

1 **Blood-treatment of Lyme borreliae demonstrates the mechanism of CspZ-mediated**
2 **complement evasion to promote systemic infection in vertebrate hosts.**

3 Ashley L. Marcinkiewicz¹, Alan P. Dupuis, II¹, Maxime Zamba-Campero^{1†}, Nancy Nowak²,
4 Peter Kraiczy³, Sanjay Ram², Laura D. Kramer^{1,4}, and Yi-Pin Lin^{1,4*}

5 ¹Division of Infectious Diseases, Wadsworth Center, New York State Department of Health,
6 Albany, NY, USA. ²Division of Infectious Diseases and Immunology, University of
7 Massachusetts Medical School, Worcester, MA, USA. ³Institute of Medical Microbiology and
8 Infection Control, University Hospital of Frankfurt, Frankfurt, Germany. ⁴Department of
9 Biomedical Sciences, State University of New York at Albany, NY, USA.

10

11 Running title: Complement evasion by CspZ in vertebrate hosts

12

13 Key words: Lyme disease, CspZ, *Borrelia*, Factor H, Complement

14

15 [†]Current address: Department of Biology, St. Mary's College of Maryland, St. Mary's, MD

16 *correspondence: Yi-Pin Lin, Ph.D.

17 Division of Infectious Diseases,
18 Wadsworth Center, New York State Department of Health
19 120 New Scotland Ave, Albany, NY 12208
20 Telephone: 518-402-2233; Fax: 518-473-1326
21 Email: Yi-Pin.Lin@health.ny.gov

22 **SUMMARY (196 words)**

23 Lyme disease, caused by the spirochete *Borrelia burgdorferi*, is the most common vector-borne
24 disease in the US and Europe. The spirochetes are transmitted from mammalian and avian
25 reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and
26 then disseminate hematogenously to various organs, a process that requires this pathogen to
27 evade host complement, an innate immune defense system. CspZ, a spirochete surface protein
28 facilitates resistance to complement-mediated killing *in vitro* by binding to the complement
29 regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated *in vitro* or
30 during initiation of infection *in vivo* has been a major hurdle in delineating the role of this protein
31 in pathogenesis. Here we show that treatment of *B. burgdorferi* with human blood induces CspZ
32 production and enhances resistance to complement. By contrast, a *cspZ*-deficient mutant and a
33 strain that expressed a FH-nonbinding CspZ variant were impaired in their ability to cause
34 bacteremia and colonize tissues of mice or quail; virulence of these mutants was however
35 restored in complement C3-deficient mice. These novel findings suggest that FH-binding to
36 CspZ facilitates *B. burgdorferi* complement evasion *in vivo* and promotes systemic infection in
37 vertebrate hosts.

38

39 **INTRODUCTION**

40 Lyme disease (LD) is the most common vector-borne illness in North America and
41 Europe, with an estimated 300,000 new human cases occurring annually in the US (Hinckley et
42 al., 2014; Steere et al., 2016). In North America, LD is primarily caused by the spirochete
43 *Borrelia burgdorferi* sensu stricto (hereafter *B. burgdorferi*), which is transmitted by *Ixodes* ticks
44 and maintained in various vertebrate reservoir hosts (mainly mammals and birds) (Brisson,

45 Drecktrah, Eggers, & Samuels, 2012; Eisen & Eisen, 2018). Following tick bites, the spirochetes
46 spread from the skin of inoculation site to multiple tissues and organs via the bloodstream
47 (Steere et al., 2016). In humans, infection with Lyme borreliae can result in long lasting, and
48 debilitating symptoms including arthritis, carditis, and neuroborreliosis (Steere et al., 2016).
49 Thus, dissemination and systemic infection require spirochetes to survive in the bloodstream of
50 their different hosts (Radolf, Caimano, Stevenson, & Hu, 2012).

51 Complement is one of the key host innate immune defense mechanisms (Meri, 2016;
52 Zipfel & Skerka, 2009). In general, complement can be activated on the surface of invading
53 pathogens by the classical, lectin, and/or alternative pathways. The classical pathway is initiated
54 on pathogens when antibodies bind to target antigens and engage the C1-complex. The lectin
55 pathway is activated when recognition molecules (mannan binding lectin (MBL), collectins or
56 ficolins) bind to select carbohydrates. The alternative pathway is initiated when activated C3b
57 binds to the pathogen surface. Activation of all three pathways leads to the formation of C3
58 convertases (C4b2a by the classical and lectin pathway, or C3bBb by the alternative pathway),
59 and further activation and deposition of C3b on C3 convertases lead to the formation of C5
60 convertases. These multi-protein complexes ultimately promote the release of proinflammatory
61 peptides, the deposition of opsonins (C3b and iC3b), and insertion of the pore-forming
62 membrane attack complex (MAC) (Merle, Church, Fremeaux-Bacchi, & Roumenina, 2015;
63 Merle, Noe, Halbwachs-Mecarelli, Fremeaux-Bacchi, & Roumenina, 2015; Zipfel & Skerka,
64 2009). Complement regulators such as Factor H (FH) and FH-like protein 1 (FHL-1, the
65 alternatively spliced form of FH) that bind to C3b to promote its degradation into iC3b (Sjoberg,
66 Trouw, & Blom, 2009; Zipfel & Skerka, 2009) and prevent excessive complement activation and
67 host cell damage in the absence of pathogens or tissue injury.

68 Pathogens have developed multiple mechanisms to escape killing by complement
69 (Lambris, Ricklin, & Geisbrecht, 2008). One such mechanism is the production of complement-
70 binding proteins to block the formation of complement complexes (Blom, Hallstrom, &
71 Riesbeck, 2009; Kraiczy, 2016a; A. Marcinkiewicz, Kraiczy, & Lin, 2017; Meri, 2016). Another
72 mechanism is to express complement regulator-binding proteins, which recruit host complement
73 regulators to the cell surface to degrade active complement complexes (Blom et al., 2009; Meri,
74 2016). For example, Lyme borreliiae produce OspC and BBK32, which respectively bind C4b
75 and C1q to inhibit complement (Caine et al., 2017; Garcia, Zhi, Wager, Hook, & Skare, 2016).
76 This pathogen also produces at least five distinct complement regulator-acquiring surface
77 proteins (CRASPs): CspA (CRASP-1), CspZ (CRASP-2), ErpP (CRASP-3), ErpC (CRASP-4),
78 ErpA (CRASP-5) (Kraiczy & Stevenson, 2013). These proteins bind to FH and/or FHL-1 (CspA
79 and CspZ only) to inhibit the alternative pathway (Kraiczy & Stevenson, 2013). One of these
80 FH-binding CRASPs, CspZ, promotes survival of otherwise serum-sensitive, non-pathogenic
81 Lyme borreliiae in human serum when overexpressed in these strains (Hartmann et al., 2006;
82 Siegel et al., 2008). This protein is produced during mouse infection but not when the spirochetes
83 reside in unfed or feeding ticks (Bykowski et al., 2007), suggesting a role of CspZ in providing
84 bacteria the ability to survive in the hosts. However, a *cspZ*-deficient strain is fully infectious via
85 needle infection (Coleman et al., 2008). Additionally, when mice were subcutaneously
86 inoculated with a library of *B. burgdorferi* mutants carrying transposon insertions, mutants with
87 transposon insertions in *cspZ* displayed only minor defects in colonization of mice (T. Lin et al.,
88 2012). Interestingly, *B. burgdorferi* produces extremely low levels of CspZ when cultivated *in*
89 *vitro* (Bykowski et al., 2007). This finding raises a possibility that low production of CspZ in *in*

90 *vitro*-cultivated wild type *B. burgdorferi* does not permit elucidation of differences in serum
91 survival or infectivity between the wild type and the *cspZ*-deficient mutant strain.

