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Training Optimization and Performance of Single
Cell Uplink System With Massive-Antennas
Base Station

Songtao Lu™, Member, IEEE, and Zhengdao Wang

Abstract— We study the performance of uplink transmission
in single-cell wireless systems, where all the transmitters have
single antennas and the base station has a large number of
antennas. We consider both maximum ratio combining and
zero-forcing receivers and both small- and large-scale fading
channels. We also characterize the achievable total degrees of
freedom (DoF) of such a system without assuming channel state
information at the receiver. The system DoF turns out to be
the same as that of a single-user multiple-input multiple-output
system. However, when the number of users is the same as the
number of receive antennas, linear receivers are not sufficient
for achieving the maximum total DoF. The amount of energy
savings that are possible through the increased number of base-
station antennas or increased coherence interval are quantified.
Furthermore, the training period and training energy allocation
under the average and peak power constraints are optimized
jointly to maximize the achievable sum spectral efficiency (SE).
The improvement on achievable SE provided by the training
duration and energy optimization is verified through multiple
numerical simulations.

Index Terms— Massive MIMO, uplink, multiuser, channel
estimation, energy allocation, training optimization, degree of
freedom (DoF).

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) sys-

tems are a type of cellular communications where the
base station is equipped with a large number of antennas. The
base station serves multiple mobile stations that are usually
equipped with a small number of antennas, typically one.
There are several challenges with designing such massive
MIMO systems, including e.g., channel state information
(CSI) acquisition [3], base station received signal process-
ing [4], downlink precoding with imperfect CSI [5], signal
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detection algorithm [6], etc. For multi-cell systems, pilot
contamination and inter-cell interference also need to be dealt
with [7]. There is already a body of results in the literature
about the analysis and design of large MIMO systems; see e.g.,
the overview articles [8]—[11] and references there in. To reveal
the potential that is possible with massive MIMO systems,
it is important to quantify the achievable performance of such
systems in realistic scenarios. For example, it is important to
consider practical constraints such as average and peak training
power in the channel acquisition process.

A. Scope of This Paper

In this paper, we are interested in the performance of the
uplink transmission in single-cell systems such as stadiums
and rural wireless broadband access. However, in practice,
the energy spent on sending the wireless signals is limited,
while the high quality of the transmission is preferred. There
may be several constraints on transmitting the messages, such
as power constraints. In particular, we ask what rates can
be achieved in the uplink by the mobile users if we assume
realistic channel estimation at the base station. Similar analysis
has been performed in [12]-[14], but the analysis therein
assumes equal power transmission during the channel training
phase and the data transmission phase. Also, the effect of
the channel coherence interval on the system throughput was
discussed in [15] and optimization of the power allocation and
training duration for an uplink MIMO system was considered
for single-cell and multi-cell systems in [1] and [16] respec-
tively. However, the peak power constraint was not considered.
For a fixed training period, to obtain an accurate estimate,
the training power needs to be high to enable enough training
energy. As a result, peak power constraint, if present, may be
violated. The solution is also to optimize the training duration.

If we allow the users to cooperate, then the system can be
viewed as a point-to-point MIMO channel. The rates obtained
in [17], and the stronger result on non-coherent MIMO channel
capacity in [18] can serve as an upper bound for the system
sum rate. The question is how much of this sum rate can be
achieved without user cooperation and without using elaborate
signaling such as signal packing on Grassmannian manifolds.
For a system with K mobile users, M base station anten-
nas, and a block fading channel with coherence interval 7T,
we quantify the total degrees of freedom (DoF) and the needed
transmission power for achieving a given rate when M, T > 1,
which is a refinement of the corresponding result in [12].
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Furthermore, the energy allocation and training duration are
also optimized for uplink multiuser (MU) MIMO systems
in a systematic way. Two linear receivers, maximum ratio
combining (MRC) and zero-forcing (ZF), are adopted with
imperfect CSI. The average and peak power constraints are
both incorporated. We analyze the convexity of this optimiza-
tion problem, and derive the optimal solution in small-scale
fading channels. The solution is in the closed form except in
one case where a one-dimensional search of a quasi-concave
function is needed. We also develop an iterative algorithm of
optimizing the energy allocation in large-scale fading chan-
nels. Simulation results are also provided to demonstrate the
benefit of optimized training, compared with the equal power
allocation considered in the literature, and also illustrate the
effect of the peak power constraint on the spectral efficiency
(SE) and energy efficiency (EE).

In summary, the main contributions of this paper are:

1) We quantify the total degrees of freedom (DoF) with
estimated channels, and the needed transmission power for
achieving a given rate when M, T > 1, which is a refinement
of the corresponding result in [12].

2) We provide a complete solution for the optimal training
duration and training energy in an uplink MU-MIMO system
with both MRC and ZF receivers, under both average and peak
power constraints in small-scale fading channels.

3) We also develop an iterative algorithm of balancing the
energy expense between the training and data phases with the
two receivers in large-scale fading channels under both average
and peak power constraints.

B. Related Works

An optimized energy reduction scheme was proposed in [19]
for uplink MU-MIMO in a single cell scenario, where both
RF transmission power and circuit power consumption were
incorporated. In [12] and [20], the achievable rates with
perfect or estimated CSI were derived and scaling laws were
obtained in terms of the power savings as the number base
station antennas was increased. However, the training power
and duration were not optimized for rate maximization in
channel estimation. In order to take full use of the advantages
of the massive MIMO systems, balancing the energy expense
between the channel estimation and data transmission takes
an important role in improving energy efficiency of the sys-
tem. The issue of non-ideal hardware and its effect on the
achievable rates were investigated in [15] and [21].

A joint pilot and data power control method with a min-
imum mean-squared error (MMSE) receiver was proposed
in [22], which minimized the sum power expense under
the signal to interference-plus-noise ratio (SINR) and power
constraints of each user. Previous work in [16] maximized the
sum SE with respect to power and training duration jointly
for the MRC receiver, however every user was assigned the
same training power. The sum SE maximization problem was
reformulated as a convex problem [23], where the pilot and
payload power control for each user were jointly optimized
in the single cell massive MIMO systems with MRC and
ZF receivers. Unfortunately, the reformulated problem is not
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equivalent to the original problem. For example, in certain
cases the objective value of the reformulated problem could
be infinite.

Training design and optimization for uplink massive MIMO
systems in a multi-cell setup has been performed in [24],
where the problem of insufficient pilots is addressed and non-
orthogonal pilots are optimized to maximize the system SE.
The problem of optimizing the training pilot duration and
update interval was considered in [25], for a massive MIMO
system with the MRC receiver. Power allocation for downlink
massive MIMO transmission has been considered in [26],
where MMSE channel estimation is considered. More recently,
the joint power allocation and user association optimization is
proposed for multi-cell massive MIMO downlink systems [27],
where each user is served by a subset of base stations such
that the total transmit power is minimized by optimizing
each user’s transmit power. Instead of solving a combinatorial
assignment problem, a new structure of the pilot signals is
proposed by using pilot basis in uplink multi-cell massive
MIMO systems [28]. The pilot design problem is further
formulated as a max-min fairness problem, where the pilot
and data powers of each user are optimized by an iterative
locally optimal algorithm.

Notation: We use A to denote the Hermitian transpose
of matrix A, Ix to denote a K x K identity matrix, C to
denote the complex number set, |-| to denote the integer floor
operation, i.i.d. to denote “independent and identically distrib-
uted”, and CN(0,1) to denote circularly symmetric complex
Gaussian distribution with zero mean and unit variance.

