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Spatial Transmitter Density Allocation

for Frequency-Selective Wireless

Ad Hoc Networks
Songtao Lu , Member, IEEE, and Zhengdao Wang , Fellow, IEEE

Abstract— We consider a network of pairs of nodes that
perform ad hoc simultaneous communications over frequency-
selective channels. We assume that the whole frequency band
is divided into a number of subbands, and each transmitter can
only use one subband. Assuming that the network is geometrically
infinite, we use the transmission capacity (TC) as a measure of
the network throughput. We consider the problem of allocating
nodes to the subbands so that the total TC is maximized,
under the constraint of a fixed total spatial node density. The
optimization problem turns out to be nonconvex. We investigate
the detailed structure of the functions involved in the optimization
and identify a set of properties of the optimal transmitter density
over the subbands. An iterative resource allocation scheme with
low complexity is derived to obtain the global optimal solution
of the TC maximization problem. The solution can be loosely
interpreted as a water-filling solution for a nonconvex optimiza-
tion problem. Based on numerical simulations, it is shown that
the optimal solution obtained through the theoretical analysis is
consistent with the one obtained through an exhaustive search,
which reveals that the outage probability and the total spatial
transmitter density are the keys to determining the network TC.

Index Terms— Transmission capacity, frequency-selective
networks, nonconvex optimization, Lambert function.

I. INTRODUCTION

T
RANSMISSION capacity (TC) is a useful metric to

measure the throughput of wireless communication net-

works. It is defined as the number of successful transmis-

sions per unit area under a target outage probability [2], [3].

Stochastic geometry is often employed in TC analysis to model

the spatial distribution of communication nodes and their

connections. For example, the limits of successful transmission

data rates with increasing number of users and number of base

stations (BS) in a cellular network have been quantified in

the problem of wireless network densification [4]. The trans-

mission throughput can be improved by optimizing system
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parameters. Recently, stochastic geometry is also employed in

some emerging applications of wireless communications and

the effectiveness of the methodology has been demonstrated

with both numerical and real experiments for various wireless

networks, such as underwater networks [5], general cellu-

lar networks [6], [7], vehicle-to-vehicle (V2V) safety com-

munications [8], energy harvesting device-to-device (D2D)

communications [9], millimeter wave (mm-wave) ad hoc

networks [10], [11], etc.

For frequency-flat networks, the TC framework [6] can

provide a quantitative network-level performance analysis for

spectrum management. The tradeoff between bandwidth and

signal-to-interference plus noise ratio (SINR) in the spatial

random ad hoc network was studied in [12], where the TC

was maximized with respect to the spatial transmitter density

under a fixed rate requirement. The coverage probability maxi-

mization problem in downlink cellular networks was proposed

in [13] and solved with respect to optimizing transmit power,

BS density and transmit power density. In heterogeneous

wireless networks, the sum of the individual TC over multiple

bands for D2D communications was optimized in terms of the

user density in flat fading channels [14], where the TC maxi-

mization problem was a convex problem within a certain range

of the outage probability and therefore solved easily. Layered

transmission strategies were proposed in [15], where there

were two tiers of BSs considered: macro-tier and femto-tier.

Each type of the BSs was modeled as a homogeneous Poisson

point process (PPP) independently and occupied a number of

subbands over the whole transmission spectrum either deter-

ministically or randomly. Then, the outage probability versus

the proportion of the frequency resource allocated between two

tiers was analyzed numerically. Also, the optimal allocation

of the transmitter density in spectrum sharing systems was

proposed in [2] to maximize the TC over the shared spectrum.

In general, there is already a body of results in the literature

about the performance analysis and resource allocation in

terms of system parameters (e.g., transmission power, trans-

mitter/user density, target outage probability, retransmission

rate, etc.) for homogeneous and heterogeneous networks; see

e.g., [6], [15]–[18], etc.

For frequency-selective networks, the channel outage proba-

bility varies with frequency. Such outage behavior in underwa-

ter networks was discussed from a physical layer perspective

in [19] and [20], which takes both the transmission burstiness

and path loss properties into account. Furthermore, due to
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the effect of long time delay and busy terminals, the packets

collision probability in underwater communication channel

is very high, which was verified by both experiments and

simulations [21]. Spectrum sharing schemes under frequency-

selective channels were also examined in [22], where several

independent mobile networks share and/or partially share

the same spectrum resource. In this work, the effect of

the frequency-selective fading on the signal-to-interference

ratio was investigated. With the analytical outage probability,

the network throughput was studied in [5] for underwater

communications, where the theoretical model was verified

with a ray tracing simulator. Leveraging resources, e.g.,

spatial-reuse, with some elaborated protocols is one of the

promising ways of improving the network throughput, such as

underwater acoustic networks, where the field experiment has

been conducted and the results are shown in [23].

Transmitting packets over multiple frequencies for

frequency-selective channels is a typical practice. Maximizing

the spectral utilization for such transmissions is an important

optimization problem. Insight on the TC maximization over

frequency-selective communication networks provides guid-

ance for designing practical scheduling protocols, especially

under a constraint of a total spatial density of transmitters.

Unfortunately, there are few works on the tradeoff between

the spatial density of transmitters and outage probability for

frequency-selective pathloss. In [5], the optimal allocation of

the transmitter density for each frequency band was given for

maximizing the throughput of an underwater communication

work without the outage probability consideration. Currently,

there is no analytical result on the optimal transmitter density

allocation across multiple frequency subbands, for a given

total spatial transmitter density over multiple frequencies and

the outage probability constraint for each subband.

A. Contributions

In this paper, we focus on the performance analysis of a

wireless network over frequency-selective channels, quantify-

ing the TC limit of the network with partitioning the spatial

node density into different frequency subbands. Given the

spatial transmitter density and outage probability constraint,

the network throughput is maximized by allocating the trans-

mitter density in each subband. The problem is formulated

as an optimization problem which turns out to be noncon-

vex. According to Karush-Kuhn-Tucker (KKT) conditions,

the local optimal points are obtained in terms of the Lambert

function. Through studying the properties of the solutions, it is

interesting that most of local optimal points are excluded such

that the complexity of finding the global optimal solution is

reduced significantly. There is a line of work that focuses on

solving the nonlinear sum-of-ratios problems. The proposed

problem can be also solved by some iterative algorithms with

guaranteed convergence to the global optimal solution. For

example, an algorithm proposed in [24] is based on solving

a sequence of convex programming problems, shorten as the

SCP algorithm in this paper. The optimality of the solution

obtained through our proposed algorithm is also verified with

numerical examples and compared with the SCP algorithm.

This paper gives a solution for the maximization of the

network TC, in the sense as defined in [3], under a total

transmitter density constraint in wideband networks where the

constraint can be from zero to infinity (i.e., the density of

the network is from sparse to extremely dense). The main

contributions of the work are summarized as follows:

1) Given the total transmitter density in a network, the trans-

mission strategy over multiple subbands is proposed

where the network TC is defined and the network TC

maximization is formulated as a nonconvex optimization

problem.

2) Based on the convexity property of the objective function

and properties of the KKT conditions, the complexity of

finding the global optimal solution for the network TC

maximization is significantly reduced, where only one-

dimensional search in terms of the Lambert function is

involved.

