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ABSTRACT: The Molecules-in-Molecules (MIM) fragmentation-based approach has
been successfully used in previous studies to obtain the energies, optimized geometries, and
spectroscopic properties of large molecular systems. The present work delineates a protocol
to study the potential energy profiles for multistep chemical reactions using the MIM
methodology. In a complex multistep chemical reaction, the fragmentation scheme needs
to be changed as the reacting species transition into a new reaction step, resulting in a
discontinuity in the potential energy curve of the reaction. In our approach, the
fragmentation scheme for a particular step in a reaction is chosen on the basis of the nature
of the bonding changes associated with that step. Thus, the reactant, transition state, and
product are treated consistently throughout the reaction step, leading to an accurate energy
barrier for that step. The discontinuity now occurs in describing the energies of reaction
intermediates at the transition point between two reaction steps that are treated by two
different fragmentation schemes. To address this issue, we propose a systematic procedure
for obtaining continuous potential energy curves that are least shifted from their initial positions. The corrected MIM potential
energy curves are continuous with activation energies preserved. Following this approach, energy profiles of complex reactions
involving large molecular species can be obtained at high levels of theory with a reasonable computational cost.

1. INTRODUCTION

Methods based on quantum mechanics can provide an
accurate description of chemical systems, but at a high
computational cost. The steep computational scaling of
popular quantum chemical methods such as MP2, CCSD, or
CCSD(T) with system size (O(N5)−O(N7)) often prevents
their use in many problems of practical interest involving large
molecules (viz., protein-ligand interactions, surface catalysis,
etc.). With the advent of hybrid models such as QM/MM1

and ONIOM,2 it has become possible to study chemically
active regions of a large molecular system (for example, active
site of an enzyme) with a high level of theory. Nevertheless,
broadly applicable methods, which can treat the whole
molecule at the same high level of theory at a reduced
computational cost, are desirable. On the basis of the
reasonable assumption that chemical interactions are mostly
local, fragmentation methods have been developed, which
involve independent calculations on subsystems of a molecule
at some high level of theory.3−9 The quantities obtained from
such individual calculations are then appropriately summed to
obtain the property of the whole system. Because high level
calculations are being done only on molecular subsystems,
these methods asymptotically scale linearly with system size.
The Molecules-in-Molecules (MIM) fragmentation method10

developed by our group is one such method. MIM’s usefulness
has been demonstrated for calculating accurate total energies,
optimized geometries, and spectroscopic (IR, Raman, VCD,
ROA, NMR) properties of a variety of large molecules.11−16

The MIM methodology has also been used to study a variety

of chemical aspects of large molecular systems such as
protein−ligand binding energies,17 supramolecular interactions
in foldamers,18 etc. In this context, the present work extends
the use of MIM to study multistep chemical reactions and
their corresponding energy profiles.
To obtain a potential energy curve (PEC) of a reaction, the

energy is plotted as a function of the corresponding reaction
coordinate. In a multistep chemical reaction involving several
transition states and intermediates, as the reaction proceeds,
the bonding configuration of the molecule often changes,
necessitating a change in the fragmentation scheme of the
molecule. This change in fragmentation scheme during the
course of a reaction results in a discontinuity in the energy
profile. Such discontinuities are very prevalent in MD
trajectories obtained from QM/MM and ONIOM calcu-
lations, especially in cases where the boundary between QM
and MM region evolves, for example, solvated ions.19,20 In
such an example, the discontinuity occurs whenever there is an
exchange of atoms between the QM and MM regions during
the simulation. This change in the level of theory for the
exchanged atom appears in the form of sudden shifts in the
potential energy and forces, potentially leading to unstable or
error-prone MD simulations. Several models have been
proposed to solve this problem of discontinuity in the time
evolution of such systems in the context of molecular
dynamics.19−30 Popular schemes include the ONIOM-XS
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method20 and the Adaptive-Partitioning QM/MM method.21

