IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 1, JANUARY 2019 473

Spatial Transmitter Density Allocation

for Frequency-Selective Wireless
Ad Hoc Networks

Songtao Lu™, Member, IEEE, and Zhengdao Wang

Abstract— We consider a network of pairs of nodes that
perform ad hoc simultaneous communications over frequency-
selective channels. We assume that the whole frequency band
is divided into a number of subbands, and each transmitter can
only use one subband. Assuming that the network is geometrically
infinite, we use the transmission capacity (TC) as a measure of
the network throughput. We consider the problem of allocating
nodes to the subbands so that the total TC is maximized,
under the constraint of a fixed total spatial node density. The
optimization problem turns out to be nonconvex. We investigate
the detailed structure of the functions involved in the optimization
and identify a set of properties of the optimal transmitter density
over the subbands. An iterative resource allocation scheme with
low complexity is derived to obtain the global optimal solution
of the TC maximization problem. The solution can be loosely
interpreted as a water-filling solution for a nonconvex optimiza-
tion problem. Based on numerical simulations, it is shown that
the optimal solution obtained through the theoretical analysis is
consistent with the one obtained through an exhaustive search,
which reveals that the outage probability and the total spatial
transmitter density are the keys to determining the network TC.

Index Terms— Transmission capacity, frequency-selective
networks, nonconvex optimization, Lambert function.

I. INTRODUCTION

RANSMISSION capacity (TC) is a useful metric to

measure the throughput of wireless communication net-
works. It is defined as the number of successful transmis-
sions per unit area under a target outage probability [2], [3].
Stochastic geometry is often employed in TC analysis to model
the spatial distribution of communication nodes and their
connections. For example, the limits of successful transmission
data rates with increasing number of users and number of base
stations (BS) in a cellular network have been quantified in
the problem of wireless network densification [4]. The trans-
mission throughput can be improved by optimizing system
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parameters. Recently, stochastic geometry is also employed in
some emerging applications of wireless communications and
the effectiveness of the methodology has been demonstrated
with both numerical and real experiments for various wireless
networks, such as underwater networks [5], general cellu-
lar networks [6], [7], vehicle-to-vehicle (V2V) safety com-
munications [8], energy harvesting device-to-device (D2D)
communications [9], millimeter wave (mm-wave) ad hoc
networks [10], [11], etc.

For frequency-flat networks, the TC framework [6] can
provide a quantitative network-level performance analysis for
spectrum management. The tradeoff between bandwidth and
signal-to-interference plus noise ratio (SINR) in the spatial
random ad hoc network was studied in [12], where the TC
was maximized with respect to the spatial transmitter density
under a fixed rate requirement. The coverage probability maxi-
mization problem in downlink cellular networks was proposed
in [13] and solved with respect to optimizing transmit power,
BS density and transmit power density. In heterogeneous
wireless networks, the sum of the individual TC over multiple
bands for D2D communications was optimized in terms of the
user density in flat fading channels [14], where the TC maxi-
mization problem was a convex problem within a certain range
of the outage probability and therefore solved easily. Layered
transmission strategies were proposed in [15], where there
were two tiers of BSs considered: macro-tier and femto-tier.
Each type of the BSs was modeled as a homogeneous Poisson
point process (PPP) independently and occupied a number of
subbands over the whole transmission spectrum either deter-
ministically or randomly. Then, the outage probability versus
the proportion of the frequency resource allocated between two
tiers was analyzed numerically. Also, the optimal allocation
of the transmitter density in spectrum sharing systems was
proposed in [2] to maximize the TC over the shared spectrum.
In general, there is already a body of results in the literature
about the performance analysis and resource allocation in
terms of system parameters (e.g., transmission power, trans-
mitter/user density, target outage probability, retransmission
rate, etc.) for homogeneous and heterogeneous networks; see
e.g., [6], [15]-[18], etc.

For frequency-selective networks, the channel outage proba-
bility varies with frequency. Such outage behavior in underwa-
ter networks was discussed from a physical layer perspective
in [19] and [20], which takes both the transmission burstiness
and path loss properties into account. Furthermore, due to
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the effect of long time delay and busy terminals, the packets
collision probability in underwater communication channel
is very high, which was verified by both experiments and
simulations [21]. Spectrum sharing schemes under frequency-
selective channels were also examined in [22], where several
independent mobile networks share and/or partially share
the same spectrum resource. In this work, the effect of
the frequency-selective fading on the signal-to-interference
ratio was investigated. With the analytical outage probability,
the network throughput was studied in [5] for underwater
communications, where the theoretical model was verified
with a ray tracing simulator. Leveraging resources, e.g.,
spatial-reuse, with some elaborated protocols is one of the
promising ways of improving the network throughput, such as
underwater acoustic networks, where the field experiment has
been conducted and the results are shown in [23].

Transmitting packets over multiple frequencies for
frequency-selective channels is a typical practice. Maximizing
the spectral utilization for such transmissions is an important
optimization problem. Insight on the TC maximization over
frequency-selective communication networks provides guid-
ance for designing practical scheduling protocols, especially
under a constraint of a total spatial density of transmitters.
Unfortunately, there are few works on the tradeoff between
the spatial density of transmitters and outage probability for
frequency-selective pathloss. In [5], the optimal allocation of
the transmitter density for each frequency band was given for
maximizing the throughput of an underwater communication
work without the outage probability consideration. Currently,
there is no analytical result on the optimal transmitter density
allocation across multiple frequency subbands, for a given
total spatial transmitter density over multiple frequencies and
the outage probability constraint for each subband.

A. Contributions

In this paper, we focus on the performance analysis of a
wireless network over frequency-selective channels, quantify-
ing the TC limit of the network with partitioning the spatial
node density into different frequency subbands. Given the
spatial transmitter density and outage probability constraint,
the network throughput is maximized by allocating the trans-
mitter density in each subband. The problem is formulated
as an optimization problem which turns out to be noncon-
vex. According to Karush-Kuhn-Tucker (KKT) conditions,
the local optimal points are obtained in terms of the Lambert
function. Through studying the properties of the solutions, it is
interesting that most of local optimal points are excluded such
that the complexity of finding the global optimal solution is
reduced significantly. There is a line of work that focuses on
solving the nonlinear sum-of-ratios problems. The proposed
problem can be also solved by some iterative algorithms with
guaranteed convergence to the global optimal solution. For
example, an algorithm proposed in [24] is based on solving
a sequence of convex programming problems, shorten as the
SCP algorithm in this paper. The optimality of the solution
obtained through our proposed algorithm is also verified with
numerical examples and compared with the SCP algorithm.