3) Through the theoretical analysis, the solution of solving

the TC maximization problem is provided (in almost

closed-form), which optimally allocates the transmitter

density to frequency bins under the constraints of the

total transmitter density and outage probability.

In addition, we reveal some properties of the Lambert function

(we will see them later in Lemma 2 and Lemma 3) which are

used in the proof of the TC maximization problem. To the best

of our knowledge, these properties have not been identified

before.

B. Organization

The rest of the paper is organized as follows. A system

model is developed in Section II. The network TC is discussed

in Section III. The optimal solutions based on the KKT

conditions are given in Section IV. The properties of the

optimal solutions are analyzed further in Section V where the

challenges of the problems are also introduced. Section VI

studies how to reduce the complexity of finding the global

optimal solution. The complete solutions of this optimization

problem are presented in Section VII. Numerical simulation

results are reported in Section VIII and finally conclusions are

drawn in Section IX.

II. SYSTEM MODEL

We assume that the transmitters in a wireless network are

spatially distributed according to a homogeneous PPP with

density λ in an infinite space, denoted as Π(λ) = {Xt},

where Xt ∈ R2 represents the location of the transmitter t.
Each transmitter has its corresponding desired receiver at a

fixed distance R away. We assume that the signaling overhead

between the transmitter and receiver is small and can be

exchanged perfectly. The transmitters send the packets with

equal power P independently and there is no coordination

involved.

The channel characteristics are modeled in two parts, path

loss and fading. The channel path loss in frequency-selective

channels is denoted as h(R, fo) at frequency fo. The channel

response of small fading from the transmitter to the receiver,

i.e., H , has a complex Gaussian distribution with zero mean
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and unit variance. Since the network is infinitely large, we let

the reference receiver be located at the origin. The received

SINR of this receiver at frequency fo is

SINR(fo) =

P |H|2

h(R,fo)

N0(fo) + I(fo)
(1)

where N0(fo) denotes the power spectral density (PSD) of

noise, and I(fo) is the aggregate interference PSD received at

the origin, i.e.,

I(fo) =
∑

Xt∈Π(λ)\X0

P |Ht|2

h(kXtk, fo)
(2)

where kXtk represents the distance from Xt to the origin,

Ht denotes the corresponding channel fading, and X0 is the

position of the reference transmitter. Define the successful

transmission probability (or coverage probability) Ps as the

probability that the received SINR is above the predefined

threshold β, which is written as [19, eq. (17)] (see also

[25, eq. (9)])

Ps

(
SINR(fo) > β

)

= exp

(
−

βh(R, fo)N0(fo)∆f

P

)
LI(βh(R, fo)) (3)

where LI is the Laplace transform of the probability density

function (PDF) of the interference, ∆f denotes the bandwidth

of each subband. For a given β, we have

Ps(λ) = exp {−V (R, fo)λ − U(R, fo)} (4)

where U(R, fo) = βh(R, fo)N0(fo)∆f/P and V (R, fo) can

be obtained based on which the path loss model is used. For

example, the expressions of V (R, fo) in frequency-selective

underwater communication scenarios and mm-wave channels

have been shown at [19, eq. (9)] (see also [5, eq. (5)]) and

[26, eq. (13)]. As a result, our proposed transmitter density

optimization is relevant to performance improvement in ad hoc

networks operating in these channel conditions. Such models

have been considered in other resource allocation problems

in [2], [13], and [14].

III. PROBLEM FORMULATION

TC is defined by the number of successful transmissions per

unit area under a target outage probability � and expressed by

τ(λ) = bλPs(λ), po(λ) ≤ � (5)

where � ∈ [0, 1] denotes the target probability, po(λ) = 1 −
Ps(λ) represents the outage probability, b = B log2(1 + β)
is the supportable ergodic rate (see, e.g., [5], [27]) and B
is the bandwidth. There is a tradeoff between the density of

transmitters and the individual link quality. Given β, we know

that b is a constant which is ignored in the rest of this paper.

For the wideband communication networks, the total band-

width is divided into N subbands, where the bandwidth of

each subband is small enough such that the communication

can be considered as narrowband transmission, such as in

underwater communication networks [5]. We define the set

N = {1, . . . , N}. The carrier frequency of the ith subband

Fig. 1. Example that the system i occupies frequency fo,i and the system j
uses frequency fo,j .

is denoted as fo,i, i ∈ N . For each subband, the transmitters

and receivers are separated by a fixed distance Ri, i ∈ N
and use the same transmit power due to fairness. The nodes

are also distributed according to a PPP, which is denoted

as Π(λi). Let λi represent the transmitter density at the ith
subband. We also assume that each transmitter only occupies

one subband, which is valid in practical applications, such as

in frequency-selective orthogonal frequency division multiple

access (OFDMA) systems [28]. Multiple users are assigned in

different subbands such that the best beam pattern at different

subcarriers can be adopted by each user.

We remark that the frequency-selective model considered

in this work is referred to as ultrawide band channels in [29],

since the path loss at each subchannel is dependent on subband

frequency [30], [31]. Applications of this model include under-

water communications and hybrid multiple-regulatory-bands

radio systems. For typical wireless communication systems,

where the carrier frequency is much larger than the bandwidth,

the path loss within the communication band is essentially

constant. For such cases, transmitter density allocation does

not offer gains compared to uniform allocation. However,

when the multiple subbands operate over different distances Ri

(or transmit power), e.g., in multi-tier networks [32], the path

loss factor can still be different, rendering the transmitter

density allocation consideration valid.

Thus, for each Ri there is a corresponding λi at

the ith subband, which is defined as system i, where

Π(λi) ∩ Π(λj) = ∅, i 6= j, i, j ∈ N . In Fig. 1, we show

an example there are only two systems i and j which are

distinguished by red circles and blue squares.

A. Network Transmission Capacity

Assume that the outage probabilities over all subbands

are the same. The network TC is the sum of the individual

throughput across all subbands under the target outage prob-

ability � ∈ [0, 1] on each subband, which is defined by

f(λ1, . . . , λN ) =

N∑

i=1

τi(λi), po,i(λi) ≤ �, ∀i (6)
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where the throughput at the ith subband is τi(λi) = λips,i(λi),
the corresponding outage probability is po,i(λi) = 1−ps,i(λi)
and the successful transmission probability is

ps,i(λi) = exp (−V (Ri, fo,i)λi − U(Ri, fo,i)) . (7)

If the impact of the transmitter density over multiple sub-

bands dominates, the interference limited regime is considered,

i.e., the case when P
N0(fo) → ∞. In this situation, the noise

part, i.e., U(Ri, a(fo,i)), is negligible such as in 5G mm-

wave cellular networks [33], [34]. The successful transmission

probability becomes ps,i(λi) = exp (−V (Ri, fo,i)λi), and the

corresponding network TC is

f(λ1, . . . , λN ) =

N∑

i=1

λi exp (−V (Ri, fo,i)λi) ,

where po,i(λi) ≤ �, ∀i. (8)

The maximum TC can be obtained through setting

∂f(λ1, . . . , λi, . . . , λN )/∂λi = 0 if po,i(λi) ≤ �.

