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Training Optimization and Performance of Single

Cell Uplink System With Massive-Antennas

Base Station
Songtao Lu , Member, IEEE, and Zhengdao Wang , Fellow, IEEE

Abstract— We study the performance of uplink transmission
in single-cell wireless systems, where all the transmitters have
single antennas and the base station has a large number of
antennas. We consider both maximum ratio combining and
zero-forcing receivers and both small- and large-scale fading
channels. We also characterize the achievable total degrees of
freedom (DoF) of such a system without assuming channel state
information at the receiver. The system DoF turns out to be
the same as that of a single-user multiple-input multiple-output
system. However, when the number of users is the same as the
number of receive antennas, linear receivers are not sufficient
for achieving the maximum total DoF. The amount of energy
savings that are possible through the increased number of base-
station antennas or increased coherence interval are quantified.
Furthermore, the training period and training energy allocation
under the average and peak power constraints are optimized
jointly to maximize the achievable sum spectral efficiency (SE).
The improvement on achievable SE provided by the training
duration and energy optimization is verified through multiple
numerical simulations.

Index Terms— Massive MIMO, uplink, multiuser, channel
estimation, energy allocation, training optimization, degree of
freedom (DoF).

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-

tems are a type of cellular communications where the

base station is equipped with a large number of antennas. The

base station serves multiple mobile stations that are usually

equipped with a small number of antennas, typically one.

There are several challenges with designing such massive

MIMO systems, including e.g., channel state information

(CSI) acquisition [3], base station received signal process-

ing [4], downlink precoding with imperfect CSI [5], signal

Manuscript received February 21, 2018; revised June 6, 2018 and
September 5, 2018; accepted October 7, 2018. Date of publication
October 16, 2018; date of current version February 14, 2019. The work in
this paper was supported in part by NSF Grant No. 1711922. This paper
was presented at the IEEE Global Communications Conference, Austin, TX,
USA, December 8–12, 2014 [1], and at the IEEE Wireless Communications
and Networking Conference, New Orleans, LA, USA, March 9–12, 2015 [2].
The associate editor coordinating the review of this paper and approving it
for publication was R. Zhang. (Corresponding author: Zhengdao Wang.)

S. Lu is with the Department of Electrical and Computer Engineering,
University of Minnesota Twin Cities, Minneapolis, MN 55455 USA (e-mail:
lus@umn.edu).

Z. Wang is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA (e-mail: zhengdao@iastate.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2018.2876416

detection algorithm [6], etc. For multi-cell systems, pilot

contamination and inter-cell interference also need to be dealt

with [7]. There is already a body of results in the literature

about the analysis and design of large MIMO systems; see e.g.,

the overview articles [8]–[11] and references there in. To reveal

the potential that is possible with massive MIMO systems,

it is important to quantify the achievable performance of such

systems in realistic scenarios. For example, it is important to

consider practical constraints such as average and peak training

power in the channel acquisition process.

A. Scope of This Paper

In this paper, we are interested in the performance of the

uplink transmission in single-cell systems such as stadiums

and rural wireless broadband access. However, in practice,

the energy spent on sending the wireless signals is limited,

while the high quality of the transmission is preferred. There

may be several constraints on transmitting the messages, such

as power constraints. In particular, we ask what rates can

be achieved in the uplink by the mobile users if we assume

realistic channel estimation at the base station. Similar analysis

has been performed in [12]–[14], but the analysis therein

assumes equal power transmission during the channel training

phase and the data transmission phase. Also, the effect of

the channel coherence interval on the system throughput was

discussed in [15] and optimization of the power allocation and

training duration for an uplink MIMO system was considered

for single-cell and multi-cell systems in [1] and [16] respec-

tively. However, the peak power constraint was not considered.

For a fixed training period, to obtain an accurate estimate,

the training power needs to be high to enable enough training

energy. As a result, peak power constraint, if present, may be

violated. The solution is also to optimize the training duration.

If we allow the users to cooperate, then the system can be

viewed as a point-to-point MIMO channel. The rates obtained

in [17], and the stronger result on non-coherent MIMO channel

capacity in [18] can serve as an upper bound for the system

sum rate. The question is how much of this sum rate can be

achieved without user cooperation and without using elaborate

signaling such as signal packing on Grassmannian manifolds.

For a system with K mobile users, M base station anten-

nas, and a block fading channel with coherence interval T ,

we quantify the total degrees of freedom (DoF) and the needed

transmission power for achieving a given rate when M, T � 1,

which is a refinement of the corresponding result in [12].
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Furthermore, the energy allocation and training duration are

also optimized for uplink multiuser (MU) MIMO systems

in a systematic way. Two linear receivers, maximum ratio

combining (MRC) and zero-forcing (ZF), are adopted with

imperfect CSI. The average and peak power constraints are

both incorporated. We analyze the convexity of this optimiza-

tion problem, and derive the optimal solution in small-scale

fading channels. The solution is in the closed form except in

one case where a one-dimensional search of a quasi-concave

function is needed. We also develop an iterative algorithm of

optimizing the energy allocation in large-scale fading chan-

nels. Simulation results are also provided to demonstrate the

benefit of optimized training, compared with the equal power

allocation considered in the literature, and also illustrate the

effect of the peak power constraint on the spectral efficiency

(SE) and energy efficiency (EE).

In summary, the main contributions of this paper are:

1) We quantify the total degrees of freedom (DoF) with

estimated channels, and the needed transmission power for

achieving a given rate when M, T � 1, which is a refinement

of the corresponding result in [12].

2) We provide a complete solution for the optimal training

duration and training energy in an uplink MU-MIMO system

with both MRC and ZF receivers, under both average and peak

power constraints in small-scale fading channels.

3) We also develop an iterative algorithm of balancing the

energy expense between the training and data phases with the

two receivers in large-scale fading channels under both average

and peak power constraints.

B. Related Works

An optimized energy reduction scheme was proposed in [19]

for uplink MU-MIMO in a single cell scenario, where both

RF transmission power and circuit power consumption were

incorporated. In [12] and [20], the achievable rates with

perfect or estimated CSI were derived and scaling laws were

obtained in terms of the power savings as the number base

station antennas was increased. However, the training power

and duration were not optimized for rate maximization in

channel estimation. In order to take full use of the advantages

of the massive MIMO systems, balancing the energy expense

between the channel estimation and data transmission takes

an important role in improving energy efficiency of the sys-

tem. The issue of non-ideal hardware and its effect on the

achievable rates were investigated in [15] and [21].

A joint pilot and data power control method with a min-

imum mean-squared error (MMSE) receiver was proposed

in [22], which minimized the sum power expense under

the signal to interference-plus-noise ratio (SINR) and power

constraints of each user. Previous work in [16] maximized the

sum SE with respect to power and training duration jointly

for the MRC receiver, however every user was assigned the

same training power. The sum SE maximization problem was

reformulated as a convex problem [23], where the pilot and

payload power control for each user were jointly optimized

in the single cell massive MIMO systems with MRC and

ZF receivers. Unfortunately, the reformulated problem is not

equivalent to the original problem. For example, in certain

cases the objective value of the reformulated problem could

be infinite.

Training design and optimization for uplink massive MIMO

systems in a multi-cell setup has been performed in [24],

where the problem of insufficient pilots is addressed and non-

orthogonal pilots are optimized to maximize the system SE.

The problem of optimizing the training pilot duration and

update interval was considered in [25], for a massive MIMO

system with the MRC receiver. Power allocation for downlink

massive MIMO transmission has been considered in [26],

where MMSE channel estimation is considered. More recently,

the joint power allocation and user association optimization is

proposed for multi-cell massive MIMO downlink systems [27],

where each user is served by a subset of base stations such

that the total transmit power is minimized by optimizing

each user’s transmit power. Instead of solving a combinatorial

assignment problem, a new structure of the pilot signals is

proposed by using pilot basis in uplink multi-cell massive

MIMO systems [28]. The pilot design problem is further

formulated as a max-min fairness problem, where the pilot

and data powers of each user are optimized by an iterative

locally optimal algorithm.

Notation: We use AH to denote the Hermitian transpose

of matrix A, IK to denote a K × K identity matrix, C to

denote the complex number set, b·c to denote the integer floor

operation, i.i.d. to denote “independent and identically distrib-

uted”, and CN (0, 1) to denote circularly symmetric complex

Gaussian distribution with zero mean and unit variance.

