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ABSTRACT: We have recently significantly expanded the applicability of our Molecules-in-Molecules (MIM) fragmentation
method to large proteins by developing a three-layer model (MIM3) in which an accurate quantum-mechanical method is used
in conjunction with a cost-effective, dispersion-corrected semiempirical model to overcome previous computational bottlenecks.
In this work, we develop MIM3 as a structure-based drug design tool by application of the methodology for the accurate
calculation of protein—ligand interaction energies. A systematic protocol is derived for the determination of the geometries of
the protein—ligand complexes and to calculate their accurate interaction energies in the gas phase using MIM3. We also derive a
simple and affordable procedure based on implicit solvation models and the ligand solvent-accessible surface area to
approximate the ligand desolvation penalty in gas-phase interaction energy calculations. We have carefully assessed how closely
such interaction energies, which are based on a single protein—ligand conformation, display correlations with the experimentally
determined binding affinities. The performance of MIM3 was evaluated on a total of seven data sets comprising 89 protein—
ligand complexes, all with experimentally known binding affinities, using a binding pocket involving a quantum region ranging in
size from 250 to 600 atoms. The dispersion-corrected B97-D3B]J density functional, previously known to perform accurately for
calculations involving non-covalent interactions, was used as the target level of theory for this work, with dispersion-corrected
PM6-D3 as the semiempirical low level to incorporate the long-range interactions. Comparing directly to the experimental
binding potencies, we obtain impressive correlations over all seven test sets, with an R* range of 0.74—0.93 and a Spearman rank
correlation coefficient (p) range of 0.83—0.93. Our results suggest that protein—ligand interaction energies are useful in
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predicting binding potency trends and validate the potential of MIM3 as a quantum-chemical structure-based drug design tool.

1. INTRODUCTION

The main goal of drug development is to design a candidate
molecule that strongly and stereospecifically binds to a target
receptor without interfering with the biological activities of
other systems."”” Screening several thousand drug candidates
to obtain a few tens of potential drugs with wet-lab
experiments alone is virtually impossible due to the associated
time and cost. Complementing the experiments with virtual
database screening and simulations using computers is thus an
indispensable tool in reducing cost and accelerating the drug
discovery process.”* Consequently, numerous computational
protocols have been developed to accurately predict drug—
receptor binding affinities.” The most common protocols
involve ranking of ligands on the basis of scores obtained from
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knowledge-based or empirical scoring functions or from energy
functions based on molecular mechanics (MM) force fields
within a single, target, binding pocket.6 Although such
methods are very efficient and extensively used in predicting
ligand binding modes, the accuracy of the estimated binding
affinities may be limited by the difficulties in parametrization of
inherently quantum-mechanical effects.’”

The most accurate theoretical approaches for estimating
protein—ligand (P—L) binding affinities are based on free-
energy perturbation (FEP), thermodynamic integration (TI),
and related approaches.'”"" The application of such methods,
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however, is limited by the high computational cost required to
extensively sample all of the intermediate configurational
states.' >~ Consequently, many approximate but more
efficient methods (e.g, the linear-response approximation
(LRA), the semimacroscopic protein—dipole Langevin—dipole
approach (PDLD/S-LRA), linear interaction energy (LIE) and
molecular mechanics Poisson—Boltzmann surface area (MM/
PBSA) approaches) 'that also employ sampling, but only
around the reactants and products, have been suggested.'” ™"
In addition, these methods have the advantage of fast energy
evaluation using molecular mechanics force fields that can be
parametrized for any specific system incorporating solvation
effects. Although such methods are extensively used in
estimating P—L binding affinities, a rigorous description of
electronic effects that play a critical role in intermolecular
interactions (e.g,, charge-transfer, 7—7 interactions and many-
body effects) is still difficult to capture with force field
parameters.”””> In this context, a high-level quantum-
mechanical (QM) treatment can be very useful to correct for
the deficiencies in the classical description of such
interactions.”* >

While the QM treatment of a ligand—receptor complex
provides a great deal of information about the nature of their
interactions, the large size of protein active sites with several
hundreds of atoms makes it challenging, if not impossible, to
perform a direct computation on the entire system using
accurate ab initio QM methods.*® Moreover, the ideal goal of
performing such computations for several thousand snapshots
from a simulation, that is necessary to correctly sample the
protein and ligand conformations during binding, is still
impossible even when steps are taken to reduce the scaling of
expensive methods.

The computational cost associated with brute force ab initio
calculations can be significantly reduced by employing more
approximate yet quantum-based methods.”” " For example, a
number of semiempirical approaches exploiting the AMI,
PM3, and PM6 Hamiltonians as well as density-functional-
based tight-binding (DFTB) models have been applied to the
calculation of P—L binding affinities.*°™° In addition, several
studies have used the QM/MM approach to calculate P—L
binding affinities.”>**” In the QM/MM methodology, the
ligand and a few of the closest residues are treated with a QM
method, leaving the rest of the protein to be calculated using
MM.”*** The QM region is mostly calculated using density
functional theory (DFT) with small basis sets or with
semiempirical methods. The agreement between the QM/
MM and experimental binding energies is somewhat mixed:
correlation coefficients (R) range from 0.17 to 0.96.° Some
recent studies have also employed ONIOM as a QM:QM or
QM:QM:QM approach to calculate binding affinities.**~** An
enhanced correlation with the experiments can be expected
with an increase in the size of the QM region in QM/MM
binding energy calculations; the same effect can be seen when
increasing the size of the high level in an ONIOM QM:QM
calculation. As the region including the most critical residues
near the ligand is typically inside a radius of 4 to 6 A and
contains more than 300 atoms, it is too large, in general, for full
QM treatment at a highly correlated level of theory. With some
occasional success in computing accurate binding affinities, the
QM/MM approach is mostly limited to the qualitative
description of ligand—receptor interactions.