Otherwise, the optimal λi should be − ln(1 − �)/V (Ri, fo,i).
Consequently, the optimal transmitter density is given by

λ∗
i = min

{
−

ln(1 − �)

V (Ri, fo,i)
,

1

V (Ri, fo,i)

}
, ∀i. (9)

If the noise is not negligible, this case is of interest in the noise

limited regime. The corresponding network TC becomes

f(λ1, . . . , λN ) =
N∑

i=1

λ̃i exp
(
−D(Ri, fo,i)λ̃i

)
,

where po,i(λ̃i) ≤ �̃, ∀i (10)

with transmitter density λ̃i � λi exp(U(Ri, fo,i)),
D(Ri, fo,i) � V (Ri, fo,i) exp(U(Ri, fo,i)), and �̃ � mini

{� exp(U(Ri, fo,i)), 1}. Then, problem (10) can be still

formulated in the form of problem (8). Note that when �̃ = 1,

the problem is naturally reduced to the network throughput

maximization problem (a special case of the TC maximization

problem). Which regime a network is operating is dependent

on the specific factors or scenarios, such as the BS density

in 5G mm-wave cellular networks [13]. In the following,

we use the notations of problem (8) to illustrate the problem

of network TC maximization under the spatial transmitter

density constraint.

B. Network Transmission Capacity With Spatial Transmitter

Density Constraint

The total transmitter density λT is fixed in physical scenar-

ios, so the maximum TC may not be achieved since every user

is scheduled with the equal priority under the assumption of

the homogeneity of the network. For each λT , the maximum

network TC needs to be analyzed in terms of the transmitter

density over the wideband channel according to both the path

loss at different frequencies and distances of the desired links.

We will try to find appropriate transmitter density λi at each

frequency fo,i such that f(λ1, . . . , λN ) is maximized under a

given total spatial transmitter density constraint.

The optimization problem can be formulated as

maximize
λi,∀i

f(λ1, . . . , λN )

subject to

N∑

i=1

λi = λT , (11a)

0 ≤ λi ≤ −
ln(1 − �)

V (Ri, fo,i)
, ∀i (11b)

where λT is a constant, predetermined by the number of

transmitters per unit area in a network. The outage probability

constraint is considered in (11b), meaning that ps,i(λi) =
exp(−V (Ri, fo,i)λi) ≥ 1− �. Since the objective function (8)

is nonconvex with respect to λi, there are many max-

ima or minima that make the optimization difficult.

IV. OPTIMAL SOLUTIONS

In this section, the solutions of this nonconvex optimization

problem are provided. Letting xi � λi and ai � V (Ri, fo,i),
we obtain the optimization problem as

OP 1 : maximize
xi,∀i

f(x) =
N∑

i=1

xi exp(−aixi)

subject to

N∑

i=1

xi = λT , (12a)

0 ≤ xi ≤ γi, ∀i (12b)

where ai ≥ 0, γi = − ln(1−�)
ai

, and x � [x1, . . . , xN ] ∈ R
N .

It is a resource allocation problem and also arisen in the

estimation of proportions [35].

Note that constraints (12a) and (12b) may be incompatible

with each other. Hence, there is a requirement for λT , which

is

0 < λT ≤
N∑

i=1

γi, (13)

meaning that λT ≤ −λC ln(1 − �) where λC �
∑N

i=1 1/ai.

A. KKT Conditions

Since the function fi(xi) = xie
−aixi is a nonconvex

function, we can only get stationary points by the KKT

conditions of OP 1, which are denoted as x∗ ∈ S, where

x∗ � [x∗
1, . . . , x

∗
N ] ∈ RN and set S denotes all locally optimal

points, where the global optimal solution of max f(x) is

x∗
o = arg max

x∗∈S
f(x∗). (14)

First, we introduce Lagrange multipliers q ∈ RN for the

inequality constraints xi ≥ 0, µ ∈ RN for the inequality

constraints xi ≤ γi, and a multiplier ν ∈ R for the equality

constraint
∑N

i=1 xi = λT . Then, we can obtain the Lagrangian

L(x, q, µ, ν) = −
N∑

i=1

xie
−aixi

+ν(

N∑

i=1

xi − λT ) − qT x +

N∑

i=1

µi(xi − γi)

(15)
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and the KKT conditions [35] for i = 1, . . . , N as follows,

x∗
i ≥ 0, x∗

i ≤ γi, q∗ � 0, µ∗ � 0,

N∑

i=1

x∗
i = λT ,

q∗i x∗
i = 0, µ∗

i (x
∗
i − γi) = 0, (16a)

−(e−aix
∗

i − aix
∗
i e

−aix
∗

i ) − q∗i + µ∗
i + ν∗ = 0. (16b)

Substituting (16b) to the complementary slackness condi-

tions (16a), we have

x∗
i

(
ν∗ + µ∗

i − (e−aix
∗

i − aix
∗
i e

−aix
∗

i )
)

= 0, (17)

(x∗
i − γi)

(
ν∗ − q∗i − (e−aix

∗

i − aix
∗
i e

−aix
∗

i )
)

= 0. (18)

From (17), we know that either x∗
i = 0 or

x∗
i,k = −

Wk((ν∗ + µ∗
i )e) − 1

ai

> 0, k = 0, 1, 2 (19)

where µ∗
i ≥ 0, and Wk(z), k = 0, 1, 2, z ≥ −e−1, are the

Lambert function [36], i.e., the inverse function of x exp(x).
When z > 0, the Lambert function is a single-valued function,

denoted by W0(z). When −1/e ≤ z ≤ 0, the Lambert func-

tion is a double-valued function which includes two branches,

denoted by W1(z) and W2(z) respectively.

In order to simplify the KKT conditions further, we need

to give a definition of regions of each xi for the convenience

of discussion.

B. Definition of Regions

Based on the properties of the Lambert function, we define

three regions for xi as follows.

1) Definition of Region 0: When 0 ≤ xi ≤ 1/ai, ∀i, there

is a unique value when ν ∈ [0, 1], which is

xi,0(ν) � −
1

ai

(W0(νe) − 1) . (20)

We define this interval as Region 0.

2) Definition of Region I: From the properties of the

Lambert function [36], when −e−2 ≤ ν < 0, we know that

1

ai

< xi,1(ν) �
ρ1(ν)

ai

≤
2

ai

, (21)

where ρ1(ν) � −(W1(νe) − 1) within (1, 2] is uncorrelated

with ai, and this interval is defined as Region I. The subscript 1

indicates that the ith variable is in Region I.

3) Definition of Region II: Similarly, for the other branch

of the Lambert function, we have

xi,2(ν) �
ρ2(ν)

ai

>
2

ai

, (22)

where ρ2(ν) � −(W2(νe) − 1) within (2,∞], and this part

is defined as Region II. The subscript 2 indicates that the ith
variable is in Region II.

Based on the above definitions, it is obvious that ρ2(ν) >
ρ1(ν) and xi,2(ν) > xi,1(ν) when −e−2 ≤ ν < 0.

The regions (0, I and II) in terms of xi are depicted in Fig. 2

and the corresponding regions in terms of ν are illustrated

in Fig. 3.

Fig. 2. Regions of the solutions from the KKT conditions, where ai = 2.