II. SYSTEM MODEL

Consider a single-cell uplink system, where there are K
mobile users and one base station. Each user is equipped with

one transmit antenna, and the base station is equipped with

M receive antennas. The received signal at the base station is

expressible as

y = HP
1
2 s + n, (1)

where H ∈ CM×K is the channel matrix, matrix P =
diag{p1, . . . , pK} ∈ R

K×K is diagonal where each entry

models the path gain and shadowing effect between the base

station and the kth user, s ∈ CK×1 is the transmitted signals

from all the K users; n ∈ CM×1 is the additive noise,

y ∈ CM×1 is the received signal. We make the following

assumptions:

A1) The channel is block fading such that within a coher-

ence interval of T channel uses the channel remains constant.

Namely, we assume that the channel coherence interval in sec-

onds is equal to T times the symbol duration Ts in seconds.

The entries of H are i.i.d. and taken from CN (0, 1). The CSI

is neither available at the transmitters nor at the receiver.

A2) Entries of the noise vector n are i.i.d. and from

CN (0, 1).
A3) The average transmit power per user per symbol is ρ.

So within a coherence interval the total transmitted energy

is ρT .

In summary, the system has four parameters, (M, K, T, ρ).
We will allow the system to operate in the ergodic regime,



1572 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 2, FEBRUARY 2019

so coding and decoding can occur over multiple coherent

intervals.

A. Channel Estimation

We assume that K ≤ M and K < T in this section.

To derive the achievable rates for the users, we use a well-

known scheme that consists of two phases (see e.g., [17]):

Training Phase. This phase consists of Tτ time intervals. The

K users send time-orthogonal signals at power level ρτ per

user. The training signal transmitted can be represented by a

K×Tτ matrix Φ such that ΦΦH = EIK , where E = ρτTτ is

the total training energy per user per coherent interval. Note

that we require Tτ ≥ K to satisfy the time-orthogonality.

Data Transmission Phase. Information-bearing symbols are

transmitted by the users in the remaining Td = T − Tτ

time intervals. The average power per symbol per user is

ρd = (ρT − E)/Td.

In the training phase, we will choose Φ =
√

EIK for

simplicity. Other scaled unitary matrices can also be used with-

out affecting the achievable rate. Note that the transmission

power is allowed to vary from the training phase to the data

transmission phase. With our choice of Φ, the received signal

Yp ∈ C
M×Tτ during the training phase can be written as

Yp = GΦ + N =
√

EG + N, (2)

where N ∈ CM×Tτ is the additive noise and G = HP
1

2 .

The equation describes M × Tτ independent identities, one

for each channel coefficient. The (linear) MMSE estimate for

the channel is given by Ĝ = 1√
E
Yp(P

−1/E + I)−1 [29],

where the kth column of Ĝ is

Ĝk =
p

3
2

k E

pkE + 1
hk +

pk

√
E

pkE + 1
nk, (3)

where hk and nk are the kth column of H and N.

The channel estimation error is defined as G̃ = G − Ĝ.

Thus, we have the kth column of G̃, i.e., G̃k = Gk − Ĝk =√
pk

pkE+1hk − pk

√
E

pkE+1nk, where Gk denotes the kth column of

G. It is easy to verify that the elements of Ĝ are column-

wise i.i.d. complex Gaussian with zero mean and variance

σ2
�Gk

=
p2

kE
pkE+1 , and the elements of G̃ are column-wise

i.i.d. complex Gaussian with zero mean and variance σ2
�Gk

=
pk

pkE+1 . Moreover, Ĝ and G̃ are in general uncorrelated as

a property of the linear MMSE estimator under the Gaussian

assumptions.

B. Equivalent Channel

Once the channel is estimated, the base station has Ĝ and

will decode the users’ information using Ĝ. We can write the

received signal as

y = Ĝs + G̃s + n� Ĝs + v, (4)

where v � G̃s+n is the new equivalent noise containing actual

noise n and self interference G̃s caused by inaccurate channel

estimation. Assuming that each element of s has variance ρd

during the data transmission phase, and there is no cooperation

among the users, the variance of each component of v is

σ2
v =

∑K
i=1

ρdpi

piE+1 + 1.

If we replace v with a zero-mean complex Gaussian noise

with equal variance σ2
v , but independent of s, then the system

described in (4) can be viewed as a MIMO system with perfect

CSI at the receiver, and the equivalent signal to noise ratio

(SNR) of the kth user is

ρeff,k �
ρdσ

2
�Gk

σ2
v

=
ρdp

2
kE

(pkE + 1)(
∑K

i=1
ρdpi

piE+1 + 1)

=
ρdp

2
k

(pk + 1
E )(

∑K
i=1

ρdpi

piE+1 + 1)
. (5)

The SNR is the signal power from a single transmitter

per receive antenna divided by the noise variance per receive

antenna. It is a standard argument that a noise equivalent to

v but assumed independent of s is “worse” (see e.g., [17]).

As a result, the derived rate based on such an assumption is

achievable. In the following, for notational brevity, we assume

that v in (4) is independent of s without introducing a new

symbol to represent the equivalent independent noise.

Note that the effective SNR ρeff,k is the actual SNR ρd

divided by a loss factor (pk + 1
E )(

∑K
i=1

ρk
dpi

piE+1 + 1). The loss

factor can be made small if the energy E used in the training

phase is large.

C. Energy Splitting Optimization

The energy in the training phase can be optimized to

maximize the effective SNR ρeff,k in (5) for point-to-point

MIMO system, as has been done in [17, Th. 2]. Importantly,

with the effective SNR adopted in this paper, the achievable

rate with MRC and ZF receivers can be easily optimized in a

closed form.

We assume the average transmitted power over one coher-

ence interval T is equal to a given constant ρ, namely ρdTd +
ρτTτ = ρT . Let α � ρτTτ/(ρT ) denote the fraction of the

total transmit energy that is devoted to channel training; i.e.,

ρτTτ = αρT, ρdTd = (1 − α)ρT, 0 ≤ α ≤ 1. (6)

III. ACHIEVABLE RATES AND DOF

A. Rates of Linear Receivers

Given the channel model (4), linear processing can be

applied to y to recover s, as in e.g., [12]. Let A ∈ CK×M

denote the linear processing matrix. The processed signal is

ŝ�Ay = AĜs + Av. (7)

The MRC processing is obtained by setting A = ĜH. The ZF

processing is obtained by setting A = (ĜHĜ)−1ĜH.

Based on the equivalent channel model, viewed as a multi-

user MIMO systems with perfect receiver CSI and equivalent

SNR ρeff,k, the achievable rates for lower bounds derived in

[12, Propositions 2 and 3] can then be applied. Also, setting the

training period equal to the total number of transmit antennas

possesses certain optimality as derived in [17], which means
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T ∗
τ = K . Specifically, for MRC the following ergodic sum SE

is achievable:

R(MRC) �(1 − K

T

) K∑

k=1

log2

(
1 +

ρeff,k(M − 1)
∑K

i=1,i�=k ρeff,i + 1

)
. (8)

For ZF, assuming M > K , the following ergodic sum SE is

achievable:

R(ZF) �
(
1 − K

T

) K∑

k=1

log2 (1 + ρeff,k(M − K)) . (9)

Note that the factor (1− K
T ) is due to the fact that during one

coherence interval of length T , K time slots have been used

for the training purpose. The number of data transmission slots

is T − K , and the achieved rate needs to be averaged over T
channel uses. Also, these rates are actually lower bounds on

achievable rates (due to the usage of Jensen’s inequality).

We will analyze the DoF in the next section.

B. Degrees of Freedom

We define the DoF of the system as

d(M, K, T )� sup lim
ρ→∞

R(total)(ρ)

log2(ρ)
, (10)

where the supremum is taken over the totality of all reliable

communication schemes for the system, and R(total) denotes

the sum rate of the K users under the power constraint ρ.

We may also speak of the (achieved) DoF of one user for a

particular achievability scheme, which is the achieved rate of

the user normalized by log2(ρ) in the limit of ρ → ∞. The

DoF measures the multiplexing gain offered by the system

when compared to a reference point-to-point single-antenna

communication link, in the high SNR regime (see e.g., [30]).

Theorem 1: For an (M, K, T ) MIMO uplink system with

M receive antennas, K users, and coherence interval T ,

the total DoF of the system is

d(M, K, T ) = K†(1 − K†

T

)
, (11)

where K† �min(M, K, bT/2c).
Proof: To prove the converse, we observe that if we allow

the K transmitters to cooperate, then the system is a point-

to-point MIMO system with K transmit antennas, M receive

antennas, and with no CSI at the receiver. The DoF of this

channel has been quantified in [18], in the same form as in the

theorem. Without cooperation, the users can at most achieve

a rate as high as in the cooperation case.