This paper gives a solution for the maximization of the
network TC, in the sense as defined in [3], under a total
transmitter density constraint in wideband networks where the
constraint can be from zero to infinity (i.e., the density of
the network is from sparse to extremely dense). The main
contributions of the work are summarized as follows:

1) Given the total transmitter density in a network, the trans-
mission strategy over multiple subbands is proposed
where the network TC is defined and the network TC
maximization is formulated as a nonconvex optimization
problem.

2) Based on the convexity property of the objective function
and properties of the KKT conditions, the complexity of
finding the global optimal solution for the network TC
maximization is significantly reduced, where only one-
dimensional search in terms of the Lambert function is
involved.

3) Through the theoretical analysis, the solution of solving
the TC maximization problem is provided (in almost
closed-form), which optimally allocates the transmitter
density to frequency bins under the constraints of the
total transmitter density and outage probability.

In addition, we reveal some properties of the Lambert function
(we will see them later in Lemma 2 and Lemma 3) which are
used in the proof of the TC maximization problem. To the best
of our knowledge, these properties have not been identified
before.

B. Organization

The rest of the paper is organized as follows. A system
model is developed in Section II. The network TC is discussed
in Section III. The optimal solutions based on the KKT
conditions are given in Section IV. The properties of the
optimal solutions are analyzed further in Section V where the
challenges of the problems are also introduced. Section VI
studies how to reduce the complexity of finding the global
optimal solution. The complete solutions of this optimization
problem are presented in Section VII. Numerical simulation
results are reported in Section VIII and finally conclusions are
drawn in Section IX.

II. SYSTEM MODEL

We assume that the transmitters in a wireless network are
spatially distributed according to a homogeneous PPP with
density A in an infinite space, denoted as II(\) = {X.},
where X; € R? represents the location of the transmitter ¢.
Each transmitter has its corresponding desired receiver at a
fixed distance R away. We assume that the signaling overhead
between the transmitter and receiver is small and can be
exchanged perfectly. The transmitters send the packets with
equal power P independently and there is no coordination
involved.

The channel characteristics are modeled in two parts, path
loss and fading. The channel path loss in frequency-selective
channels is denoted as h(R, f,) at frequency f,. The channel
response of small fading from the transmitter to the receiver,
i.e., H, has a complex Gaussian distribution with zero mean
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and unit variance. Since the network is infinitely large, we let
the reference receiver be located at the origin. The received
SINR of this receiver at frequency f, is

P|H|?

SINR(f,) = el
( ) NO(fo)+I(fo)
where Ny(f,) denotes the power spectral density (PSD) of
noise, and I(f,) is the aggregate interference PSD received at
the origin, i.e.,

ey

P|H,|?

I(fo) = h(IXll. fo)

>

X €II(M)\Xo

)

where || X || represents the distance from X to the origin,
H,; denotes the corresponding channel fading, and X is the
position of the reference transmitter. Define the successful
transmission probability (or coverage probability) P, as the
probability that the received SINR is above the predefined
threshold 3, which is written as [19, eq. (17)] (see also
[25, eq. (9)])

P, (SINR(f,) > 5)

~exp (_Wﬁ BLACALS)

where L is the Laplace transform of the probability density
function (PDF) of the interference, A f denotes the bandwidth
of each subband. For a given (3, we have

PS(A) = exXp {_V(Rv f0)>‘ - U(Ra fo)} 4)

where U(R, f,) = Bh(R, fo)No(fo)Af/P and V(R, f,) can
be obtained based on which the path loss model is used. For
example, the expressions of V(R, f,) in frequency-selective
underwater communication scenarios and mm-wave channels
have been shown at [19, eq. (9)] (see also [5, eq. (5)]) and
[26, eq. (13)]. As a result, our proposed transmitter density
optimization is relevant to performance improvement in ad hoc
networks operating in these channel conditions. Such models
have been considered in other resource allocation problems
n [2], [13], and [14].

) Li(Bh(R. 1) )

III. PROBLEM FORMULATION

TC is defined by the number of successful transmissions per
unit area under a target outage probability € and expressed by

7—()‘) = bAPS(A)a po(A) <e (5)

where ¢ € [0,1] denotes the target probability, p,(A) = 1 —
P, () represents the outage probability, b = Blog,(1 + )
is the supportable ergodic rate (see, e.g., [S], [27]) and B
is the bandwidth. There is a tradeoff between the density of
transmitters and the individual link quality. Given 3, we know
that b is a constant which is ignored in the rest of this paper.

For the wideband communication networks, the total band-
width is divided into N subbands, where the bandwidth of
each subband is small enough such that the communication
can be considered as narrowband transmission, such as in
underwater communication networks [5]. We define the set
N = {1,...,N}. The carrier frequency of the ith subband
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Fig. 1. Example that the system ¢ occupies frequency f, ; and the system j

uses frequency fo ;.

is denoted as f,;,7 € N. For each subband, the transmitters
and receivers are separated by a fixed distance R;,i € N
and use the same transmit power due to fairness. The nodes
are also distributed according to a PPP, which is denoted
as TI(\;). Let \; represent the transmitter density at the ith
subband. We also assume that each transmitter only occupies
one subband, which is valid in practical applications, such as
in frequency-selective orthogonal frequency division multiple
access (OFDMA) systems [28]. Multiple users are assigned in
different subbands such that the best beam pattern at different
subcarriers can be adopted by each user.

We remark that the frequency-selective model considered
in this work is referred to as ultrawide band channels in [29],
since the path loss at each subchannel is dependent on subband
frequency [30], [31]. Applications of this model include under-
water communications and hybrid multiple-regulatory-bands
radio systems. For typical wireless communication systems,
where the carrier frequency is much larger than the bandwidth,
the path loss within the communication band is essentially
constant. For such cases, transmitter density allocation does
not offer gains compared to uniform allocation. However,
when the multiple subbands operate over different distances R;
(or transmit power), e.g., in multi-tier networks [32], the path
loss factor can still be different, rendering the transmitter
density allocation consideration valid.

Thus, for each R; there is a corresponding \; at
the ¢th subband, which is defined as system i, where
II(\;) NII(Aj) = 0,i # j,i,j € N. In Fig. 1, we show
an example there are only two systems ¢ and j which are
distinguished by red circles and blue squares.