Both of these methods involve incorporating a buffer region
between the QM and MM spheres, which then allows the use
of smoothing functions to remove the discontinuities in the
energy and forces when atoms enter or leave the buffer zone.
This Article deals with the calculation of potential energy

curves for multistep chemical reactions involving bond
rearrangements (bond formation, bond breaking) in each
step. We are most interested in accurate calculations of the
energies of reaction intermediates and the corresponding
activation barriers leading to their formation. Unlike MD
trajectories, reaction coordinate diagrams in quantum
chemistry are drawn using only the stationary points of the
PEC, which means that the fragmentation schemes could be
predefined, and not necessarily be determined on the fly.
Consequently, the region (or point) of discontinuity in the
energy profile could be foreseen, which is generally not the
case in dynamics studies. While many different fragmentation
approaches exist in the literature, and have been used
extensively to study the energy profile of chemical
reactions,31−37 their main focus has been the accurate
calculation of the energy barriers so as to decipher the lowest
energy pathway of a complex chemical reaction. In the present
work, we focus on a problem that has received less attention,
the discontinuities in the potential energy curve associated
with the change in the fragmentation scheme during the
course of a multistep reaction. The discontinuous energy
curves obtained from MIM calculations are made continuous
by appropriately shifting them relative to each other. While the
ideas are demonstrated using DFT methods for relatively small
systems for calibration purposes, they should be broadly
applicable, and future work will be aimed at applications for
systems that are too large to study using accurate correlated
electronic structure methods.

2. METHOD

2.1. MIM Methodology. Molecules-in-Molecules
(MIM)10 is a multilayer fragmentation-based method, which
can be used to study large molecules uniformly at a high level
of theory with asymptotically linear scaling. To capture
interfragment and long-range interactions in the full molecule,
multiple layers with different fragmentation schemes and levels
of theory can be combined in MIM. Briefly, the molecule is
first divided into nonoverlapping fragments by cutting
nonpolar single bonds (e.g., C−C bond). Each fragment
interacts with neighboring fragments according to a well-
defined criteria (connectivity-based or distance-based) to yield
primary subsystems.10 In general, the subsystems are over-
lapping in nature, and overcounting of the overlapping regions
is taken into account via the inclusion−exclusion principle. The
summation of the energies of the subsystems at some high
level of theory (after capping the dangling bonds with
hydrogen atoms38) then yields the energy of the molecule,
Er
high (where r is a generic parameter that defines the

fragmentation scheme), and is termed as a 1-layer model
(MIM1) within the MIM formalism. Thus:

=E ErMIM1
high

(1)

The missing long-range interactions in MIM1 can be
approximated by using a low level of theory to yield a two-
layer model (MIM2), as follows:10

= − − ∞E E E E( )r rMIM2
high low low

(2)

Here, Elow
∞ represents a calculation on the full molecule at a

low level of theory. Similarly, an n-layer model can be
developed with different types of interfragment and long-range
interactions.15

2.2. MIM for Chemical Reactions. A reaction coordinate
diagram (or energy profile) of a chemical reaction is a
qualitative representation of the minimum energy path
traversed by the reacting species on the potential energy
surface (PES). Typically, optimization calculations are done
on the structures that represent stationary points on the
potential energy curve (PEC), and the energies of the
optimized structures are then plotted with respect to an
arbitrary reaction coordinate to represent the energy profile of
the reaction. In addition, intrinsic reaction coordinate
(IRC)39−41 calculations are often done to confirm the nature
of the reacting species associated with the individual transition
states.
If the molecules involved in the reaction are large enough, it