92 Spirochetes produce distinct protein profiles when cultivated in different conditions *in vitro*
93 or while infecting vertebrate animals (Brooks, Hefty, Jolliff, & Akins, 2003; Hyde,
94 Trzeciakowski, & Skare, 2007; Ojaimi et al., 2003; Revel, Talaat, & Norgard, 2002; Seshu,
95 Boylan, Gherardini, & Skare, 2004; Tokarz, Anderton, Katona, & Benach, 2004). Incubating *B.*
96 *burgdorferi* with mammalian blood simulates the conditions in hosts that leads to upregulation of
97 genes that are normally expressed when spirochetes are in vertebrate hosts (Tokarz et al., 2004).

98 In fact, blood treatment of spirochetes has been used to delineate the roles of several spirochete
99 genes *in vivo* (Caine & Coburn, 2015; Caine et al., 2017; Y. P. Lin et al., 2015; Moriarty et al.,
100 2012; Norman et al., 2008). Therefore, we hypothesized that blood treatment of spirochetes
101 would enhance the production of CspZ thereby permitting examination of this protein in
102 facilitating serum survival and infectivity in diverse hosts. In this study, we tested this
103 hypothesis and elucidated a novel role for CspZ-FH interactions in bacterial pathogenesis *in vivo*.

104

105 RESULTS

106 **Treating *B. burgdorferi* with human blood enhances CspZ production.** To define CspZ's role
107 *in vitro* and *in vivo*, we obtained wild type (WT) infectious *B. burgdorferi* B31-A3 and its
108 isogenic *cspZ*-deficient mutant, B31-A3 Δ *cspZ* (Coleman et al., 2008). This mutant strain
109 carrying shuttle vector pKFSS (B31-A3 Δ *cspZ*-V) or complemented with a plasmid encoding WT
110 *cspZ* were generated. We also constructed a shuttle vector encoding this gene's promoter from *B.*
111 *burgdorferi* strain B31-A3 to drive *cspZ-Y207A/Y211A*, which produces the point mutant of
112 CspZ defective in FH-binding activity (Siegel et al., 2008). This plasmid was transformed into

113 B31-A3 Δ cspZ as to generate complemented strain as a negative control. Note that CspZ-
114 Y207A/Y211A was chosen to specifically eliminate FH binding; a previous study showed that
115 CspZ-Y207A/Y211A binds neither to human nor mouse FH (A. L. Marcinkiewicz et al., 2018;
116 Siegel et al., 2008). This is because a hydrogen bond between FH and tyrosine-207 of CspZ is
117 abolished in this mutant protein (PDB#6ATG, <http://www.rcsb.org/structure/6ATG>). We also
118 found that CspZ-Y207A/Y211A does not bind to FH from *Coturnix* quail, the avian model of LD
119 (Isogai et al., 1994), whereas WT CspZ bound (Fig. S1 bottom and Table 1). Further,
120 recombinant CspZ-Y207A/Y211A protein maintained its secondary structure, similar to the
121 recombinant CspZ, (Fig. S2) and displayed similar levels of fibronectin, laminin, and
122 plasminogen binding as WT CspZ (Hallstrom et al., 2010) (Fig. S3 and Table S1).

123 Hypothesizing that CspZ production is upregulated by vertebrate animals' blood that
124 simulates the host conditions, we first treated WT *B. burgdorferi* strain B31-A3 with human
125 blood, and cspZ expression was quantitated by RT-PCR (qRT-PCR). Mid-log phase B31-A3
126 were incubated with that blood for 48 hours as previously described (Tokarz et al., 2004). We
127 found that untreated and blood-treated spirochetes expressed similar levels of recA, a
128 constitutively expressed gene (Fig. 1A). Untreated *B. burgdorferi* expressed low but detectable
129 of cspZ, consistent with previous reports (Coleman et al., 2008; Hartmann et al., 2006; Rogers,
130 Abdunnur, McDowell, & Marconi, 2009) (Fig. 1A). Blood-treated *B. burgdorferi* expressed 4.1-
131 fold greater levels of cspZ compared to untreated spirochetes (Fig. 1A). We then sought to
132 determine if increased cspZ expression translates to greater amounts of CspZ on the spirochete
133 surface using flow cytometry (Fig. 1B). The periplasmic flagellin protein FlaB and the FH-
134 binding protein CspA were used as controls. As expected, the production of FlaB was detectable
135 in methanol-permeabilized but not in unpermeabilized *B. burgdorferi* cells, consistent with the

136 periplasmic location of this protein (Kumru, Schulze, Slusser, & Zuckert, 2010; Limberger,
137 2004) (Fig. 1C). The levels of FlaB were indistinguishable between untreated and blood-treated
138 cells (Fig. 1C). The production of CspA was indistinguishable between permeabilized and
139 unpermeabilized cells, in agreement with CspA's surface localization (Fig. 1C) (Kraiczy et al.,
140 2004). Consistent to previous work (Brooks et al., 2003; Bykowski et al., 2007; Tokarz et al.,
141 2004), CspA levels decreased 3.3-fold in blood-treated compared to untreated cells (Fig. 1C).
142 Finally, similar levels of CspZ was detected on permeabilized and unpermeabilized strain B31-
143 A3 (Fig. 1C), in agreement with this protein localized on the surface (Bykowski et al., 2007;
144 Dowdell et al., 2017; Hartmann et al., 2006). Strikingly, the 5.3-fold enhancement of CspZ
145 production in the presence of human blood compared to untreated strain B31-A3 (Fig. 1B and
146 C). Further, we incubated blood with B31-A3 Δ cspZ-V or B31-A3 Δ cspZ producing WT cspZ or
147 cspZ-Y207A/Y211A. Similarly, the strain B31-A3 Δ cspZ producing WT cspZ or cspZ-
148 Y207A/Y211A exhibited enhanced CspZ production whereas these strains and the B31-A3 Δ cspZ-
149 V displayed decreased CspA production after blood treatment (Fig. 1D to F). Note that all these
150 strains displayed indistinguishable levels of viability and generation time in either untreated or
151 blood treated conditions. These results suggest that spirochete growth is not altered, and there is
152 no difference among strains regarding to viability after blood treatment (Fig. S4 and Table S2
153 and S3). Taken together, these findings indicate that blood treatment induces CspZ production
154 and down-regulates CspA production in the *B. burgdorferi* strains that encode the genes to
155 produce these proteins.