Fig. 3. Regions of the solutions in terms of the Lambert function.

C. Simplifying the KKT Conditions

For the slackness condition (17), we note that when xi = 0,

the increasing speed of fi(xi) achieves the maximum for all i
which is dfi(xi)/dxi = 1 when xi = 0. Thus, we have x∗

i 6= 0.

Consequently, the expression of x∗
i is shown in (19).

Based on the previous definitions for the regions, the opti-

mal solutions can be simplified and given in Theorem 1.

Theorem 1: The KKT conditions of OP 1 should be 0 ≤
x∗

i ≤ γi,

N∑

i=1

x∗
i = λT , (23a)

x∗
i,2 = −

W2((ν
∗ + µ∗

i )e) − 1

ai

, when x∗
i,2 = γi, (23b)

x∗
i,k = −

Wk(ν∗e) − 1

ai

, k = 0, 1, 2 otherwise. (23c)

where µ∗
i > 0 and −1/e2 ≤ ν∗ ≤ 1.

Proof: See Appendix. B.

Remark 1:

(i) For the case when x∗
i,2 = γi, x∗

i,2 does not change as

ν∗ changes when we solve (23b) with dual variable µ∗
i ,
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since it is independent with other variables. Hence,

we can focus on the case when x∗
i,2 6= γi.

(ii) If x∗
i,k = −Wk(ν∗e)−1

ai
= γi, k = 0, 1, we have

Wk(ν∗e) − 1 = ln(1 − �), which is independent of ai.

This result indicates that x∗
i,k, ∀i are equal to γi at the

same time when λT = −λC ln(1 − �).
Therefore, based on (i) and (ii), we will only consider

the case when x∗
i < γi, ∀i in Section V and Section VI.

V. PROPERTIES OF THE KKT SOLUTIONS

In general, finding the global optimal solution for a noncon-

vex problem is not easy and the corresponding complexity is

exponential with respect to the problem dimension. However,

through observing the characteristics of the KKT conditions,

we know that there is a relationship among x∗
i , ∀i. Then it is

possible to design an algorithm such that this problem can be

solved with low computational complexity. First, we study the

relationships of x∗
i , ∀i as follows.

A. Relationship Among Variables

From the KKT conditions, the two variables x∗
i and x∗

j ,

where i, j ∈ N , i 6= j, ∀i, j, keep a certain relationship, i.e.,

x∗
i,k

x∗
j,k

=
aj

ai

, i 6= j, i, j ∈ N , k = 0, 1, 2. (24)

Hence, every x∗
i,k can be expressed by

x∗
i,k =

a1

ai

x∗
1,k = ξix

∗
1,k (25)

where ξi � a1/ai.

B. Closed Form of the KKT Solutions

If x∗
i , ∀i are from the same branch of the Lambert function,

then according to (23a) we obtain

N∑

i=1

x∗
i = x∗

1,k

N∑

i=1

ξi = λT . (26)

It is obvious that the closed form optimal solutions can be

given directly, which are

x∗
1,k =

λT∑N

i=1 ξi

,

x∗
j,k = ξjx

∗
1,k, j = 2, . . . , N. (27)

Remark 2: If xi, ∀i are within Region 0, the objective func-

tion is concave, since d2fi(xi)/d2xi = ai(aixi−2)e−aixi < 0
when xi < 1/ai and f(x) is separable. In this region, OP 1
is a convex optimization problem and therefore there is a

unique value for each x∗
i given ν∗, which is the global optimal

solution of OP 1.

When ν∗ = 0, i.e.,
∑N

i=1 x∗
i =

∑N

i=1 1/ai = λC , the

objective function achieves the maximum value. If λT > λC ,

the variables must be within Region I or Region II, which is

a complicated case. The reason is that the Lambert function

is a double-valued function in these regions. We will illustrate

this point in the next section.

C. Challenges of the Problem

There are two solutions for each x∗
i (ν) when ν < 0, so the

permutation of the possible combination of x∗
i,1 and x∗

j,2 where

i ∈ A, j ∈ Ac,A ∈ N should be O(2N ) in (23a). In this case

it results in a large amount of computational complexity as

N increases, since we have to verify every possible combina-

tion to figure out the global optimal solution. If we can exclude

some solutions whose corresponding objective functions are

always local maxima or minima, the complexity of finding

the global solution can be decreased significantly. The idea is

to reduce the cardinality of set S† ∈ S, where set S† includes

all the candidates of the global optimal solution.

In the next section, we will consider the properties of the

possible solutions that are given by the KKT conditions when

x∗
i ≥ 1/ai.

VI. CARDINALITY OF SET S†

In this section, we use two steps to reduce the cardinality

of set S† in terms of N from exponential to a constant.

A. Reducing the Cardinality of Set S† From O(2N ) to O(N)

Lemma 1: In the global optimal solution x∗, there is at most

one optimal variable in Region II.

Proof: See Appendix. A.

According to Lemma 1, it is clear that the number of

possible combinations of x∗
i,1 and x∗

j,2 is reduced from O(2N )
to O(N) where i ∈ A, j ∈ Ac,A ∈ N .

Remark 3: In the proof of Lemma 1, only the convexity

of the objective function is considered, so the idea of the

proof is not just restricted for this problem. The conclusion

of Lemma 1 can be extended to more general problems where

the objective function has a similar convexity of the one in

OP 1. To be more specific, the statement is as the following,

Corollary 1: Consider problem

maximize
xi,∀i

N∑

i=1

gi(xi)

subject to

N∑

i=1

xi = c

where c ≥ 0 is a constant, gi(xi), ∀i are convex when

xi ≥ x†
i where x†

i are some constants. Then, in the global

optimal solution, there is at most one variable that is strictly

greater than x†
i .

Proof: The proof of this corollary basically is the same as

the proof of Lemma 1, just by replacing the transition point

2/ai by x†
i and λT by c.

Remark 4: Lemma 1 also implies that there is another case

that all the variables are in Region I.

Next, we need to figure out which variable should be in

Region II.

B. Reducing the Cardinality of Set S† From O(N) to O(1)

If we know which x∗
i should be in Region II, the algorithm

can be simplified further. Based on Lemma 1, in this section
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we consider the case that for x∗ ∈ S† there is one x∗
i in

Region II while other ones are in Region I.

First, we consider the simplest case where there are only

two variables. The result in this case will be very useful to

discuss the N variables case.

1) Two Variables: Before the discussion, we need to intro-

duce two lemmas which give the inherent properties of the

Lambert function as follows,

Lemma 2: The absolute value of the derivative of W2(ν)
is larger than the one of W1(ν) where −e−1 < ν < 0.

Proof: See Appendix. C.

Lemma 3: The absolute values of the derivative of ρ1(ν)
and ρ2(ν) are arbitrarily close at ν = −e−1+dν when dv → 0.

Proof: See Appendix. D.

Then, we consider the case which there are only two

variables, i.e., x = [x1, x2]. Assume a1 < a2. When x∗
i < γi,

i = 1, 2, OP 1 is reduced to

OP 2 : maximize x1e
−a1x1 + x2e

−a2x2

subject to x1 + x2 = λT , x1 ≥ 0, x2 ≥ 0. (28)

Then there are two cases if one solution is in Region I and

the other is in Region II.