A. Network Transmission Capacity

Assume that the outage probabilities over all subbands
are the same. The network TC is the sum of the individual
throughput across all subbands under the target outage prob-
ability € € [0,1] on each subband, which is defined by

N
FO9 AN =D 7i(N), poi(hi) e, Vi
=1

(6)
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where the throughput at the ith subband is 7, (\;) = X\ips.i(\i),
the corresponding outage probability is p, ;(Ai) = 1 —ps,i(A)
and the successful transmission probability is

V(Ri, fo,i)Ni — U(Ri, fo,)) - @)

If the impact of the transmitter density over multiple sub-
bands dominates, the interference limited regime is considered,
i.e., the case when % — 00. In this situation, the noise
part, ie., U(R;,a(fs,)), is negligible such as in 5G mm-
wave cellular networks [33], [34]. The successful transmission

Ps,i(Ni) = exp (—

probability becomes p; ;(\;) = exp (—V (R;, fo,i) i), and the
corresponding network TC is
f(>\1;~~'7 ZA eXP Rzafoz) z)a

where p,i(A\;) <€, Vi. (8)

The maximum TC can be obtained through setting
Of(Misee Xy s AN)/ON = 0 0F poi(N) < e
Otherwise, the 0pt1rna1 A; should be —In(1 —€)/V(R;, fo.i)-
Consequently, the optimal transmitter density is given by

A _min{_ In(1—¢) 1
i V(Ri; foi)  V(Ri, fo,i)

If the noise is not negligible, this case is of interest in the noise
limited regime. The corresponding network TC becomes

} C Yi. o (9)

f(>\1;~~'7 ZA eXP( Rzafoz) z)v
where poi(A;) <€ Vi (10)
with transmitter density A, 2 X exp(U(R;, foi))s

D(Ri,foﬁ‘) £ V(Ri,foﬁ‘) eXp(U(Ri,f(,J)), and ¢ £ mini
{eexp(U(Ri, fo,i)),1}. Then, problem (10) can be still
formulated in the form of problem (8). Note that when € = 1,
the problem is naturally reduced to the network throughput
maximization problem (a special case of the TC maximization
problem). Which regime a network is operating is dependent
on the specific factors or scenarios, such as the BS density
in 5G mm-wave cellular networks [13]. In the following,
we use the notations of problem (8) to illustrate the problem
of network TC maximization under the spatial transmitter
density constraint.

B. Network Transmission Capacity With Spatial Transmitter
Density Constraint

The total transmitter density A is fixed in physical scenar-
ios, so the maximum TC may not be achieved since every user
is scheduled with the equal priority under the assumption of
the homogeneity of the network. For each Ap, the maximum
network TC needs to be analyzed in terms of the transmitter
density over the wideband channel according to both the path
loss at different frequencies and distances of the desired links.
We will try to find appropriate transmitter density \; at each
frequency f,; such that f(A1,..., An) is maximized under a
given total spatial transmitter density constraint.

The optimization problem can be formulated as

maxir\gllize F1, ., AN)
iyVe
N
subject to Z Ai = Ap, (11a)
i=1
In(1 —¢) .
0<\<———2 v 11b
=T V(R fon)] ! (1)

where Apr is a constant, predetermined by the number of
transmitters per unit area in a network. The outage probability
constraint is considered in (11b), meaning that p,,(\;) =
exp(—V(Ry, fo.i)A\i) > 1 —e. Since the objective function (8)
is nonconvex with respect to \;, there are many max-

ima or minima that make the optimization difficult.

IV. OPTIMAL SOLUTIONS

In this section, the solutions of this nonconvex optimization
problem are provided. Letting z; = \; and a; = V(R;, fo.),
we obtain the optimization problem as

OP1: max1mlze f(z sz exp(—a;x;)
N
subject to Z T = Ap, (12a)
i=1
0<z; <, Vi (12b)
where a; > 0, v; = —M, and x £ [21,...,2x] € RV,

It is a resource allocation problem and also arisen in the
estimation of proportions [35].

Note that constraints (12a) and (12b) may be incompatible
with each other. Hence, there is a requirement for A7, which
is

N
0< A <) i,
i=1

meaning that A7 < —AcIn(1 — €) where A\c £ Zi\;l 1/a;.

13)

A. KKT Conditions

Since the function f;(z;) = x;e~ %% is a nonconvex
function, we can only get stationary points by the KKT
conditions of OP 1, which are denoted as x* € S, where
x* £ [27,...,75]) € RY and set S denotes all locally optimal
points, where the global optimal solution of max f(x) is

@, = arg max f(z"). (14)

First, we introduce Lagrange multipliers ¢ € R for the
inequality constraints 2; > 0, u € RY for the inequality
constraints xl < 7;, and a multiplier v € R for the equality
constraint Z _, T; = Ar. Then, we can obtain the Lagrangian

— Z rie” YT
i=1
N
—|—1/(Z xT; — A7)
i=1

L(x,q,p,v)=

—-q w+Zuz Ti — Vi)

15)
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and the KKT conditions [35] for i = 1,..., N as follows,

N
# 20, @i <y, ¢ =0, ptm0, Y ai=)r,
i=1
gy =0, pi(z; —7) =0, (16a)
—(e” T — gxe” ) — gf 4+ puf 4+ = 0. (16b)
Substituting (16b) to the complementary slackness condi-
tions (16a), we have
x; (1/* T Gl aixz‘e"““’:)) =0, (17)
(] —v) (z/* e aixz‘e*aix:)) =0. (18)
From (17), we know that either 2 = 0 or

. W ) -

€T: . =
ik a;

1
>0, k=0,1,2 (19)

where pf > 0, and Wy(2),k = 0,1,2, 2 > —e ™!, are the
Lambert function [36], i.e., the inverse function of x exp(x).
When z > 0, the Lambert function is a single-valued function,
denoted by Wy(z). When —1/e < z < 0, the Lambert func-
tion is a double-valued function which includes two branches,
denoted by W;(z) and Ws(z) respectively.

In order to simplify the KKT conditions further, we need
to give a definition of regions of each x; for the convenience
of discussion.

B. Definition of Regions

Based on the properties of the Lambert function, we define
three regions for z; as follows.

1) Definition of Region 0: When 0 < z; < 1/a,, Vi, there
is a unique value when v € [0, 1], which is

zi0(v) = —i Wo(ve) —1).

(3

(20)

We define this interval as Region 0.
2) Definition of Region I: From the properties of the
Lambert function [36], when —e~2 < v < 0, we know that

1 v 2
— < .137;71(1/) £ pl( ) < —,

% %} [¢%}

21

where p;(v) £ —(W,(ve) — 1) within (1,2] is uncorrelated
with a;, and this interval is defined as Region I. The subscript 1
indicates that the ith variable is in Region L.