156

157 **CspZ requires Tyrosine-207 and -211 to promote blood-treated *B. burgdorferi* binding to**
158 **human, mouse, and quail FH.** To define the role of CspZ in binding to human, mouse, and

159 quail FH when expressed on the spirochete surface, FH purified from these hosts were incubated
160 with *in vitro* cultivated, untreated (no added blood) B31-A3, B31-A3 Δ *cspZ*-V, and bacteria-
161 bound FH was detected by flow cytometry. A high passage and non-infectious *B. burgdorferi*
162 strain B313 was also included as a negative control because this strain lacks the plasmids
163 encoding CspZ and CspA (Hallstrom et al., 2013). We found that the level of these hosts' FH
164 bound by B31-A3 and B31-A3 Δ *cspZ*-V were greater than that by B313 but undistinguishable
165 between each other (Fig. S5). These findings indicated that in the absence of blood treatment, FH
166 binding to B31-A3 and B31-A3 Δ *cspZ*-V were similar. To enhance CspZ production in the wild-
167 type isolate and downregulate CspA production in both wild-type and mutant, we treated these
168 strains with human blood and assessed binding of human, mouse, and quail FH to each of these
169 spirochete strains. As expected, B313 bound nearly undetectable levels of these hosts' FH (Fig.
170 2) (Hart, Nguyen, et al., 2018; Hartmann et al., 2006). Consistent with previous observations
171 (Hart, Nguyen, et al., 2018; Kenedy, Vuppala, Siegel, Kraiczy, & Akins, 2009; McDowell et al.,
172 2003), B31-A3 bound FH from all three species (Fig. 2). Although B31-A3 Δ *cspZ*-V still retained
173 the ability to bind to these hosts' FH, possibly due to the production of other FH-binding
174 proteins, this CspZ-deficient strain showed over 4-fold reduced levels of FH binding compared
175 to B31-A3 (Fig. 2). These findings indicate that prior blood treatment of spirochetes is necessary
176 to reveal binding of FH to CspZ. We also treated blood with B31-A3 Δ *cspZ* producing WT CspZ
177 or CspZ-Y207A/Y211A and determine their ability to bind to human, mouse or quail FH.
178 Ectopically produced CspZ but not CspZ-Y207A/Y211A in B31-A3 Δ *cspZ*-V restored binding to
179 these hosts' FH (Fig. 2). The *cspZ*-Y207A/Y211A-complemented strain bound to these FH
180 molecules 4-fold less than the *cspZ*-complemented strain (Fig. 2). These findings indicate that

181 tyrosines at positions 207 and 211 of CspZ are required for maximal binding of human, mouse,
182 and quail FH.

183

184 **CspZ-mediated FH-binding contributes to reduced MAC deposition on the surface of**
185 **blood-treated spirochetes.** Next, we asked if the FH-binding activity of CspZ reduced the
186 deposition of complement activation products on the spirochete surface. We incubated WT strain
187 B31-A3, B31-A3 Δ cspZ-V, and B313 with 20% of human or mouse serum and quantified the
188 levels of MAC bound to the spirochete surface using flow cytometry (Fig. 3). Quail serum could
189 not be assessed due to the unavailability of antibodies that recognize avian MAC. The levels of
190 MAC deposited on the surface of WT strain B31-A3 and B31-A3 Δ cspZ-V were similar, but
191 lower than that on the strain B313 (Fig. S6A and B). To enhance the production of CspZ, we
192 treated these strains with human blood prior to incubation with serum to measure the levels of
193 surface-associated MAC. As expected, a significant amount of human and mouse MAC could be
194 detected on B313 whereas MAC deposition on the WT strain B31-A3 was undetectable (Fig. 3).
195 Strain B31-A3 Δ cspZ-V deposited greater amounts of MAC compared to the WT strain B31-A3
196 but lower levels compared to strain B313 (Fig. 3B). We also treated B31-A3 Δ cspZ
197 complemented with *cspZ* or *cspZ* Y207A/Y211A with human blood prior to incubating them with
198 serum. MAC deposition was undetectable on the surface of the strain complemented with the
199 WT *cspZ* gene as expected (Fig. 3B) while significant amounts of human and mouse MAC were
200 deposited on the strain complemented with the *cspZ*-Y207A/Y211A (Fig. 3B). These results
201 indicate that blood treatment of spirochetes, which enhances CspZ expression and FH binding,
202 translates to inhibition of human and non-human complement deposition.

203

204 **CspZ binding to FH facilitates blood-treated *B. burgdorferi* to survive in serum.** We aimed
205 to determine CspZ's role in promoting spirochete survival in serum. The WT strain B31-A3 and
206 B31-A3 Δ cspZ-V were incubated with human or quail serum, or negative control sera that were
207 not expected to kill bacteria (C3-depleted human serum or heat inactivated human or quail
208 serum) for four hours. Mouse serum was not tested because mouse complement is highly
209 unstable *ex vivo* (Caine & Coburn, 2015; Lachmann, 2010; A. Marcinkiewicz et al., 2017;
210 Ristow et al., 2012). Consistent with previous findings (Coleman et al., 2008), we found that
211 nearly 100% of the WT strain B31-A3 and B31-A3 Δ cspZ-V survive in human, quail, and
212 negative control sera (Fig. S7). We then treated the WT strain B31-A3 or B31-A3 Δ cspZ-V with
213 human blood to enhance expression of *cspZ* prior to incubation with sera. Over 75% of the WT
214 strain B31-A3 survived in active (Fig. 4 top panel) or C3-depleted human serum (Fig. 4 middle
215 panel). While less than 50% of the strain B31-A3 Δ cspZ-V were viable in human serum (Fig. 4
216 top panel), this strain survived almost 100% in heat-inactivated (Fig. 4 top panel) or C3-depleted
217 human serum (Fig. 4 middle panel). Similarly, approximately 100% of WT strain B31-A3
218 survived in quail serum (Fig. 4 bottom panel). Although only 36% of B31-A3 Δ cspZ-V remained
219 motile in this serum, it showed nearly 100% survival in heat-inactivated quail serum (Fig. 4
220 bottom panel). These findings indicate that CspZ promotes blood-treated spirochetes to survive
221 in human and quail sera.

222 The serum resistance of B31-A3 Δ cspZ-V complemented with *cspZ* or *cspZ-Y207A/Y211A*
223 was also assessed using identical experimental conditions. Approximately 75% of the *cspZ*-
224 complemented strain survived in both active or C3-depleted human serum (Fig. 4 top and middle
225 panel). Only 25% of the *cspZ-Y207A/Y211A*-complemented strain survived in human serum (Fig.
226 4 top panel) but retained close to 100% viability in heat-inactivated (Fig. 4 top panel) or C3-

227 depleted human serum (Fig. 4 middle panel). Almost 100% of the *cspZ*-complemented bacteria
228 survived in quail serum while only 36% of the *cspZ-Y207A/Y211A*-complemented strain was
229 viable (Fig. 4 bottom panel). Moreover, almost 100% of bacteria of this strain remained motile in
230 heat-inactivated quail serum (Fig. 4 bottom panel). These results suggest that CspZ-mediated
231 FH-binding activity provides serum resistance activity for blood-treated *B. burgdorferi*.

232

233 **FH binding to CspZ confers bacteremia and tissue colonization of blood-treated *B.***
234 ***burgdorferi*.** We next asked whether CspZ-mediated FH-binding promotes infectivity in mice.
235 Subcutaneous needle infection of spirochetes with the dose close to ID₅₀ (the dose that infects
236 50% of animals) often reveals subtle *in vivo* phenotypes conferred by spirochete genes that are
237 expressed in hosts (Blevins, Hagman, & Norgard, 2008; Hyde et al., 2011; Seshu et al., 2006;
238 Shi, Xu, Seemanaplli, McShan, & Liang, 2008; Weening et al., 2008). We thus introduced 10³
239 cells of WT strain B31-A3 or B31-A3Δ*cspZ*-V into BALB/c mice (the ID₅₀ of strain B31-A3 is
240 ~10³ cells (Showman, Aranjuez, Adams, & Jewett, 2016; Tilly et al., 2006)). We then used
241 quantitative PCR (qPCR) to quantify spirochete burdens in the bloodstream and tissues. The
242 infection of WT strain B31-A3 or strain B31-A3Δ*cspZ*-V resulted in indistinguishable levels of
243 bacteremia at 7 days post-infection (dpi) and tissue colonization at both 7 and 14 dpi (Fig. S8A
244 left panel and 8B to E). Note that we were unable to detect spirochetes in the blood at 14 dpi
245 (Fig. S8A right panel), in agreement with kinetics of bacteremia present only at extremely early
246 stages of murine infection (Caine et al., 2017).