• Case 1: Define the function

Σ1(ν) � x1,1(ν) + x2,2(ν) =
ρ1(ν)

a1
+

ρ2(ν)

a2
. (29)

There exists a ν′ such that Σ1(ν
′) = λT and the

corresponding objective function is denoted as

J1 =
ρ′1
a1

e−ρ′

1 +
ρ′2
a2

e−ρ′

2 (30)

where ρ′1 � −(W1(ν
′e)− 1) and ρ′2 � −(W2(ν

′e)− 1).
Applying Lemma 3 we have the relationship: −dρ1/dν =
dρ2/ν when ν → −e−2 and a1 < a2. The derivative of

Σ1(ν) is

dΣ1(ν)

dν
= −

1

a1
|
dρ1(ν)

dν
| +

1

a2
|
dρ2(ν)

dν
|

=

(
1

a2
−

1

a1

)
|
dρ(ν)

dν
| < 0 (31)

where |dρ(ν)/dν| represents the absolute value of the

derivative of ρ1(ν) and ρ2(ν). Therefore, Σ1(ν) decreases

first.

Applying Lemma 2 we know that as ν increases, Σ1(ν)
increases. After getting back to 2/a1 + 2/a2, Σ1(ν) can

go to infinity.

Remark 5: Σ1(ν) is decreasing first from λC = 1/a1 +
1/a2 and increasing to infinity when ν ∈ (−e−2, 0).

• Case 2: Define the function

Σ2(ν) � x1,2(ν) + x2,1(ν) =
ρ2(ν)

a1
+

ρ1(ν)

a2
. (32)

Similarly, there exits a ν′′ such that Σ2(ν
′′) = λT . Then,

the corresponding objective function is

J2 =
ρ′′1
a2

e−ρ′′

1 +
ρ′′2
a1

e−ρ′′

2 (33)

Fig. 4. The relationship between ν′ and ν′′ for a1 < a2.

where ρ′′1 � −(W1(ν
′′e)−1) and ρ′′2 � −(W2(ν

′′e)−1).
Meanwhile, based on Lemma 2 and a1 < a2, we have

dΣ2(ν)

dν
= −

1

a2
|
dρ1(ν)

dν
| +

1

a1
|
dρ2(ν)

dν
| > 0. (34)

Thus, Σ2(ν) is always greater than 2/a1 + 2/a2.

Remark 6: Σ2(ν) is monotonically increasing from

λC = 1/a1 + 1/a2 when ν ∈ (−e−2, 0).
Lemma 4: For OP 2, under constraint Σ1(ν

′) = Σ2(ν
′′) =

λT , we have ν′′ < ν′ when ν′, ν′′ ∈ (−e−2, 0).
Proof: See Appendix. E.

In Fig. 4, we show the relationship between ν′′ and ν′ under

constraint Σ1(ν
′) = Σ2(ν

′′) = λT .

With the help of Lemma 4, we can obtain the relationship

between J1 and J2 by the following lemma.

Lemma 5: For OP 2, when λT = 2/a1+2/a2 and a1 < a2,

J1 > J2 always holds.

Proof: See Appendix. F.

If we can know J1 > J2 or J1 < J2 for all Σ1(ν
′) =

Σ2(ν
′′) = λT , then the smaller one can be excluded from set

S†. Based on Lemma 4 and Lemma 5, we will have Lemma 6.

Lemma 6: For OP 2 as λT increases from λT = 2/a1 +
2/a2 to infinity, J1 > J2 is always true, where the correspond-

ing [x∗
1,1, x

∗
2,2] = [ρ′1/a1, ρ

′
2/a2].

Proof: See Appendix. G.

Thus, for OP 2, the solution [x∗
1,2, x

∗
2,1] = [ρ′′2/a1, ρ

′′
1/a2]

can be excluded from S†. This conclusion is also very useful

for the case where there are N variables as follows.

2) N Variables: With Lemma 1 and Lemma 6 in mind,

we have the following theorem:

Theorem 2: For OP 1 if x∗
i , ∀i come from both Region I

and Region II, set S† involves N − 1 variables in Region I

and only one in Region II with amax, where the corresponding

amax = max{ai}, ∀i.
Proof: See Appendix. H.

From Theorem 2, if x∗
i , ∀i come from both Region I and

Region II, set S† only involves one possible combination in

terms of both xi,1 and xi,2. In this case, we define a function
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TABLE I

OPTIMAL ALLOCATION SCHEME

as the following, i.e.,

Σ†(ν) � xj,2(ν) +

N∑

i=1,i�=j

xi,1(ν) (35)

where xj,2 is with amax. Then, the bisection algorithm can be

adopted to find ν∗ such that Σ†(ν∗) = λT .

VII. ALGORITHM IMPLEMENTATION

In this section, we provide an algorithm of obtaining the

global optimal solution of OP 1 and discuss about the com-

plexity of the proposed method.

A. For the Case x∗
i < γi

According to Section VI, we know that set S† only involves

three cases.

1) All variables are within Region 0, when λT ≤ λC .

There is a closed-form solution according to (27). The

maximum value is denoted as f0.

2) All variables are within Region I, where the function

Σ‡(ν) �
∑N

i=1 xi,1(ν) ∈ [λC , 2λC ], ν ∈ [−e−2, 0). This

case is similar as Case 1, where the maximum value is

denoted as fI.

3) All variables are within Region I except one of them

within Region II.

According to the relationships of x∗
i,k, k = 1, 2 in (25),

we have x∗
i,1 = a1

ai
x∗

1,1 = ξix
∗
1,1 and x∗

i,2 = ξix
∗
1,2.

Therefore, after some manipulations, we know that (35)

can be reduced further as

Σ†(ν) = ρ2(ν)
1

amax
+ ρ1(ν)

N∑

i=1,i�=j

1

ai

. (36)

The goal is still to find the ν∗ such that Σ†(ν∗) = λT .

However, based on Remark 5 there may be two solutions

that both satisfy this constraint when λT ≤ 2λC , since

Σ†
min ≤ 2λC where Σ†

min is the minimum value of function

Σ†(ν), ν ∈ [−e−2, 0).
Therefore, we need to

(i) Find out Σ†
min and ν̃ by the bisection algorithm,

where Σ†(ν̃) = Σ†
min.

(ii) Implement the bisection algorithm in intervals

[−e−2, ν̃] and [ν̃, 0) using (36) separately to find

out the two possible solutions: ν̃(1) and ν̃(2), where

Σ†(ν̃(1)) = Σ†(ν̃(2)) = λT , and give the corre-

sponding objective values: f
(1)
I,II and f

(2)
I,II .

(iii) Finally, the maximum value of the objective func-

tion is simply given by fI,II = max{f
(1)
I,II , f

(2)
I,II }.

Remark 7: When 0 ≤ xi ≤ 1/ai, ∀i (Region I), the opti-

mization problem OP 1 is strongly convex according to

Remark 2, which implies Σ†
min > λC .

We summarize the whole optimal allocation strategy as

in Table I, where the global optimal value is denoted by fmax.

B. For the Case ∃i, x∗
i = γi

There are two cases as follows.