To prove the achievability, we first look at the case K† <
M . In this case, we note that if we allow only K† users to

transmit, and let the remaining users be silent, then using the

achievability scheme describe in Section II-A, each of the K†

users can achieve a rate per user using the zero-forcing receiver

given as follows (cf. (16))

(
1 − K†

T

)
log2

(
1 + ρeff,k(M − K†)

)
∀k. (12)

Note that the condition K† < M is needed. If we choose

E = K†ρ and ρd = ρ, then the effective SNR in (5) becomes

ρeff,k =
ρ

K†p2
k

K†pk+1/ρ∑K
i=1

pi

K†pi+1/ρ + 1
, ∀k. (13)

It can be seen that as ρ → ∞, log(ρeff,k)/ log(ρ) → 1 and

a DoF of the kth user of (1 − K†/T ) is achieved. The total

achieved DoF is therefore K†(1 − K†/T ). Although better

energy splitting is possible, as in Section II-C, it will not

improve the DoF.

When K† = M , the case is more subtle. In this case

the zero-forcing receiver is no longer sufficient. In fact,

even the optimal linear processing, which is the MMSE

receiver [12, eq. (31)], is not sufficient. The insufficiency can

be established by using the results in [31, Sec. IV-C] to show

that as ρ → ∞, the effective SNR at the output of MMSE

receiver has a limit distribution that is independent of SNR.

We skip the details here, since it is not the main concern in

this paper.

Instead, we notice that the equivalent channel (4) has an

SNR given by (13), which for K†ρ > 1 is greater than ρ/3.

So, the MIMO system can be viewed as a multiple access

channel (MAC) with K† single-antenna transmitters, and one

receiver with M receive antennas. Perfect CSI is known at

the receiver, and the SNR between ρ/3 and ρ. Using the MAC

capacity region result [32, Th. 14.3.1], [33, Sec. 10.2.1], it can

be shown that a total DoF of K† can be achieved over T −K†

the time slots. �

Remark 1: The DoF is the same as that of a point-to-point

MIMO channel with K transmit antennas and M receive

antennas without transmit- or receive-side CSI [18]. This is

not trivial because optimal signaling over non-coherent MIMO

channel generally requires cooperation among the transmit

antennas. It turns out that as far as DoF is concerned, transmit

antenna cooperation is not necessary. However, we do note

that user synchronization is needed to prove the result. It is

an interesting problem to study the DoF in the asynchronous

case.

Remark 2: It can be seen from the achievability proof that

for M > K , which is generally applicable for massive MIMO

systems, ZF at the base station is sufficient for achieving the

optimal DoF. However, MRC is not sufficient because ρ shows

up both in the numerator and denominator of (15). So as ρ →
∞, the achieved rate is limited. This is due to the interference

among the users.

Remark 3: For the case K† = M , non-linear decoding such

as successive interference cancellation is needed.

Remark 4: When T is large, a per-user DoF close to 1 is

achievable, as long as K ≤ M .

Remark 5: When M is larger than K†, increasing M further

has no effect on the DoF. However, it is clear that more

receive antennas is useful because more energy is collected

by additional antennas. We will discuss the benefit of energy

savings in the next section.
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C. Power Savings for Fixed Rate

As more antennas are added to the base station, it is possible

that less energy is needed to be transmitted from the mobile

stations. Also, in a practical system, the channel statistic

information is provided from the downlink, and adaptive

power control mechanisms can be adopted for the block

fading channel, and thus most of the effect of large-scale

fading can be compensated [34]. For this reason and analytical

tractability, we will consider the case where is no large-scale

fading in the analysis. We note that the derived algorithms are

applicable to the case where large-scale fading is present.

Specifically, the effective SNR shown in (13) becomes

ρeff �
ρdσ

2
�H

σ2
v

=
ρdE

Kρd + E + 1
=

ρd

1 + Kρd+1
E

. (14)

Consequently, for MRC the following ergodic sum SE is

achievable:

R(MRC) �K
(
1 − K

T

)
log2

(
1 +

ρeff(M − 1)

ρeff(K − 1) + 1

)
. (15)

For ZF, assuming M > K , the following ergodic sum SE is

achievable:

R(ZF) � K
(
1 − K

T

)
log2 (1 + ρeff(M − K)) . (16)

It can be seen from (15) and (16) that when ρ is small, MRC

performs better than ZF, which has been previously observed,

e.g., [12]. On the other hand, in the low-SNR regime the

difference between them is a constant factor (M−1)/(M−K)
in the SNR term within the logarithmic functions in (15) and

(16). The difference becomes negligible when M is large.

Using either result, and the effective SNR in (36), we are

able to obtain the following:

If we fix the per-user rate at R = (1− K/T ) log2(1 + ρ0),
then the required power ρ is

ρ =

√
4ρ0(T − K)

MT 2
+ o

(
1√
M

)
. (17)

This can be proved by setting ρM = ρ0 in the rate expression

for ZF. Since the achievable rate with ZF processing is worse

than MRC and MMSE when SNR is very low, the result is

still applied for MRC and MMSE processing.

It is interesting to note that increasing T has a similar effect

as increasing M on the required transmission power, reducing

the power by 1/
√

M or 1/
√

T . The reason is the if T is

increased, then the energy that can be expended on training

is increased, improving the quality of channel estimation,

especially in the case where there is a peak power constraint.

On the other hand, for (17) to be applicable, we need M � K .

IV. JOINT OPTIMIZATION OF POWER ALLOCATION

AND TRAINING DURATION

If the peak power, rather than the average power, is limited,

then our DoF result still holds because the achievability proof

actually uses equal power in the training and data transmis-

sion phases. The power savings discussion in the previous

subsection still applies, because the system is limited by the

total amount of energy available, and not how the energy

is expended. In the regime where the SNR is neither very

high or very low, the peak power constraint will affect the rate.

Also, there is a peak power limit for hardware implementation

in practice. We provide a detailed analysis in this section.

a) Energy allocation: We assume that the transmitters

are subject to both average power constraint, and peak power

constraint:

0 ≤ ρd, ρτ ≤ ρmax. (18)

b) Problem formulation: For an adopted receiver, A ∈
{MRC, ZF}, our goal is to maximize the uplink SE subject to

the peak and average power constraints. Based on the model

in (4), we will consider two linear demodulation schemes:

MRC and ZF receivers.

Consider the case where the large-scale fading is compen-

sated. For the MRC receiver, the received SNR for any of the

K users’ symbols can be obtained by substituting ρeff into

ρeff(M − 1)/(ρeff(K − 1) + 1) (see [12, eq. (16)]):

SNR
(MRC) =

Tτρτρd(M − 1)

Tτρτρd(K − 1) + Kρd + Tτρτ + 1
. (19)

For the ZF receiver, the received SNR for any of the

K users’ symbols can be obtained by substituting ρeff into

ρeff(M − K) (see [12, eq. (20)]):

SNR
(ZF) =

Tτρτρd(M − K)

Kρd + Tτρτ + 1
. (20)

For either receiver, a lower bound on the sum SE achieved

by the K users is given by

R(A)(α, Td) =
Td

T
K log2(1 + SNR

(A)), (21)

where A ∈ {MRC, ZF}.

Our optimization problem can be formulated as follows:

(OP) maximize
α,Td

R(A)(α, Td) (22a)

subject to ρTα + ρmaxTd ≤ ρmaxT , (22b)

− ρTα− ρmaxTd ≤ −ρT , (22c)

0 ≤ α ≤ 1, (22d)

0 < Td ≤ T − K, (22e)

where R(A)(α, Td) is as given in (21); (22b) and (22c) are

from the peak power constraints in the training and data

phases, respectively; and the last constraint is from the require-

ment that Tτ ≥ K .

A. SNR Maximization When Td is Fixed

The feasible set of the problem (OP) is convex, but the

convexity of the objective function is not obvious. In this

section, we consider the optimization problem when Td is

fixed. In this case, we will prove that R(A)(α, Td) is concave

in α, and derive the optimized α. The result will be useful in

the next section where α and Td are jointly optimized.

For a fixed Td, from the peak power constraints (22b) and

(22c), we have

ρmaxTτ

ρT
+

(
1 − ρmax

ρ

)
≤ α ≤ ρmaxTτ

ρT
. (23)
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Combined with (22d), the overall constraints on α are

min
{
0,

ρmaxTτ

ρT
+

(
1 − ρmax

ρ

)}
≤ α ≤ max

{ρmaxTτ

ρT
, 1

}
.

(24)

In the remaining part of this section, we will first ignore the

peak power constraint, and derive the optimal α ∈ (0, 1) for

a given Td. At the end of this section, we will reconsider the

effect of the peak power constraint on the optimal α.