becomes difficult to study them using conventional quantum
chemistry methods. Hence, MIM fragmentation method can
be adapted to obtain optimized energies of all of the stable and
transient chemical species involved in the reaction. The first
step in any MIM calculation is the selection of a fragmentation
scheme, based on which its energy will be calculated. While
drawing a potential energy curve (PEC) for a chemical
reaction, our approach is to keep the fragmentation scheme
unchanged during each reaction step, so that the energy
barriers could be determined without any errors from having
different fragmentation schemes. However, the task of
selecting a single fragmentation scheme for the transition
state, and the adjoining reactants and products, is nontrivial
because the bond order between multiple atom pairs may
change as the reaction proceeds. As mentioned earlier, only
single nonpolar bonds are allowed to break to form fragments.
However, in the case of a chemical reaction, a bond that is
single in the reactant may not remain so in the transition state
or product. Therefore, for the fragmentation scheme to remain
consistent throughout the reaction step, the scheme is chosen
on the basis of the structure of the transition state (e.g., from
chemical intuition, or, in more complex cases, derived from a
computationally efficient low level of theory). The reason
behind this choice is that the structure and connectivity of a
transition state clearly indicate the bonds that are going
through a bond order transition, which helps in selecting a
suitable fragmentation scheme for the reaction step. In a given
step of a reaction, the change in chemical structure is localized
to a small part of the molecular system, which includes
changes in bond order, transfer of an atom (or a group), etc.
Because the bond orders in that local region are uncertain, that
part needs to be confined in a single fragment, whereas the rest
of the molecule can be fragmented as usual, that is, by
breaking nonpolar single bonds. Most of the reactions of
practical interest involve multiple steps having several
intermediates and transition states. In such cases, each step’s
fragmentation scheme needs to be chosen on the basis of the
corresponding transition state. However, in such a model, an
intermediate (which represents a common point for any two
consecutive reaction steps in a coordinate diagram) must be
calculated using two different fragmentation schemes, which
leads to a discontinuity in the potential energy curve of the
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reaction. The present work attempts to find solutions to fix
this discontinuity in the energy profile of reactions.
The way to study a chemical reaction using MIM, and the

resultant discontinuity that arises in the energy profile, can
best be understood with the help of an example. To this end, a
simple intramolecular hydrogen transfer reaction (keto−enol
tautomerism) was selected for illustration purposes. Figure 1

shows an interconversion between two enols (differing by a
methyl substitution), via a keto intermediate. It is a two-step
reaction involving two transition states and an intermediate.
To describe the associated fragmentation schemes, a 3D
representation of the reaction is shown in Figure 2.
In the first step of the reaction, the hydrogen of the hydroxyl

group transfers to the α-carbon on the right, which results in
the formation of a ketone from an enol. The net effect of this
reaction is the change in bond order of the carbon−oxygen
bond from 1 to 2, whereas that between the right α-carbon
and carbonyl-carbon changes from 2 to 1. This region where
the change in bond orders takes place (see transition state-1 in
Figure 2) is confined in a single fragment, represented by the
blue shaded region in Figure 3a. The rest of the molecule can
be fragmented as usual, that is, based on whether the bond
being broken is a single nonpolar bond or not. Because of the
small size of the molecule used in this example, a number-
based scheme is used to form subsystems; that is, the primary
subsystems are formed by combining two adjacent non-
overlapping fragments. This particular fragmentation scheme is
then used to optimize the structures associated with the first
step of the reaction, reactant (R), transition state-1 (TS1), and
intermediate (I) (refer Figure 2) using MIM2 [M06-2X42/6-
31+G(d,p):M06-2X/6-31G], where the colon separates the
levels of theory used in the high and low layers. An IRC
calculation is also done to ensure that TS1 connects to the
specified reactant and product. In the second step, the

hydrogen atom on the left α-carbon transfers to the oxygen
atom resulting in a keto to enol isomeric conversion. As
described for the first reaction step, the fragmentation scheme
for the second step was chosen on the basis of the
corresponding transition state (transition state-2 in Figure
2), which is depicted in Figure 3b.
Notice that Intermediate (I) must be computed (optimized)

twice, because it is involved in both reaction steps. After
obtaining the optimized energies of all of the reacting species
using their corresponding fragmentation schemes, a plot of the
reaction energy profile is obtained, as shown in Figure 4.
Because the intermediate’s energy was computed using two

different fragmentation schemes, there are two points
corresponding to it on the energy profile, which is a form of
discontinuity in the energy curve. The energy difference
between the two schemes at the intermediate’s geometry is
quite small, 0.4 kcal mol−1, not surprising because the two
steps differ only by a methyl substitution. To determine the
accuracy of the MIM method with respect to the full molecule
calculation, the PEC of the reaction obtained using M06-2X/
6-31+G(d,p) (which is the MIM2 high level theory) was
drawn together with the curves obtained with MIM2 (Figure
5).
A generalized procedure of shifting the curves to remove the

discontinuities can be formally translated into a set of
mathematical equations for any given network of chemical
reactions. For every two-step process (say ith and jth steps) in
a reaction network involving a common intermediate (Ik), the
following equality needs to hold for the PEC to be continuous:

+ = + ⇒ − = −x E x E x x E Ei i j j i j j i
I I I Ik k k k

(3)

where xi and xj are unknown variables representing the shifts
in the ith and jth reaction steps’ curves, and Ei

Ik and Ej
Ik

represent the energies of intermediate Ik obtained using the
ith and jth steps’ fragmentation scheme, respectively. The RHS
of eq 3 is nothing but the energy difference (or discontinuity)
for the involved intermediate (Ik) between the two
fragmentation schemes (i and j). Equation 3 is just a
mathematical representation of the condition that the
intermediate energies obtained from the conflicting fragmen-
tation schemes need to coincide with each other after shifting
their respective curves. To correct all discontinuities in the

Figure 1. Methyl cyclopentanone−cyclopentenol interconversion
through intramolecular hydrogen transfer.

Figure 2. 3D representation of methyl cyclopentanone−cyclopentenol interconversion through intramolecular hydrogen transfer.
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PES of a given chemical reaction network, eq 3 for every two-
step process in the reaction network needs to be solved
simultaneously to obtain the set of xi’s (shifts) corresponding
to each reaction step, which makes the whole PES continuous.
However, because eq 3 represents a system of linear equations,
its solution depends on the number of equations relative to the
number of unknown variables (xi’s) present in the system,
which further depends on the type of reaction network under
study.
The keto−enol tautomerism (Figure 2) being a simple two-

step linear reaction is a good starting point to demonstrate the
working of the mathematical procedure outlined above.
Because this reaction has only two steps, and hence one
intermediate, only one mathematical condition can be written
(using eq 3) to solve for the discontinuity at the intermediate:

− = − = −x x E E 0.4 kcal mol1 2 2
I

1
I 1

(4)

or in the matrix form as

=x bA (5)

where

= − = = − =x b
x
x E EA (1 1), , and 0.4

1

2
2
I

1
I

(6)

Because there are two unknown variables (x1,x2) and only one
equation to solve, eq 4 is underdetermined. In this work, we
obtain a physically motivated solution corresponding to the
least norm (∥x∥2). The minimum norm (“least shifted”)
solution can be found by calculating the pseudoinverse43

(Moore−Penrose inverse) of matrix A (usually using singular
value decomposition (SVD)), and is formally written as
follows:

= +x bA (7)

where A+ represents the pseudoinverse of A. Solving for x
using eq 7 for the given values of A and b in eq 6 gives x1 = 0.2
and x2 = −0.2, which physically means that the first and
second reaction steps’ curves need to be shifted by 0.2 kcal
mol−1 in the upward (positive) and downward (negative)
directions, respectively, for the PEC to be continuous. In this
case, the two reaction steps’ curves need to be shifted equally
toward each other to obtain a least shifted continuous PEC for
the whole reaction, consistent with the simple intuition for a
two-step reaction. The resultant shifted curve is shown in
Figure 5b. Moreover, because the whole curve has been shifted
by the same amount, this fixes the discontinuity in the energy
profile while keeping the relative energies between the
involved chemical species intact. As discussed in section 4,
the same protocol can be used to obtain a continuous PEC for
any linear multistep reaction network. Equation 3 holds for
multistep cyclic and branched reaction networks as well, and is
discussed in detail in section 4.3.
In addition to energies, the forces would also be

discontinuous in the case of a change in the fragmentation
scheme while dynamically traversing the PES, potentially
leading to faulty MD simulations. In the stationary picture,
however, only the optimized energies of the intermediate are
needed with respect to the two conflicting fragmentation
schemes. The forces on the optimized geometry are zero, only
with respect to the fragmentation scheme within which it is

Figure 3. Fragmentation schemes for (a) transition state-1 (TS1) and (b) transition state-2 (TS2).

Figure 4. Energy profile of methyl cyclopentanone−cyclopentenol
interconversion obtained using MIM2 method.
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optimized. If the fragmentation scheme changes during the
optimization procedure itself, then the discontinuous forces
may result in wandering behavior of the optimization steps,
which in turn may cause the procedure to take a large number
of steps to complete (or to not even able to find the
minimum). However, unlike MD simulations, fragmentation
scheme during an optimization procedure can be kept
constant, thus circumventing the need to make the forces
continuous.