A more attractive and fruitful strategy to calculate accurate
binding energies by including a larger section of the P—L
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complex quantum mechanically involves the use of linear-
scaling fragmentation-based methods.”** In fragmentation-
based methods, a large molecule is decomposed into many
smaller subsystems, QM calculations are performed independ-
ently on each subsystem, and the energies from the subsystem
calculations are combined to obtain the total energy.
Fragmentation-based approaches have been used to explore
P—L complexes, and several encouraging reports on binding
energy calculations and quantitative descriptions of interaction
energies using such methods have been published.**™* The
solvation free energy contribution to the total binding energy
has been included in some cases by using implicit solvation
(e.g, generalized Born (GB), polarizable continuum model
(PCM), and conductor-like screening model for real solvents
(COSMO-RS)). Recently, a few attempts have also been made
to include entropic contributions to the binding free energy via
conformational sampling, normal-mode analysis, and/or other
approximations (e.g, number of rotatable single bonds).***”
Most of these studies calculate the interaction energies using a
single P—L complex obtained either from a short MD
simulation or via geometry minimization, although proper
conformational sampling may be required to obtain reliable
results for absolute binding affinities. Only a few studies have
considered multiple conformations of P—L complexes in the
calculations due to the high cost associated with such
sampling.****

Among the many fragmentation-based methods, the frag-
ment molecular orbital (FMO) technique, molecular fragmen-
tation with conjugate caps (MFCC), and related approaches
have been used in studying P—L interactions.”***° The FMO
method has been used both as a predictive tool for the
determination of binding affinities and as an analytical tool in
understanding the nature of the interactions within the active
site.”"> The MFCC-related approaches have been primarily
applied to describe intermolecular interactions. For a
comprehensive description of the current developments in
fragmentation-based methods and their application in P—L
interactions, we refer readers to some recent reviews.%+>%°
Interestingly, most fragmentation-based methods calculate the
total interaction energy as the sum of contributions from
individual residue—ligand interactions and do not account for
many-body interactions. Hence, they contain some inherent
errors due to nonadditive effects. To address this issue in the
MFECC-related approaches, Antony and Grimme®' suggested
including five or six residues per fragment in routine
applications to reduce the associated fractionation errors.
Such an increase, however, in fragment size (five or six residues
plus the ligand, per fragment) steeply increases the associated
computational cost. In the FMO method, interaction energies
are calculated using Kitaura—Morokuma energy decomposi-
tion analysis (KM-EDA).®> A common issue associated with
the KM-EDA approach is that it does not work well with large,
diffuse basis sets and at short intermolecular distances due to
neglect of the Pauli exclusion principle in the external
potential.”>** Hence, most P—L interaction studies using the
FMO method have commonly employed small basis sets (e.g.,
6-31G) with or without polarization functions.”*> Tt is
important to note the necessity of large basis sets are needed
to correctly describe nonbonded interactions that typically
determine the majority of a ligand’s binding affinity. Overall,
the errors associated with the accuracy of a QM method or
with fragmentation protocols can be significant and need to be
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properly taken into account when computing absolute binding
energies.

We recently reported a rigorous calibration of our multilayer
molecules-in-molecules (MIM) method using various frag-
mentation strategies and combinations of levels of theory
specifically applicable for large, biologically relevant polypep-
tides containing many nonlocal interactions.”® By carefully
selecting the fragmentation schemes and combinations of high
and low levels of theory, we showed that the MIM method is
capable of predicting the total energy to within 0—2 kcal/mol
of the full, unfragmented energy for molecules containing up to
700+ atoms. More importantly, since the largest subsystems in
the high layer were only pentamers (vide infra), accurate
theoretical methods can be used with significantly larger basis
sets without making the high-level calculation a computational
bottleneck.

In the current study, we present the first application of the
MIM method to the computation of interaction energies
associated with protein—ligand binding. (Our approach is to
develop rigorous, computationally efficient protocols that can
be applied in a systematic manner to a broad variety of P—L
systems. The performance of our approach will be assessed
using diverse sets of ligands bound to different protein
receptors with known experimental binding affinities.

The calculation of protein—ligand binding affinities can be
highly challenging, and it is important to define the scope of
the applications that are practical and can be carried out in a
cost-effective manner. ‘Our goal is not only to reduce the
scaling of quantum methods but to explore potential
approximations to the expensive problems plaguing the
calculation of P—L complexes. The main purpose of this first
study is to present a systematic and computationally efficient
drug design protocol for estimating the relative strength of P—L
interactions for a set of structurally similar ligands using MIM. In
addition, our proposed protocol is a full QM-based methodology
that can be rigorously improved to accurately calculate binding
energies. To make a broadly applicable protocol, a few careful
simplifications have been made in P—L structure preparation.

First, the interaction energy is calculated wusing a single,
representative P—L complex obtained from the experimental
crystal structure, docking process, or minimization (vide infra).
Since we aim to estimate the relative trend in interaction
energies of a set of similar ligands with small modifications
rather than the absolute binding energies, this approach avoids
the high computational cost associated with protein conforma-
tional sampling. In this context, to minimize the risk of the
structure being trapped in a local minimum, ligand analogues
are generated from a structurally similar ligand that is
cocrystallized with the receptor, assuming their binding
modes to be similar (vide infra). We do realize, however,
that such a model may not be adequate when the ligand
structure changes substantially or when the flexibility of the
protein plays an important role in the binding motif.