1) If x∗
i,k = γi, k = 0, 1, then x∗

i = γi, ∀i.
2) If x∗

i,2 = γi, then the ith variable is simply ignored from

the optimization process, since it serves as a constant.

Then, we just need to consider the other variables.

C. Complexity of the Algorithm

Since the explicit solution from (27) for f0 and fI can

be calculated directly, and the complexity of computing the

solution from (36) for fI,II is at the order of one-dimensional

search algorithm in terms of the Lambert function. Actually,

the Lambert function has been used in many resource alloca-

tion problems in wireless networks [37], [38] and the func-

tion can be computed very efficiently. In summary, the total

complexity is still proportional to the one-dimensional search

algorithm with the Lambert function. The one-dimensional

search can be interpreted as search for a water-filling solution,

although the problem solved is non-convex, as opposed to

convex as in classical water-filling problems.

VIII. NUMERICAL RESULTS

In this section, we numerically calculate and optimize the

network TC of an example for underwater acoustic com-

munication systems. The channel path loss in underwater

environment is dependent on carrier frequency and given by

h(Ri, fo,i) = Rα
i a(fo,i)

Ri at frequency fo,i [30], where α
is the path loss exponent (spreading factor) and a(fo,i)

Ri

models part of channel gain due to absorption. V (Ri, a(fo,i))
is derived as in [5, eq. (6)], i.e.,

V (Ri, fo,i) = cd

∫ ∞

0

drd−1

1 +
rαa(fo,i)r

βRα
i

a(fo,i)Ri

dr



LU AND WANG: SPATIAL TRANSMITTER DENSITY ALLOCATION 481

Fig. 5. Comparison between theoretical result and exhaustive searching
in terms of λT , where there are two subbands, fo,1 = 20kHz and
fo,2 = 50kHz.

Fig. 6. Throughput versus λT with different number of subbands. Dashed
lines: the transmitter density is equally allocated in each subband, Solid lines:
the results of optimized λi.

where cd = Vol(Bd(0, 1)) is the volume of the d-dimensional

unit ball. The parameters are chosen as α = 1.5, β = 10dB,

Ri = 1000m, d = 3, a(fo,i) are adopted according to [5] and

carrier frequency fo,i, ∀i are uniformly selected from 20kHz

to 50kHz where i = 1, . . . , N .

A. Throughput Analysis

We first verify the proposed transmitter density allocation

scheme as shown in Table I, where the constraint of an outage

probability is ignored. In Fig. 5, the results from exhaustive

search are compared with that obtained by the proposed

algorithm, which shows the consistency between the numerical

simulations and theoretical analysis.

From Fig. 6, it is obvious that the optimal allocation scheme

for each subband provides higher throughput gain compared

with the non-optimized one that only equally allocates the

spatial density of transmitters over the different frequency

subbands. As λT becomes large, it can be observed that

Fig. 7. Throughput versus N where Ri = 1000, ∀i, and λT =
1.8[nodes/km2].

Fig. 8. Throughput versus λT when Ri, i = 1, . . . , N are different in each
subband, where N = 20.

the throughput decreases if λi, i = 1, . . . , N are equal in

each subband. However, in the optimal allocation strategy,

the optimized throughput does not change for large enough

λT , since the redundant users are allocated into the worst

channel while the other users are sharing with the rest of the

frequency subbands. The results show clearly that the optimal

scheme yields a higher throughput. Also, we can observe that

as the number of subbands increases, the difference between

the optimized one and non-optimized one becomes large.

Fig. 7 shows that the network throughput increases and then

decreases as the total number of subbands increases, where

the total bandwidth (20kHz) is fixed (from fo,1 = 20kHz

to fo,N = 40kHz) and the whole bandwidth is divided into

N subbands. It can be observed that when N is increased,

the effect of interference in each subband becomes weaker

but the available bandwidth is reduced, resulting in a tradeoff

of the network throughput shown in Fig. 7.

Furthermore, h(Ri, fo,i) is also dependent on Ri. In Fig. 8,

Ri > 0, i = 1, . . . , N are randomly generated with
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Fig. 9. TC versus λT with different outage probability constraints, where
N = 5 and ǫ = 1 − exp(−(λT + δ)/λC ).

mean 1000m and variance 100m, which follows a truncated

Gaussian distribution. This figure compares the optimized

throughput and the non-optimized one, which shows signif-

icant gains that the optimized method provides. Similar as in

Fig. 6, when λT is large, the optimized algorithm scarifies

the outage probability of the worst channel so that the total

throughput is very high.

B. TC Analysis

From Fig. 6 and Fig. 8, we can see that the throughput

may not be a good enough metric of studying the network

volume, when the node density is large. The outage probability

also plays important roles in measuring the quality of the

transmission. In order to observe the changes of TC as

λT increases to a large value, we consider the case where � is

large such that the outage probability can satisfy the constraint.

In Fig. 9, based on (13) we assume λT + δ = −λC ln(1 − �)
where δ is a number. We observe that when λT is large,

TC will be decreased since λi has to satisfy the constraints

of both total transmitter density and outage probability. Also,

it can be seen that TC is higher for a larger δ since the system

can undertake a higher outage probability. These results are

consistent with both theory and intuition. It is not applicable

to allocate the transmitter density equally for each subband,

because some λi may make the outage probability violate the

constraint. It is still of interest when the outage probability

is high, due to the possibility of using automatic repeat

request (ARQ) mechanism [39]–[41]. Note that our analyzed

probability is for one transmission, rather than for multiple

repeated transmissions (due to ARQ).

Although the optimal TC is given, TC can be fur-

ther increased if more advanced transmission strategies are

adopted. For instance, when λT is small, if the transmitters can

send packets over multiple subbands, TC may be increased;

when λT is large, i.e., dense wireless networks, interference

management needs to be considered [42], [43], e.g., interfer-

ence cancelation, such that the equivalent transmitter density

can be reduced [44].

Fig. 10. Comparisons between the proposed algorithm and SCP [24], where
N = 5, ǫ = 1 − exp(−(λT + δ)/λC ), λT = 1.5 and δ = 0.3.

C. Algorithms Comparison

In this section, we give more details about how the proposed

algorithm works and also compare the solutions obtained by

the proposed algorithm and SCP (denoted as MN in [24])

shown in Fig. 10. Consider N = 5, a = [2, 6, 8, 10, 12] and

constraint λT = 1.5[nodes/km2], � = 1−exp(−(λT +δ)/λC),
and δ = 0.3. We can know that λC ≤ λT ≤ 2λC , which

is a relatively complicated case. At the first iteration, after

running the proposed algorithm shown in Table I, we can get

the optimal solution without the outage probability constraint.

We need to check whether x∗
i,2, ∀i is greater than γi, ∀i. In this

case, x∗
5,2 > γ5, meaning that Σ†(ν) is not large enough when

the outage constraint is considered. Then, we set x∗
5 = γ5,

since this variable has achieved the boundary (or the 5th

channel has been saturated). In Fig. 10, we mark this case as

blue “+” in the legend. Continue implementing the proposed

algorithm and checking the boundary points. We have the same

situations as in the first iteration until the 4th one. In this case,

there are three points that achieve the boundary and the other

two are within region I, where the final solution is marked as

“◦” in the red color. The total time consumed by the proposed

algorithm is 0.22s.