3. COMPUTATIONAL DETAILS

To study discontinuities in reaction coordinate diagrams,
pericyclic reactions were chosen because of their concerted
mechanism,44,45 which makes them ideal to study using the
MIM fragmentation method. The energy profiles for all
reactions were calculated using MIM2. In particular, all
molecular structures associated with the stationary points for
each reaction were optimized using MIM2, with M06-2X42/6-
311++G(3df,2p) and M06-2X/6-31+G being the high and low
levels of theory, respectively. For illustrative purposes, the
density functional was kept the same at both layers to
minimize any error due to the difference in quality of the levels
of theory. Formally, there is no restriction in using two
different levels of theory although compatibility should be
taken into account (as in ONIOM2). A number-based scheme

was used to form primary subsystems by combining two
adjacent fragments for the high layer calculation. The energy
curves were also obtained without fragmenting the molecule at
the M06-2X/6-311++G(3df,2p) level of theory to verify the
accuracy of the MIM2 method. IRC calculations were carried
out for every transition state to confirm the structure of its
associated reactant and product. All computations were
performed using the Gaussian 16 program package46 with
the MIM method being implemented through an external Perl
script.

4. RESULTS AND DISCUSSION

4.1. Synthesis of Endiandric Acid A. The reactions
involved in the synthesis of endiandric acid A47 were
investigated using MIM2. Endiandric acid A is formed through
a cascade of pericyclic reactions as shown in Figure 6. A 3D
representation of this reaction, showing optimized geometries
of all of the involved chemical species, is portrayed in Figure 7.
In the first step of the reaction, the eight-membered ring
electrocyclizes (6π) to yield a six-membered and a four-
membered ring. This cyclooctene derivative was confined in a
single fragment in the fragmentation scheme of step-1 (Figure
8a). The product obtained in the first step (which is the
intermediate for the whole reaction) undergoes an intra-
molecular Diels−Alder cycloaddition resulting in the requisite

Figure 5. Energy profile of methyl cyclopentanone−cyclopentenol interconversion: (a) as obtained from MIM2 calculation, and (b) obtained after
shifting the MIM energy curves.

Figure 6. Reaction for the synthesis of endiandric acid A.
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product, endiandric acid A. The associated diene and
dienophile were enclosed in a single fragment (Figure 8b) to
obtain the fragmentation scheme for the second step of the
reaction.
The energy profile of the individual reaction steps obtained

using their respective fragmentation schemes is shown in
Figure 9a. The actual PEC for the reaction, obtained without
fragmentation, is also depicted in this figure. Although the
total energy difference between the MIM curve and the actual
curve is around 1 kcal mol−1, the curves run parallel along the
reaction coordinate, indicating very small differences in the
relative energies (e.g., activation energies) between the two
curves, which are the target quantities of interest in any

chemical reaction. The energy difference between the two
fragmentation schemes at the point of discontinuity is 0.3 kcal
mol−1, which is quite small (as compared to the reaction
barriers) due to the comparable size of the fragments in the
two fragmentation schemes (Figure 8). The curves obtained
from the MIM calculations are shifted equally toward each
other to obtain a continuous MIM energy curve (Figure 9b).
More specifically, the following equation can be written (using
eq 3) for this reaction:

− = − = − −x x E E 0.3 kcal mol1 2 2
I

1
I 1

(8)

Following the same procedure as described for the keto−enol
reaction in section 2, we obtain x1 = −0.15 and x2 = 0.15,

Figure 7. 3D representation of the synthesis of endiandric acid A.

Figure 8. Fragmentation schemes for (a) transition state-1 (TS1) and (b) transition state-2 (TS2).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00152
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F



meaning PECs for reaction steps 1 and 2 need to be shifted by
0.15 kcal mol−1 in the downward (negative) and upward
directions (positive), respectively, for the whole curve to be
continuous. This shifting makes the MIM energy profile
continuous while preserving the original activation energies in
the individual reaction steps.
4.2. Pericyclic Reactions in Colombiasin Synthesis.