247 In order to delineate the role of CspZ during the course of infection, we treated WT strain
248 B31-A3 and B31-A3Δ*cspZ*-V with human blood to upregulate *cspZ* expression. BALB/c mice
249 were then infected with blood-treated B31-A3 or B31-A3Δ*cspZ*-V. Bacteremia triggered by the

250 former strain was observed at 7 dpi but not at 14 dpi (Fig. 5A). Colonization was detected for
251 WT strain B31-A3 in all tested tissues at 7 and 14 dpi (Fig. 5B to E). In contrast, the strain B31-
252 A3 Δ cspZ-V induced six-fold less levels of bacteremia at 7 dpi ($p = 0.021$, Fig. 5A left panel) and
253 displayed 2600 and 9-fold lower spirochete burden at the inoculation site than the WT strain at 7
254 and 14 dpi, respectively ($p < 0.05$, Fig. 5B). The cspZ-deficient strain also exhibited a lower,
255 although not statistically significant, level of colonization of the heart, bladder, and joints
256 compared to the WT strain at 7 dpi (Fig. 5C to E left panel). At 14 dpi, the cspZ-deficient mutant
257 colonized these tissues at 6- to 9-fold reduced levels compared to the WT strain (Fig. 5 C to E
258 right panel). We also infected mice with human blood-treated B31-A3 Δ cspZ producing WT
259 CspZ or CspZ-Y207A/Y211A. Ectopically producing WT CspZ but not CspZ-Y207A/Y211A in
260 the strain B31-A3 Δ cspZ restores the defect of bloodstream survival at 7 dpi (5-fold greater
261 bacterial burdens than the strain B31-A3 Δ cspZ-V, Fig. 5A left panel). At 7 and 14 dpi, the cspZ-
262 Y207A/Y211A-complemented strain did not colonize the inoculation site while the cspZ-
263 complemented strain did (13 to 259-fold greater levels than the strain B31-A3 Δ cspZ-V) (Fig.
264 5B). These strains did not display different levels of colonization in heart, bladder, and joints at
265 7 dpi (Fig. 5C to E left panel). However, at 14 dpi, the cspZ-complement strain exhibited 2.4 to
266 13-fold greater levels of colonization at these tissues compared to B31-A3 Δ cspZ-V. Spirochetes
267 producing CspZ-Y207A/Y211A colonized these tissues with a bacterial burden similar to the
268 strain B31-A3 Δ cspZ-V (Fig. 5C to E right panel). These results demonstrate that CspZ-mediated
269 FH-binding promotes hematogenous dissemination of blood-treated spirochetes in mice.
270

271 **Complement evasion mediated by CspZ-FH interactions facilitates blood-treated**
272 **spirochete to survive in mouse bloodstream and tissues.** We next sought to investigate

273 whether CspZ-mediated FH-binding activity, by evading the complement, facilitates blood-
274 treated spirochetes to survive in mouse bloodstream and tissues. We first subcutaneously
275 inoculated C3-deficient mice in a BALB/c background (C3^{-/-} mice) with 10³ cells of each of the
276 four following spirochete strains after treating these strains with human blood. These strains
277 include WT strain B31-A3, B31-A3ΔcspZ-V, B31-A3ΔcspZ complemented with *cspZ*, or *cspZ*
278 *Y207A/Y211A* mutant. qPCR was used to measure spirochete loads in the bloodstream and
279 tissues. In contrast to the findings in WT mice, we found no differences in bacterial burdens
280 across all four strains in bloodstream at 7 dpi (Fig. 6A) and the inoculation site, heart, bladder,
281 and joints of C3^{-/-} mice at 7 and 14 dpi (Fig. 6B to E). These results indicate that that FH binding
282 to CspZ facilitates blood-treated *B. burgdorferi* to evade mouse complement and thus renders
283 them pathogenic.

284

285 **FH binding activity of CspZ promotes spirochete colonization in quail.** We aimed to test
286 whether CspZ-mediated FH-binding confers infectivity of *B. burgdorferi* in avian hosts such as
287 the quail. We thus treated WT strain B31-A3 with human blood to enhance the production of
288 CspZ, subcutaneously inoculated 10⁶ cells of B31-A3 cells into quail, and determined bacterial
289 burdens using qPCR in the blood and tissues. We could not detect WT strain B31-A3 in the
290 blood or any tested tissues at 3 dpi (detection limit: one bacterium per one microgram of DNA,
291 Fig. S9). Although we were still unable to detect spirochetes in the blood, live or heart at 7 dpi,
292 spirochetes were detectable at the inoculation site and the brain at this time point (Fig. 7 and S9).
293 The viability of spirochetes in these tissues was verified microscopically after culturing the
294 tissues collected from the quail at 7 dpi: **five out of six quail inoculation sites and brain tissues**
295 **were culture positive.** We also subcutaneously infected quail with human blood-treated B31-

296 A3 Δ cspZ-V, or this strain producing CspZ or CspZ-Y207A/Y211A. At 7 dpi, the strain B31-
297 A3 Δ cspZ-V colonized the inoculation site and brain approximately five to eight-fold less,
298 respectively, compared to WT strain B31-A3 (Fig. 7). Ectopically producing CspZ in B31-
299 A3 Δ cspZ restored the colonization defects in these tissues (Fig. 7), indicating CspZ contributes
300 to *B. burgdorferi* colonization at quail tissues. However, ectopic production of CspZ-
301 Y207A/Y211A did not restore colonization levels in the inoculation site and brain (similar
302 spirochete burdens to mutant B31-A3 Δ cspZ-V) (Fig. 7). These results suggest that CspZ binds to
303 FH to facilitate spirochetes to establish infection and promote dissemination in quail.

304

305 DISCUSSION

306 *B. burgdorferi*, the causative agent of LD, produces at least 86 outer surface lipoproteins
307 (Dowdell et al., 2017). Although some of these proteins are produced in abundance, most are
308 expressed at low levels when cultured *in vitro* and/or during murine infection (Kenedy, Lenhart,
309 & Akins, 2012), which have been hurdles in studying their roles in pathogenesis. Cultivating *B.*
310 *burgdorferi* in specific conditions such as blood supplemented growth media to induce the
311 production of proteins of interest has been utilized to investigate the role of such proteins *in vitro*
312 and *in vivo* (Kumar et al., 2015; Moriarty et al., 2012; Parveen & Leong, 2000; Zhi et al., 2015).
313 We used human blood to treat spirochetes and observed induction of CspZ (Fig. 1) as this host's
314 blood has been used as a host-simulated cue to alter the expression of spirochetes genes (Tokarz
315 et al., 2004). However, the varying molecular compositions of the blood of different animal
316 species (Hamdy, 1977; Sojka et al., 2013; Wickramasekara, Bunikis, Wysocki, & Barbour, 2008),
317 raising the possibility that enhanced *cspZ* expression is host blood-specific, which warrants
318 further investigation. Additionally, human blood treatment of spirochetes followed by murine