II. SYSTEM MODEL

Consider a single-cell uplink system, where there are K
mobile users and one base station. Each user is equipped with
one transmit antenna, and the base station is equipped with
M receive antennas. The received signal at the base station is
expressible as

y = HP?s +n, (1)

where H € CM*K s the channel matrix, matrix P =
diag{pi,...,px} € REXEK is diagonal where each entry
models the path gain and shadowing effect between the base
station and the kth user, s € CX*! is the transmitted signals
from all the K users; n € CM*1 ig the additive noise,
y € CM*1 is the received signal. We make the following
assumptions:

Al) The channel is block fading such that within a coher-
ence interval of T' channel uses the channel remains constant.
Namely, we assume that the channel coherence interval in sec-
onds is equal to 7" times the symbol duration 7§ in seconds.
The entries of H are i.i.d. and taken from CA/(0,1). The CSI
is neither available at the transmitters nor at the receiver.

A2) Entries of the noise vector n are i.id. and from
CN(0,1).

A3) The average transmit power per user per symbol is p.
So within a coherence interval the total transmitted energy
is pT'.

In summary, the system has four parameters, (M, K, T, p).
We will allow the system to operate in the ergodic regime,
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so coding and decoding can occur over multiple coherent
intervals.

A. Channel Estimation

We assume that K < M and K < 7T in this section.
To derive the achievable rates for the users, we use a well-
known scheme that consists of two phases (see e.g., [17]):
Training Phase. This phase consists of 7T’- time intervals. The
K users send time-orthogonal signals at power level p, per
user. The training signal transmitted can be represented by a
K x T matrix ® such that ®PM = Ely, where F = pr 1 s
the total training energy per user per coherent interval. Note
that we require 7, > K to satisfy the time-orthogonality.
Data Transmission Phase. Information-bearing symbols are
transmitted by the users in the remaining T, = T — T
time intervals. The average power per symbol per user is
pa = (pT — E)/Tq.

In the training phase, we will choose & = \/EIK for
simplicity. Other scaled unitary matrices can also be used with-
out affecting the achievable rate. Note that the transmission
power is allowed to vary from the training phase to the data
transmission phase. With our choice of ®, the received signal
Y, € CM*T+ during the training phase can be written as

Y,=G®+N=VEG+N, )

where N € CM*Tr i the additive noise and G = HP3.
The equation describes M x T’ independent identities, one
for each channel coefficient. The (linear) MMSE estimate for

the channel is given by G = ﬁYp(P_l/E + )71 [29],

where the kth column of G is

3
i E peVE
prE+1 prE+1
where hy and ny, are the kth column of H and N.

The channel estimation error is _defined as G=0G-G.
Thus, we have the kth column of G i.e., Gk =Gy — Gk =

~

=

3)

ng,

p;:/E‘ITj—lhk — ;’k];/__i n;, where Gy denotes the kth column of

G. It is easy to verify that the elements of G are column-

wise i.i.d. complex Gaussian with zero mean and variance
o2 — _PRE_
Gk prE+1°

i.i.d. complex Gaussian with zero mean and variance U@

and the elements of G are column-wise

o Lk - Moreover, G and G are in general uncorrelated as
a property of the linear MMSE estimator under the Gaussian
assumptions.

B. Equivalent Channel

Once the channel is estimated, the basg station has G and
will decode the users’ information using G. We can write the
received signal as

yz@s—l—és—i—néés—i—v, 4)

where v 2 Gs—+n is the new equivalent noise containing actual
noise n and self interference Gs caused by inaccurate channel
estimation. Assuming that each element of s has variance pq
during the data transmission phase, and there is no cooperation
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among the users, the variance of each component of v is
oy = Zszl pdp11 + 1.

If we replace v w1th a zero-mean complex Gaussian noise
with equal variance o2, but independent of s, then the system
described in (4) can be v1ewed as a MIMO system with perfect
CSI at the receiver, and the equivalent signal to noise ratio
(SNR) of the kth user is

2
pPaoq, pariE
PdDi

: T BN,
Pdpk

1 K 1Di
F)(Zizl pr{iJil

The SNR is the signal power from a single transmitter
per receive antenna divided by the noise variance per receive
antenna. It is a standard argument that a noise equivalent to
v but assumed independent of s is “worse” (see e.g., [17]).
As a result, the derived rate based on such an assumption is
achievable. In the following, for notational brevity, we assume
that v in (4) is independent of s without introducing a new
symbol to represent the equivalent independent noise.

Note that the effective SNR pefrj; is the actual SNR pg
divided by a loss factor (py + %)(Zfil pf%’j:l + 1). The loss
factor can be made small if the energy £ used in the training
phase is large.

Peff e =
o

+1)

)

(pr + +1)

C. Energy Splitting Optimization

The energy in the training phase can be optimized to
maximize the effective SNR pef; in (5) for point-to-point
MIMO system, as has been done in [17, Th. 2]. Importantly,
with the effective SNR adopted in this paper, the achievable
rate with MRC and ZF receivers can be easily optimized in a
closed form.

We assume the average transmitted power over one coher-
ence interval T is equal to a given constant p, namely pq7y; +
p:Ty = pT. Let a=p,T,/(pT) denote the fraction of the
total transmit energy that is devoted to channel training; i.e.,

p: Ty = apT, piTy=(1—a)pT, 0<a<l. 6)

III. ACHIEVABLE RATES AND DOF
A. Rates of Linear Receivers

Given the channel model (4), linear processing can be
applied to y to recover s, as in e.g., [12]. Let A € CK*xM
denote the linear processing matrix. The processed signal is

(N

The MRC processing is obtained by setting A = GH. The ZF
processing is obtained by setting A = (GHG) IGH,

Based on the equivalent channel model, viewed as a multi-
user MIMO systems with perfect receiver CSI and equivalent
SNR pefr 1, the achievable rates for lower bounds derived in
[12, Propositions 2 and 3] can then be applied. Also, setting the
training period equal to the total number of transmit antennas
possesses certain optimality as derived in [17], which means

LAy = AGs + Av.
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T* = K. Specifically, for MRC the following ergodic sum SE
is achievable:

K
K pett,k(M — 1)
RMRO2(1 - ) > logy (14 = ). ®
k=1 i=1,ik Peff,i +1

For ZF, assuming M > K, the following ergodic sum SE is
achievable:

K

N K
R“H & (1 — T) zjlog2 (L + peter(M — K)). ©)
k=1

Note that the factor (1 — %) is due to the fact that during one

coherence interval of length 7', K time slots have been used

for the training purpose. The number of data transmission slots

is T'— K, and the achieved rate needs to be averaged over T’

channel uses. Also, these rates are actually lower bounds on

achievable rates (due to the usage of Jensen’s inequality).
We will analyze the DoF in the next section.

B. Degrees of Freedom
We define the DoF of the system as

total
d(M, K, T)=sup lim L( )(p),
p—oo logy(p)

where the supremum is taken over the totality of all reliable

communication schemes for the system, and Rt denotes

the sum rate of the K users under the power constraint p.

We may also speak of the (achieved) DoF of one user for a

particular achievability scheme, which is the achieved rate of

the user normalized by log,(p) in the limit of p — oo. The

DoF measures the multiplexing gain offered by the system

when compared to a reference point-to-point single-antenna

communication link, in the high SNR regime (see e.g., [30]).

Theorem 1: For an (M, K,T) MIMO uplink system with

M receive antennas, K users, and coherence interval T,
the total DoF of the system is

(10)

t
dM,K,T)=K'(1 - £),

- an

where KT 2 min(M, K, |T/2]).

Proof: To prove the converse, we observe that if we allow
the K transmitters to cooperate, then the system is a point-
to-point MIMO system with K transmit antennas, M receive
antennas, and with no CSI at the receiver. The DoF of this
channel has been quantified in [18], in the same form as in the
theorem. Without cooperation, the users can at most achieve
a rate as high as in the cooperation case.

