solving the 3DPP problem in Alg. 1.

V. PERFORMANCE EVALUATION

A. Simulation Setup

For illustrative purposes, we consider a spectrum trading
market with 500 SUs. We assume the true traffic demand of
all SUs follows a discrete distribution: 100M with probability
0.4 and 200M with probability 0.6, respectively. Total avail-
able spectrum resources aggregated by the PSP is 300M. In
addition, we set the fixed wholesale price for the spectrum
sold to the SSP to be $ 3/MHz, and the spot price for the
spectrum sold directly to SUs to be $ 5/MHz.
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B. Privacy and Performance Analysis

First, the confidence level 7 is set to be 90% and the size of
sampled SUs varies from 10 to 120. We study the data-driven
algorithm without DP. The results are shown in Fig. 5(a). After
collecting traffic demand of sample SUs, the STED does not
add Laplace noises, and submits the true reference distribution
directly to the PSP. From the results in Fig. 5(a), it can be
observed the total revenue of the PSP increases when the size
of sample SUs increases, regardless of the distance metrics
adopted. The intuition behind the result is that, as the size
of sampled SUs , the value 6 decreases, which stands for the
distance between true distribution and reference distribution.
As a result, the solutions are moving closer to the optimal
one. It is also shown in Fig. 5(a) that the gap between total
revenue under the Fortet-Mourier metric and the Kantorovich
metric is very small, when the number of sampled SUs is
over 100. When the number of sampled SU is 120, the results
under all metrics are close to the optimal one. Besides, we
study the 3DPP’s performance in Fig. 5(b). Compared with
results in Fig. 5(a), it can be observed that the total revenue
of the PSP with 3DPP is less than that without e-DP when the
number of sampled SUs is small, but becomes close to each
other, or even to the optimal revenue when the size of sampled
SUs increases. That means it incurs some cost to involve e-
DP for the sampled SUs’ traffic demands, especially when the
number of sampled SUs is small. But this impact significantly
diminishes when the number of samples increases. That also
implies that the proposed 3DPP scheme can still successfully

captures the characteristics of whole data set, i.e., the demand
distribution of all SUs, while preserving individual sampled
SU’s traffic profile privacy. Moreover, from Fig. 5, we found
the Fortet-Mourier metric is a more applicable metric, since

the simulation results is more closer to the optimal revenue.
Moreover, we explore the impact of DP parameter € in

Fig. 6. We choose four different € values, i.e., 0.7, 0.5, 0.3, 0.2,
respectively, and study its impact under different metrics. We
find that as the e decreases, the total revenue of PSP decreases
under all metrics. The reason is, € stands for the upper bound
of privacy loss. It means, when ¢ is smaller, the mechanism
yields better privacy, and less accurate responses which leads
to less revenue of the PSP. It also can be observed that, when
size of sampled SUs is less than 60, the gaps of total revenue
under different e is large. When size of sampled SUs increases,
the influence of ¢ is less, and the total revenue under 3DPP
with different ¢ converges to the optimal one. Last but not the
least, we study the effect of confidence level on the 3DPP in
Fig. 7. We set the number of sampled SUs as 40, and test four
different confidence levels, i.e., 0.6, 0.7, 0.8, 0.9, respectively.
From the Fig. 7 we can observe that, as the confidence level
increases, the gaps between the PSP’s revenue of 3DPP and
optimal one increases under all three metrics. The reason is
that, as the confidence level 7 increases, the distance 6 between
reference distribution with e-DP P{ and true distribution P
increases, and the true probability distribution of SUs traffic
demands is more likely to be in the confidence set D. That
implies that distribution in set D which is not that close to P°
might be used to yield solutions. Therefore, the PSP’s revenue
performance degrades when confidence level increases.
VI. RELATED WORK

There are a lot of research works focusing on preserving
privacy during spectrum trading. To be specific, Errapotu
et al. in [23] employ the Paillier crypto-system to preserve
SUs’ bidding privacy and maximize the revenue of PU si-
multaneously in a semi-distributed manner. Liu et al. leverage
attribute-based encryption to preserve PUs’ operational pri-
vacy in spectrum database. Recently, a promising mechanism,
differential privacy (DP), proposed by Dwork [11] has been
employed in dynamic spectrum allocation [9], [12], [24]. DP
aims to reveal statistical information of whole dataset without
compromising the privacy of each individual. Zhu et al. in
[12] preserve the bidders valuation privacy with approximate
revenue maximization in spectrum auction mechanism, and
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theoretically proved the mechanism is differential private. In
the area of internet of things and spectrum monitoring, Sun et
al. in [24] propose a distributed stream monitoring system
with high communication efficiency and privacy guarantee.
The technique they proposed is powered by DP theory, which
can ensure submitted data of every node are not substantially
different with one element of the node’s data stream changes.
Jin et al. in [9] present a crowdsourced spectrum sensing
service provider, which selects spectrum-sensing participants
in a DP preserving manner. They prove the new mechanism
can prevent any internal or external attackers from learning
the location of mobile participants, and minimize the social
cost simultaneously.

To process spectrum trading, PU service provider recruits
SUs to collect their characteristic (traffic demand, location,
etc.), and allocate different quantity of bandwidths to different
SUs accordingly. Since the number of mobile devices increases
dramatically (the mobile devices are expected to hit 12.1
billion in 2018), it is unrealistic to recruit all mobiles in a
specified region. Thus, we present a new architecture with
data-driven. In our work, STED samples a relatively smaller
scale of SUs to collect the information of SUs’ traffic demand
and sends to PSP. However, since the number of sample is
limited, it is difficult for PSP to learn the precise information
of SUs’ traffic demands. Hence, we utilize the data-driven
approach to deal with uncertainty of the information. Some
previous researchers have noticed the issue of distribution
uncertainty and tried to employ robust optimization to address
this issue. For instance, Lunden et al. [25] propose a non-
parametric cyclic correlation in robust computation, which
lead the algorithm doesn’t require the distribution of users’
traffic. Gong et al. in [26] present a model, which consider the
distribution uncertainty of received primary signal in spectrum
sensing, to determine the robust threshold that can guarantee
the false alarm uncertainty. However, there is a lack of study to
incorporate data-driven sensing and DP together in spectrum
trading system. In our paper, we are trying to melt SUs’
traffic demand DP into data-driven based spectrum trading.
With the proposed scheme, our work effectively preserves each
individual SU’s traffic demand and maximizes revenue of PSP
under data-driven scheme at the same time.

VII. CONCLUSION

In this paper, we propose a novel spectrum trading archi-
tecture consisting of the PSP, the SSP and the STED. Under
this architecture, we proposed a novel 3DPP spectrum trading
scheme, which jointly employs DP techniques to preserve
SUs’ demand, and data-driven approach to characterize the un-
certainty of SUs’ traffic demand. Moreover we mathematically
prove that the data after employing DP mechanism satisfies the
data-driven requirements under different (-structure probabil-
ity metrics. Based on the contribution above, we formulate
a RA-SP problem to maximize revenue of the PSP. We
employ a confidence set by (-structure metric to reformulate
the problem to a traditional two-stage robust optimization,
and developed algorithms. Through simulations, we show the
feasible solutions and verify the effectiveness of the proposed
3DPP scheme.
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