Second, we calculate only the gas-phase binding energies in
this work and do not include solvation effects on the protein—
ligand binding. This model is based on the following
assumption, whose validity will be tested: as the modified
ligands closely resemble their starting cocrystallized structure
bound to the same protein, the difference in protein
desolvation and entropic contributions to the total binding
energy are expected to be systematic and cancel out when
relative energies are considered. In such cases, the P-L
binding is expected to be mainly governed by the contribution
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from the total electronic energy, so calculation of the total
electronic energies should be sufficient to predict the relative
binding strengths of the ligands. However, for ligand
modifications involving a significant polarity change or ligands
that are partially solvent-exposed, a proper accounting of the
ligand desolvation energy might be necessary to estimate
accurate binding affinities (vide infra).

Our approach to the calculation of P—L interactions is
carefully analyzed through an assessment of the correlation
between theoretical interaction energies and the experimental
binding potencies (which would include all of the afore-
mentioned effects, however minor). Since the calculations are
performed without incorporating the change in entropy and
the solvation energy of the complex, the total interaction
energies are expected to be significantly overestimated
compared to the experimental values (by as much as an
order of magnitude). Nevertheless, this study also serves as a
good benchmark on how far we can go with a single P—L
structure and accurate QM calculations. Though the current
study is restricted to QM calculations on the protein and P—L
complex in the gas phase to minimize the computational cost,
other aspects such as conformational sampling, QM geometry
optimization, and vibrational frequency analyses of those
systems in an aqueous medium are proactively under
development in our group and will be considered in future
studies using new protocols.

2. COMPUTATIONAL METHODS

2.1. Structure Preparation. To prepare our test sets,
published crystal structures of proteins and cocrystallized
ligands were used as starting points. Each ligand analogue was
generated from a closely related cocrystallized ligand and
docked into the published crystal structure under the
assumption that similar ligands bind to the receptor in similar
binding modes. The flexible alignment module, implemented
in the Molecular Operating Environment (MOE) program
(version 2016.08),°° was used to align the modified ligands
with the cocrystallized starting point to ensure that key
interactions, such as classical hydrogen bonds, were retained
during modification. In cases where the added moieties were
larger than those on the original ligand, a conformational
search was performed (within a 5.0 kcal/mol energy window)
using the LowModeMD®” module implemented in MOE while
keeping the backbone as close as possible to the orientation of
the parent ligand. Among the lowest-energy ligand conformers,
structures having any unphysical overlap with the receptor
when placed in the binding cavity were discarded. The
remaining conformers were further refined by performing
single-point QM calculations at the B97-D3BJ/6-311++G(d,p)
level, and the lowest-energy structure was used in calculating
the interaction energy. In doing so, a careful analysis of the
ligand structure and nearby residues was carried out to ensure
the possibility of forming favorable interactions (e.g., hydrogen
bonding, 7—7 stacking) by the modified part of the ligand with
the receptor. It is important to note that the modifications of
the ligand were typically small compared to the cocrystallized
ligand and that not many conformations were possible due to
the geometrical constraints in the binding cavity. Missing
hydrogen atoms in the crystal structures were added at pH 7.0
with the Protonate3D®* tool as implemented in MOE, which
recursively samples different orientations of added hydrogen
atoms to attain the lowest-energy structure while maximizing
the possibility of hydrogen bonding. The protonation of
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Scheme 1. Illustration of Fragmentation Schemes Used in the MIM3 Calculations”

Low Layer: Full molecule

Middle Layer: Distance-based subsystem
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i

High Layer: Number-based subsystem with distance-based nonbonded dimer

“In (a), the orange arrows pointing toward bonds designate bonds broken during MIM fragmentation. The full molecule is used in the low-layer
calculation. In (b) and (c), the monomer starting a subsystem is colored in pink. In (b), the red circle represents the cutoff radius of 3.5 A specified
for distance-based fragmentation in the middle layer. In (c), the box on the left represents the number-based fragmentation scheme (pentamers)
and the box on the right represents a distance-based nonbonded dimer formed in the high layer.

histidine residues present within S A of the ligand was further
determined by analyzing the possibility of hydrogen-bond
formation with nearby residues. The assigned states are given
in Table S1. No unusual protonation states of other charged
residues were observed. To temper electrostatic interactions
during minimization, the generalized Born/volume integral
implicit solvent model was used with an external solvent
dielectric constant of 80 and an internal dielectric constant of 2
for the binding pocket. Finally, each protein—ligand complex
was minimized in MOE with the AMBERIO0:EHT force
field*””° (the Amber10 force field to describe the protein and
extended Hiickel theory for small molecules in order to include
electronic effects) under a 0.5 A restraint for every atom with
respect to the starting structure.