To prove the achievability, we first look at the case K T <
M. In this case, we note that if we allow only K T users to
transmit, and let the remaining users be silent, then using the
achievability scheme describe in Section II-A, each of the K t
users can achieve a rate per user using the zero-forcing receiver
given as follows (cf. (16))

KTt
<1 — ?> log, (1 + petr, k(M — KT)) k. (12)

1573

Note that the condition KT < M is needed. If we choose
E = K'p and pg = p, then the effective SNR in (5) becomes

P

Kipe+1/p

Peft,k = — ¢ o , Vk.
2im1 Riperizp 1

13)

It can be seen that as p — 00, log(pesr,x )/ log(p) — 1 and
a DoF of the kth user of (1 — KT/T) is achieved. The total
achieved DoF is therefore KT(1 — KT/T). Although better
energy splitting is possible, as in Section II-C, it will not
improve the DoF.

When KT = M, the case is more subtle. In this case
the zero-forcing receiver is no longer sufficient. In fact,
even the optimal linear processing, which is the MMSE
receiver [12, eq. (31)], is not sufficient. The insufficiency can
be established by using the results in [31, Sec. IV-C] to show
that as p — oo, the effective SNR at the output of MMSE
receiver has a limit distribution that is independent of SNR.
We skip the details here, since it is not the main concern in
this paper.

Instead, we notice that the equivalent channel (4) has an
SNR given by (13), which for KTp > 1 is greater than p/3.
So, the MIMO system can be viewed as a multiple access
channel (MAC) with KT single-antenna transmitters, and one
receiver with M receive antennas. Perfect CSI is known at
the receiver, and the SNR between p/3 and p. Using the MAC
capacity region result [32, Th. 14.3.1], [33, Sec. 10.2.1], it can
be shown that a total DoF of KT can be achieved over T'— K
the time slots. 0

Remark 1: The DoF is the same as that of a point-to-point
MIMO channel with K transmit antennas and M receive
antennas without transmit- or receive-side CSI [18]. This is
not trivial because optimal signaling over non-coherent MIMO
channel generally requires cooperation among the transmit
antennas. It turns out that as far as DoF is concerned, transmit
antenna cooperation is not necessary. However, we do note
that user synchronization is needed to prove the result. It is
an interesting problem to study the DoF in the asynchronous
case.

Remark 2: Tt can be seen from the achievability proof that
for M > K, which is generally applicable for massive MIMO
systems, ZF at the base station is sufficient for achieving the
optimal DoF. However, MRC is not sufficient because p shows
up both in the numerator and denominator of (15). So as p —
00, the achieved rate is limited. This is due to the interference
among the users.

Remark 3: For the case KT = M, non-linear decoding such
as successive interference cancellation is needed.

Remark 4: When T is large, a per-user DoF close to 1 is
achievable, as long as K < M.

Remark 5: When M is larger than KT, increasing M further
has no effect on the DoF. However, it is clear that more
receive antennas is useful because more energy is collected
by additional antennas. We will discuss the benefit of energy
savings in the next section.
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C. Power Savings for Fixed Rate

As more antennas are added to the base station, it is possible
that less energy is needed to be transmitted from the mobile
stations. Also, in a practical system, the channel statistic
information is provided from the downlink, and adaptive
power control mechanisms can be adopted for the block
fading channel, and thus most of the effect of large-scale
fading can be compensated [34]. For this reason and analytical
tractability, we will consider the case where is no large-scale
fading in the analysis. We note that the derived algorithms are
applicable to the case where large-scale fading is present.

Specifically, the effective SNR shown in (13) becomes

2

a P9
Peff = )
O—'U

_ paE _ Pd
Kpa+E+1 14 Keatl”

(14)

Consequently, for MRC the following ergodic sum SE is
achievable:

peti(M — 1) )
peﬂ»‘(K — 1) + 1 '
For ZF, assuming M > K, the following ergodic sum SE is
achievable:

RMRO L[ (1 — ?) log, (1+ (15)

R LK (1~ %) logy (1 + pesr(M — K)). (16)

It can be seen from (15) and (16) that when p is small, MRC
performs better than ZF, which has been previously observed,
e.g., [12]. On the other hand, in the low-SNR regime the
difference between them is a constant factor (M —1)/(M —K)
in the SNR term within the logarithmic functions in (15) and
(16). The difference becomes negligible when M is large.
Using either result, and the effective SNR in (36), we are
able to obtain the following:

If we fix the per-user rate at R = (1 — K/T)log,(1 + po),
then the required power p is

= ()

This can be proved by setting pM = pg in the rate expression
for ZF. Since the achievable rate with ZF processing is worse
than MRC and MMSE when SNR is very low, the result is
still applied for MRC and MMSE processing.

It is interesting to note that increasing 7" has a similar effect
as increasing M on the required transmission power, reducing
the power by 1/v/M or 1/y/T. The reason is the if T is
increased, then the energy that can be expended on training
is increased, improving the quality of channel estimation,
especially in the case where there is a peak power constraint.
On the other hand, for (17) to be applicable, we need M > K.

a7

IV. JOINT OPTIMIZATION OF POWER ALLOCATION
AND TRAINING DURATION

If the peak power, rather than the average power, is limited,
then our DoF result still holds because the achievability proof
actually uses equal power in the training and data transmis-
sion phases. The power savings discussion in the previous
subsection still applies, because the system is limited by the
total amount of energy available, and not how the energy
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is expended. In the regime where the SNR is neither very
high or very low, the peak power constraint will affect the rate.
Also, there is a peak power limit for hardware implementation
in practice. We provide a detailed analysis in this section.

a) Energy allocation: We assume that the transmitters
are subject to both average power constraint, and peak power
constraint:

0<p4;, pr < Pmax- (18)

b) Problem formulation: For an adopted receiver, A €
{MRC, ZF}, our goal is to maximize the uplink SE subject to
the peak and average power constraints. Based on the model
in (4), we will consider two linear demodulation schemes:
MRC and ZF receivers.

Consider the case where the large-scale fading is compen-
sated. For the MRC receiver, the received SNR for any of the
K users’ symbols can be obtained by substituting pes into
Pett(M — 1)/ (pese () — 1) + 1) (see [12, eq. (16)]):

Trprpa(M —1)
TTprd(K - 1) + K/)d + TTpT +1 .

For the ZF receiver, the received SNR for any of the
K users’ symbols can be obtained by substituting pes into
pett(M — K) (see [12, eq. (20)]):
Trprpa(M — K)
Kpd + TTpT +1 .

For either receiver, a lower bound on the sum SE achieved
by the K users is given by

SNRMRO —

19)

SNR“" = (20)

R (o, Ty) %Klogg(l + SNR™), 1)

where A € {MRC, ZF}.
Our optimization problem can be formulated as follows:

(OP) maximize R (a, Ty) (22a)
Q,lqg

subject to pTa + pmaxTy < pmax?, (22b)

— pTa = pmaxTa < —pT, (22¢)

0<a<l, (22d)

0<Ty<T-K, (22e)

where RY (o, T,;) is as given in (21); (22b) and (22c) are
from the peak power constraints in the training and data
phases, respectively; and the last constraint is from the require-
ment that T, > K.

A. SNR Maximization When T} is Fixed

The feasible set of the problem (OP) is convex, but the
convexity of the objective function is not obvious. In this
section, we consider the optimization problem when T} is
fixed. In this case, we will prove that R (, T}) is concave
in «a, and derive the optimized «. The result will be useful in
the next section where o and T} are jointly optimized.