1) MRC Case Without Peak Power Constraint: Using (6)

we can rewrite (19) as

SNR
(MRC)(α) =

M − 1

K − 1

α(α − 1)

α2 − a1α − b1
, (25)

where

a1 = 1 +
Td − K

ρT (K − 1)
, b1 =

ρTK + Td

ρ2T 2(K − 1)
> 0. (26)

It can be verified that 1 − a1 − b1 ≤ 0.

a) Behavior of the SNR
(MRC)(α) function: Define

g(α) := SNR
(MRC) · (K − 1)/(M − 1). (27)

And let gd(α) = α2 − a1α − b1, which is the denominator

of g(α).
Lemma 1: The function g(α) is concave in α over (0, 1)

when 1 − a1 − b1 ≤ 0 and b1 > 0.

Proof: The proof is elementary but cumbersome, see

[2, Lemma 1] for details. �

Lemma 1 gives the convex conditions of the objective function.

According to Lemma 1, we know that there is a global

maximal point for (25). Taking the derivative of (25) and

setting it as 0, we have

(1 − a1)α
2 − 2b1α + b1 = 0. (28)

Remark 6: It can be observed that when 1 − a1 − b1 ≤ 0
and b1 > 0, gd(α) is non-positive at both α = 0 and α = 1.

Since the leading coefficient of gd(α) is positive, gd(α) < 0
for α ∈ (0, 1), and it has no root in (0, 1).

Based on Remark 6, we deduce that g(α) > 0 for α ∈ (0, 1).
In addition, we have g(0) = 0 and g(1) = 0. Therefore, there

is an optimal α within (0, 1) rather than at boundaries.

b) Optimizing α: we discuss the optimal α in three cases,

depending on Td, as compared to K .

• If Td = K , then 1 − a1 = 0. Hence, we have α∗ = 1/2,

and

SNR
(MRC)

(
1

2

)
=

M − 1

K − 1

1/4

1/4 + K(ρT+1)
ρ2T 2(K−1)

. (29)

• If Td < K , then 1 − a1 > 0. Since b1 > 1 − a1,

b1/(1− a1) > 1. Between the two roots of (28), the one

in between 0 and 1 is

α∗ =
b1 −

√
b1(a1 + b1 − 1)

1 − a1
. (30)

• If Td > K , then 1 − a1 < 0. It can be deduced that in

this case α∗ in (30) is still between 0 and 1 and therefore

is the optimal α.

Substituting (26) into (30), we have

α∗ =

√
(ρTK + Td)(ρTTd + Td) − (ρTK + Td)

ρT (Td − K)
. (31)

We can simplify the expression for the optimal α at both high

and low SNR regions:

• At the high SNR region, the optimal α is

α∗
H ≈

√
KTd − K

Td − K
=

√
K√

Td +
√

K
. (32)

• Similarly, at the low SNR regime, the optimal α is α∗
L ≈

1/2.

As a result, SNR
(MRC)(α∗

L) = (M − 1)/(4Td(K − 1)).
If the SNR is low, the fraction between the training and

data is independent on system parameters M , K , ρd, ρτ ,

Tτ , and T .

So far we have ignored the peak power constraint. When the

peak power is considered, and α∗ is not within the feasible

set (24), the optimal α̃∗ with the peak power constraint is the

α within the feasible set that is closest to the α∗ we derived,

which is at one of the two boundaries of the feasible set, due

to the concavity of the objective function.

2) ZF Case Without Peak Power Constraint: This optimiza-

tion problem in the ZF case is similar to that in Section. IV-

A.1. Here, we only give the final optimization results.

Using (6) we can rewrite (20) as

SNR
(ZF)(α) =

ρT (M − K)α(1 − α)

(Td − K)(γ + α)
. (33)

Define an auxiliary variable when Td 6= K: γ �
KρT+Td

ρT (Td−K) ,

which is positive if Td > K and negative if Td < K .

It can be easily verified that in all the three cases, namely

Td = K , Td > K , and Td < K , ρeff is concave in α within

α ∈ (0, 1). The optimal value for α that maximizes ρeff is

given as follows:

α∗ =

⎧
⎪⎪⎨

⎪⎪⎩

−γ +
√

γ(γ + 1), Td > K
1

2
, Td = K

−γ −
√

γ(γ + 1), Td < K.

(34)

The maximized effective SNR ρ∗eff is given as

ρ∗eff =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρT

Td − K
(−2

√
γ(γ + 1) + (1 + 2γ)), Td > K

(ρT )2

4K(1 + ρT )
, Td = K

ρT

Td − K
(2

√
γ(γ + 1) + (1 + 2γ)), Td < K.

(35)

At the high SNR region (ρ � 1), we have γ ≈ K
Td−K ,

and the optimal values are α∗
H ≈

√
K/(

√
Td +

√
K), ρ∗eff ≈

T
(
√

Td+
√

K)2
ρ.

At the low SNR region (ρ � 1), we have γ ≈ Td

ρT (Td−K) ,

and the optimal values are

α∗
L ≈ 1

2
, ρ∗eff ≈

(ρT )2

4Td
. (36)

The optimized SNR
(ZF)

is just given by (M − K)ρ∗eff.
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Fig. 1. Feasible region and the contour of the objective function in the MRC
case; T = 196, K = 20 and M = 50.

B. Training Optimization With Peak Power Constraint

In this section, α and Td are jointly optimized for maxi-

mizing the achievable rate of the uplink MU-MIMO system

as illustrated in (22)–(22e) when both average and peak power

constraints are considered.

The feasible set with respect to α and Td is illustrated in

Fig. 1. It can be observed that the feasible region is in between

the following two lines

Td = −ρTα/ρmax + T, (37)

Td = −ρTα/ρmax + ρT/ρmax, (38)

where α and Td satisfy (22d) and (22e).

We have the following lemma that is useful for describing

the shape of our objective function R(A)(α, Td) when α is

fixed.

Lemma 2: The function f(x) = x ln(1+a/(b+cx)), when

a, b, c, x > 0, is concave and monotonically increasing.

Proof: It can be verified by taking the second derivative.

See [2, Lemma 2] for details. �

In summary, the objective function has the following two

properties:

(P1) From Lemma 1, for fixed Td, R(A) is a concave function

with respect to α.

(P2) From Lemma 2, for fixed α, R(A) is a concave function

and monotonically increasing with respect to Td.

Since the feasible set is convex, our optimization problem

(OP) is a biconvex problem that may include multiple local

optimal solutions. However, after studying the convexity of the

objective function, we can give the global optimal solutions

for both MRC and ZF receivers in the following Theorem and

Corollary.

In the remainder of this section, let α† denote the optimal

α when Td = T − K , which is given by Section IV-A.1 and

Section IV-A.2 for ZF and MRC processing.

Theorem 2: For the MRC receiver, set α† = 1/2 if Td = K
and otherwise set α† according to (31) when Td = T − K .

Set α1 = ρmaxK/ρT and set α2 = 1− ρmax(T −K)/ρT . The

solution for the joint optimization of training energy allocation

α and the training duration Tτ = T − Td is given in three

cases. Case 1) If α1 < α†, then α∗ is given by the maximizer

of R(MRC)(α) in (69), and T ∗
d = −ρTα∗/ρmax + T ; Case 2)

If α2 > α† then (α∗, T ∗
d ) = (α2, T − K); Case 3) If α2 <

α† < α1, then (α∗, T ∗
d ) = (α†, T − K).

Proof: Please see Appendix A �

We also have similar results regarding the optimal energy

allocation factor α and training period Tτ for the ZF case.

The only difference is that SE R(ZF)(α) should be given by

substituting (37) into R(ZF)(α, Td), which is

R(ZF)(α) =
K

T

(
− ρT

ρmax

α + T

)
log2(1 + SNR

(ZF)(α)),

(39)

where

SNR
(MRC)(α) =

α(α − 1)ρ2T 2(M − K)

a3α2 − b3α − c3
, (40)

and a3 = ρ2T 2/ρmax, b3 = ρT 2 − ρTK − ρT/ρmax and c3 =
KρT +T . Comparing (69), (70) and (39), (40), we can obtain

the results for the ZF receiver straightforwardly as follows.

Corollary 1: For the ZF receiver, set α† = 1/2 if Td = K
and otherwise set α† according to (34) when Td = T − K .

Set α1 = ρmaxK/ρT and set α2 = 1− ρmax(T −K)/ρT . The

solution for the joint optimization of training energy allocation

α and the training duration Tτ = T − Td is given in three

cases. Case 1) If α1 < α†, then α∗ is given by the maximizer

of R(ZF)(α) in (39), and T ∗
d = −ρTα∗/ρmax + T ; Case 2) If

α2 > α† then (α∗, T ∗
d ) = (α2, T −K); Case 3) If α2 < α† <

α1, then (α∗, T ∗
d ) = (α†, T − K).