We also implement the SCP algorithm, which contains both

inner and outer loops. The inner loop of SCP solves a convex

optimization problem, which can be solved either using the

CVX package [35] or using a water-filling algorithm [45].

We plot the outer loop convergence behavior of the SCP

algorithm in terms of the iteration. It can be observed that

the algorithm converges very fast, even the first iteration of

SCP has already provided a good enough solution. For the

CVX-based solution, it takes 3.93s on solving the convex

problem in the first inner loop. If the inner loop is solved

by the water-filling algorithm, it only takes 0.07s for the first

iteration, where we set the error tolerance as 10−8. Based on

these simulations, SCP provides a viable alternative to solve

the proposed problem iteratively. A major reason for preferring

our proposed algorithm is that the problem is solved in the

dual domain, which involves only one-dimensional search,
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whereas SCP solves the problem in the primal domain where

the solution quality and running time rely heavily on the

convex optimization solvers. Theoretically, the SCP algorithm

is an Oracle algorithm, where we assume the optimization

problem in the inner loop is solved without any error (or

with an infinite number of iterations in general). However,

the derived optimal solution only involves one-dimensional

search and hence does not have such a requirement.

IX. CONCLUSIONS

In this paper, the network TC of an ad hoc network was

optimized over frequency-selective channels by allocating the

transmitter densities in different frequency subbands. The

problem was formulated as a nonconvex problem under the

constraints of a total transmitter density and any outage prob-

ability. The global optimal solutions of the nonconvex problem

were given, where an iterative resource allocation scheme

using the bisection algorithm was proposed. Simulation results

showed that the TC with the optimized transmitter density is

consistent with the one obtained through exhaustive search as

the total density of the transmitters increases. When the total

transmitter density is either low or high, more advanced trans-

mission techniques could be considered as the future work,

such as the transmitters can send the packets over a subset of

the whole spectrum or interference management is adopted.

APPENDIX

A. Proof of Lemma 1

Proof: Considering function fi(xi) = xie
−aixi , we know

that the transition point between the concave and convex parts

is at xi = 2/ai. When 1/ai ≤ xi ≤ 2/ai, function f(xi) is

concave. When xi ≥ 2/ai, function f(xi) is convex.

We need to prove the following: it is impossible that there

are two and more solutions in S† which are in Region II.

Consider a procedure as follows:

1) Select any two x∗
i from x∗ which are x∗

i > 2/ai and

x∗
j > 2/aj where i 6= j and ai 6= aj .

2) Fixing other variables, we have x∗
i + x∗

j = λ̂T . Because

fi(xi) and fj(xj) are both convex in this region, fi(xi) +

fj(xj) is also convex under the constraint λ̂T .

3) According to the convexity of the objective function,

the maximum point of fi(xi)+fj(xj) is located at the bound-

ary of the convex set, i.e., the maximum point is located either

at [x̃i, x̃j ] = [2/ai, λ̂T −2/ai] or [x̃i, x̃j ] = [λ̂T −2/aj, 2/aj],
which means the previous points (x∗

i and x∗
j ) are not the global

optimal solution.

4) Update points [x∗
i , x

∗
j ] by [x̃i, x̃j ] that has the largest

objective value, and go to step 1).

Since the objective function is separable, it is clear that

f(x) during this process is monotonically increasing until at

most one solution is greater than 2/ai after enumerating all

x∗
i > 2/ai, i ∈ N , meaning that there is at most one solution

which is in Region II.

B. Proof of Theorem 1

Proof: In slackness condition (18), there are two cases,

1) If x∗
i,k 6= γi:

we have x∗
i,k = −

Wk((ν∗−q∗

i )e)−1
ai

where k = 0, 1, 2.

Combining with (19) and µ∗
i ≥ 0 and q∗i ≥ 0, we

conclude that µ∗
i = q∗i = 0 and

x∗
i,k = −

Wk(ν∗e) − 1

ai

< γi, (37)

2) If x∗
i,k = γi:

we have

x∗
i,k = −

Wk((ν∗ + µ∗
i )e) − 1

ai

= γi. (38)

It is interesting to see that

Wk((ν∗ + µ∗
i )e) − 1 = ln(1 − �), (39)

which is uncorrelated with ai, meaning that if x∗
i,k = γi

and x∗
j,k = γj where i 6= j, then µ∗

i = µ∗
j . Based on the

KKT conditions, x∗
i , ∀i also need to satisfy

∑N

i=1 x∗
i =

λT with ν∗ and µ∗
i .

In (23a), if x∗
i , ∀i are from the same region, then ν∗+µ∗

i

in (19) can be considered as one variable. Consequently,

x∗
i has the same form as (37).

In (23a) if x∗
i , ∀i are from different regions, then we need

to discuss the two cases as follows,

a) In (23a) if there are both x∗
i,2 and x∗

j,1, where i 6= j,

then x∗
i,2 = γi and x∗

j,1 < γj hold. In this case, there

exits dual variable µ∗
i that ensures x∗

i,2 = γi and dual

variable ν∗ that keeps
∑N

i=1 x∗
i = λT . Therefore, we

only need to consider x∗
j,1 < γj , since all x∗

i,2 = γi

are fixed.

b) Except case a): for example, consider combination

x∗
i,0 and x∗

j,1 in (23a). We know x∗
i,0 < x∗

j,1 where

i 6= j, since µ∗
i > 0. Because x∗

i,0 = γi, then we

know x∗
j,1 > γj based on (38), which contradicts the

constraint x∗
j ≤ γj . Therefore, we conclude µ∗

i = 0.

The other combinations can be also easily verified in

the same way and show the same result.

In conclusion, expression form (37) of x∗
i is used fre-

quently in the proof, since there is only one case that

(38) is active which is when x∗
i,2 = γi.

C. Proof of Lemma 2

We need to prove the derivative of branch W2(ν) is

bigger than W1(ν), i.e., dW2(ν)/dν > dW1(ν)/dν when

−e−1 < ν < 0.

Proof: According to [36], we have

W ′
1(ν) �

dW1(ν)

dν
=

W1(ν)

ν(1 + W1(ν))
, (40)

W ′
2(ν) �

dW2(ν)

dν
=

W2(ν)

ν(1 + W2(ν))
. (41)

Since −1 < W1(ν) < 0 and W2(ν) < −1, we know that

the signs of the derivatives of the two branches are inverse.

Consequently, the difference between the absolute values of

the two derivatives is just the sum of (40) and (41).
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Also, we know that when ν = 0 W ′
1(ν) is 1 and W ′

2(ν)
approaches to infinity [36], i.e., their sum is greater than 0.

Based on the fact that W ′
1(ν) and W ′

2(ν) are continuous

functions, we only need to prove that there is no ν such that

the sum of their derivatives equals zero when −e−1 < ν < 0.