For a fixed Ty, from the peak power constraints (22b) and
(22¢), we have

pmaXTT-l—(l—@)SOéﬁ

Pmax T,
pT p

T (23)
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Combined with (22d), the overall constraints on « are

min {0,

pmax TT pmax pmax TT
T +(1—7)}§a§max{ T 71}.
(24)

In the remaining part of this section, we will first ignore the
peak power constraint, and derive the optimal « € (0, 1) for
a given T,. At the end of this section, we will reconsider the
effect of the peak power constraint on the optimal «.

1) MRC Case Without Peak Power Constraint: Using (6)
we can rewrite (19) as

M-1 ala-1)
SNRM*O(q) = 25
(@) K—-1a2—-aa—0b’ 25)
where
T,— K PTK + T4y
14— =T S (26
w=trw oy T prew ey %Y
It can be verified that 1 —a; — b; < 0.
a) Behavior of the SNR™*(«) function: Define
g(a) == SNRMRO (K —1)/(M —1). (27)

And let g4(a) = o — ajar — by, which is the denominator
of g(a).

Lemma 1: The function g(«) is concave in a over (0, 1)
when 1 —a; — by <0 and b; > 0.

Proof: The proof is elementary but cumbersome, see

[2, Lemma 1] for details. U
Lemma 1 gives the convex conditions of the objective function.
According to Lemma 1, we know that there is a global
maximal point for (25). Taking the derivative of (25) and
setting it as 0, we have

(1 —a1)a® —2bja +b; = 0. (28)

Remark 6: It can be observed that when 1 —a; — b1 <0
and by > 0, gq(«) is non-positive at both &« = 0 and o = 1.
Since the leading coefficient of g4(«) is positive, gq(a) < 0
for o € (0,1), and it has no root in (0,1).

Based on Remark 6, we deduce that g(«) > 0 fora € (0, 1).
In addition, we have g(0) = 0 and g(1) = 0. Therefore, there
is an optimal o within (0, 1) rather than at boundaries.

b) Optimizing «: we discuss the optimal « in three cases,
depending on Ty, as compared to K.

o If T, = K, then 1 — a; = 0. Hence, we have o = 1/2,

and
1 M -1 1/4
SNRMRCO) <—> = .9
7) T KTy e

o If Ty < K, then 1 —ay; > 0. Since by > 1 — aq,
b1/(1—ay) > 1. Between the two roots of (28), the one
in between 0 and 1 is

. by — \/bl(al—l—bl —1)

o = .
1—&1

(30)

o If Ty > K, then 1 — a; < 0. It can be deduced that in
this case o in (30) is still between O and 1 and therefore
is the optimal «.
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Substituting (26) into (30), we have

o — V(PTK +Ty)(pTTy + Ta) — (pTK + Ty) 31
pT(Tq — K) '
We can simplify the expression for the optimal « at both high
and low SNR regions:

o At the high SNR region, the optimal « is

. JET; - K VE
ol ~ _ . (32)
Tui-K VIa+ VK

o Similarly, at the low SNR regime, the optimal « is af ~

1/2.

A/s a result, SNRMRO(af) = (M — 1)/(4T4(K — 1)).

If the SNR is low, the fraction between the training and

data is independent on system parameters M, K, pq, pr,

T;,and T.
So far we have ignored the peak power constraint. When the
peak power is considered, and o* is not within the feasible
set (24), the optimal a* with the peak power constraint is the
« within the feasible set that is closest to the a* we derived,
which is at one of the two boundaries of the feasible set, due
to the concavity of the objective function.

2) ZF Case Without Peak Power Constraint: This optimiza-
tion problem in the ZF case is similar to that in Section. IV-
A.l. Here, we only give the final optimization results.

Using (6) we can rewrite (20) as

@F) () — pT(M — K)a(l — a)
SN =" T T
A KpT+T,

Define an auxiliary variable when Ty # K: v = (T 1)
which is positive if Ty > K and negative if Tg < K.

It can be easily verified that in all the three cases, namely
Ty =K, Ty > K, and T; < K, per is concave in « within
a € (0,1). The optimal value for o that maximizes peg is
given as follows:

(33)

v+ V(v +1), Ta>K
1
ot = 5 T,=K (34)
v =Vr(r+1), Tu< K.
The maximized effective SNR p is given as
T
(2V7(v+ )+ (1 +29)), Ta>K
Ty — K2
* (T)
YA o T,=K
Pefr AK(1+ pT) d
p
2 1 142 T; < K.
Td_K( Y+ D)+ (1+2y), Ty
(35
At the high SNR region (p > 1), we have v =~ —TdIfK,

and the optimal values are of; ~ VK /(V/Ty + VK), p ~
. r
VT VER "

At the low SNR region (p < 1), we have v = m,
and the optimal values are '

1
57 p:ff ~

(pT)?
AT,

The optimized SNR“" is just given by (M — K)p.

(36)

*N
o =~



1576

|
0 01 02 03 04 05 06 07 08 09 1
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Fig. 1. Feasible region and the contour of the objective function in the MRC
case; T'= 196, K = 20 and M = 50.

B. Training Optimization With Peak Power Constraint

In this section, o and Ty are jointly optimized for maxi-
mizing the achievable rate of the uplink MU-MIMO system
as illustrated in (22)—(22e) when both average and peak power
constraints are considered.

The feasible set with respect to o and T}y is illustrated in
Fig. 1. It can be observed that the feasible region is in between
the following two lines

Ty —PTOZ/Pmax + T,
Ty —pTOZ/Pmax + PT/Pmaxa

where o and Ty satisfy (22d) and (22e).

We have the following lemma that is useful for describing
the shape of our objective function RV (a, T;) when « is
fixed.

Lemma 2: The function f(z) = zIn(14a/(b+ cx)), when
a,b,c,x > 0, is concave and monotonically increasing.

Proof: 1t can be verified by taking the second derivative.
See [2, Lemma 2] for details. U

In summary, the objective function has the following two
properties:

(P1) From Lemma 1, for fixed T}, R™M) is a concave function
with respect to a.

(P2) From Lemma 2, for fixed o, R is a concave function
and monotonically increasing with respect to Ty.

(37)
(38)

Since the feasible set is convex, our optimization problem
(OP) is a biconvex problem that may include multiple local
optimal solutions. However, after studying the convexity of the
objective function, we can give the global optimal solutions
for both MRC and ZF receivers in the following Theorem and
Corollary.

In the remainder of this section, let ! denote the optimal
o when Ty =T — K, which is given by Section IV-A.1 and
Section IV-A.2 for ZF and MRC processing.

Theorem 2: For the MRC receiver, set af = 1/2if T = K
and otherwise set a! according to (31) when T; = T — K.
Set a1 = pmax KX/ pT and set e = 1 — pax (T — K)/pT. The
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solution for the joint optimization of training energy allocation
a and the training duration 7 = T — T} is given in three
cases. Case 1) If a1 < of, then o* is given by the maximizer
of RMRO) (@) in (69), and T = —pTa* / pmax + T'; Case 2)
If ap > af then (a*,T;) = (a2, T — K); Case 3) If ay <
ol < aq, then (@*,T3) = (af, T — K).

Proof: Please see Appendix A 0
We also have similar results regarding the optimal energy
allocation factor «v and training period 7% for the ZF case.
The only difference is that SE R#P(a) should be given by
substituting (37) into R“P) (a, Ty), which is

R?(q) = g <_ pifxa + T) log, (1 + SNR“P(a)),
(39)
where
SNRORO) () — ala —1)p*T*(M — K), (40)

a30? — by — c3

and az = p?T?/pmax, by = pT? — pPTK — pT/ pmax and c3 =
KpT'+T. Comparing (69), (70) and (39), (40), we can obtain
the results for the ZF receiver straightforwardly as follows.