C. Optimized SE When M is Large

When M increases, the transmit power of each user can

be reduced proportionally to 1/
√

M for a large M while

maintaining a fixed rate as discussed in Section III-C and [12].

Here we discuss the asymptotic achievable SE when M → ∞.

1) Optimized α if Td is Fixed When M → ∞: If the energy

over the training and data phases is allocated differently,

we have the following results after optimizing the α for a

large M .

Theorem 3: For both ZF and MRC, let ρu �
√

Mρ be fixed.

Then, the maximum achievable SE can be

R(A) → Td

T
K log2(1 +

ρ2
uT 2

4Td
), M → ∞. (41)

Proof: According to (25) and (33), when M → ∞, we

have

SNR
(A)(α) =

α(1 − α)ρ2
uT 2

Td
, (42)

where the maximum received SNR can be obviously obtained

when α = 1/2. �

Note, if the peak power constraints are considered, α
needs to be within the interval as shown in (24). Otherwise,

the optimal solution is located at the boundary of (24).

Remark 7: If the power is allocated equally between the

two phases, we have α = Tτ/T [12], then the difference of
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SE between the optimized and the equally allocated power

scheme is

∆R(A)(α) =
Td

T
K(log2(1 +

ρ2
uT 2

4Td
) − log2(1 + Tτρ2

u))

=
Td

T
K log2

( 4Td + ρ2
uT 2

4Td + 4Td(T − Td)ρ2
u

)
, (43)

where the numerator minus the denominator within the log2(·)
is equal to ρ2

u(T 2−4TTd+T 2
d ) = ρ2

u(T−Td)
2 ≥ 0. Therefore,

it is clear that the optimized SE is always larger than the

unoptimized one. The gain in rate offered by optimizing the

energy allocated for training is given by (43).

2) Optimized α and Td When M → ∞: For both MRC and

ZF, under the peak power constraints, the average transmit

power of each user is ρ = ρu/
√

M , where ρu is fixed.

Let ρ/ρmax � ξ. Consequently, the corresponding ρmax =
ρu/(ξ

√
M). When M → ∞, applying Theorem. 2 and

Corollary. 1, we have the following cases:

• Case 1: ρτ is limited by ρmax

R(A)(α) = K(−ξα + 1) log2

(
1 +

α(α − 1)ρ2
uT

ξα − 1

)
.

(44)

Taking the derivative of (44) and setting it to zero, we can

obtain the optimal α with one dimension search algorithm

[35]. Then, the duration T ∗
d can be obtained by (37)

directly with substituting α∗.

• Case 2: ρd is limited by ρmax

R(A)(α∗) = Kξ(−α∗ + 1) log2

(
1+

α∗(α∗ − 1)ρ2
uT

T−K

)
,

(45)

where α∗ = 1 − (T − K)/(ξT ) and T ∗
d = T − K .

• Case 3: Neither ρd nor ρτ is not limited by ρmax

R(A)(α∗) =
T − K

T
K log2

(
1 +

ρ2
uT 2

4(T − K)

)
, (46)

where α∗ = 1/2 and T ∗
d = T − K .

D. SE in Large-Scale Fading Channels

If the adaptive power control is not used, we consider

the case where there exits large-scale fading. For the MRC

receiver, the received SNR for any of the K users’ sym-

bols can be obtained by substituting (5) into ρeff,k(M −
1)/(

∑K
i=1,i�=k ρeff,i + 1) (see [12, eq. (16)]):

SNR
(MRC)
k

=
ρdp

2
kE(M − 1)

ρd(pkE + 1)
∑K

i=1,i�=k pi + ρdpk + pkE + 1

=
p2

kTτρτρd(M − 1)

Tτρτρdpk

∑K
i=1,i�=k pi + ρd

∑K
i=1 pi + pkTτρτ + 1

=
p2

kρ2T 2(M − 1)α(α − 1)

ã1α2 − b̃1α − c̃1

, (47)

where ã1 = ρ2T 2pk

∑K
i=1,i�=k pi, b̃1 = TdpkρT −

ρT
∑K

i=1 pi+ρ2T 2pk

∑K
i=1,i�=k pi and c̃1 = ρT

∑K
i=1 pi+Td.

It can be verified that 1 − (̃b1 + c̃1)/ã1 < 1 and c̃1/ã1 > 0.

Applying Lemma 1, we know that SNR
(MRC)
k is a concave

function with respect to α ∈ (0, 1).
For the ZF receiver, the received SNR for any of the

K users’ symbols can be obtained by substituting (5) into

ρeff,k(M − K) (see [12, eq. (20)]):

SNR
(ZF)
k =

ρdp
2
kE(M − K)

ρdpk

∑K
i=1(1 + ∆ki

1+piE
) + pkE + 1

, (48)

where ∆ki � pi−pk � 1. Hence, we can get the lower bound

of SNR
(ZF)
k , which is given by

SNR
(ZF)
k =

p2
kρdTτρτ (M − K)

K̃kpkρd + pkTτρτ + 1

=
pkρT (M − K)(1 − α)α

(Td − K̃k)(α + γ′)
, (49)

where K̃k �
∑K

i=1(1 + ∆ki) ≈ K > 1 and γ′ �
�KkpkρT+Td

pkρT (Td− �Kk)

when Td 6= K̃k. Similar as in (33), it can be verified that

SNR
(ZF)
k , ∀k are concave functions with respect to α ∈ (0, 1).

For either receiver, a lower bound on the sum rate achieved

by the K users is given by

R(A)(α, Td) =
Td

T

K∑

k=1

log2(1 + SNR
(A)
k ). (50)

Since the function log(1 + x) is concave and nondecreasing,

we know that log2(1 + SNR
(A)
k ), ∀A are concave, implying

R(A)(α, Td), ∀A are concave with respect to α.

Applying Theorem. 2 and Corollary. 1, we can obtain the

optimal solutions of problem (22) for both MRC and ZF

receivers under both average and peak power constraints.

V. SE AND TRAINING OPTIMIZATION WITH

LARGE-SCALE FADING

If the adaptive power control is not applied, there exits

large-scale fading in the uplink massive MIMO systems.

In this section, we will discuss the energy splitting strategy

for training optimization in large-scale fading channels under

both average and peak power constraints.

Based on the definition of the equivalent channel in

Section II-B, we can obtain the equivalent noise σ2
v =∑K

i=1
ρi

dpi

piE+1 + 1 and effective SNR of the kth user

ρeff,k �
ρdσ

2
�Gk

σ2
v

=
ρk

dp2
kE

(pkE + 1)(
∑K

i=1
ρi

d
pi

piE+1 + 1)

=
p2

kρk
dρk

τTτ

(pkρk
τTτ + 1)(

∑K
i=1

ρi
d
pi

piρi
τ Tτ+1 + 1)

, (51)

where the energy splitting strategy is

ρk
τTτ = αkρT, ρk

dTd = (1 − αk)ρT, 0 ≤ αk ≤ 1,

(52)
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and ρk
d (ρk

τ ) denotes the power that is allocated to the training

(data) phase of the kth user, and αk denotes the fraction of

the total transmit energy of the kth user devoted to channel

training.

For MRC the following sum SE is achievable for the kth

user:

R(MRC)
k (α, Td) �

(
1 − Tτ

T

)
log2

(
1 + SNR

(MRC)
k (α, Td)

)
,

(53)

where α � [α1, . . . , αK ] and

SNR
(MRC)
k (α, Td) �

(M − 1)ρeff,k∑K
i=1,i�=k ρeff,i + 1

. (54)

For ZF, assuming M > K , the following SE of the kth user

is achievable:

R(ZF)
k (α, Td) �

(
1 − Tτ

T

)
log2

(
1 + SNR

(ZF)
k (α, Td)

)
,

(55)

where SNR
(ZF)
k (α, Td) � (M − K)ρeff,k.