3) Definition of Region II: Similarly, for the other branch
of the Lambert function, we have

)épQ(V) >2

Qi Qi

CL‘1'72(V 5 (22)
where pa(v) £ —(Wh(ve) — 1) within (2,00, and this part
is defined as Region II. The subscript 2 indicates that the ¢th
variable is in Region II.

Based on the above definitions, it is obvious that pa(v) >
p1(v) and z; 2(v) > ;1 (v) when —e™2 < v < 0.

The regions (0, I and II) in terms of z; are depicted in Fig. 2
and the corresponding regions in terms of v are illustrated
in Fig. 3.
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Fig. 3. Regions of the solutions in terms of the Lambert function.

C. Simplifying the KKT Conditions

For the slackness condition (17), we note that when z; = 0,
the increasing speed of f;(z;) achieves the maximum for all 4
which is df;(z;)/dz; = 1 when z; = 0. Thus, we have x} # 0.
Consequently, the expression of z is shown in (19).

Based on the previous definitions for the regions, the opti-
mal solutions can be simplified and given in Theorem 1.

Theorem 1: The KKT conditions of OP 1 should be 0 <
7 < i,

N
i=1
Wa((v* Me) —1
oy = DI T L e a7, — i, @23)
: iy ;
Wi(ve) — 1
;g = —&, k=0,1,2 otherwise. (23c)
; a;
where 1 > 0 and —1/e? <v* < 1.
Proof: See Appendix. B. [ ]
Remark 1I:

(i) For the case when z7, = v;, x7, does not change as
v* changes when we solve (23b) with dual variable p,
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since it is independent with other variables. Hence,
we can focus on the case when z7 5 # ;.

) If =7, = W)=l v, k = 0,1, we have
Wk(u e)—1= ln(1 —€), Wthh is independent of a;.
This result indicates that x7,,Vi are equal to ; at the
same time when A\p = —A¢ In(1 —¢).

Therefore, based on (i) and (ii), we will only consider
the case when x} < ;,Vi in Section V and Section VI

V. PROPERTIES OF THE KKT SOLUTIONS

In general, finding the global optimal solution for a noncon-
vex problem is not easy and the corresponding complexity is
exponential with respect to the problem dimension. However,
through observing the characteristics of the KKT conditions,
we know that there is a relationship among z, Vi. Then it is
possible to design an algorithm such that this problem can be
solved with low computational complexity. First, we study the
relationships of x;, Vi as follows.

A. Relationship Among Variables

From the KKT conditions, the two variables z; and x;‘f,

where 4,7 € N,i # j,Vi, j, keep a certain relationship, i.e.,

x¥ Q.
—t =L i#jijeN k=012 (24)
Tjge i
Hence, every x7, can be expressed by
* ay
Tik = —I] p = &1k (25)

3

where @ e al/ai.

B. Closed Form of the KKT Solutions

If 7, Vi are from the same branch of the Lambert function,
then according to (23a) we obtain

N N

* * _
E xr; = xl,k E fi = >\T~
i=1 =1

It is obvious that the closed form optimal solutions can be
given directly, which are

(26)

Ar

=N .
Ei:1§i
j=2,...,N.

*

L1k =

x;k = gjxika (27)

Remark 2: If x;, Vi are within Region 0, the objective func-
tion is concave, since d? f; (x;) /d*z; = a;(a;x; —2)e” %% < 0
when x; < 1/a; and f(zx) is separable. In this region, OP 1
is a convex optimization problem and therefore there is a
unique value for each =] given v*, which is the global optimal
solution of OP 1.

When v* = 0, ie., Eivzl xf = Zivzl 1/a; = ¢, the
objective function achieves the maximum value. If Ay > A¢,
the variables must be within Region I or Region II, which is
a complicated case. The reason is that the Lambert function
is a double-valued function in these regions. We will illustrate
this point in the next section.

C. Challenges of the Problem

There are two solutions for each x () when v < 0, so the
permutation of the possible combination of x7 | and x7 , where
i€ A je A, Ae N should be O(2Y) in (23a). In this case
it results in a large amount of computational complexity as
N increases, since we have to verify every possible combina-
tion to figure out the global optimal solution. If we can exclude
some solutions whose corresponding objective functions are
always local maxima or minima, the complexity of finding
the global solution can be decreased significantly. The idea is
to reduce the cardinality of set ST € S, where set ST includes
all the candidates of the global optimal solution.

In the next section, we will consider the properties of the
possible solutions that are given by the KKT conditions when
xf > 1/a,.

VI. CARDINALITY OF SET ST

In this section, we use two steps to reduce the cardinality
of set St in terms of N from exponential to a constant.

A. Reducing the Cardinality of Set ST From O(2V) to O(N)

Lemma 1: In the global optimal solution z*,
one optimal variable in Region II.

Proof: See Appendix. A. |

According to Lemma 1, it is clear that the number of
possible combinations of z7 ; and z7 , is reduced from O2N)
to O(N) where i € A,j € A, AeN.

Remark 3: In the proof of Lemma 1, only the convexity
of the objective function is considered, so the idea of the
proof is not just restricted for this problem. The conclusion
of Lemma 1 can be extended to more general problems where
the objective function has a similar convexity of the one in
OP 1. To be more specific, the statement is as the following,

Corollary 1: Consider problem

there is at most

N
max1mlze E gz J)z
xi,Vi
i=1
N

subject to Z T =c
i=1
where ¢ > 0 is a constant, g;(x;),Vi are convex when
T; > a:j where xl are some constants. Then, in the global
optimal solution, there is at most one variable that is strictly
greater than a:j
Proof: The proof of this corollary basically is the same as

the proof of Lemma 1, just by replacing the transition point
2/a; by xj and A\t by c. [ ]

Remark 4: Lemma 1 also implies that there is another case
that all the variables are in Region I.

Next, we need to figure out which variable should be in
Region II.

B. Reducing the Cardinality of Set ST From O(N) to O(1)

If we know which z should be in Region II, the algorithm
can be simplified further. Based on Lemma 1, in this section
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we consider the case that for z* € ST there is one z} in
Region II while other ones are in Region I.

First, we consider the simplest case where there are only
two variables. The result in this case will be very useful to
discuss the NV variables case.

1) Two Variables: Before the discussion, we need to intro-
duce two lemmas which give the inherent properties of the
Lambert function as follows,

Lemma 2: The absolute value of the derivative of W ()
is larger than the one of Wi (v) where —e~1 < v < 0.