Corollary 1: For the ZF receiver, set af = 1/2if Ty, =K
and otherwise set a! according to (34) when T; = T — K.
Set a1 = pmax K/ pT and set e = 1 — pax (T — K)/pT. The
solution for the joint optimization of training energy allocation
a and the training duration 7 = T — T} is given in three
cases. Case 1) If a1 < af, then o* is given by the maximizer
of R“F)(a) in (39), and Tf = —pT*/pmax + T; Case 2) If
ag > af then (a*,T}) = (e, T — K); Case 3) If ap < af <
i, then (o, T)) = (of, T — K).

C. Optimized SE When M is Large

When M increases, the transmit power of each user can
be reduced proportionally to 1/v/M for a large M while
maintaining a fixed rate as discussed in Section III-C and [12].
Here we discuss the asymptotic achievable SE when M — oo.

1) Optimized o if Ty is Fixed When M — oo: If the energy
over the training and data phases is allocated differently,
we have the following results after optimizing the « for a
large M.

Theorem 3: For both ZF and MRC, let p,, & v/M p be fixed.
Then, the maximum achievable SE can be

272
M), M — oo,

AT,

Proof: According to (25) and (33), when M — oo, we
have

T,
RA _, TdKlogQ(l + A1)

a(l —a)p?T?

SNRW(a) = 42)

Ty
where the maximum received SNR can be obviously obtained
when a = 1/2. O

Note, if the peak power constraints are considered, «
needs to be within the interval as shown in (24). Otherwise,
the optimal solution is located at the boundary of (24).

Remark 7: If the power is allocated equally between the
two phases, we have o = T /T [12], then the difference of
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SE between the optimized and the equally allocated power
scheme is

(A) Ta paT? 2
AR (a) = - K (logy(1 + =) — logy (1 + T7py,))
d
Ty 4Ty + p2 T2
— 2 u 43
T o8 (4Td+4Td(T—Td)pg)’ “43)

where the numerator minus the denominator within the log,(-)
is equal to p2 (T2 —4ATTy+T3) = p2(T—T4)? > 0. Therefore,
it is clear that the optimized SE is always larger than the
unoptimized one. The gain in rate offered by optimizing the
energy allocated for training is given by (43).

2) Optimized o and Tqg When M — oo: For both MRC and
ZF, under the peak power constraints, the average transmit
power of each user is p = p,/ VM, where p, is fixed.
Let p/pmax = E&. Consequently, the corresponding ppa, =
pu/(EV/M). When M — oo, applying Theorem. 2 and
Corollary. 1, we have the following cases:

o Case 1: p; is limited by pyax
ala—1)p2T

fa—1 ):
(44)

R(A( )= K(— £a+1)10g2( +

Taking the derivative of (44) and setting it to zero, we can
obtain the optimal o with one dimension search algorithm
[35]. Then, the duration T); can be obtained by (37)
directly with substituting a*.

o Case 2: pq is limited by ppax

R (a®) = K¢(—a" + 1) log, (142

where o* =1— (T' - K)/((T) and T; =T — K.
o Case 3: Neither pg nor p. is not limited by py.x

T —

K 27?2

R (a AT —K)

*):

where o* =1/2 and T =T — K.

D. SE in Large-Scale Fading Channels

If the adaptive power control is not used, we consider
the case where there exits large-scale fading. For the MRC
receiver, the received SNR for any of the K users’ sym-
bols can be obtained by substituting (5) into pesr (M —

D)/ (0 i peti + 1) (see [12, eq. (16)]):
SNR;MRC)
papiE(M — 1)
pa(pE +1) Ez 1,izk Pi + papk +prE +1
PiTrprpa(M — 1)
Trprpaph Yorey vy Pi + Pa Yooy Di + PrTrpr +1
_ pip’T*(M — a(a — 1)

610&2 — bloz — 51

) (47)
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where a1 = p? pkzz LigkDis b1 = poka -

PT S pit 0P T2 S0y v and & = pT 30 pitTa,
It can be verified that 1 — (by +¢1)/a; < 1 and ¢ /a; > 0.
Applying Lemma 1, we know that SNR;MRC) is a concave
function with respect to a € (0, 1).

For the ZF receiver, the received SNR for any of the
K users’ symbols can be obtained by substituting (5) into
peti (M — K) (see [12, eq. (20)]):

papi E(M — K)

K ) )
papk Yoy (1 + To8p) + prE + 1

SNRY" = (48)

where Ay; £ pi —pr < 1. Hence, we can get the lower bound
of SNRYP, which is given by
pipdlrpr (M — K)

Kiprpa + prTrpr +1
_ pepT (M — K)(1 — a)a

(Tq — Ki) (o +7")

SNR{™" =

; (49)

> A K r A KkkaT"l‘Td
where K =5 " (14 Ag) = K > 1 and oo T (Ta )

when Ty # f(k,. Similar as in (33), it can be verified that
SN RgF), Vk are concave functions with respect to o € (0,1).

For either receiver, a lower bound on the sum rate achieved
by the K users is given by

R (a, Ty) = Zlog2 (14 SNRMY).

(50)

Since the function log(1 + x) is concave and nondecreasing,
we know that log, (1 + SNR;A)),V.A are concave, implying
R (a, T,),V.A are concave with respect to a.

Applying Theorem. 2 and Corollary. 1, we can obtain the
optimal solutions of problem (22) for both MRC and ZF
receivers under both average and peak power constraints.

V. SE AND TRAINING OPTIMIZATION WITH
LARGE-SCALE FADING

If the adaptive power control is not applied, there exits
large-scale fading in the uplink massive MIMO systems.
In this section, we will discuss the energy splitting strategy
for training optimization in large-scale fading channels under
both average and peak power constraints.

Based on the definition of the equivalent channel in

Section II-B, we can obtain the equivalent noise o2 =

YK, -~ }ffjrl + 1 and effective SNR of the kth user

2
S deék _ PdpkE
Petf k. = P o
v (pkE+ 1)(21 1 p;E+1 + 1)
(PrPET- + 1) (0, Wpd% +1)
where the energy splitting strategy is
PET, = appT, phiTy=(1—o)pT, 0<ap <1,

(52)
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and p(’; (p*) denotes the power that is allocated to the training
(data) phase of the kth user, and «y, denotes the fraction of
the total transmit energy of the kth user devoted to channel
training.

For MRC the following sum SE is achievable for the kth
user:

RO, Ty) £ (1- 2 log, (14 SNRY (0, T) )

(33)

where o £ [y, ..., ak| and

(M — 1)peff,k

SNRM (o, Ty) £ —1 .
Dim1,ik Peffi + 1

(54)

For ZF, assuming M > K, the following SE of the kth user
is achievable:

T
) log, (1 + SNRY? (e, T1)),

R, Ta) & (1-

(55)

where SNR?CZF)(G,Td) £ (M — K)pefﬂkx.
When the large-scale fading is considered, our optimization
problem becomes

K
maximize ; R (e, Ty) (562)
subject to pT'ag + pmaxLd < pmaxl, Vk (56b)
—pTag — pmaxTa < —pT, Yk  (56c)
0<ap<1, Vk (56d)
0<Ty<T-K. (56e)

A. Training Optimization

It is obvious that the kth user’s energy splitting will affect
the achievable rate of the others such that the optimization
problem becomes more complicated in the sense that i) the
objective function is not jointly convex with respect to all
the variables, and ii) variable Ty in the constraint is coupled
with oy, Vk, resulting that the traditional block coordinate
descent (BCD) algorithm that is widely used for solving
nonconvex problems does not work. Here, the alternating
direction method of multipliers (ADMM) is applied to solve
the nonconvex problem. It has been shown in [36]-[38]
that ADMM has the provable convergence guarantees to the
stationary (locally optimal) points of the nonconvex prob-
lem under some mild assumptions which mainly request
that the objective function is smooth and the penalty para-
meter (i.e., vy which will be defined later) is sufficiently
large (depend on the Lipschitz constant of the objective
function).
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First, by introducing auxiliary variables Oy, vk, Vk, we can
see that problem (56) is equivalent to