319 infection may not reflect to the nature life cycle of Lyme borreliae in mice. This concern could
320 be eased by treating spirochetes with mouse blood prior to infection for future studies. Further,
321 Tokarz et al. did not report an increased *cspZ* expression in spirochetes treated with human blood
322 using a microarray, which could be due to the stringent criteria used to define the differential
323 gene expression (Tokarz et al., 2004). Treating *B. burgdorferi* with proteases has been
324 commonly used to determine a particular spirochete protein's surface localization (El-Hage et al.,
325 2001; Exner, Wu, Blanco, Miller, & Lovett, 2000; Zuckert, Kerentseva, Lawson, & Barbour,
326 2001). CspZ remains intact after the treatment of proteinase K and trypsin, suggesting this
327 protein's resistance to digestion by these proteases (Coleman et al., 2008; Dowdell et al., 2017;
328 Hartmann et al., 2006). However, CspZ is eliminated when spirochetes are treated with pronase
329 (Dowdell et al., 2017), a protease isolated from *Streptomyces griseus* (Hiramatsu & Ouchi,
330 1963). This finding indicates this protein's surface localization, consistent with our and previous
331 observations using fluorescence-based methodologies (Bykowski et al., 2007; Hartmann et al.,
332 2006; Siegel et al., 2008)(Fig. 1B, C, E, and F).

333 We found that blood treatment is essential to demonstrate the CspZ-mediated FH-
334 binding activity to confer spirochete survival in sera (Fig. 4). It is noteworthy that we count
335 immotile cells as the indicator of cell death by dark-field microscopy, a method which has been
336 commonly used to identify killed cells (Alitalo et al., 2005; Alitalo et al., 2001; Brooks et al.,
337 2005; Kraiczy, Hunfeld, Peters, et al., 2000; McDowell et al., 2011; van Dam et al., 1997).
338 Furthermore, the lack of motility is the most apparent sign of complement-mediated bacterial
339 killing, which allows determination of cell viability microscopically without the need for the
340 extended duration of time to cultivate spirochetes. Further, the ability of pathogens to limit
341 complement activation on their surface often correlates with their ability to survive in the

342 bloodstream and cause systemic infection (Lambris et al., 2008; Roantree & Rantz, 1960). For
343 example, the *B. burgdorferi* outer surface protein BBK32 inhibits activation of the classical
344 pathway and confers resistance to human serum (Garcia et al., 2016). This protein also promotes
345 spirochete survival in the mouse bloodstream and dissemination (Caine & Coburn, 2015; Hyde et
346 al., 2011; Seshu et al., 2006). Similarly, *B. burgdorferi* produces OspC that inactivates both
347 classical and lectin pathways and contributes to early stages of bacteremia (Caine & Coburn,
348 2015; Caine et al., 2017). In this study, we treated a *cspZ*-deficient *B. burgdorferi* with blood to
349 demonstrate this CspZ's ability, by evading complement, to promote bacteremia and/or tissue
350 colonization (Fig. 5 and 6). Note that this finding does not imply that CspZ facilitates spirochete
351 survival in fed ticks during transmission as *B. burgdorferi* does not produce CspZ when it is in
352 either post molting flat nymphs or feeding nymphs (Bykowski et al. Infect Immun. 2007).
353 However, CspZ is produced at low levels in the biting site of skin after transmission (Bykowski
354 et al. Infect Immun. 2007). Therefore, in the case that a *cspZ*-deficient spirochete displays defect
355 of infectivity in vertebrate hosts during transmission, CspZ's role should be dependent on the
356 host environment such as skin. Further, *B. burgdorferi* has been shown to more efficiently spread
357 to distal tissues in mice deficient of some complement proteins (e.g. C3^{-/-} or C1q α ^{-/-} mice)
358 Compared to WT mice (Lawrenz et al., 2003; Woodman et al., 2007; Zhi, Xie, & Skare, 2018).
359 Similarly, we observed increased spirochete burdens in the tissues of C3^{-/-} mice (Fig. 6B to E)
360 relative to the WT mice (Fig. 6B to D) at 14dpi, suggesting the need for *B. burgdorferi* to evade
361 complement in order to disseminate. Further, the initial skin colonization of *B. burgdorferi*
362 results in an exuberant inflammatory response at inoculation site of dermis (Antonara, Ristow,
363 McCarthy, & Coburn, 2010; Hovius et al., 2009; Xu, Seemanapalli, Reif, Brown, & Liang,
364 2007). Complement in the vascular compartment or interstitial fluid would accompany the

365 localized influx of cells at the dermal inoculation site (Wilhelm, 1973). This addresses our
366 finding that spirochetes use the FH-binding activity of CspZ to establish infection at inoculation
367 site (Fig. 5B and 6B).

368 In addition to mammals, birds also maintain Lyme borreliae as a reservoir host in the
369 enzootic cycle (Brisson et al., 2012; Eisen & Eisen, 2018). However, the molecular mechanisms
370 of spirochete colonization and dissemination in this host remain unclear. This could be due to the
371 cumbersome work of maintaining wild-caught birds and/or the inability to persistently infect
372 some avian hosts with Lyme borreliae experimentally (Bishop, Khan, & Nielsen, 1994; Burgess,
373 1989; Ginsberg et al., 2005; Isogai et al., 1994; Kurtenbach et al., 1998; Kurtenbach, Schafer, et
374 al., 2002; Olsen, Gylfe, & Bergstrom, 1996; Piesman, Dolan, Schriefer, & Burkot, 1996; Richter,
375 Spielman, Komar, & Matuschka, 2000). Among these avian species, *Coturnix* quail is capable of
376 harboring Lyme borreliae for at least eight weeks after needle infection (Isogai et al., 1994).
377 Similar to previous findings (Isogai et al., 1994), we did not detect spirochetes in the blood
378 during infection (Fig. S9), reiterating the inability of Lyme borreliae to induce high levels of
379 bacteremia in vertebrate animals (Steere et al., 2016). Unlike a previous study detecting
380 spirochetes in the liver and heart of *B. garinii*-infected quail (Isogai et al., 1994), we did not
381 observe *B. burgdorferi* colonization at these sites, possibly reflecting strain-specific tissue
382 tropism (Fig. S9)(Craig-Mylius, Lee, Jones, & Glickstein, 2009; Jones et al., 2006; Wang, van
383 Dam, Schwartz, & Dankert, 1999). We found that CspZ-mediated FH-binding activity facilitates
384 spirochete colonization at the quail inoculation site and brain, which reveals the role of a *B.*
385 *burgdorferi* protein in promoting avian host competence at the first time (Fig. 7). Note that Not
386 every strain of Lyme borreliae species encodes CspZ (Kingry et al., 2016; Kraiczy, Skerka,
387 Brade, & Zipfel, 2001; Rogers & Marconi, 2007), and allelic variations confer differential

388 human FH/FHL-1-binding activity (Kraiczy et al., 2008; Kraiczy et al., 2001; Rogers et al.,
389 2009). This raises the possibility that CspZ variants may determine host-specificity of FH-
390 binding and determine the animals' competence to each strain (Bhide et al., 2005 ; Kraiczy,
391 2016b; Kurtenbach, De Michelis, et al., 2002). This could be further investigated using the quail
392 and mouse as Lyme infection models established in this study. Such models can also be applied
393 to study the role of additional proteins of *B. burgdorferi* or other pathogens that are induced
394 during blood treatment in promoting infectivity. Gaining an understanding of the mechanisms of
395 pathogen infectivity can permit further efforts to find treatments or vaccines to improve human
396 health.