Proof: See Appendix. C. [ ]

Lemma 3: The absolute values of the derivative of pq(v)

and ps(v) are arbitrarily close at v = —e ™! +dv when dv — 0.
Proof: See Appendix. D. [ |

Then, we consider the case which there are only two
variables, i.e., x = [z1,22]. Assume a; < az. When z} < 7,
1=1,2, OP 1 is reduced to

OP 2 :

maximize xie” 7 + xoe” 9272

subject to 1 + o = Ap,x1 > 0,22 > 0. (28)

Then there are two cases if one solution is in Region I and
the other is in Region II.

e Case 1: Define the function

v v
Ru(v) £ 210 (0) + aaa(v) = 220 1 200 g
al a9
There exists a v/ such that ¥;(v') = Ar and the
corresponding objective function is denoted as
/
PR N B (30)

ai ag

where pj & —(W;(V'e) — 1) and ply & —(Wa(v'e) — 1).
Applying Lemma 3 we have the relationship: —dp; /dv =
dpz/v when v — —e~2 and a; < as. The derivative of
¥1(v) is

dxi(v) _ _iﬂm(”)l 1 dpa(v)
dv ap dv as dv

1 1 d
as  a dv

where |dp(v)/dv| represents the absolute value of the
derivative of p; () and p2(v). Therefore, 31 () decreases
first.

Applying Lemma 2 we know that as v increases, X1 (v)
increases. After getting back to 2/ay + 2/az, ¥1(v) can
go to infinity.

Remark 5: ¥1(v) is decreasing first from A\c = 1/a1 +

€1V

1/as and increasing to infinity when v € (—e=2,0).
e Case 2: Define the function
v v
So(v) 2 215(v) + 221 (V) = ) ) 55,
ai ag
Similarly, there exits a v’ such that 35(v”) = Ar. Then,
the corresponding objective function is
/!
J2 — pl —/)1 + p2 —/)2 (33)

as al
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Fig. 4. The relationship between v’ and v for a1 < as.

where pf & —(W;(v"e)—1) and plj & —(Wa(v"e) —1).
Meanwhile, based on Lemma 2 and a; < as, we have

dXa(v) 1 dpl(l/)| 1 dpz(”)|
dv ay dv a1 dv

>0. (34)

Thus, X9 (v) is always greater than 2/a; + 2/as.

Remark 6: Y(v) is monotonically increasing from
Ac = 1/a; +1/ay when v € (—e2,0).

Lemma 4: For OP 2, under constraint X1 (') = )=
Ar, we have v < v/ when v/, V" € (—e™2,0).

Proof: See Appendix. E. |

In Fig. 4, we show the relationship between v and ' under
constraint %1 (') = Xa(v”) = Ar.

With the help of Lemma 4, we can obtain the relationship
between J; and Js by the following lemma.

Lemma 5: For OP 2, when Ay = 2/a1+2/as and a1 < as,
J1 > Jo always holds.

Proof: See Appendix. F. [ ]

If we can know J; > Jy or J; < Jy for all (') =
Yo(v") = Ar, then the smaller one can be excluded from set
ST. Based on Lemma 4 and Lemma 5, we will have Lemma 6.

Lemma 6: For OP 2 as Ap increases from A\p = 2/a; +
2/as to infinity, J; > Jo is always true, where the correspond-
ing [27 1. 23,,] = [ph /a1, ph/as).

Proof: See Appendix. G. [ ]

Thus, for OP 2, the solution [z7 5,25 1] = [py/a1, p/az]
can be excluded from ST. This conclusion is also very useful
for the case where there are N variables as follows.

2) N Variables: With Lemma 1 and Lemma 6 in mind,
we have the following theorem:

Theorem 2: For OP 1 if x7,Vi come from both Region I
and Region II, set ST involves N — 1 variables in Region I
and only one in Region II with a,,,x, Where the corresponding
Umax = max{a;}, Vi.

Proof: See Appendix. H. |

From Theorem 2, if z},V: come from both Region I and
Region II, set ST only involves one possible combination in
terms of both z; 1 and z;». In this case, we define a function

22(1///
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TABLE I
OPTIMAL ALLOCATION SCHEME

Ar < Ao

Case 1: We have fiax = fo.

Case 3: E[Tnin
Ao <A1 <2X¢

Case 2: \¢ < Ar < 2\, we have fi.
< Ar <2\

Step 1: Find 2!

Step 2: Get f\y) and [} by (36).

Step 3: Obtain fi;; = max { flflll), 1(,121)}'
We have frax = max {fi, fu}-

and .

= YI(@®) = A, and give the corre-

(iii) Finally, the maximum value of the objective func-

A > 2\ Case 3: We obtain fiax = fin within [7,0) by (36).
as the following, i.e., ZT(g(l))
N sponding objective values: fI(JlI) and fIEIQI).
STw) 2 aaw)+ D miav (35)
i=1,i#j

where x; 5 is with anax. Then, the bisection algorithm can be
adopted to find v* such that T (v*) = A7

VII.

In this section, we provide an algorithm of obtaining the
global optimal solution of OP 1 and discuss about the com-
plexity of the proposed method.

ALGORITHM IMPLEMENTATION

A. For the Case x} < 7y;

According to Section VI, we know that set ST only involves
three cases.

1) All variables are within Region 0, when Apr < Ac.
There is a closed-form solution according to (27). The
maximum value is denoted as fj.

2) All variables are within Region I, where the function
SHw) 2 SN 201 (v) € Moy 200, v € [—e72,0). This
case is similar as Case 1, where the maximum value is
denoted as fi.

3) All variables are within Region I except one of them

within Region II.
According to the relationships of z7 k=1,2 in (25),
we have 27, = ¢tal, = §uiy and 27, = &g,
Therefore, after some manipulations, we know that (35)
can be reduced further as

1 AN
i) = —
() = p2(v) g —+ (v ) > o 6o
i=1,i#j]
The goal is still to find the v* such that T (v*) = A\p.

However, based on Remark 5 there may be two solutions
that both satisfy th1s constraint when A\ < 2\, since
Emm < 2A¢ where E . is the minimum value of function
SH(v),v € [—e2,0).

Therefore, we need to

(i) Find out E:rmn and v by the bisection algorithm,

where ¥t () = %I
(i) Implement the bisection algorithm in intervals
[-e=2,7] and [7,0) using (36) separately to find
out the two possible solutions: 71 and 72, where

tion is simply given by fig = max{ full)7 flflzl)}.
Remark 7: When 0 < z; < 1/a;,Vi (Region I), the opti-
mization problem OP 1 1s strongly convex according to
Remark 2, which implies me > Ac.
We summarize the whole optimal allocation strategy as
in Table I, where the global optimal value is denoted by fi,ax.