The synthesis of Colombiasin involves a series of pericyclic
reactions.48 This three-step reaction (Figure 10) was studied
using MIM2. The reaction starts with the electrocyclic ring
opening of the highly constrained cyclobutene derivative. In
the next step, an electrocyclic ring closure occurs to form a
very stable six-membered ring, and, finally, the molecule
undergoes an intramolecular hydrogen transfer to attain
aromaticity in one of its rings. These steps are illustrated in
Figure 11, along with all of its optimized reacting species. The
fragmentation scheme for each step was chosen on the basis of
the corresponding transition state, which shows where the
reaction is localized (Figure 12).
The energy profile of the whole reaction as obtained from

MIM2 calculations is depicted in Figure 13a. Because the
reaction passes through two intermediate configurations, two
discontinuities are present in the PEC (0.6 kcal mol−1 at
intermediate-1 (I1), and 1.5 kcal mol−1 at intermediate-2
(I2)), and hence two equations need to be written to solve for
the discontinuities in the PEC:

− = − = −x x E E 0.6 kcal mol1 2 2
I1

1
I1 1

(9)

− = − = − −x x E E 1.5 kcal mol2 3 3
I2

2
I2 1

(10)

Using eq 7, the set of xi’s that provide a continuous curve with
minimum ∥x∥2 can be obtained, x1 = −0.1, x2 = −0.7, and x3
= 0.8. Hence, for the PEC to be continuous, first, second, and
third steps’ curves need to be shifted by 0.1 kcal mol−1 in the
downward direction, 0.7 kcal mol−1 in the downward
direction, and 0.8 kcal mol−1 in the upward direction,
respectively (Figure 13b). Notice that the discontinuity
between the second and third reaction steps (1.5 kcal
mol−1) is relatively larger than other cases in this study.
This is a consequence of the significant change in fragment
size in going from step 2 to step 3 (Figure 12). In the
fragmentation scheme for step 2, the whole six-membered ring
is confined in a fragment (green shaded region in Figure 12b),
whereas in step 3, only a small enol unit (pink shaded region
in Figure 12c) is one of the largest fragments. This disparity in
fragment sizes in going from one reaction step to another may
give rise to large discontinuities in the PEC.

4.3. Multistep Nonlinear (Branched and Cyclic)
Reaction Networks. A nonlinear reaction network can be
a complex web of chemical species interconnected to one
another through multiple mechanistic routes. Unlike a linear
reaction network, a nonlinear (cyclic and branched) reaction
network may not have a definite starting reactant and end
product. Broadly, certain features can be attributed to such
reactions, which are common to all nonlinear networks. For
instance, a chemical species may be formed through more than
one reaction pathway. In such a case, the concerned species is
connected to more than two transition states, due to which
more than two different fragmentation schemes may come in
conflict for a single molecule. Consequently, multiple equal-

Figure 9. Energy profile for the synthesis of endiandric acid A (a) as obtained from MIM2 calculation and (b) obtained after shifting the MIM
energy curves.

Figure 10. Pericyclic reactions during the synthesis of Colombiasin.
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ities (eq 3) need to be satisfied to fix the discontinuity for a
single species, in contrast to linear reaction networks where
only one conflict (and, hence one eq 3) for one intermediate

needs to be resolved between two fragmentation schemes. For
example, if a species is connected to three transition states, and
hence needs to be computed using three fragmentation

Figure 11. 3D representation of the pericyclic reactions involved in the synthesis of Colombiasin.

Figure 12. Fragmentation schemes for (a) transition state-1 (TS1), (b) transition state-2 (TS2), and (c) transition state-3 (TS3).
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schemes (say a, b, and c), then, to solve the resulting

discontinuity, three eq 3’s (between schemes a and b, a and c,

and b and c) need to hold simultaneously for the intermediate

of interest. In general, if a chemical species in a reaction

network is connected to n transition states, and hence needs to

be calculated using n fragmentation schemes, then the number

of equalities (from eq 3) that needs to be satisfied for that

species is −n n( 1)
2

. Hence, the number of equations to be solved

simultaneously are usually more than the number of unknown

variables xi (amount of shift in a reaction step), resulting in an

overdetermined system of equations to solve for all

discontinuities in a nonlinear reaction network.
Using these ideas, a protocol to resolve discontinuities in a

general hypothetical cyclic reaction (Figure 14) is discussed.