Seven test sets totaling 89 P—L complexes with
experimentally known binding affinities were used in this
study (Tables S2—S8). The tested proteins include well-known
receptors and drug targets: interleukin-2-inducible T-cell
kinase (ITK) (set-I, set-Il, and set-VII), cyclin-dependent
kinase 2 (CDK2) (set-III), avidin (set-IV), and a G-protein-
coupled receptor (P2Y12) (set-V and set-VI). In set-], a
benzothiazole (BZT)-based ligand (11) cocrystallized with ITK
was taken from the RCSB Protein Data Bank (PDB ID 4MFO0)
and modified to obtain 14 other complexes (Table S2)
following the minimization protocol discussed above. Set-II
includes 11 indazole (IND)-based inhibitors complexed with
ITK; the cocrystal of 2g with ITK (PDB ID 4PP9) was
processed to obtain protein—ligand complexes for 2a—2h and
2j. In the case of 2i and 2k, the cocrystal of 2k and ITK (PDB
ID 4PPA) was used as the starting structure because of a
difference in ligand—protein hydrogen bonds compared with
the rest of the set. Set-IIl comprises a series of 13 CDK2
complexes with experimentally reported crystal structures (see
Table S4 for the PDB IDs). A cocrystallized structure of an
avidin—biotin complex isolated from egg white (4n, PDB ID
1AVD) was used to obtain the 14 protein—ligand complexes of
set-IV. Two sets of ligand variants, namely, the 3-azetidinyl
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series (set-V, 11 ligands) and 4-piperidinyl series (set-VI, seven
ligands), complexed with a human G-protein-coupled receptor,
P2Y12, were obtained by modifying complex 6f (PDB ID
4NT]J). Lastly, a set of 18 sulfonylpyridine (SAP)-based ligands
complexed with the ITK receptor (set-VII) were obtained by
modifying the cocrystallized ligand 71 (PDB ID 4QD6).

All residues and water molecules within 5.0 A of the ligand
(a total of 250—600 atoms) were included in the QM
calculations. Dangling bonds were saturated with hydrogen
atoms using MOE. All of the calculations were performed in
the gas phase, and solvation effects were not included in this
work. Due to the overestimation of electrostatic interactions in
the gas phase, charged ligands and all charged residues (Lys,
Arg, His, Asp, and Glu) were neutralized to better match the
stabilization seen in solution. This is an appropriate
approximation for the calculation of interaction energies in
the gas phase, as validated by our findings in this work (vide
infra). We do realize, however, that this is a limitation of our
approach, and future work in obtaining solution Gibbs free
energies will deal with the necessity of proper treatment of
charged residues along with implicit solvation.

2.2. MIM Protocol. The inner workings of the MIM
fragmentation method have been detailed in our previous
publications.”>”" Here we present only a general outline
describing the details necessary to understand our chosen
protocol. In MIM, proteins are divided into small, primitive
fragments (monomers) by cutting single heavy atom—heavy
atom bonds, as shown in Scheme 1. Peptide bonds are left
unbroken because of the partial double-bond character of these
moieties, as detailed in our previous work.”>”> Each monomer
initiates an overlapping primary subsystem based on a selected
fragmentation scheme, and all of the cut bonds are saturated
with hydrogen link atoms. In multilayer MIM, cheaper QM
methods are used to describe environmental polarization
effects as well as long-range interactions not included in each
specific subsystem. In this study, we employ three-layer MIM
(denoted as MIM3), in which a number-based fragmentation
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augmented with nonbonded dimers based on a cutoff distance
is used in the high layer, a distance-based fragmentation is used
in the middle layer, and the full molecule is calculated using a
semiempirical method in the low layer. This fragmentation
scheme is the prescribed fragmentatlon scheme for large
proteins from our previous study.’® In a number-based scheme,
primary subsystems are generated by combining # covalently
bonded monomers. In this case, we employ a pentamer scheme
(n=5), in which the pentamers are formed by combining two
covalently bonded monomers on either side of the starting
monomer, preserving the local bonded environment. Addi-
tionally, some of the nonbonded interactions are included in
primary subsystems as distance-based dimers within a cutoff
distance d; here we chose d to be 3.5 A in accordance with our
previous work (denoted as NSD). The nonbonded dimers are
formed in order to incorporate some of the short-range
nonbonded interactions (e.g., hydrogen bonding, 7—7
stacking) that would normally be absent from subsystems in
the high layer. To capture some of the important long-range
effects that may be neglected by the NSD scheme in the high
layer, we employ a distance-based middle layer with a cutoff
distance of 3.5 A. As in the high layer, each monomer starts a
subsystem in the middle layer. All of the non-overlapping
monomers within the specified distance parameter of the
starting monomer are combined to form a subsystem. This
results in larger subsystems to be treated with an intermediate
level of theory. In the low layer, the full molecule is used to
include the interactions not captured by the middle layer. This
fragmentation scheme is illustrated in Scheme 1.

Once the primary subsystems are established, derivative
subsystems are obtained from the overlap between the primary
subsystems, and the energies summed according to the
inclusion—exclusion principle. Three levels of theory (“high”,
“medium”, and “low”) are used in MIM3, and the full
fragmentation energies are summed as in eq 1:

MIM3
E P = (E low

= Epigh — (Emea = Enm, — Ei) (1)
where r and r’ (with r < r’) symbolically represent the relative
sizes of the systems; Ef and Ej.q are the total energies
obtained with the NSD scheme calculated at the high and
medium levels of theory, respectively; E; 4 and Ej,, are the
total energies obtained with distance-based fragmentatlon at
the medium and low levels of theory, respectively; and Ef,, is
the total energy of the full molecule (R = o) calculated at the
low level of theory. Since the sizes of both the high- and
medium-level subsystems are independent of the size of the full
system, using an inexpensive semiempirical calculation (vide
infra) for the full molecule makes the overall scaling of the
MIM3 model with the size of the full system effectively linear.
3. Interaction Energy Calculation. The interaction
energy between a receptor and a ligand in a complex is

calculated as

med ‘med

AE _ Ecomplcx _ Eprotein _ Eligand

interaction —

@)

where EcomPles pprotein o d Eliendyre the dispersion-corrected
gas-phase electronic energies of the protein—ligand complex,
protein, and ligand, respectively. The outlined fragmentation
protocol was used for the protein with and without the bound
ligand.