B. For the Case 3i, ] = ;
There are two cases as follows.
D If 27, =7, k=0,1, then 27 = ;, V.
2) If @} 5 = ;, then the ith variable is simply ignored from
the optimization process, since it serves as a constant.
Then, we just need to consider the other variables.

C. Complexity of the Algorithm

Since the explicit solution from (27) for fy, and f; can
be calculated directly, and the complexity of computing the
solution from (36) for fiy is at the order of one-dimensional
search algorithm in terms of the Lambert function. Actually,
the Lambert function has been used in many resource alloca-
tion problems in wireless networks [37], [38] and the func-
tion can be computed very efficiently. In summary, the total
complexity is still proportional to the one-dimensional search
algorithm with the Lambert function. The one-dimensional
search can be interpreted as search for a water-filling solution,
although the problem solved is non-convex, as opposed to
convex as in classical water-filling problems.

VIII. NUMERICAL RESULTS

In this section, we numerically calculate and optimize the
network TC of an example for underwater acoustic com-
munication systems. The channel path loss in underwater
environment is dependent on carrier frequency and given by
h(Ri, foi) = R%a(f,;)T at frequency f,; [30], where «
is the path loss exponent (spreading factor) and af f07i)Ri
models part of channel gain due to absorption. V/(R;, a(f,,:))
is derived as in [5, eq. (6)], i.e.,

] d d—1
[
0 1+ r*a(fo.i)

BREa(fo,i)i

V(Ri, foi) = ca
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Fig. 5. Comparison between theoretical result and exhaustive searching

in terms of Ap, where there are two subbands, f,1 = 20kHz and

fo,2 = 50kHz.

Throughput

%0 02 0.4 06 0.8 1 1
Ar[nodes/km?]

Fig. 6. Throughput versus Ap with different number of subbands. Dashed
lines: the transmitter density is equally allocated in each subband, Solid lines:
the results of optimized ;.

where ¢q = Vol(Bg4(0, 1)) is the volume of the d-dimensional
unit ball. The parameters are chosen as a = 1.5, § = 10dB,
R; =1000m, d = 3, a(f, ;) are adopted according to [5] and
carrier frequency f, ;, Vi are uniformly selected from 20kHz
to 50kHz where : = 1,..., N.

A. Throughput Analysis

We first verify the proposed transmitter density allocation
scheme as shown in Table I, where the constraint of an outage
probability is ignored. In Fig. 5, the results from exhaustive
search are compared with that obtained by the proposed
algorithm, which shows the consistency between the numerical
simulations and theoretical analysis.

From Fig. 6, it is obvious that the optimal allocation scheme
for each subband provides higher throughput gain compared
with the non-optimized one that only equally allocates the
spatial density of transmitters over the different frequency
subbands. As Apr becomes large, it can be observed that
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Fig. 7. Throughput versus N where R; =
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Fig. 8. Throughput versus A when R;,7 = 1,..., N are different in each
subband, where N = 20.

the throughput decreases if \;,7 = 1,..., N are equal in
each subband. However, in the optimal allocation strategy,
the optimized throughput does not change for large enough
Ar, since the redundant users are allocated into the worst
channel while the other users are sharing with the rest of the
frequency subbands. The results show clearly that the optimal
scheme yields a higher throughput. Also, we can observe that
as the number of subbands increases, the difference between
the optimized one and non-optimized one becomes large.

Fig. 7 shows that the network throughput increases and then
decreases as the total number of subbands increases, where
the total bandwidth (20kHz) is fixed (from f,1 = 20kHz
to f,, v = 40kHz) and the whole bandwidth is divided into
N subbands. It can be observed that when N is increased,
the effect of interference in each subband becomes weaker
but the available bandwidth is reduced, resulting in a tradeoff
of the network throughput shown in Fig. 7.

Furthermore, h(R;, f,,;) is also dependent on R;. In Fig. 8,
R;, > 0,0 = 1,...,N are randomly generated with
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Fig. 9. TC versus Ap with different outage probability constraints, where
N=5and e =1—exp(—(Ar + ) /A\c).

mean 1000m and variance 100m, which follows a truncated
Gaussian distribution. This figure compares the optimized
throughput and the non-optimized one, which shows signif-
icant gains that the optimized method provides. Similar as in
Fig. 6, when \r is large, the optimized algorithm scarifies
the outage probability of the worst channel so that the total
throughput is very high.

B. TC Analysis

From Fig. 6 and Fig. 8, we can see that the throughput
may not be a good enough metric of studying the network
volume, when the node density is large. The outage probability
also plays important roles in measuring the quality of the
transmission. In order to observe the changes of TC as
Ar increases to a large value, we consider the case where € is
large such that the outage probability can satisfy the constraint.
In Fig. 9, based on (13) we assume Ay + 0 = —A¢ In(1 —¢)
where ¢ is a number. We observe that when Ap is large,
TC will be decreased since \; has to satisfy the constraints
of both total transmitter density and outage probability. Also,
it can be seen that TC is higher for a larger ¢ since the system
can undertake a higher outage probability. These results are
consistent with both theory and intuition. It is not applicable
to allocate the transmitter density equally for each subband,
because some A\; may make the outage probability violate the
constraint. It is still of interest when the outage probability
is high, due to the possibility of using automatic repeat
request (ARQ) mechanism [39]-[41]. Note that our analyzed
probability is for one transmission, rather than for multiple
repeated transmissions (due to ARQ).

Although the optimal TC is given, TC can be fur-
ther increased if more advanced transmission strategies are
adopted. For instance, when A\r is small, if the transmitters can
send packets over multiple subbands, TC may be increased;
when Ap is large, i.e., dense wireless networks, interference
management needs to be considered [42], [43], e.g., interfer-
ence cancelation, such that the equivalent transmitter density
can be reduced [44].

0.22
+ +  failure point (constraint violation)
0.215 F O  success
-.©--- SCP (inner loop: CVX)
I ———-SCP (inner loop: water filling)
S o021f 1
&
=N
<
© o205} + © 1
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B ois08l _o000QCLR00:0.00000g
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@ 018971 ~7
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0.185 \ \ \ \ \ \ \
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Fig. 10. Comparisons between the proposed algorithm and SCP [24], where
N=5e=1—exp(—(Ar +6)/A¢), A\r = 1.5 and § = 0.3.