K
S (A)
minimize R (e, T, 57a
{ar,Ta,Br, Yk} ; k ( d) ( )
T
subject to Ty + B =T — 2225wk (57b)
Pmax
T — pT
T, =2 P2 Yk (570)
Pmax
0<ap<1, Vk (57d)
0<Ty<T-K, (57e)
B, >0 Vk. (57f)

To this end, let us construct the augmented Lagrangian as
the following

L{an} Bk} At Tas {w ) {ur})

X vV, pTa A
=2 (— B (e To)+ 5 (Ta— (T = 22— )4 222
1 Pmax Vi

1% T — pT oy,
+ 5 (T~ (% +%)+ﬂ)2>, (58)
Pmax Vi

where g, px, Vk denote the dual variables associated with
equalities (57b) and (57c), and vy, Vk represent the penalty
parameters.

Using ADMM [39], we can obtain the update rules of the
primal variables as follows (superscript ¢ denotes the number
of iterations):

1) Update of oy, Vk:

K
(t+1) _ : _p)
ap = argogrgtngl(l; Ry (o, Ta))
v T A
+ 25 (T — (T = E25 - gy 4 282
Pmax 145
Vg pT — pTay Hk o
+ Ty - +) + =
5 (Ta = ( - Vr) Vk)
(59
2) Update of Ty:
(t+1) - (A)
t+1) . _ p(A
T, = argogglglg_KI;( Ry (au, Ta)
vy, pTay Ak 2
=, — (T — — 25
+2( ¢ ( Pmax ﬂk)+yk)
Vg pT — pTay Kk 2)
+ (T — (4 m) + =5)%).
5 (Ta—( - Vk) Vk)
(60)
3) Update of G, Vk:
(t+1) . pT oy, Ak 2
= arg min (T — (T — — + —
k gﬁkzo( d ( Pmax ﬁk) Vk’)
T A
= max{0,T — T, — 222k _ 2y (61)
max Vi
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4) Update of i, Vk:

1 T — pT oy, Pk \ 2
(e+1) — )+ )
'max Vi

T — pT oy, .
er%}. (62)
k

max

p— 1 T -
5 arg%pz%( u—(
= max{O,Td—

Also, we have the update rules of the dual variables are as
follows:

1) Update of dual variables Ay, Vk:

TotHD
)\5:+1) :A;(Ct)‘f‘l/k (Tét“)—(T e (t+1))).

Pmax k
(63)
2) Update of dual variables p*, Vk:
(t+1)
T—pTa
NSH) :/i;(:)‘H/k (Tét+1)_(P Z k _’_Py](:-i-l))).

max

(64)

The objective function is Lipschitz continuous and the feasible
set of the problem is convex. Applying the theorem in [38,
Th. 1], when vy, Vk are chosen large enough (such that they
are larger than the required lower bound of these penalty
parameters; see [38, Lemma 9] or [36, Assumption A]), it
is guaranteed that the ADMM algorithm can converge to the
stationary points of problem (57).

B. Solutions of the Subproblems

The solutions of solving sub-problems (59) and (60) are
discussed in this section.
1) ZF Receiver:

o Update of ay, Vk:
Lemma 3: For the kth user, when «;, Vi # k and Ty are
fixed, function >"1, R¥F(cy,) is concave.
Proof: Please see Appendix C. (]
o Update of T:
When ay, Vk are fixed, sum rate 1 R7F(T}) is

K

Ty
> = log (1+
k=1

(M — K)pip?T?(1 — oo

(prepTar+1)(Sf, BE) 4T,

).

Applying Lemma 2, we can conclude that Zkl,{:l RZK(T,)
is also concave with respect to Ty.

After studying the convexity properties of these objective
functions, we know that the each subproblem of updating
variables for the ZF receiver is convex. Then, we can take
the gradient of the objective function and set it as zero,
where the root of the resulting equation is the optimal
solution of the subproblem.

2) MRC Receiver:

o Update of ay:
When «;,i # k and Ty are fixed, maximizing
ST RMRC(qy) with respect to ay is not a convex
problem, but the optimal solution can be still easily
obtained since solving this problem only involves one
dimensional search.

o Update of T:
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When ay, Vk are fixed, we have

MR
SNRMRO(T)
(M—-1)ppp> T?(1—ap)ay,
pT(1—ay)
(pepTean+1)(C1, 2 ora 4 +Ta)
ZK pip? T?(1—ai)as +1
i=1,i#k ;PT(—a,)
ELER pipTa+1) (DK, )+ T

(M—1)p3p*T?(1—ay)ay
prpTok+1

K p?p2 T2 (1—a;)oy K pipT(1-ay) '
Distith ppTaitt T 2=t pypTar T Ld

Applying Lemma 2, we know that Zszl RMRC(T,) is
concave with respect to Ty, and can be also solved easily.

Algorithm 1 The Training Optimization Algorithm With Both
Average and Peak Power Constraints

1: Input: oy, = K/T, vy, Vk and Ty = K.
2:fort=1,...,N do

33 fork=1,...,K do

4 Update primal variables o, Ty, Bk, vi by (59)—(62).
5 end for

6: fork=1,..., K do

7 Update dual variables A\, ui by (63) and (64).

8 end for

9: end for

C. Algorithm Description

By leveraging ADMM, the developed algorithm that splits
energy between the training and data phases under both aver-
age and peak power constraints is summarized in Algorithm 1,
where N denotes the total number of iterations.

When there is no peak power, problem (56) is reduced to
K
s (A)
maximize R («
{0, vk} kz::l i (a)
subject to 0 < o, < 1,

Vk. (65)

This problem is a special case of (56), where there is no
variable coupling in the constraint. Hence, we can simply
use the BCD algorithm to solve problem (65). Applying
the proposition in [40, Proposition 2.7.1], it is guaranteed
that the BCD algorithm converges to the stationary points of
problem (65). The algorithm of energy splitting with only the
average power constraint is summarized in Algorithm 2.

Algorithm 2 The Training Optimization Algorithm With the
Average Power Constraint

1: Input: o, = K/T, vy, Vk and Ty = K.
2:.fort=1,...,N do

3 for k=1,...,K do

4: Update ay, by argmaxp<a, <1 Zkl,{:l R;A) (o)
5 end for

6: end for

Remark 8: In this case, the recent work in [23, Th. 6] shows
that problem (65) can be reformulated into another convex
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optimization problem equivalently. Unfortunately, the objec-
tive function of the reformulated problem can be infinite in
some special case (e.g., when s = 0 where s is defined in
[23, Th. 6]), resulting that the reformulated problem is not
equivalent to problem (65).

D. Complexity of Implementing the Algorithms

The two proposed algorithms are computationally effi-
cient in the sense that each subproblem only involves a
one-dimensional optimization problem. Especially, when the
subproblem is convex, a simple bisection algorithm can be
exploited, which can achieve a small error ¢ in several
steps [35]. Therefore, the total complexities of the two algo-
rithms are O(NKI) where I denotes the number of iteration
used in the inner loop of each subproblem. When the subprob-
lem is convex, I is (’)(log( )) and when the subproblem is
nonconvex, I is O(1).