397

398 EXPERIMENTAL PROCEDURES

399 **Ethics statement.** All mouse experiments were performed in strict accordance with all
400 provisions of the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals,
401 and the PHS Policy on Humane Care and Use of Laboratory Animals. The protocol was
402 approved by the Institutional Animal Care and Use Committee (IACUC) of Wadsworth Center,
403 New York State Department of Health (protocol Docket Number 16-451), and University of
404 Massachusetts Medical School (protocol Docket Number 1930). All efforts were made to
405 minimize animal suffering.

406

407 **Mouse, quail, bacterial strains, and animal sera.** Swiss Webster mice used to generate anti-
408 serum against CspZ and BALB/c mice were purchased from Charles River (Wilmington, MA)
409 and Taconic (Hudson, NY), respectively. C3^{-/-} mice (C57BL/6) purchased from Jackson
410 Laboratory (Bar Harbor, ME) were backcrossed for 11 generations into a BALB/c background.

411 Mice were genotyped for the C3 alleles by PCR analysis of mouse tail DNA (Table S4).

412 *Coturnix coturnix* quail were purchased from Cavendish Game Bird Farm (Springfield, VT).

413 The *Borrelia* and *Escherichia coli* strains used in this study are described in Table 2. All *B.*

414 *burgdorferi* strains were grown at 33°C in BSK-II complete medium supplemented with

415 kanamycin (200 μ g/mL), streptomycin (50 μ g/mL), or no antibiotics as required. For blood-

416 treatment, spirochetes were incubated with human blood as described (Tokarz et al., 2004).

417 Approximately 5 x 10⁶ cells of mid-log *B. burgdorferi* were cultivated in BSK-II complete

418 medium with 5% human blood with the buffy coat removed. This concentration of human blood

419 does not reduce the growth and motility of serum-sensitive strains (Breitner-Ruddock, Wurzner,

420 Schulze, & Brade, 1997; Hart, Nguyen, et al., 2018; Kenedy & Akins, 2011; van Dam et al.,

421 1997). The human blood was supplemented with a cocktail of antibiotics (final concentration:

422 50 μ g/mL rifampicin, 20 μ g/mL phosphomycin and 2.5 μ g/mL amphotericin) to prevent potential

423 bacterial and fungal contamination. Spirochetes were then incubated with human blood at 33°C

424 at 2% CO₂ under a microaerophilic condition for 48 hours prior to use. *E. coli* strains were

425 grown at 37°C in Luria-Bertani (BD Bioscience, Franklin Lakes, NJ) broth or agar,

426 supplemented with kanamycin (50 μ g/mL), streptomycin (50 μ g/mL), ampicillin (100 μ g/mL), or

427 no antibiotics (Table 2). Human, mouse, and quail sera were obtained from and MB Biomedical,

428 Inc (Santa Ana, CA), Southern Biotech, Inc (Birmingham, AL), and Canola Live Poultry Market

429 (Brooklyn, NY), respectively. Prior to being used, these sera were screened with the C6 Lyme

430 ELISA kit (Diamedix, Miami Lakes, FL) to determine whether the individual from which it was

431 collected had prior exposure to *B. burgdorferi* by detecting antibodies against the C6 peptide of

432 the *B. burgdorferi* protein VlsE (Lawrenz et al., 1999).

433

434 **Generation of recombinant CspZ proteins and antisera.** The open reading frames lacking the
435 putative signal sequences of *bbh06* (*cspZ*) or encoding CspZ-Y207A/Y211A (CspZ with
436 tyrosine-207 and -211 replaced by alanine residues) from *B. burgdorferi* strain B31-A3 was
437 amplified using listed plasmids and primers (Table 2 and S4)(Siegel et al., 2008). Amplified
438 fragments were engineered to encode a BamHI site at the 5' end and a stop codon followed by a
439 SalI site at the 3' end. PCR products were sequentially digested with BamHI and SalI and then
440 inserted into the BamHI and SalI sites of pGEX4T2 (GE Healthcare, Piscataway, NJ). The
441 plasmids were sequenced and then transformed into *E. coli* strain BL21(DE3) (Wadsworth
442 ATGC facility). The GST-tagged CspZ proteins were produced and purified by GST affinity
443 chromatography according to the manufacturer's instructions (GE Healthcare, Piscataway, NJ).
444 Antisera against CspZ were generated by immunizing four-week-old Swiss Webster mice with
445 each of the CspZ proteins as described (Benoit, Fischer, Lin, Parveen, & Leong, 2011).

446

447 **Quantitative RT-PCR and PCR.** For quantitative RT-PCR (qRT-PCR), RNA was extracted
448 from *B. burgdorferi* strain B31-A3 using Direct-Zol RNA MiniPrep Plus Kit (Zymo Research,
449 Irvine, CA), and contaminating DNA was removed using RQ1 RNase-Free DNase (Promega,
450 Madison, WI). cDNA was synthesized from 1 µg of RNA using qScript cDNA SuperMix
451 (Quanta Bioscience, Beverly, MA). The quantification of *16s rRNA*, *cspZ*, or *recA* expression
452 from cDNA using listed primers Table S4 (Hodzic et al., 2013)(Bykowski et al., 2007)(Hodzic,
453 Feng, & Barthold, 2013; Morrison, Ma, Weis, & Weis, 1999). For quantitative PCR (qPCR),
454 DNA was extracted using EZ-10 Spin Column Blood DNA Mini-Prep Kit (BioBasic, Inc.,
455 Markham, Ontario, Canada). The quantity and quality of DNA for each tissue sample were
456 assessed by measuring the concentration of DNA and the ratio of the UV absorption at 260 to

457 280 using a Nanodrop 1000 UV/Vis spectrophotometer (ThermoFisher, Waltham, MA). The
458 280:260 ratio was between 1.75 to 1.85, indicating the lack of contaminating RNA or proteins.
459 qPCR was performed to quantify spirochete loads through amplification of the *recA* gene as
460 described (Table S4)(Y. P. Lin et al., 2014). Both qRT-PCR and qPCR were performed using an
461 Applied Biosystems 7500 Real-Time PCR system (ThermoFisher) in conjunction with PowerUp
462 SYBR Green Master Mix (ThermoFisher). Cycling parameters were 50°C for 2 minutes, 95°C
463 for 10 minutes, and 45 cycles of 95°C for 15 seconds, and 60°C for 1 minute. Each biological
464 replicate was run in duplicate and checked for intra-run variation. For qPCR, the number of *recA*
465 copies was calculated by establishing a threshold cycle (Cq) standard curve of a known number
466 of the *recA* gene extracted from cultivated *B. burgdorferi* B31-A3. To assure low signals were
467 not due to the presence of PCR inhibitors, five samples from the blood, tibiotarsal joint, and
468 bladder of mice, or the inoculation site and brain of quail were used in qPCR using mouse
469 nidogen primers or quail β-actin (Table S4)(Hart, Yang, Pal, & Lin, 2018; Y. P. Lin et al., 2014).
470 As predicted, we detected 10^7 copies of the mouse nidogen or quail β-actin gene from 100ng of
471 each DNA sample, ruling out the presence of PCR inhibitors in these samples. For qRT-PCR, the
472 gene expression of *cspZ* or *recA* was normalized to that of *16s rRNA* using the ΔCq method,
473 where the relative expression of the target (*cspZ* or *recA*), normalized to the expression of *16s*
474 *rRNA*, is given by $2^{-\Delta Cq}$, where Cq is the cycle number of the detection threshold (Equation 1).

$$475 \quad cspZ \text{ or } recA \text{ expression relative to } 16s \text{ rRNA} = 2^{-(Cq(16s \text{ rRNA}) - Cq(cspZ \text{ or } recA))} \quad (\text{Equation 1})$$

476

477 **Circular dichroism (CD) spectroscopy.** CD analysis was performed on a Jasco 810
478 spectropolarimeter (Jasco Analytical Instrument, Easton, MD) under nitrogen. CD spectra were
479 measured at room temperature (RT, 25°C) in a 1mm path length quartz cell. Spectra of 10μM

480 CspZ or CspZ-Y207A/Y211A were recorded in phosphate based saline buffer (PBS) at RT, and
481 three far-UV CD spectra were recorded from 190 to 250nm in 1nm increments. The background
482 spectrum of PBS without protein was subtracted from the protein spectra. CD spectra were
483 initially analyzed by the software Spectra Manager Program (Jasco). Analysis of spectra to
484 extrapolate secondary structures were performed by Dichroweb
485 (<http://www.cryst.bbk.ac.uk/cdweb/html/home>) using the K2D and Selcon 3 analysis programs
486 (Y. P. Lin et al., 2009).