C. Algorithms Comparison

In this section, we give more details about how the proposed
algorithm works and also compare the solutions obtained by
the proposed algorithm and SCP (denoted as MN in [24])
shown in Fig. 10. Consider N = 5, a = [2,6,8,10, 12] and
constraint Ay = 1.5[nodes/km?], € = 1—exp(—(Ar+6)/Ac),
and 6 = 0.3. We can know that \¢ < Ay < 2\o, which
is a relatively complicated case. At the first iteration, after
running the proposed algorithm shown in Table I, we can get
the optimal solution without the outage probability constraint.
We need to check whether x7 ,, Vi is greater than +;, Vi. In this
case, T3 5 > 75, meaning that Y T(v) is not large enough when
the outage constraint is considered. Then, we set z7 = s,
since this variable has achieved the boundary (or the 5th
channel has been saturated). In Fig. 10, we mark this case as
blue “+” in the legend. Continue implementing the proposed
algorithm and checking the boundary points. We have the same
situations as in the first iteration until the 4th one. In this case,
there are three points that achieve the boundary and the other
two are within region I, where the final solution is marked as
“0” in the red color. The total time consumed by the proposed
algorithm is 0.22s.

We also implement the SCP algorithm, which contains both
inner and outer loops. The inner loop of SCP solves a convex
optimization problem, which can be solved either using the
CVX package [35] or using a water-filling algorithm [45].
We plot the outer loop convergence behavior of the SCP
algorithm in terms of the iteration. It can be observed that
the algorithm converges very fast, even the first iteration of
SCP has already provided a good enough solution. For the
CVX-based solution, it takes 3.93s on solving the convex
problem in the first inner loop. If the inner loop is solved
by the water-filling algorithm, it only takes 0.07s for the first
iteration, where we set the error tolerance as 10~8. Based on
these simulations, SCP provides a viable alternative to solve
the proposed problem iteratively. A major reason for preferring
our proposed algorithm is that the problem is solved in the
dual domain, which involves only one-dimensional search,
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whereas SCP solves the problem in the primal domain where
the solution quality and running time rely heavily on the
convex optimization solvers. Theoretically, the SCP algorithm
is an Oracle algorithm, where we assume the optimization
problem in the inner loop is solved without any error (or
with an infinite number of iterations in general). However,
the derived optimal solution only involves one-dimensional
search and hence does not have such a requirement.

IX. CONCLUSIONS

In this paper, the network TC of an ad hoc network was
optimized over frequency-selective channels by allocating the
transmitter densities in different frequency subbands. The
problem was formulated as a nonconvex problem under the
constraints of a total transmitter density and any outage prob-
ability. The global optimal solutions of the nonconvex problem
were given, where an iterative resource allocation scheme
using the bisection algorithm was proposed. Simulation results
showed that the TC with the optimized transmitter density is
consistent with the one obtained through exhaustive search as
the total density of the transmitters increases. When the total
transmitter density is either low or high, more advanced trans-
mission techniques could be considered as the future work,
such as the transmitters can send the packets over a subset of
the whole spectrum or interference management is adopted.

APPENDIX
A. Proof of Lemma 1

Proof: Considering function f;(x;) = x;e~ %%, we know
that the transition point between the concave and convex parts
is at x; = 2/a;. When 1/a; < z; < 2/a;, function f(z;) is
concave. When x; > 2/a;, function f(z;) is convex.

We need to prove the following: it is impossible that there
are two and more solutions in ST which are in Region II
Consider a procedure as follows:

1) Select any two z; from z* which are x} > 2/a; and

x> 2/a; where i # j and a; # a;.

2) Fixing other variables, we have z} + z7 = )\T Because
fi(z;) and f;(x;) are both convex in this region, f;(z;) +
fj(z;) is also convex under the constraint A1

3) According to the convexity of the objective function,
the maximum point of f;(z;)+ f;(z;) is located at the bound-
ary of the convex set, i.e., the maximum point is located either
at [z, 7] = [2/ai, A\p —2/a;) or (@i, 7] = [/\T 2/a;,2/a,],
which means the previous points (z; and z7) are not the global
optimal solution.

4) Update points [z}, z}] by [¥;,7;] that has the largest
objective value, and go to step 1).

Since the objective function is separable, it is clear that
f(x) during this process is monotonically increasing until at
most one solution is greater than 2/a; after enumerating all
xf > 2/a;,0 € N, meaning that there is at most one solution
which is in Region II. [ ]

B. Proof of Theorem 1

Proof: 1In slackness condition (18), there are two cases,
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D If @, #
we have z}, = M where k = 0,1,2
Combining with (19) and u > 0 and ¢f > 0, we
conclude that ;f = ¢ = 0 and
Wi (v¥e) — 1
w2l (37)
a;
2) If 27 ) = e
we have
. Wi((v* 4+ pl)e) — 1
2 = R+ pi)e) =1 . 38)
a;
It is interesting to see that
Wi((v* +pi)e) —1=1In(l —¢), (39)

which is uncorrelated with a;, meaning that if =7, =~;

and 27, = ; where i # J, then pf = pj. Based on the

KKT condltlons, x;,Vi also need to satisfy Ez 1T; =

Ar with v* and .

In (23a), if x7, Vi are from the same region, then v* + u}

in (19) can be considered as one variable. Consequently,

27 has the same form as (37).

In (23a) if ], Vi are from different regions, then we need

to discuss the two cases as follows,

a) In (23a) if there are both z7, and 7 ,, where ¢ # 7,
then z7, = v; and z7; < ~; hold. In this case, there
exits dual variable uz that ensures ;5 = 7; and dual
variable v* that keeps Zf\il x; = Ap. Therefore, we
only need to consider z7, < 7;, since all z7, =
are fixed.

b) Except case a): for example, consider combination
zjo and z7, in (23a). We know z7, < x7, where
i # j, since py > 0. Because z, = 7;, then we
know a:;‘f’l > ~y; based on (38), which contradicts the
constraint x;‘ < 7;. Therefore, we conclude pj = 0.
The other combinations can be also easily verified in
the same way and show the same result.

In conclusion, expression form (37) of z is used fre-

quently in the proof, since there is only one case that

(38) is active which is when mjyg = ;.

|

C. Proof of Lemma 2

We need to prove the derivative of branch Wh(v) is
bigger than Wi (v), i.e., dWa(v)/dv > dWi(v)/dv when

L<v<o.
Proof: According to [36], we have
roya Vi) o W)
Wilv) = dv v(1+Wi(v)’ (40)
Wé(l/) a dWQ(V) _ WQ(V) (41)

dv v(1+Ws(v))

Since —1 < Wi(v) < 0 and Wh(v) < —1, we know that
the signs of the derivatives of the two branches are inverse.
Consequently, the difference between the absolute values of
the two derivatives is just the sum of (40) and (41).
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Also, we know that when v = 0 W{(v) is 1 and W5 (v)
approaches to infinity [36], i.e., their sum is greater than 0.
Based on the fact that Wi (v) and Wj(v) are continuous
functions, we only need to prove that there is no v such that
the sum of their derivatives equals zero when —e~! < v < 0.