E. Sum SE in a Multi-Cell System

In a multi-cell massive MIMO system, the received sig-
nal at the base station will be also affected by interfer-
ence from the neighboring cells. Consider the uplink of
the system with L neighboring cells that share the same
frequency resource. There is one base station equipped with
M antennas in each cell and K users each equipped with
one antenna. Let G, = Hlnan be the channel matrix
between the [th base station and the K users in the nth
cell, where H;,, denotes the small-scale fading and the diag-
onal matrix Py, =diag{pin1,--.,Pink,---,Pink} Tepresents
the large-scale fading, i.e., path loss and shadowing fading.
Then, the received signal Y, € CM*Tr during the training
phase can be written as

L
Y, = VEGy + \/EZ G +N,
i#l
N———
inter-cell interference

(66)

where N € CM*T- ig the additive noise. Let hy;r and ny;
denote the kth column of H;; and Ny, respectively The
(linear) MMSE estimate for the channel is given by G”
VEY,Py(XL  PiE +1)~!, where the kth column of Gy
is

%
P

G = ——h—
EiLzl ik +1

llk+z

il j:1PleE+1

+ ngy,. (67)
Ele pikll +1
Let the channel estimation error be éju = Gy - CA}”.
Thus, we have the kth column of Gy, ie., Gy
~ L
Gur — Gur = m(\/mk(zi# Epiir. + Dhy —

Dilk Ez;ﬁl Eplzkhl’tk pk\/_l’l”k), where Gy denotes the
kth column of Gy;. It is also easy to verify that the elements

of G” are column-wise i.i.d. complex Gaussian with zero
kaE
Sk pukE+1’

mean and variance o2, and the elements

Gk
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Fig. 2. Comparison between equal and optimized power allocations when
the number of base station antennas increases; p,, = 3dB.
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Fig. 3.  Comparison of EE versus SE, where M = 100.

of Gy, are column-wise i.i.d. complex Gaussian with zero

L
. 9 Puk (i Prik E+1) .
mean and variance o2 = —=7*———— Following the
Gk E iy PlikE+1 g

similar derivation steps shown in Section II-B, we can obtain
the equivalent SNR of the kth user in the [th cell, i.e.,

PdplzlkE
Deft 1k N i bk E41
off 1 2
’ L pdanJ(Z i PLij E41)

En 12] 1 Pl B+ +1

and consequently
SNRﬁF) = (M — K)peti,i,
SNR(MRC) _ (M — 1)PdEP121k
)
my, + Zszl Zfil PdPini + Zﬁzl pinkE +1

(68)

L L
where mké(M - 1)Ei¢zp12ikpdE il Pigpal +

(ZZ 123 lpdpl”)zz 1 PiikE, which have been also
shown in [12] and [41]. Using (53) and (55), we can get

the objective function of (57). Applying the energy splitting
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Fig. 4. CDF of the sum SE in large-scale fading channels, where M = 100, K = 10, 7" = 200. (a) MRC receiver and (b) ZF receiver.
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scheme shown in (52), we can exploit Algorithm 1 to solve
problem (57) in the large-scale fading case.

VI. NUMERICAL RESULTS

In this section, we compare the SE between the equal power
allocation scheme and our optimized one under average and
peak power constraints. We consider the following schemes:
1) MRC, which refers to the case where the MRC receiver
is used and the same average power is used in both training
and data transmission phases [12]. 2) A-MRC, which refers
to the case where the MRC receiver is used, the training
duration is K, and there is only the average power constraint.
3) AP-MRC, where the MRC receiver is used, and both the
training duration and training energy are optimized under both
the average and peak power constraints. We will also consider
the ZF variants of the above three cases, namely ZF, A-ZF,
and AP-ZF. The EE is defined as ) & R (o, Ty)/p,
A € {MRC, ZF}.

A. EE and Sum SE With Small-Scale Fading

In our simulations, we set ppax = 2p, K = 10, and T =
200. In Fig. 2, we show the sum SE of various schemes as the
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CDF of the sum SE with the MRC receiver, where M = 100, K = 10, T' = 200. (a) SNR at the cell edge is —5dB and (b) SNR at the cell edge
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Fig. 6. CDF of the sum SE with the ZF receiver, where M = 100, K = 10,
T = 200, and the SNR marker denotes the received SNR at the cell edge.

number of antennas increases for p = p,, /v M. It can be seen
that SE per user by A-MRC (ZF) is 1.5-4.5 bits/s/Hz and only
1-3.5 bits/s/Hz by MRC (ZF), illustrating that A-MRC (ZF)
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Fig. 7. CDF of the sum SE in the multi-cell massive MIMO system, where M = 100, K = 4, T" = 200. (a) MRC receiver and (b) ZF receiver.

performs better than MRC (ZF) as well as AP-MRC (ZF).
In Fig. 3, we show EE versus SE. It can also be seen
that optimized schemes, e.g., A-MRC (A-ZF) and AP-MRC
(AP-ZF), show a significant gain compared with MRC (ZF).
In particular, there is an optimal average transmitted power for
maximum EE as has been also observed before in [12]. Also,
from the simulations, we can see that ZF performs better than
MRC at the high SNR region, but worse when the SNR is
low.

Moreover, the impact of peak power constraint on SE and
EE for both MRC and ZF receivers can be observed through
from Fig. 2 to Fig. 3 clearly. They illustrate that when peak
power is limited at the training phase, the SE with AP-MRC
and AP-ZF cannot be as high as the case with A-MRC and
ZF. Although the training period is increased, the time slot
is still very precious when the achievable rate needs to be
maximized.

B. EE and Sum SE With Large-Scale Fading

We assume that the users are randomly and independently
distributed in a single cell with radius R = 1000m, where the
location of each user follows the uniform distribution and the
minimum distance between any user and the base station is
100m. The large-scale fading is modeled as p, = z/ri,Vk
where 7, is the distance between the kth user and the base
station, and z follows a log-normal distribution with zero mean
and 8dB standard deviation, representing the shadowing effect.
We allocate the energy budgets as £ = pT = 107%° x R*x T,
meaning that the SNR at the cell edge is —5dB when equal
power allocation is used.

We consider the energy splitting in the following two cases.
The first one is maximizing SE with respect to all users
(solving problem (22)) and the second one is maximizing SE
in terms of each user (solving problem (57)).

1) Joint Power and Training Duration Optimization Over
«,Ty: The empirical cumulative distribution function (CDF)
of the sum SE over different snapshots of user locations

is shown in Fig. 4 with both ZF and MRC receivers. The
numerical results are based on 1000 Monte Carlo (MC) trials.
We set pmax = 3p. E-ZF refers to the scheme where the
exhaustive search of « is used when (48) is adopted for
the ZF receiver. In the A-ZF scheme, the lower bound of
(48) is used, i.e., (49), in the objective function. It can be
observed that the results obtained by E-ZF and A-ZF are
very close, illustrating the relaxation is reasonable. Under
the different SNRs, it is also shown that when SNR is low,
the advantages of using the energy splitting scheme become
more obvious, compared with the case without implementing
power optimization. Comparing with (a) and (b) in Fig. 4,
it can be seen that the improvement obtained by optimizing
the sum SE in the MRC case is larger than the ZF case.