When the large-scale fading is considered, our optimization

problem becomes

maximize
{αk,Td,∀k}

K∑

k=1

R
(A)
k (α, Td) (56a)

subject to ρTαk + ρmaxTd ≤ ρmaxT, ∀k (56b)

− ρTαk − ρmaxTd ≤ −ρT, ∀k (56c)

0 ≤ αk ≤ 1, ∀k (56d)

0 < Td ≤ T − K. (56e)

A. Training Optimization

It is obvious that the kth user’s energy splitting will affect

the achievable rate of the others such that the optimization

problem becomes more complicated in the sense that i) the

objective function is not jointly convex with respect to all

the variables, and ii) variable Td in the constraint is coupled

with αk, ∀k, resulting that the traditional block coordinate

descent (BCD) algorithm that is widely used for solving

nonconvex problems does not work. Here, the alternating

direction method of multipliers (ADMM) is applied to solve

the nonconvex problem. It has been shown in [36]–[38]

that ADMM has the provable convergence guarantees to the

stationary (locally optimal) points of the nonconvex prob-

lem under some mild assumptions which mainly request

that the objective function is smooth and the penalty para-

meter (i.e., νk which will be defined later) is sufficiently

large (depend on the Lipschitz constant of the objective

function).

First, by introducing auxiliary variables βk, γk, ∀k, we can

see that problem (56) is equivalent to

minimize
{αk,Td,βk,γk∀k}

K∑

k=1

−R
(A)
k (α, Td) (57a)

subject to Td + βk = T − ρTαk

ρmax

, ∀k (57b)

Td =
ρT − ρTαk

ρmax

+ γk, ∀k (57c)

0 ≤ αk ≤ 1, ∀k (57d)

0 < Td ≤ T − K, (57e)

βk, γk ≥ 0 ∀k. (57f)

To this end, let us construct the augmented Lagrangian as

the following

L({αk}, {βk}, {γk}, Td; {λk}, {µk})

=

K∑

k=1

(
− R

(A)
k (α, Td)+

νk

2
(Td−(T − ρTαk

ρmax

− βk)+
λk

νk
)2

+
νk

2
(Td − (

ρT − ρTαk

ρmax

+ γk) +
µk

νk
)2

)
, (58)

where λk, µk, ∀k denote the dual variables associated with

equalities (57b) and (57c), and νk, ∀k represent the penalty

parameters.

Using ADMM [39], we can obtain the update rules of the

primal variables as follows (superscript t denotes the number

of iterations):

1) Update of αk, ∀k:

α
(t+1)
k = arg min

0≤αk≤1

( K∑

k=1

−R
(A)
k (αk, Td)

)

+
νk

2
(Td − (T − ρTαk

ρmax

− βk) +
λk

νk
)2

+
νk

2
(Td − (

ρT − ρTαk

ρmax

+ γk) +
µk

νk
)2.

(59)

2) Update of Td:

T
(t+1)
d = arg min

0≤Td≤T−K

K∑

k=1

(
− R

(A)
k (αk, Td)

+
νk

2
(Td − (T − ρTαk

ρmax

− βk) +
λk

νk
)2

+
νk

2
(Td − (

ρT − ρTαk

ρmax

+ γk) +
µk

νk
)2

)
.

(60)

3) Update of βk, ∀k:

β
(t+1)
k = arg min

βk≥0

(
Td − (T − ρTαk

ρmax

− βk) +
λk

νk

)2

= max{0, T − Td −
ρTαk

ρmax

− λk

νk
}. (61)
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4) Update of γk, ∀k:

γ
(t+1)
k = arg min

γk≥0

(
Td − (

ρT − ρTαk

ρmax

+ γk) +
µk

νk

)2

= max
{
0, Td −

ρT − ρTαk

ρmax

+
µk

νk

}
. (62)

Also, we have the update rules of the dual variables are as

follows:

1) Update of dual variables λk, ∀k:

λ
(t+1)
k =λ

(t)
k +νk

(
T

(t+1)
d −(T − ρTα

(t+1)
k

ρmax

−β
(t+1)
k )

)
.

(63)

2) Update of dual variables µk, ∀k:

µ
(t+1)
k =µ

(t)
k +νk

(
T

(t+1)
d −(

ρT−ρTα
(t+1)
k

ρmax

+γ
(t+1)
k )

)
.

(64)

The objective function is Lipschitz continuous and the feasible

set of the problem is convex. Applying the theorem in [38,

Th. 1], when νk, ∀k are chosen large enough (such that they

are larger than the required lower bound of these penalty

parameters; see [38, Lemma 9] or [36, Assumption A]), it

is guaranteed that the ADMM algorithm can converge to the

stationary points of problem (57).

B. Solutions of the Subproblems

The solutions of solving sub-problems (59) and (60) are

discussed in this section.

1) ZF Receiver:

• Update of αk, ∀k:

Lemma 3: For the kth user, when αi, ∀i 6= k and Td are

fixed, function
∑K

k=1 RZF
k (αk) is concave.

Proof: Please see Appendix C. �

• Update of Td:

When αk, ∀k are fixed, sum rate
∑K

k=1 RZF
k (Td) is

K∑

k=1

Td

T
log

(
1+

(M − K)p2
kρ2T 2(1 − αk)αk

(pkρTαk+1)(
∑K

i=1
piρT (1−αi)
piρTαi+1 +Td)

)
.

Applying Lemma 2, we can conclude that
∑K

k=1 RZF
k (Td)

is also concave with respect to Td.

After studying the convexity properties of these objective

functions, we know that the each subproblem of updating

variables for the ZF receiver is convex. Then, we can take

the gradient of the objective function and set it as zero,

where the root of the resulting equation is the optimal

solution of the subproblem.

2) MRC Receiver:

• Update of αk:

When αi, i 6= k and Td are fixed, maximizing∑K
k=1 RMRC

k (αk) with respect to αk is not a convex

problem, but the optimal solution can be still easily

obtained since solving this problem only involves one

dimensional search.

• Update of Td:

When αk, ∀k are fixed, we have

SNR
(MRC)
k (Td)

=

(M−1)p2
kρ2 T 2(1−αk)αk

(pkρTαk+1)(
�

K
j=1

pjρT (1−αk)

pjρT αj+1 +Td)

∑K
i=1,i�=k

p2
i
ρ2 T 2(1−αi)αi

(piρTαi+1)(
�

K
j=1

pjρT (1−αj )

pjρT+1 )+Td

+ 1

=

(M−1)p2
kρ2T 2(1−αk)αk

pkρTαk+1
∑K

i=1,i�=k
p2

i
ρ2 T 2(1−αi)αi

piρTαi+1 +
∑K

j=1
pjρT (1−αj)
pjρTαj+1 + Td

.

Applying Lemma 2, we know that
∑K

k=1 RMRC
k (Td) is

concave with respect to Td, and can be also solved easily.

Algorithm 1 The Training Optimization Algorithm With Both

Average and Peak Power Constraints

1: Input: αk = K/T, νk, ∀k and Td = K .

2: for t = 1, . . . , N do

3: for k = 1, . . . , K do

4: Update primal variables αk, Td, βk, γk by (59)–(62).

5: end for

6: for k = 1, . . . , K do

7: Update dual variables λk, µk by (63) and (64).

8: end for

9: end for

C. Algorithm Description

By leveraging ADMM, the developed algorithm that splits

energy between the training and data phases under both aver-

age and peak power constraints is summarized in Algorithm 1,

where N denotes the total number of iterations.

When there is no peak power, problem (56) is reduced to

maximize
{αk,∀k}

K∑

k=1

R
(A)
k (α)

subject to 0 ≤ αk ≤ 1, ∀k. (65)

This problem is a special case of (56), where there is no

variable coupling in the constraint. Hence, we can simply

use the BCD algorithm to solve problem (65). Applying

the proposition in [40, Proposition 2.7.1], it is guaranteed

that the BCD algorithm converges to the stationary points of

problem (65). The algorithm of energy splitting with only the

average power constraint is summarized in Algorithm 2.

Algorithm 2 The Training Optimization Algorithm With the

Average Power Constraint

1: Input: αk = K/T, νk, ∀k and Td = K .

2: for t = 1, . . . , N do

3: for k = 1, . . . , K do

4: Update αk by arg max0≤αk≤1

∑K
k=1 R

(A)
k (αk)

5: end for

6: end for

Remark 8: In this case, the recent work in [23, Th. 6] shows

that problem (65) can be reformulated into another convex
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optimization problem equivalently. Unfortunately, the objec-

tive function of the reformulated problem can be infinite in

some special case (e.g., when s = 0 where s is defined in

[23, Th. 6]), resulting that the reformulated problem is not

equivalent to problem (65).

D. Complexity of Implementing the Algorithms

The two proposed algorithms are computationally effi-

cient in the sense that each subproblem only involves a

one-dimensional optimization problem. Especially, when the

subproblem is convex, a simple bisection algorithm can be

exploited, which can achieve a small error � in several

steps [35]. Therefore, the total complexities of the two algo-

rithms are O(NKI) where I denotes the number of iteration

used in the inner loop of each subproblem. When the subprob-

lem is convex, I is O(log(1
ǫ )) and when the subproblem is

nonconvex, I is O(1
ǫ ).