Assuming they were equal, we obtain the relationship

W1(ν) + W2(ν) + 2W1(ν)W2(ν) = 0, (42)

which means

W1(ν) = −
W2(ν)

1 + 2W2(ν)
. (43)

According to the definition of the Lambert function, we have

W1(ν)eW1(ν) = W2(ν)eW2(ν). (44)

After some algebraic manipulations, we arrive at

W1(ν) −W2(ν) = ln
W2(ν)

W1(ν)
. (45)

Substituting (43) into (45), we obtain

−W2(ν)
2(W2(ν) + 1)

2W2(ν) + 1
= ln (−(1 + 2W2(ν))) . (46)

We define an auxiliary variable z � −(1 + 2W2(ν)), z > 1.

Eq. (46) is reduced to

z2 − 1

2z
= ln z. (47)

Finally, we only need to check whether the function g(z) �

(z2 − 1)/2z− ln z, z > 1 is always greater than 0. Taking the

derivative of g(z), we have

g′(z) =
1

2
(1 +

1

z2
) −

1

z
> 0, (48)

so g(z) is a monotonically increasing function. Consequently,

the minimum point is 0 when z = 1. Thus, equality (42)

doesn’t hold, which contradicts the assumption. It means that

W1(ν)+W2(ν) is always decreasing. Therefore, the absolute

value of W ′
2(ν) is bigger than the one of W ′

1(ν).

D. Proof of Lemma 3

Proof: From the proof of Lemma 2, we know that

when ν = −1/e, then (42) holds, meaning that W ′
1(ν) =

W ′
2(ν). However, there is no definition for the derivative of

the Lambert function when ν = −1/e. Instead, considering

ν = −1/e + dν when dν → 0, we have

lim
dν→0

W ′
1(ν)

W ′
2(ν)

= lim
dν→0

(1 + W2(ν))W1(ν)

(1 + W1(ν))W2(ν)

(a)
= lim

dν→0

W ′
2(ν)W1(ν) + (1 + W2(ν))W ′

1(ν)

W ′
1(ν)W2(ν) + (1 + W1(ν))W ′

2(ν)

= lim
dν→0

W ′
2(ν)

W ′
1(ν)

(49)

where (a) is according to the L’Hôpital’s rule. Therefore, we

conclude that

lim
dν→0

|W ′
1(ν)| = lim

dν→0
|W ′

2(ν)|. (50)

E. Proof of Lemma 4

Proof: First, we can have the difference between the

corresponding sums of the two variables, which is

Σ1(ν) − Σ2(ν) =
ρ1(ν)

a1
+

ρ2(ν)

a2
−

(
ρ1(ν)

a2
+

ρ2(ν)

a1

)

= (ρ1(ν) − ρ2(ν))

(
1

a1
−

1

a2

)
< 0. (51)

Second, based on Remark 5 and Remark 6, we know that

ν′ needs to increase in order to increase Σ1(ν
′). In this way,

it is only possible that Σ1(ν
′) = Σ2(ν

′′) = λT . In conclusion,

ν′′ < ν′ under constraint Σ1(ν
′) = Σ2(ν

′′) = λT .

F. Proof of Lemma 5

Proof: When λT = 2/a1 + 2/a2, we have ρ1 = ρ2 = 2.

Based on Remark 5 and Remark 6, there are only totally

two KKT points. One is located at [x′′
1,2, x

′′
2,1] = [2/a1, 2/a2]

and another one is [x′
1,1, x

′
2,2] = [ρ′1/a1, λT − ρ′1/a1]. Since

they are KKT points, the first derivatives of these two points

are both equal to zero. However, the second derivatives are

different at these two points, which are

1) point [x′
1,1, x

′
2,2]:

The second derivative of function fi(xi) is

gi(xi) = ai(2 − aixi)e
−aixi . (52)

When x1 ≤ 2/a1, we know g1(x1) ≤ 0; when x2 ≥ 2/a2,

we have g2(x2) ≥ 0, and vice versa. Therefore, there is

no intersection point between g1(x1) and g2(x2) except the

point: x1 = 2/a1 and x2 = 2/a2. Hence, we conclude

that the second derivative of the objective function at point

[x′
1,1, x

′
2,2] is not equal to zero.

2) point [x′′
1,2, x

′′
2,1]:

Consider the convexity of function fi(xi), since the transi-

tion point is xi = 2/ai, the second derivative is also zero at

point [x′′
1,2, x

′′
2,1].

Consider the facts that fi(xi) ≥ 0, fi(0) = 0, and fi(xi) is

concave when 0 ≤ xi ≤ 1/ai, and there are only two points

whose first derivatives are zero. It can be concluded that point

[x′′
1,2, x

′′
2,1] is a local optimal point. Consequently, we know

that the corresponding function J2 at this point is smaller than

J1, i.e., J1 > J2.

G. Proof of Lemma 6

Proof: Getting rid of the equality constraint in OP 2,

the objective function can be simply written as

J = x1e
−a1x1 + (λT − x1)e

−a2(λT −x1).

Taking the derivative of J in terms of λT , we have

dJ

dλT

= e−a2(λT −x1) − a2(λT − x1)e
−a2(λT −x1)

= (1 − a2x2)e
−a2x2 . (53)

Taking the derivative of J in terms of λT and substitut-

ing two KKT points x′
2,2 = ρ′2/a2 and x′′

2,1 = ρ′′1/a2
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into (53) respectively, we can obtain

dJ

dλT

|x′

2,2
= (1 − ρ′2)e

−ρ′

2 = W2(ν
′e)e−W2(ν

′e)−1 = ν′

dJ

dλT

|x′′

2,1
= (1 − ρ′′1)e−ρ′′

1 = W1(ν
′′e)e−W1(ν

′′e)−1 = ν′′.

Based on Lemma 4 we know that the decreasing speed of

objective function J at point x′
2,2 is less than the one at x′′

2,1.

In addition, from Lemma 5 we can conclude that J1 > J2 is

always true for λT ≥ 2/a1 + 2/a2 when a1 < a2.

H. Proof of Theorem 2

Proof: Consider a KKT point x∗. There exits a ν′′ such

that there is one variable in Region II, say x∗
j,2 and the left

N − 1 variables are all in Region I according to Lemma 1.

Consider one variable x∗
k,1 (Region I). Assume ak > aj .

Then, the KKT point is [x∗
1,1, . . . , x

∗
j,2, . . . , x

∗
k,1, . . . , x

∗
1,N ].

With fixing all variables except the two variables indexed by

j, k, the optimization problem with N variables is reduced

to OP 2. The KKT point can be expressed by

x∗ = [x∗
1,1, . . . , x

∗
j,2, . . . , x

∗
k,1, . . . , x

∗
1,N ]

= [ρ′′1/a1, . . . , ρ
′′
2/aj , . . . , ρ

′′
1/ak, . . . , ρ′′1/aN ]. (54)

Applying the result of Lemma 6, we know that a better point

(with a higher objective value) should be

x′ = [x∗
1,1, . . . , x

∗
j,1, . . . , x

∗
k,2, . . . , x

∗
1,N ]

= [ρ′′1/a1, . . . , ρ
′
1/aj, . . . , ρ

′
2/ak, . . . , ρ′′1/aN ], (55)

which implies that point x∗ is not the global solution of

OP 1. Note that point x′ is not a KKT point of OP 1, since

ν′ 6= ν′′. After enumerating all {ai}, it is concluded that only

the variable with amax should be in Region II.
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