The total interaction energy including the contribution of
the ligand desolvation energy (the penalty of abstracting the
ligand from the solvent) is calculated as
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+ AE ligand

AE; (desolv)

interaction

= AE interaction

®3)

where AElmemtmn is the interaction energy calculated in the gas
phase and AE( esolv is the desolvation energy of the ligand in
the formation of the P—L complex. AE@SOIV) is obtained with
eq 4:

lorand

AE(clesolv) (4)

where AE'(lsgSf“,‘)i is the solvation energy of the unbound ligand
and y is the fraction of ligand surface area in contact with the
receptor in the P—L complex. y is calculated as

ligand
yAE(s%)lv)

CAligandfreceptor

= SASAIigand

(8
in which CAjg,nd_receptor 15 the contact area of the ligand with
the receptor, given by

SASA,.q + SASA

CAliga.ndfreceptor —

— SASA

protein

2)

complex

(6)
where SASAj.na) SASA, oteiny and SASA e are the solvent—
accessible surface areas of the free ligand, free protein, and P—
L complex, respectlvely The SASA is calculated using the
VMD package with default atomic radii and a probe radius of
1.40 A, corresponding to water. Thus, the desolvation energy
of the ligand is approximately taken into account by this simple
scaling procedure.

The dispersion-corrected B97-D3BJ density functional (the
B97 functional”*”® with Grimme’s D3 dispersion correction’®
and Becke—Johnson damping’’) with the 6-311++G(d,p)
basis set was used as the high level of theory. To avoid
discrepancies between different density functionals, B97-D3B]J
with the smaller 6-31+G(d) basis set was used as the
intermediate level of theory.”"™® PM6-D3*’ was used as the
low level of theory in the MIM3 calculations. The solvation
energy of the ligand in aqueous solution was calculated using
the SMD®* implicit polarizable continuum solvation model at
the B97-D3BJ/6-311++G(d,p) level. All of the DFT
calcula_tlons were performed using the Gaussian 16 program
suite,”> and our MIM external program was used to generate
and sum the fragmented systems.

3. RESULTS AND DISCUSSION

3.1. Fragmentation versus High Level. In our most
recent publication with MIM, we performed a careful
assessment of the various fragmentation strategies applicable
for large proteins. MIM routinely achieved an accuracy of <2
kcal/mol using MIM2 and MIM3 compared to the total energy
of the full, unfragmented molecule at the DFT/6-311++G(d,p)
level of theory. In this study, we used the MIM3 fragmentation
method with the best-performing fragmentation scheme in our
previous study to assess the consistency of MIM3 in predicting
the interaction energies as well as the total energies.

The binding mode of ITK and the set of 15 benzothiazole
ligands used for this assessment are shown in Figure 1 and
Table 1, respectively. Residues and water molecules within 5.0
A of the ligand were included in the QM calculation. The total
number of atoms in the protein—ligand complex ranges from
400 to 500. Table 1 presents the total interaction energies
calculated with MIM3 (B97-D3BJ]/6-311++G(d,p):B97-
D3BJ/6-31+G(d):PM6-D3) and their deviations from the
full, unfragmented calculation at the B97-D3BJ/6-311++G-
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Figure 1. Active site of the interleukin-2-inducible T-cell kinase
(ITK) receptor with a cocrystallized benzothiazole-based ligand (11).
The active-site cavity is shown as a light-pink surface, and the ligand
carbons are shown in dark pink.

(d,p) level of theory. The mean absolute error (MAE) in the
MIMS3 total interaction energy was calculated to be only 1.62
kcal/mol with a 0.84 kcal/mol population standard deviation
over the test set, showing a good agreement with the full
calculations. The lower value of the standard deviation stems
from the observation that MIM3 seems to consistently
overestimate the interaction energy (mean signed error
(MSE) = —1.62 kcal/mol), likely because of a systematic
mismatch between the high and low levels of theory in terms of
the treatment of nonbonded interactions. The mean absolute
deviation (MAD) after subtraction of the mean signed error is
significantly reduced to 0.67 kcal/mol. Figure 2 shows a linear
correlation of the MIM3 total interaction energies with the full
calculations. A correlation coefficient (R*) of 0.91 with respect
to the y = x line and an R* of 0.98 with respect to the line of
best fit further assures that the MIM3 method fully reproduces
the relative trend of protein—ligand interaction energies. This
observation affirms that the MIM3 fragmentation method can
be used to calculate the interaction energies of large protein—
ligand complexes and provides a good alternative to the
necessity of performing an expensive QM calculation on the
full molecule. Thus, only MIM3 calculations were performed
for all of the other data sets investigated in this study.