E. Sum SE in a Multi-Cell System

In a multi-cell massive MIMO system, the received sig-

nal at the base station will be also affected by interfer-

ence from the neighboring cells. Consider the uplink of

the system with L neighboring cells that share the same

frequency resource. There is one base station equipped with

M antennas in each cell and K users each equipped with

one antenna. Let Gln = HlnP
1
2

ln be the channel matrix

between the lth base station and the K users in the nth

cell, where Hln denotes the small-scale fading and the diag-

onal matrix Pln � diag{pln1, . . . , plnk, . . . , plnK} represents

the large-scale fading, i.e., path loss and shadowing fading.

Then, the received signal Yr ∈ CM×Tτ during the training

phase can be written as

Yr =
√

EGll +
√

E

L∑

i�=l

Gli

︸ ︷︷ ︸
inter-cell interference

+N, (66)

where N ∈ C
M×Tτ is the additive noise. Let hlik and nllk

denote the kth column of Hli and Nll, respectively. The

(linear) MMSE estimate for the channel is given by Ĝll =√
EYrPll(

∑L
i=1 PliE + I)−1, where the kth column of Ĝll

is

Ĝllk =
p

3
2

llkE
∑L

i=1 plikE + 1
hllk +

L∑

i�=l

pllkEp
1
2

lik∑L
j=1 pljkE + 1

hlik

+
pllk

√
E

∑L
i=1 plikE + 1

nllk. (67)

Let the channel estimation error be G̃ll = Gll − Ĝll.

Thus, we have the kth column of G̃llk , i.e., G̃llk =
Gllk − Ĝllk = 1�

L
i=1 plikE+1

(√
pllk(

∑L
i�=l Eplik + 1)hllk −

pllk

∑L
i�=l Ep

1
2

likhlik − pk

√
Enllk

)
, where Gllk denotes the

kth column of Gll. It is also easy to verify that the elements

of Ĝll are column-wise i.i.d. complex Gaussian with zero

mean and variance σ2
�Gllk

=
p2

llkE�
L
i=1 plikE+1

, and the elements

Fig. 2. Comparison between equal and optimized power allocations when
the number of base station antennas increases; ρu = 3dB.

Fig. 3. Comparison of EE versus SE, where M = 100.

of G̃llk are column-wise i.i.d. complex Gaussian with zero

mean and variance σ2
�Gllk

=
pllk(

�
L
i�=l plikE+1)�

L
i=1 plikE+1

. Following the

similar derivation steps shown in Section II-B, we can obtain

the equivalent SNR of the kth user in the lth cell, i.e.,

ρeff,lk �

ρdp2
llkE�

L
i=1 plikE+1

∑L
n=1

∑K
j=1

ρdplnj(
�

L
i�=n plijE+1)�

L
i=1 plijE+1

+ 1
,

and consequently

SNR
(ZF)
lk = (M − K)ρeff,lk,

SNR
(MRC)
lk =

(M − 1)ρdEp2
llk

mk +
∑L

n=1

∑K
i=1 ρdplni +

∑L
n=1 plnkE + 1

,

(68)

where mk �(M − 1)
∑L

i�=l p2
likρdE − ∑L

i=1 p2
likρdE +

(
∑L

i=1

∑K
j=1 ρdplij)

∑L
i=1 plikE, which have been also

shown in [12] and [41]. Using (53) and (55), we can get

the objective function of (57). Applying the energy splitting
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Fig. 4. CDF of the sum SE in large-scale fading channels, where M = 100, K = 10, T = 200. (a) MRC receiver and (b) ZF receiver.

Fig. 5. CDF of the sum SE with the MRC receiver, where M = 100, K = 10, T = 200. (a) SNR at the cell edge is −5dB and (b) SNR at the cell edge
is 5dB.

scheme shown in (52), we can exploit Algorithm 1 to solve

problem (57) in the large-scale fading case.

VI. NUMERICAL RESULTS

In this section, we compare the SE between the equal power

allocation scheme and our optimized one under average and

peak power constraints. We consider the following schemes:

1) MRC, which refers to the case where the MRC receiver

is used and the same average power is used in both training

and data transmission phases [12]. 2) A-MRC, which refers

to the case where the MRC receiver is used, the training

duration is K , and there is only the average power constraint.

3) AP-MRC, where the MRC receiver is used, and both the

training duration and training energy are optimized under both

the average and peak power constraints. We will also consider

the ZF variants of the above three cases, namely ZF, A-ZF,

and AP-ZF. The EE is defined as η(A) � R(A)(α, Td)/ρ,
A ∈ {MRC, ZF}.

A. EE and Sum SE With Small-Scale Fading

In our simulations, we set ρmax = 2ρ, K = 10, and T =
200. In Fig. 2, we show the sum SE of various schemes as the

Fig. 6. CDF of the sum SE with the ZF receiver, where M = 100, K = 10,
T = 200, and the SNR marker denotes the received SNR at the cell edge.

number of antennas increases for ρ = ρu/
√

M . It can be seen

that SE per user by A-MRC (ZF) is 1.5–4.5 bits/s/Hz and only

1–3.5 bits/s/Hz by MRC (ZF), illustrating that A-MRC (ZF)
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Fig. 7. CDF of the sum SE in the multi-cell massive MIMO system, where M = 100, K = 4, T = 200. (a) MRC receiver and (b) ZF receiver.

performs better than MRC (ZF) as well as AP-MRC (ZF).

In Fig. 3, we show EE versus SE. It can also be seen

that optimized schemes, e.g., A-MRC (A-ZF) and AP-MRC

(AP-ZF), show a significant gain compared with MRC (ZF).

In particular, there is an optimal average transmitted power for

maximum EE as has been also observed before in [12]. Also,

from the simulations, we can see that ZF performs better than

MRC at the high SNR region, but worse when the SNR is

low.

Moreover, the impact of peak power constraint on SE and

EE for both MRC and ZF receivers can be observed through

from Fig. 2 to Fig. 3 clearly. They illustrate that when peak

power is limited at the training phase, the SE with AP-MRC

and AP-ZF cannot be as high as the case with A-MRC and

ZF. Although the training period is increased, the time slot

is still very precious when the achievable rate needs to be

maximized.

B. EE and Sum SE With Large-Scale Fading

We assume that the users are randomly and independently

distributed in a single cell with radius R = 1000m, where the

location of each user follows the uniform distribution and the

minimum distance between any user and the base station is

100m. The large-scale fading is modeled as pk = z/r3
k, ∀k

where rk is the distance between the kth user and the base

station, and z follows a log-normal distribution with zero mean

and 8dB standard deviation, representing the shadowing effect.

We allocate the energy budgets as E = ρT = 10−0.5×R3×T ,

meaning that the SNR at the cell edge is −5dB when equal

power allocation is used.

We consider the energy splitting in the following two cases.

The first one is maximizing SE with respect to all users

(solving problem (22)) and the second one is maximizing SE

in terms of each user (solving problem (57)).

1) Joint Power and Training Duration Optimization Over

α, Td: The empirical cumulative distribution function (CDF)

of the sum SE over different snapshots of user locations

is shown in Fig. 4 with both ZF and MRC receivers. The

numerical results are based on 1000 Monte Carlo (MC) trials.

We set ρmax = 3ρ. E-ZF refers to the scheme where the

exhaustive search of α is used when (48) is adopted for

the ZF receiver. In the A-ZF scheme, the lower bound of

(48) is used, i.e., (49), in the objective function. It can be

observed that the results obtained by E-ZF and A-ZF are

very close, illustrating the relaxation is reasonable. Under

the different SNRs, it is also shown that when SNR is low,

the advantages of using the energy splitting scheme become

more obvious, compared with the case without implementing

power optimization. Comparing with (a) and (b) in Fig. 4,

it can be seen that the improvement obtained by optimizing

the sum SE in the MRC case is larger than the ZF case.