487

488 **ELISA assays.** A ELISA for FH, fibronectin, plasminogen, and laminin binding by CspZ
489 proteins was performed as described (Y. P. Lin et al., 2009). One microgram of BSA (negative
490 control; Sigma-Aldrich, St. Louis, MO), quail FH previously purified from quail serum (Hart et
491 al. PLoS Pathog. 2018), human FH (ComTech, Tyler, Texas), plasma fibronectin, plasma
492 plasminogen, or mouse laminin (Sigma-Aldrich) was coated onto microtiter plate wells. One
493 hundred microliters of increasing concentrations (0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2 μ M) of
494 GST (negative control) or GST-tagged CspZ or CspZ-Y207A/Y211A was then added to the
495 wells. Mouse anti-GST tag (ThermoFisher; 1:200x) and HRP-conjugated goat anti-mouse IgG
496 (ThermoFisher; 1:1,000x) were used as primary and secondary antibodies, respectively, to detect
497 the binding of GST-tagged proteins. The plates were washed three times with PBST (0.05%
498 Tween 20 in PBS), and 100 μ L of tetramethyl benzidine solution (ThermoFisher) was added to
499 each well and incubated for five minutes. The reaction was stopped by adding 100 μ L of 0.5%
500 hydrosulfuric acid to each well. Plates were read at 405nm using a Tecan Sunrise Microplate
501 reader (Tecan, Morrisville NC). To determine the dissociation constant (K_D), the data were fitted
502 with Equation 2 using GraphPad Prism software (GraphPad, La Jolla, CA).

503
$$OD405 = \frac{OD405_{max}[CspZ\ protein]}{KD+[CspZ\ protein]} \quad (\text{Equation 2})$$

504

505 **Shuttle vector construction and plasmid transformation into *B. burgdorferi*.** *cspZ* or *cspZ*-
506 *Y207A/Y211A* was first PCR amplified with the addition of a SalI site and a BamH1 site at the
507 5' and 3' ends, respectively, using Taq DNA polymerase (Qiagen) and primers listed in Table S4.
508 The unpaired nucleotides at 5' and 3' end of the amplified DNA fragments were removed with
509 an exonuclease from CloneJet PCR cloning kit (ThermoFisher) and then inserted into the vector
510 pJET1.2/blunt (ThermoFisher). The plasmids were then digested with SalI and BamHI to release
511 *cspZ* and *cspZ-Y207A/Y211A*, which were then inserted into the SalI and BamHI sites of pKFSS-
512 1 (Frank, Bundle, Kresge, Eggers, & Samuels, 2003)(Table 2). The promoter region of *cspZ*
513 from *B. burgdorferi* B31, 125bp upstream from the start codon of *cspZ*, was also PCR amplified
514 (Hartmann et al., 2006), added with SphI and SalI sites at the 5' and 3' ends, respectively, using
515 primers listed in Table S4. Promoter fragments were then inserted into the SphI and SalI sites of
516 pKFSS-1 to drive the expression of *cspZ* and *cspZ-Y207A/Y211A*. Electrocompetent *B.*
517 *burgdorferi* B31-A3Δ*cspZ* prepared as described (Samuels, 1995) was then transformed
518 separately with at least 44μg of each of the shuttle plasmids (Table 2) and cultured in BSK-II
519 medium at 33°C for 24 hours. Liquid plating transformations were performed in the presence of
520 antibiotic selection (kanamycin and/or streptomycin) as described (Moriarty et al., 2012; Yang,
521 Pal, Alani, Fikrig, & Norgard, 2004). PCR and Sanger sequencing of resulting spirochete strains
522 were performed with primers specific for *colE1* and *cspZ*, respectively, to verify the presence of
523 pKFSS-1 and the insert in the transformants (Table S4). The plasmid profiles of these
524 spirochetes were examined as described (Purser & Norris, 2000) to ascertain identical profiles
525 between these strains and their parental strain B31-A3.

526

527 **Determination of the viability and generation time of spirochetes.** To determine spirochete
528 viability after blood treatment, *B. burgdorferi* strains were cultivated in triplicate in untreated or
529 human blood-treated conditions. After resuspending spirochetes in BSK-II medium without
530 rabbit serum, they were stained for 15 minutes with 1x SYBR Green I (ThermoFisher) and 6 μ M
531 propidium iodide (ThermoFisher) in 0.5% BSA in PBS as described (Feng, Wang, Zhang, Shi, &
532 Zhang, 2014). The live (green) and dead (red) spirochetes were then visualized under overlaid
533 FITC and Texas Red filters using Olympus BX51 fluorescence microscopy (Olympus
534 Corporation, Waltham, MA). An image of four fields of view were taken to determine the
535 proportion of live to dead spirochetes. Additionally, after growing for 48 hours with or without
536 human blood, each of these strains (10^6 spirochetes/mL) was cultivated BSK II medium without
537 human blood in triplicate to determine the spirochetes' generation time. The concentration of the
538 spirochetes was calculated microscopically in triplicate every 24 hours. We then calculated the
539 generation time for each strain in exponential phase (G) as previously described (Heroldova,
540 Nemec, & Hubalek, 1998).

541

542 **Flow cytometry.** CspZ production, FH binding, and MAC deposition on spirochete surface were
543 determined as described (Hart, Nguyen, et al., 2018). To evaluate the surface localization of
544 CspZ, the spirochetes (1×10^8 cells) were washed with HBSC buffer containing glucose and
545 BSA (HBSC-DB, 25mM Hepes acid, 150mM sodium chloride, 1mM MnCl₂, 1mM MgCl₂,
546 0.25mM CaCl₂, 0.1% glucose, and 0.2% BSA) and then resuspended into the same buffer. To
547 permeabilize spirochetes, they were incubated with 100% methanol for an hour, followed by
548 washed with HBSC-DB. Mouse antiserum raised against CspZ or CspA, or mouse anti-FlaB