3.2. Prediction of Protein—Ligand Interaction Ener-
gies. Using the MIM3 protocol discussed above, we first
calculated the gas-phase total interaction energies of 89
protein—ligand complexes at the B97-D3BJ/6-311++G-
(d,p):B97-D3BJ/6-31+G(d):PM6-D3 combination of levels
of theory. The MIM3-calculated interaction energies and the
literature experimental binding potencies are given in Tables
S2—S8. The calculated gas-phase interaction energies
(AE;yeraction) tange from —40 to —110 kcal/mol. As the
calculations were performed in the gas phase without any
correction for the solvation free energy or associated entropic
penalties, the computed values were expected to be
substantially larger than the normally observed binding
energies in solution. However, the contributions from these
solvation effects are understood to be systematic, and we
expect to see some correlation between the measured binding
potencies and the calculated interaction energies. The
correlation plots comparing the experimental binding energies
(AGyy,g) or the negative logarithms of the binding affinities
(pK;) and the calculated interaction energies for the first six
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data sets (set-I to set-VI) are shown in Figure 3. For the six
data sets, we obtained a significant linear correlation (R*
0.79—-0.94, Spearman (p) 0.87—0.94) between the
experimental binding affinities and the calculated interaction
energies. This suggests that the calculated gas-phase interaction
energies correctly reflect the trend of the experimentally
observed binding potencies.

A closer analysis of the ligand structures with respect to the
observed correlation reveals some interesting results. The
highest correlation between the calculated interaction energies
and the experimental binding affinities (pK;) was obtained in
the case of the indazole-based ITK inhibitors (set-II), with an
impressive R” of 0.94. For this data set, the modified ligands
closely resemble the cocrystallized ligand, 2g (2k in the cases
of 2k and 2i), used as the starting structure. This observation
also holds true for set-VI, where modification of the ligand
mainly involves substitutions on the phenyl ring of the
cocrystallized ligand, 6f. On the other hand, the lowest
correlation (R* = 0.79, p = 0.87) was obtained in the case of
the 3-azetidinyl set of inhibitors with P2Y12. In this case, the 4-
piperidinyl group of the starting compound, 6f (PDB ID
4NT]J), was replaced by the slightly smaller 3-azetidinyl ring
and more drastic substitutions were made on the terminal
phenyl group to obtain the desired set of ligands. These results
indicate that the correlation between the calculated gas-phase
and experimental binding affinities to some extent may be
dependent on the similarities between the cocrystallized ligand
and the modified ones in addition to the actual performance of
the method, which was expected. Nevertheless, it is motivating
to see that the correlation coefficients for the data sets
obtained via modification of a cocrystallized ligand (set-I, -II,
-IV, -V, and -VI; R* = 0.79—-0.94, p = 0.87—0.94) are as good
as or better than those for the set employing only published
crystal structures (set-IIl; R* = 0.84, p = 0.88). This further
validates that a carefully modeled protein—ligand complex can
be a reliable prototype in the design of a potent drug molecule.

Set-VII, a set of SAP-based ligands complexed with the ITK
receptor, is a particularly interesting case. With the computa-
tional protocol discussed above, the gas-phase interaction
energies showed only a modest correlation (R* = 0.49) with
the experimental binding potencies (pK;'s) (Figure 4 and
Table S8). The calculated correlation is significantly weaker
than the correlation observed in the other six data sets. It is
assumed that the observed moderate correlation of the
calculated gas-phase interaction energies in our study is due
to either the neglect of conformational changes in the ligand/
protein structure, the lack of solvation effects, or a combination
of these two factors. First, there could be a significant change
in the protein and/or ligand conformation for some of the
modified P—L complexes compared with the cocrystallized
complex. This situation is more likely to be present when the
sizes of the modified and cocrystallized ligands are significantly
different, as noted earlier in the case of set-V. In such a case,
the protein must rearrange to appropriately accommodate the
ligand and maximize the interactions. The contribution from
this type of protein conformational change is difficult to
estimate without structural sampling. This is a well-known
limitation of the “single-structure approach” used in this
study.’ Nevertheless, a closer inspection of the interaction
energy trend with respect to the experimental pK; reveals
ligand 7q to have a significantly lower interaction energy than
the expected value (Figure 4 and Table S8). Consistent with
this observation, for the same P—L complex, a significant
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Table 1. Full and MIM3-Calculated Interaction Energies (in kcal/mol) for Various Benzothiazole ITK Inhibitors (Set-I)
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@ AE;peraction calculated using MIMS3 at the B97-D3BJ/6-311++G(d,p):B97-D3BJ/6-31+G(d):PM6-D3 combination of levels of theory. *AE;eraction
of the full, unfragmented molecule calculated at the B97-D3BJ/6-311++G(d,p) level. “Errors in the MIM3 total interaction energies compared with
the full calculation. “Errors in the MIM3 total interaction energies after removal of the average systematic error of —1.62 kcal/mol.

change in protein and ligand structure was observed by
Ortwine and co-workers.”® When 7q was excluded from the
data set as a significant outlier, a much better correlation
coefficient was obtained (R*> = 0.68).