Assuming they were equal, we obtain the relationship

Wi (V) + Wa(v) + 2Wi (1)We(v) = 0, (42)
which means
WQ(V)
=" 43
Wilv) = -7 W (1) 43)
According to the definition of the Lambert function, we have
W1 (l/)ewl(u) = WQ(V)BWQ(V). (44)
After some algebraic manipulations, we arrive at
WQ (l/)
— =1 . 4
W1 (V) WQ(V) n W1 (l/) ( 5)
Substituting (43) into (45), we obtain
2Wh(v) +1
—WQ(V)M =In(—(1+2Ws(v))). (46)

2Wa(v) + 1

We define an auxiliary variable z = —(1 + 2Ws(v)),z > 1.
Eq. (46) is reduced to

22 -1
2z

Finally, we only need to check whether the function g(z) £

(22—-1)/22—1Inz, z > 1 is always greater than 0. Taking the

derivative of g(z), we have

1 1 1
=) - =

§(2) =50+ ) - -

o0 g(z) is a monotonically increasing function. Consequently,
the minimum point is 0 when z = 1. Thus, equality (42)
doesn’t hold, which contradicts the assumption. It means that
Wi (v) + Wh(v) is always decreasing. Therefore, the absolute
value of W5 (v) is bigger than the one of Wi (v). |

=Inz.

(47)

>0, (48)

D. Proof of Lemma 3

Proof: From the proof of Lemma 2, we know that
when v = —1/e, then (42) holds, meaning that Wj(v) =
WY (v). However, there is no definition for the derivative of

the Lambert function when v = —1/e. Instead, considering
v = —1/e+ dv when dv — 0, we have
Wilv) (1 +Wa(v)) Wi (v)
im ; = lim
dv—0 Wh(v)  dv—0 (1 + Wy (v))Wa(v)
@ o Wa(IWi(v) + (1 + Wa(v)) Wi (v)
= lim - ;
dv—0 Wi (1)Wa(v) + (1 + Wi (v))Wh(v)
_ o W)
= jm, Wi (v) “42)

where (a) is according to the L’Hopital’s rule. Therefore, we

conclude that
1. / — 1 / .
i [Wi(v)] = lim Y30)] (50)

E. Proof of Lemma 4

Proof: First, we can have the difference between the
corresponding sums of the two variables, which is

mi =m0 = - B (524 £1)
= (p1(v) = p2(v)) <ail - a%)) <0. (51)

Second, based on Remark 5 and Remark 6, we know that
v/ needs to increase in order to increase Y1(/). In this way,
it is only possible that 31 (v') = 32(v"") = Ap. In conclusion,
V" < v/ under constraint X1 (v') = X2 (V") = Ar. |

F. Proof of Lemma 5

Proof: When Ay = 2/a; + 2/as, we have p; = ps = 2.
Based on Remark 5 and Remark 6, there are only totally
two KKT points. One is located at [z 5, 25 1] = [2/a1,2/a2]
and another one is [} ;,75 5] = [0} /a1, A\ — p' /ai]. Since
they are KKT points, the first derivatives of these two points
are both equal to zero. However, the second derivatives are
different at these two points, which are

1) point [7] 1,77 5]:
The second derivative of function f;(z;) is

gi(x;) = a;i(2 — a;z;)e” ¥ (52)
When z1 < 2/aq, we know ¢g1(z1) < 0; when x5 > 2/as,
we have go(x2) > 0, and vice versa. Therefore, there is
no intersection point between g1 (x1) and ga(x2) except the
point: x; = 2/ay and xo = 2/as. Hence, we conclude
that the second derivative of the objective function at point
[] 1, 2% 5] is not equal to zero.

2) point [z 5, 4 ,]:

Consider the convexity of function f;(x;), since the transi-
tion point is x; = 2/a;, the second derivative is also zero at
point [z 5, 27 4].

Consider the facts that f;(z;) > 0, f;(0) = 0, and f;(z;) is
concave when 0 < z; < 1/a;, and there are only two points
whose first derivatives are zero. It can be concluded that point
[27 9,25 1] is a local optimal point. Consequently, we know
that the corresponding function J» at this point is smaller than
Ji, 1.e., J1 > Jo. |

G. Proof of Lemma 6

Proof: Getting rid of the equality constraint in OP 2,
the objective function can be simply written as

J =x1e” " 4 (>\T — (L’l)eiaz()\Tizl).

Taking the derivative of J in terms of Ap, we have

dJ
m _ efaz()\szl) _ a2(>\T _ xl)efaz()\fol)
= (1 — agmg)e™ 272, (53)
Taking the derivative of J in terms of Ay and substitut-

ing two KKT points x5, = ph/az and 24, = pf/as
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into (53) respectively, we can obtain

dJ , /

Do lw, = (L= ph)e = Wy (Ve)e Welve) =1 —
e

dJ " B

A\ |z’2’1 = (1 — p/ll)e_pl = Wl(,/’e)e—wl(v e)—1 _ J
e

Based on Lemma 4 we know that the decreasing speed of
objective function .J at point 7 , is less than the one at 7 ;.
In addition, from Lemma 5 we can conclude that J; > J5 is
always true for Ay > 2/a; + 2/as when a; < as. [

H. Proof of Theorem 2

Proof: Consider a KKT point z*. There exits a v” such
that there is one variable in Region II, say z7, and the left
N — 1 variables are all in Region I according to Lemma 1.
Consider one variable »”6?2,1 (Region I). Assume ajr > aj.
Then, the KKT point is [z]1,..., @70, .o, @F 1o+, 2] N
With fixing all variables except the two variables indexed by

7, k, the optimization problem with N variables is reduced
to OP 2. The KKT point can be expressed by
x" = [xylﬂ,h s 7m;727 s axz,h s 7mI,N]

= [pl/ar,....p5)aj,....pY ak,...,pY/an]. (54)

Applying the result of Lemma 6, we know that a better point
(with a higher objective value) should be

/

I * * *
= [T] 1, T Ty T N

= [pY /a1, ... /aj,. ... py/ak, ... pY/an], (55)

which implies that point * is not the global solution of
OP 1. Note that point =’ is not a KKT point of OP 1, since
V' # V", After enumerating all {a;}, it is concluded that only
the variable with a,,,x should be in Region II. [ |
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