2) Joint Power and Training Duration Optimization Over
ag, Yk, T;: When energy splitting is considered for each user,
the achievable SE can be higher than the case where the same
energy splitting is used for all users. For AP-MRC and AP-
ZF, we set v = 1073, Vk and pnax = 3p. The numerical
results are based on 1000 MC trials. The empirical CDF of
the sum SE over different snapshots of user locations is shown
in Fig. 6 with the ZF receiver and Fig. 5 with the MRC
receiver. It can be observed that the optimized power allo-
cation strategy increases the sum SE compared with the equal
power allocation scheme. When the peak power constraint
is considered, the achievable sum SE is lower than the case
where only the average power constraint is applied, illustrating
that the results obtained by the A-MRC (A-ZF) method are
too optimistic in real applications. AP-MRC (AP-ZF) allows
more time slots in the training phase such that SINR can be
improved in the data transmission phase, which is the practical
strategy for training optimization of the uplink massive MIMO
systems. Also, we can see that the peak power constraint
affects the sum SE in the case of large-scale fading more
significant than the case where there is only small-scale fading,
especially for the case shown in Fig. 5 where the MRC receiver
is used.
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C. Sum SE in Multi-Cell System

Numerical results of maximizing the sum rate in a multi-
cell system are depicted in Fig. 7. The system has 7 equal-
size hexagonal cells with one at the center and the remaining
6 surrounding it. We focus on analyzing the sum SE of the
hexagonal cell in the center. The radius of each cell is 1000m,
the path loss model and the distribution of the users are the
same as the previous section. Equal power allocation is used
in the 6 neighboring cells, and the cases of using MRC and
ZF receivers are both considered. It can be observed that the
optimized sum SE is higher than the case with equal power
allocation. Also, the improvement of the sum SE in the multi-
cell system is less than the case of the single-cell system. The
reason is that the power allocation scheme cannot deal with
the inter-cell interference by optimizing the intra-cell users’
power and training duration unless other advanced techniques
are adopted, e.g., coordinated multi-point (CoMP) or joint
interference management.

VII. CONCLUSIONS

In this paper, we considered an uplink multiuser massive
MIMO. The channels were assumed to be estimated through
training symbols transmitted by the mobile users. We were
able to quantify the amount of energy savings that are possible
through the increase of either the number of base station
antennas, or the coherence interval length. We also quantified
the degrees of freedom that is possible in this scenario, which
is the same as that of a point-to-point MIMO system. The
scheme that achieves the DoF of the system when the number
of users is less than the number of base station antennas is
linear: zero-forcing is sufficient.

For the case where both average and peak power constraints
were considered, we considered the problem of joint training
energy and training duration optimization for the MRC and ZF
receivers so that the sum SE was maximized. In the small-scale
fading channels, we also performed a careful analysis of the
convexity of the problem and derived optimal solutions either
in closed forms or in one case through a one-dimensional
search of a quasi-concave function. For the case where there
was large-scale fading, we developed an iterative algorithm
that leveraged ADMM and obtained a locally optimal solution.
Our results were illustrated and verified through multiple
numerical examples.

APPENDIX
A. Proof of Theorem. 2

Proof:  After studying the convexity of the objective
function, there are only three possible cases for the optimal
solutions, as we discuss below.

1) Case 1 (p, is Limited by pyay): Define ay = prax K /0T,
which is the root of T — K = —pTa/pmax + T in « (see
Fig. 1). In the case where o; < af, because of property P2 the
optimal (o*,T);) must be on one of the two lines given by 1)
Ty = —pTa)pmax + T, @ € [, 1], and i) Ty = T — K,
a € [0,aq].

Ontheline T, = T— K, a € [0, a1] the objective function is
concave and increasing with «, thanks to property P1. Hence,
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we only need to consider the line Ty = —pT'a/pmax + T
a € [ag,1].

Lemma 4: The objective function RMRC) (o, T;) along the

line Ty = —pT' o/ pmax + T, @ € [a1, 1] is quasiconcave in «.
Proof: See Appendix B. 0

Thanks to Lemma 4, we can find the optimal « by set-
ting the derivative of (69) with respect to o to 0. Effi-
cient one-dimensional searching algorithms such as Newton
method or bisection algorithm [35], can be adopted to find
out the optimal a.

2) Case 2 (pq is Limited by py,y): Define ao £ 1= pmax (T —
K)/pT, which is the root of T'— K = pT'a/ pmax + pT'/ pmax
in a. If iy > af, because of property P2 the optimal (a*, T3)
must be on one of the two lines given by i) Ty = —pT'«/ pmax+
T,a € (a1,1), a € [ag,1],and i) Ty =T — K, a € [ag, o).
Along the line 7, = T — K,« € (a1, 1), the corresponding
function is decreasing in « because of property P1. Also
considering P2, which implies that the optimal point in this
case cannot include T; < T'— K, we conclude that the point
(a*,T5) = (o2, T — K) is the global optimal solution of the
problem.

3) Case 3 (Both pg and p; Are Not Limited by ppg.): If
ay < ol < ay, the optimal point is achieved at (a*,T}}) =
(af, T — K), according to properties P1 and P2. O

B. Proof of Lemma 4

Proof: Consider MRC processing. Substituting (37) into
RMRO) (o Ty;), we have

RMRO) (o) = g (_ ppT
max

o+ T) log, (1 + SNRMRO(a)),
(69)

where
ala —1D)p?T?*(M —1)
as0? — baax — ¢

SNRMRO () = : (70)
and ay = p?T*(K — 1) + p*T?/pmax, b2 = p?T*(K —
1) + pT? — pTK — pT/pmax and ca = KpT + T. Since
RMRO(q) > 0, in order to prove the quasi-concavity of
RMRO(q), we need to prove that the super-level set S =
{a|0 < a < 1, RMRO(q) > 3} for each 3 € RT is convex.
Equivalently, if we define

g

To
7 (e = 1)

dp(a) = + log, (1 + SNRM ().

(71)

we only need to prove that Sy = {a|0 < a < 1, ¢g(a) > 0}
is a convex set.

It can be checked that the first part of ¢g(«), namely
6/[%(% —T)], is concave for o € [0,1]. For the other
part of ¢g(c), from (70) we know that

p

Pmax

p

Pmax

ag — by —co = pT( -1)-T(1 -« ) <0,

(72)

where as, co > 0. Applying Lemma 1, we know SN R(MRC)(a)
is concave. Hence, log,(1 + SNR™R9(a)) is also concave
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since function log(1 + z) is concave and non-decreasing [35].
Therefore, its super-level set Sy is convex. It follows that the
super-level set Sz of RMRO(q) is convex for each 3 > 0.
The objective function is thus quasiconcave. (]

C. Proof of Lemma 3

Before proving Lemma 3, we first need the following two
lemmas. The proofs are elementary, and not provided here due
to space limit.

Lemma 5: The function f(z) £ log (1 +

cave in x over (0,1) where a,b > 0 are some constants.

(1 gc)gc

) is con-

Lemma 6: The function g(x) £ log (1 + ) is con-

a
. ]
cave in x over (0,1) when a,b,¢,d > 0 are some constants.
The proof of Lemma 3 follows. Proof: Substituting (52)
into (5), we have

Prpipi Ty '
(PepETr + 1)(C0, %
_ Prp” T (1 — a¥)ay
(Ta — 14 )pepT g + pTpr + ¢+ Ty’
—_————— | S ——

Peft,k =
+1)

(73)

éa>0 éb>0

where ¢ = EZK—1 k(1 —ai)pTp;.
Applying Lemma 5, we know that RZF(«y,) is concave.
The power of the kth user also generates the interference
to the ith user such that the effective SNR at the ith user is

pipary T Ta

L : Lk
Peff,i (plpﬁ.T-,— I 1) s y b 7&
where
pdpz
s="1Ty
Z szTT +1
= PP php
=T L X 1
di:%;k pipiTr+ 1 prphT- +1
K i
_ Z Tapypi (1 — o) pT'py 4T,
Myt piptTr +1 prpl o + 1
c K Tapip
k dPqli
=—* 4 ARl 1, (T4)
brog, + 1 i=1z.i:;£k piptTr + 1
£4>0

and ¢, £ 14 pTpp > 0,by £ pppT > 0.

Applying Lemma 6, we know that R7F (), # k,Vi are
concave. Therefore, we can conclude that Y_,_, R7 () is
concave. (]
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