In the given cyclic reaction, every chemical species can be

obtained from every other species. As such, there is no specific

starting or end point of this reaction. Overall, there are six

distinct reaction steps in this cyclic reaction, and hence six

unknown variables (x1,x2,..., x6) corresponding to shift in each

of the reaction steps (which is also equal to the total number

of transition states, and fragmentation schemes in the reaction

network) need to be determined to make the whole PEC

continuous. The given reaction network can also be

interpreted as a combination of various two-step processes

(B⇌A⇌D, B⇌A⇌C, C⇌A⇌D, etc.) in which each of the

four species is acting as an intermediate for three different two-

step processes. This means that every species is connected to

three different transition states, and hence needs to be

calculated using three different fragmentation schemes.

Written explicitly (using eq 3), we form the following

overdetermined system of equations:

− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ
− = − = Δ

x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E
x x E E E

1 2 2
A

1
A

21
A

2 6 6
A

2
A

62
A

1 6 6
A

1
A

61
A

2 3 3
B

2
B

32
B

3 5 5
B

3
B

53
B

2 5 5
B

2
B

52
B

3 4 4
C

3
C

43
C

4 6 6
C

4
C

64
C

3 6 6
C

3
C

63
C

1 4 4
D

1
D

41
D

4 5 5
D

4
D

54
D

1 5 5
D

1
D

51
D

(11)

The above set of equations can be written in the matrix
notation as follows:

=x bA (12)

where
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For most cases, an exact solution does not exist for
overdetermined systems; therefore, a least-squares solution is
usually found by minimizing ∥b−Ax∥2, which can be
interpreted as an optimum solution to the problem. However,

Figure 13. Energy profile for the pericyclic reactions in the synthesis of Colombiasin (a) as obtained from MIM2 calculation and (b) obtained
after shifting the MIM energy curves.
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for the problem at hand (and potentially for other nonlinear
reaction networks as well), the matrix A is rank deficient,
meaning its columns are not linearly independent. In such a
case, the least-squares solution with the smallest ∥x∥2 can be
determined. This solution is unique and is called the minimum
norm least-squares solution. The desired solution has the same
mathematical form as that for an underdetermined problem
(eq 7), that is:

= +x bA (14)

where A+ represents the pseudoinverse of A. This least-squares
solution holds even when matrix A has full column rank.
Physically, the solution obtained from eq 14 does not make
the curves exactly continuous, but only least discontinuous.

Although the protocols developed in this work cater to the
discontinuities in PECs inherent to the fragmentation
methods, the mathematical treatment itself is quite general
and independent of the origin of the discontinuity. Most
commonly, energetic discontinuities in a PEC seem to arise
due to a mismatch in the levels of theory between two
consecutive steps of a chemical reaction. For instance, while
studying a reaction with a multireference method like
CASSCF, different steps of a chemical reaction may require
the use of different active spaces, resulting in a qualitatively
similar discontinuity in the PEC, which can be easily resolved
with the proposed method.

5. CONCLUSIONS
In the present work, the energy landscape of chemical
reactions has been studied using MIM fragmentation method.
Because of structural changes in the reacting species during the
progress of a reaction, the fragmentation scheme of the
participating molecule was modified accordingly. To avoid any
errors in energy barriers due to differences in the
fragmentation scheme, the scheme was kept consistent
throughout a step of the reaction. Consequently, the points
on PEC corresponding to intermediate geometries became a
point for transition between two fragmentation schemes, and

hence also a point of discontinuity. The magnitude of
discontinuity between the PECs for the conflicting fragmenta-
tion schemes was observed to be in the range of 0−2 kcal
mol−1, quite small as compared to activation energies.
Moreover, the discontinuities do not seem to be dependent
on system size, but rather on the difference in fragment sizes in
the involved fragmentation schemes. For linear reactions, the
discontinuities were removed by shifting the MIM energy
curves (using the minimum norm solution) such that the
energies of intermediates obtained from the conflicting
fragmentation schemes coincide with each other, whereas for
the inconsistent case of nonlinear reactions, the discontinuities
were minimized using the minimum norm least-squares
solution.
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