The second possible reason for the observed modest
correlation would be the neglect of the solvation energy
contribution. For a set of ligands bound to the same protein
active site, the desolvation energy of the protein during
formation of the P—L complex can be expected to be similar.
However, the desolvation energies of the ligands, depending on
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their polarity and the fraction of ligand still exposed to the
solvent in the P—L complex, can change significantly. In polar
solvents like water, the ligand desolvation energy (AEl(iﬁg‘g[v))
for ligands that can strongly polarize the solvent and form
hydrogen bonds will be larger than that for less-polar ligands.
To assess the contribution of the ligand desolvation energy to
the total interaction energy, we computed the solvation
energies of the ligands in aqueous solution using implicit
solvation, as described in section 2. This approach, however,
assumes that the entire ligand is surrounded by the protein, i.e.,

DOI: 10.1021/acs.jctc.80b00531
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Figure 2. Correlation between MIM3-calculated interaction energies
at the B97-D3BJ/6-311++G(d,p):B97-D3BJ/6-31+G(d):PM6-D3
combination of levels and the interaction energies of full,
unfragmented molecules at the B97-D3BJ/6-311++G(d,p) level for
benzothiazole-based ITK inhibitors (set-I) (in kcal/mol). Dashed
lines represent an error range of +2.0 kcal/mol. R* with respect to the
line of best fit is 0.98.

that it is fully desolvated in all directions. However, this is
typically not the case, and some part of the ligand is still in
contact with solvent. The effective ligand desolvation energy
during the P—L complex formation was obtained by scaling the
ligand solvation energy by the fraction of contact surface area
with the receptor in P—L complex (eqs 4—6; vide supra).
Interestingly, for set-VII the contribution of the ligand
desolvation energy is quite significant, ranging from 12 to 21
kecal/mol (Table S8, last column). When the ligand desolvation
energies are added to the total gas-phase interaction energies,
R* dramatically improves from 0.49 to 0.7, and p increases
from 0.63 to 0.86 (Figure 4 and Table 2). For the other test
sets (set-] to set-VI), wherein the gas-phase interaction
energies correlated significantly well with experiment (R* =
0.79—0.94; p = 0.87—0.94), addition of the ligand desolvation
energy caused only a small change and maintained the good
correlation with experiment (R* = 0.74—0.93, p = 0.83—0.93;
Table 2 and Figure S2). The inclusion of the ligand
desolvation energy in the total interaction energy remarkably
improves the correlation coefficients of set-V (R* from 0.79 to
0.88, p from 0.87 to 0.94). For set-I and set-IV, a small
lowering of the correlation coefficient (by ~0.05) is observed,
while the others remain very close to the gas-phase results. As
expected, the inclusion of ligand desolvation energy also
significantly lowers the gas-phase interaction energy (by up to
22 kcal/mol; Tables S9—S15). Overall, the inclusion of the
ligand desolvation energy using our simple scaling model
significantly improves the correlation with the experimental
binding potencies while decreasing the binding energy as
expected.

The data sets used in this study overlap with those employed
in other fragmentation-based theoretical studies. For the ITK
inhibitors (set-I and set-II), Ortwine and co-workers calculated
the gas-phase pairwise interaction energies using the FMO
method at the MP2/6-31G* level of theory and obtained
impressive correlations to the experimental binding potencies
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(R* = 0.84 and 091, respectively).’® Soderhjelm et a
computed the binding affinities of seven of the 14 investigated
biotin-analogue avidin inhibitors (set-IV) using the polarizable
multipole interaction with supermolecular pairs (PMISP/MM)
approach at the MP2/cc-pVTZ level and found a modest
correlation with the experimental binding potencies (R* =
0.55). When nonpolar solvation and entropy components were
included, the correlation between the theoretical binding
affinities and experiment worsened by a large degree (R* =
0.27). He and co-workers also computed the binding affinities
of the set-IV complexes using their EE-GMFCC method
combined with molecular dynamics (MD) simulations and the
MM (GAFF parameters with Amber03 charges and PBSA
solvation), HF-D3/6-31G* (with CPCM implicit solvation),
and B3LYP-D3/6-31G* (with CPCM) levels of theory.”® The
He study obtained a modest correlation (R* = 0.56) for the
HF-D3/6-31G*-calculated binding affinities using single snap-
shots and the MM/PBSA results using 300 snapshots taken
from MD simulations. For the single-snapshot approach, a
better correlation (R? = 0.72) was obtained with B3LYP-D3/6-
31G*, which was further improved (R* = 0.77) when the
binding affinities were averaged over three snapshots.
Interestingly, the best results (R* 0.79) were obtained
when the contribution from CPCM solvation energy was
removed from the total interaction energy.

For the 3-azetidinyl-based GPCR (P2Y12) inhibitors (set-
VI), Heifetz et al.>* calculated the pairwise interaction energies
using FMO at the MP2/6-31G* level of theory and obtained a
good correlation with the experimental binding potencies (R*
= 0.76). For set-VII, Ortwine and co-workers calculated the
gas-phase total pairwise interaction energies using FMO at the
MP2/6-31G* level of theory and obtained an impressive R* of
0.87.°° Comparing the correlation coefficients calculated for
seven data sets in this study (R? = 0.74—0.94, p = 0.83—0.94)
with those from other similar theoretical studies, it is clear that
our MIM method performs as well as or better than previous
methods discussed in the literature. Furthermore, since the
high-layer subsystems in our study are only pentamers, the
accuracy can be further improved by using more accurate
methods, such as MP2 with sufficiently large basis sets or
coupled-cluster theory, without making the high-level calcu-
lation a computational bottleneck. Additionally, the ligand
desolvation energy is approximated by calculating the solvation
energy of the ligand using implicit solvation and solvent-
accessible surface area; this procedure requires negligible
computational cost compared with the P—L complex.