2) Joint Power and Training Duration Optimization Over

αk, ∀k, Td: When energy splitting is considered for each user,

the achievable SE can be higher than the case where the same

energy splitting is used for all users. For AP-MRC and AP-

ZF, we set νk = 10−3, ∀k and ρmax = 3ρ. The numerical

results are based on 1000 MC trials. The empirical CDF of

the sum SE over different snapshots of user locations is shown

in Fig. 6 with the ZF receiver and Fig. 5 with the MRC

receiver. It can be observed that the optimized power allo-

cation strategy increases the sum SE compared with the equal

power allocation scheme. When the peak power constraint

is considered, the achievable sum SE is lower than the case

where only the average power constraint is applied, illustrating

that the results obtained by the A-MRC (A-ZF) method are

too optimistic in real applications. AP-MRC (AP-ZF) allows

more time slots in the training phase such that SINR can be

improved in the data transmission phase, which is the practical

strategy for training optimization of the uplink massive MIMO

systems. Also, we can see that the peak power constraint

affects the sum SE in the case of large-scale fading more

significant than the case where there is only small-scale fading,

especially for the case shown in Fig. 5 where the MRC receiver

is used.
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C. Sum SE in Multi-Cell System

Numerical results of maximizing the sum rate in a multi-

cell system are depicted in Fig. 7. The system has 7 equal-

size hexagonal cells with one at the center and the remaining

6 surrounding it. We focus on analyzing the sum SE of the

hexagonal cell in the center. The radius of each cell is 1000m,

the path loss model and the distribution of the users are the

same as the previous section. Equal power allocation is used

in the 6 neighboring cells, and the cases of using MRC and

ZF receivers are both considered. It can be observed that the

optimized sum SE is higher than the case with equal power

allocation. Also, the improvement of the sum SE in the multi-

cell system is less than the case of the single-cell system. The

reason is that the power allocation scheme cannot deal with

the inter-cell interference by optimizing the intra-cell users’

power and training duration unless other advanced techniques

are adopted, e.g., coordinated multi-point (CoMP) or joint

interference management.

VII. CONCLUSIONS

In this paper, we considered an uplink multiuser massive

MIMO. The channels were assumed to be estimated through

training symbols transmitted by the mobile users. We were

able to quantify the amount of energy savings that are possible

through the increase of either the number of base station

antennas, or the coherence interval length. We also quantified

the degrees of freedom that is possible in this scenario, which

is the same as that of a point-to-point MIMO system. The

scheme that achieves the DoF of the system when the number

of users is less than the number of base station antennas is

linear: zero-forcing is sufficient.

For the case where both average and peak power constraints

were considered, we considered the problem of joint training

energy and training duration optimization for the MRC and ZF

receivers so that the sum SE was maximized. In the small-scale

fading channels, we also performed a careful analysis of the

convexity of the problem and derived optimal solutions either

in closed forms or in one case through a one-dimensional

search of a quasi-concave function. For the case where there

was large-scale fading, we developed an iterative algorithm

that leveraged ADMM and obtained a locally optimal solution.

Our results were illustrated and verified through multiple

numerical examples.

APPENDIX

A. Proof of Theorem. 2

Proof: After studying the convexity of the objective

function, there are only three possible cases for the optimal

solutions, as we discuss below.

1) Case 1 (ρτ is Limited by ρmax): Define α1 � ρmaxK/ρT ,

which is the root of T − K = −ρTα/ρmax + T in α (see

Fig. 1). In the case where α1 < α†, because of property P2 the

optimal (α∗, T ∗
d ) must be on one of the two lines given by i)

Td = −ρTα/ρmax + T , α ∈ [α1, 1], and ii) Td = T − K ,

α ∈ [0, α1].
On the line Td = T−K, α ∈ [0, α1] the objective function is

concave and increasing with α, thanks to property P1. Hence,

we only need to consider the line Td = −ρTα/ρmax + T,
α ∈ [α1, 1].

Lemma 4: The objective function R(MRC)(α, Td) along the

line Td = −ρTα/ρmax + T, α ∈ [α1, 1] is quasiconcave in α.

Proof: See Appendix B. �

Thanks to Lemma 4, we can find the optimal α by set-

ting the derivative of (69) with respect to α to 0. Effi-

cient one-dimensional searching algorithms such as Newton

method or bisection algorithm [35], can be adopted to find

out the optimal α.

2) Case 2 (ρd is Limited by ρmax): Define α2 � 1−ρmax(T−
K)/ρT , which is the root of T − K = ρTα/ρmax + ρT/ρmax

in α. If α2 > α†, because of property P2 the optimal (α∗, T ∗
d )

must be on one of the two lines given by i) Td = −ρTα/ρmax+
T, α ∈ (α1, 1), α ∈ [α1, 1], and ii) Td = T −K , α ∈ [α2, α1].
Along the line Td = T − K, α ∈ (α1, 1), the corresponding

function is decreasing in α because of property P1. Also

considering P2, which implies that the optimal point in this

case cannot include Td < T − K , we conclude that the point

(α∗, T ∗
d ) = (α2, T − K) is the global optimal solution of the

problem.

3) Case 3 (Both ρd and ρτ Are Not Limited by ρmax): If

α2 < α† < α1, the optimal point is achieved at (α∗, T ∗
d ) =

(α†, T − K), according to properties P1 and P2. �

B. Proof of Lemma 4

Proof: Consider MRC processing. Substituting (37) into

R(MRC)(α, Td), we have

R(MRC)(α) =
K

T

(
− ρT

ρmax

α + T

)
log2(1 + SNR

(MRC)(α)),

(69)

where

SNR
(MRC)(α) =

α(α − 1)ρ2T 2(M − 1)

a2α2 − b2α − c2
, (70)

and a2 = ρ2T 2(K − 1) + ρ2T 2/ρmax, b2 = ρ2T 2(K −
1) + ρT 2 − ρTK − ρT/ρmax and c2 = KρT + T . Since

R(MRC)(α) > 0, in order to prove the quasi-concavity of

R(MRC)(α), we need to prove that the super-level set Sβ =
{α|0 < α < 1, R(MRC)(α) ≥ β} for each β ∈ R

+ is convex.

Equivalently, if we define

φβ(α) =
β

K
T (ρTα

ρmax
− T )

+ log2(1 + SNR
(MRC)(α)).

(71)

we only need to prove that Sφ = {α|0 < α < 1, φβ(α) ≥ 0}
is a convex set.

It can be checked that the first part of φβ(α), namely

β/[K
T (ρTα

ρmax
− T )], is concave for α ∈ [0, 1]. For the other

part of φβ(α), from (70) we know that

a2 − b2 − c2 = ρT (
ρ

ρmax

− 1) − T (1 − α
ρ

ρmax

) < 0,

(72)

where a2, c2 > 0. Applying Lemma 1, we know SNR
(MRC)(α)

is concave. Hence, log2(1 + SNR
(MRC)(α)) is also concave
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since function log(1+x) is concave and non-decreasing [35].

Therefore, its super-level set Sφ is convex. It follows that the

super-level set Sβ of R(MRC)(α) is convex for each β ≥ 0.

The objective function is thus quasiconcave. �

C. Proof of Lemma 3

Before proving Lemma 3, we first need the following two

lemmas. The proofs are elementary, and not provided here due

to space limit.

Lemma 5: The function f(x) � log
(
1 + (1−x)x

ax+b

)
is con-

cave in x over (0, 1) where a, b > 0 are some constants.

Lemma 6: The function g(x) � log
(
1 + a

c
bx+1+d

)
is con-

cave in x over (0, 1) when a, b, c, d > 0 are some constants.

The proof of Lemma 3 follows. Proof: Substituting (52)

into (5), we have

ρeff,k =
p2

kρk
dρk

τTτ

(pkρk
τTτ + 1)(

∑K
i=1

ρi
d
pi

piρi
τ Tτ +1 + 1)

=
p2

kρ2T 2(1 − αk)αk

(Td − 1 + c̃)pkρT︸ ︷︷ ︸
�a>0

αk + ρTpk + c̃ + Td︸ ︷︷ ︸
�b>0

, (73)

where c̃ =
∑K

i=1,i�=k(1 − αi)ρTpi.

Applying Lemma 5, we know that RZF
k (αk) is concave.

The power of the kth user also generates the interference

to the ith user such that the effective SNR at the ith user is

ρeff,i =
p2

i ρ
i
dρ

i
τTτ

(piρi
τTτ + 1)

Td

s
, i 6= k

where

s = Td

K∑

i=1

ρi
dpi

piρi
τTτ + 1

= Td

K∑

i=1,i�=k

ρi
dpi

piρi
τTτ + 1

+
ρk

dpk

pkρk
τTτ + 1

+ 1

=

K∑

i=1,i�=k

Tdρ
i
dpi

piρi
τTτ + 1

+
(1 − αk)ρTpk

pkρTαk + 1
+ Td

=
ck

bkαk + 1
+

K∑

i=1,i�=k

Tdρ
i
dpi

piρi
τTτ + 1

+ Td − 1

︸ ︷︷ ︸
�d>0

, (74)

and ck � 1 + ρTpk > 0, bk � pkρT > 0.

Applying Lemma 6, we know that RZF
i (αk), i 6= k, ∀i are

concave. Therefore, we can conclude that
∑K

k=1 RZF
k (αk) is

concave. �
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