4. CONCLUSIONS

In this study, we have presented a simple, efficient, and reliable
protocol for the accurate prediction of interaction energies of
large protein—ligand complexes using MIM. The performance
of three-layer MIM (MIM3) in predicting the total interaction
energies of 15 protein—ligand complexes at the B97-D3B]/6-
311++G(d,p) level of theory has been assessed. MIM3
energies were calculated using a prescribed fragmentation
scheme (i.e., connectivity-based pentamers with distance-based
dimers (N5D) in the high layer; distance-based (3.5 A) in the
middle layer) and combinations of high, medium, and low
basis sets (high, 6-311++G(d,p); medium, 6-31+G(d); low,
PM6-D3) from our recent work calculating the absolute
energies of large proteins. The high-layer subsystem size was
purposefully kept small to ensure that the calculations remain
tractable even for more accurate correlated methods if needed.

DOI: 10.1021/acs.jctc.8000531
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Figure 3. Correlations between experimentally measured binding affinities and the gas-phase interaction energies calculated using MIM3 (B97-
D3BJ/6-311++G(d,p):B97-D3BJ/6-31+G(d):PM6-D3) for various protein—ligand complexes: (I) benzothiazole-based ITK inhibitors; (II)
indazole-based ITK inhibitors; (III) CDK2 inhibitors; (IV) biotin-analogue avidin inhibitors; (V) 3-azetidinyl-based P2Y12 inhibitors; (VI) 4-

piperidinyl-based P2Y12 inhibitors. Dashed lines are lines of best fit.

Impressive accuracy (set-I, MAE = 1.62, MAD = 0.67, standard
deviation 0.84 kcal/mol) in MIM3 interaction energies
compared to the full unfragmented calculations at the B97-
D3BJ/6-311++G(d,p) level of theory was achieved, establish-
ing the MIM3 method as a valid alternative for the calculation
of accurate interaction energies.

The correlation between the gas-phase interaction energies
and the experimentally measured binding potencies was
determined by calculating the interaction energies of seven
sets of protein—ligand complexes containing a total of 89
ligands complexed with four different proteins at the B97-
D3BJ/6-311++G(d,p) level of theory using MIM3 as described
above. For six data sets (set-I to set-VI), the results show a
remarkable correlation of the gas-phase interaction energies to
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the experimental protein—ligand binding potencies (R> =
0.79—0.94, p = 0.87—0.94). However, a mediocre correlation
was obtained for set-VII (R* = 0.49, p = 0.63), suggesting that
the energy contributions from protein/ligand structure changes
and solvation energy could play an important role. The
contribution from ligand desolvation energy was included in
the calculated interaction energies to assess the effect of
solvation on the correlation between the calculated interaction
energies with the experiment. The results show an impressive
correlation of the calculated interaction energies to the
experimental protein—ligand binding potencies (R* = 0.74—
0.93, p = 0.83—0.93).

While very good correlations have been obtained between
the calculated interaction energies and experimental binding

DOI: 10.1021/acs.jctc.80b00531
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Figure 4. Correlation between experimentally measured binding affinities and calculated interaction energies at MIM3(B97-D3BJ/6-311+
+G(d,p):B97-D3BJ/6-31+G(d):PM6-D3) for sulphonylpyridine-based ITK inhibitors: (a) only gas phase interaction energies, and (b) gas phase
interaction energy plus ligand desolvation energy. In (a) the R? and Spearman (p) correlation coefficient values in parentheses are calculated

without the red-circled point in the plot, complex 7q.

Table 2. Correlation between MIM3-Calculated Interaction
Energies and Experimental Binding Potencies (pK; or
AGbind)

b

AEinteractiona AEi/nteraction

data set R? P R* p

set-I 0.79 0.90 0.74 0.83
set-II 0.94 091 0.93 0.92
set-IIT 0.84 0.88 0.85 0.93
set-IV 0.83 0.89 0.78 0.85
set-V 0.79 0.87 0.88 0.94
set-VI 0.85 0.94 0.83 0.90
set-VII 0.49 0.63 0.75 0.86

“Gas-phase total interaction energy calculated using MIM3 (B97-
D3BJ/6-311++G(d,p):B97-D3BJ/6-31+G(d):PM6-D3). “Gas-phase
total interaction energy plus ligand desolvation energy calculated
using eq 4.

affinities for the considered data sets, we point out that the
current approach has some limitations that will be systemati-
cally addressed in the future. The first significant limitation is
the use of the single-structure approach. For a related set of
ligands with relatively small structural modifications, the
contributions from protein conformational entropy are
expected to cancel out, as observed in this study. However,
it may be less likely for cases involving a significant change in
the ligand structure and/or when the flexibility of the protein
plays a significant role in binding. In such cases, accounting for
the protein conformational change during binding may be
critical. The second limitation of our current approach is the
solvation energy calculation. While our results showed that
approximating the differential solvation effects using the ligand
desolvation energy in conjunction with the solvent-accessible
surface area is a fairly accurate and cost-effective approach, it is
necessary to include the solvation energy of the protein and the
protein—ligand complex in the total interaction energy for
charged residues or charged ligands. The inclusion of solvation
effects will substantially decrease the overestimation in the
ligand binding affinities in the gas-phase approach used in this
paper, and we plan to explore this more carefully in future
work on obtaining absolute binding free energies in solution.

In conclusion, the main purpose of this study was to present
a computationally efficient protocol for estimating the relative
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strength of P—L interactions for a set of structurally similar
ligands, and our results appear highly promising in this regard.
Overall, the impressive correlation between the calculated
interaction energies and the experimental binding affinities
suggests that QM-calculated interaction energies can provide a
reliable estimate for the trend of binding potencies with
substituted ligands. These results also suggest that the MIM
protocol presented in this study offers a reliable, computa-
tionally affordable prediction of protein—ligand binding
potencies that can be an effective tool for structure-based
drug design in the future.
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