549 monoclonal antibody was used as the primary antibody (1:250x). An Alexa 647-conjugated goat
550 anti-mouse IgG (ThermoFisher) (1:250x) was used as the secondary antibody. To determine the
551 ability of these *B. burgdorferi* strains to bind to FH, spirochetes (1×10^8 cells) were suspended in
552 PBS and then incubated with 1 μ g of human, mouse, or quail FH at 25°C for one hour. The
553 spirochetes were then washed with PBS and resuspended in HBSC-DB. A sheep anti-FH
554 polyclonal IgG (ThermoFisher) (1:250x) or a mouse anti-FH monoclonal antibody VIG8 (1:250x)
555 was used as the primary antibody. An Alexa 647-conjugated donkey anti-sheep IgG (1:250x) or
556 goat anti-mouse IgG (ThermoFisher) (1:250x) was used as the secondary antibody. To measure
557 MAC deposition, spirochetes (1×10^8 cells) were washed by PBS, resuspended in the same
558 buffer, and then incubated with human or mouse sera in a final concentration as 20% at 25°C for
559 one hour. Note that more than 80% of *B. burgdorferi* strains are capable of surviving in this
560 concentration of serum (Breitner-Ruddock et al., 1997; Kraiczy, Hunfeld, Breitner-Ruddock, et
561 al., 2000). The spirochetes were then washed with PBS and resuspended in HBSC-DB. A mouse
562 anti-MAC monoclonal antibody aE11 (1:250x) (ThermoFisher), or a rabbit anti-MAC polyclonal
563 IgG (1:250x) (ThermoFisher) was used as the primary antibody. An Alexa 647-conjugated goat
564 anti-rabbit (ThermoFisher) or a goat anti-mouse IgG (ThermoFisher) (1:250x) was used as the
565 secondary antibody.

566 After staining, formalin (0.1%) was then added for fixing. The resulting fluorescence
567 intensity of spirochetes was measured by flow cytometry using a FACSCalibur (BD Bioscience).
568 All flow cytometry experiments were performed within two days of preparing *B. burgdorferi*
569 samples. Spirochetes in the suspension were distinguished by their distinct light scattering
570 properties in the flow cytometer equipped with a 15mW, 488nm air-cooled argon laser, a
571 standard three-color filter arrangement, and CELLQuest™ Software (BD Bioscience). Unstained

572 *B. burgdorferi* strain B31-A3 was applied to ensure accurate gating, in which the aggregated
573 spirochetes were eliminated as described (Hart, Nguyen, et al., 2018). Additionally, the
574 spirochetes incubated with only the secondary antibody as control experiment to ascertain the
575 specificity of primary antibody to bind to the cognate antigen. The mean fluorescence index
576 (MFI) of each sample was obtained from FlowJo software (Thee-Star Inc., Ashland, OR)
577 representing the surface production of the indicated proteins. Each standard deviation of mean
578 value was no more than 7% of its mean value.

579

580 **Serum susceptibility assay.** The serum susceptibility of *B. burgdorferi* was measured as
581 described (Alitalo et al., 2001). Briefly, triplicate samples of each strain were grown to mid-log
582 phase and diluted to a final concentration of 5×10^6 bacteria per milliliter into BSK-II medium
583 without rabbit serum, plus a final concentration of 40% human or quail serum or C3-depleted
584 human serum (ComTech). We also included heat-inactivated serum from these hosts, which was
585 incubated at 55°C for two hours prior to incubation with spirochetes. Immediately after and four
586 hours after incubation, an aliquot was taken from each replicate and counted by a Petroff-
587 Hausser counting chamber (Hausser Scientific, Horsham, PA) using a Nikon Eclipse E600
588 darkfield microscope (Nikon, Melville, NY). The percentage of survival for *B. burgdorferi* was
589 calculated using the number of mobile spirochetes at four hours post incubation normalized to
590 that immediately after adding the serum.

591

592 **Mouse and quail infection experiments.** Four-week-old female BALB/c mice or C3^{-/-} mice in a
593 BALB/c background or *Coturnix coturnix* quail were subcutaneously infected with 10^3 (for
594 mouse infection) or 10^6 (for quail infection) of *B. burgdorferi* strains as described (Y. P. Lin et

595 al., 2014). The number of quail and mouse used in each experiment is described in respective
596 figure legends. The plasmid profiles and the presence of the shuttle vector of each of these *B.*
597 *burgdorferi* strains were verified prior to infection as described (Purser & Norris, 2000). Mice
598 were sacrificed at 7 dpi to collect the blood, and 7, or 14 dpi to collect the inoculation site of
599 skin, tibiotarsal joints, bladder, and heart. Quail were sacrificed at 3 and 7 dpi to collect the
600 blood, inoculation site of skin, liver, heart, and brain. Animal tissues were used to quantitatively
601 evaluate the levels of colonization during infection (see section “Quantitative RT-PCR and
602 PCR”). Note that quail blood and tissues were also incubated in BSK-II complete medium at
603 33°C for four weeks to cultivate spirochetes microscopically to verify the viability of spirochetes
604 (Liveris et al., 2002).

605

606 **Statistical analysis.** Significant differences between samples were determined using the
607 Kruskal-Wallis test with Dunn’s multiple comparison, or the Mann-Whitney test. A p-value <
608 0.05 was considered to be significant.

609

610 **ACKNOWLEDGEMENTS**

611 We thank Roxie Girardin, John Leong, and Xiuli Yang for valuable technical advice, and
612 Thomas Hart for critical reading of the manuscript. We also thank Utpal Pal for providing *B.*
613 *burgdorferi* strain B31-A3ΔcspZ, Jorge Benach for providing the α-FlaB CB1 monoclonal
614 antibody, Susan Madison-Antenucci allowing us to use her fluorescence microscope, and Noel
615 Espina for the assistance with that microscope. Additionally, we thank Leslie Eisele and Renjie
616 Song of Wadsworth Biochemistry and Immunology Core for assistance with circular dichroism
617 and flow cytometry, Karen Chave of the Wadsworth Protein Expression Core for purifying FH

618 proteins, and Media & Tissue Culture Core for preparation of *Borrelia* and *E. coli* culture
619 medium. This work was supported by NIH R01AI121401 (to P.K. and Y.L.), NSF IOS1755286
620 (to Y.L., A.L.M., M.Z.C., L.D.K., A.P.D.), DoD TB170111 (to Y.L., M.Z.C., and A.L.M.), NSF
621 DBI1757170 (to M.Z.C.), and New York State Department of Health Wadsworth Center Start-
622 Up Grant (to Y.L., M.Z.C., and A.L.M.). The authors have no conflict of interest to declare.

623

624 REFERENCES

- 625 Alitalo, A., Meri, T., Comstedt, P., Jeffery, L., Tornberg, J., Strandin, T., . . . Meri, S. (2005).
626 Expression of complement factor H binding immunoevasion proteins in *Borrelia garinii* isolated
627 from patients with neuroborreliosis. *European journal of immunology*, 35(10), 3043-3053.
628 doi:10.1002/eji.200526354
- 629 Alitalo, A., Meri, T., Ramo, L., Jokiranta, T. S., Heikkila, T., Seppala, I. J., . . . Meri, S. (2001).
630 Complement evasion by *Borrelia burgdorferi*: serum-resistant strains promote C3b inactivation.
631 *Infection and immunity*, 69(6), 3685-3691. doi:10.1128/IAI.69.6.3685-3691.2001
632 Antonara, S., Ristow, L., McCarthy, J., & Coburn, J. (2010). Effect of *Borrelia burgdorferi*
633 OspC at the site of inoculation in mouse skin. *Infection and immunity*, 78(11), 4723-4733.
634 doi:10.1128/IAI.00464-10
- 635 Benoit, V. M., Fischer, J. R., Lin, Y. P., Parveen, N., & Leong, J. M. (2011). Allelic variation of
636 the Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin, dermatan
637 sulfate, and mammalian cells. *Infection and immunity*, 79(9), 3501-3509. doi:10.1128/IAI.00163-
638 11
- 639 Bhide, M. R., Travnicek, M., Levkutova, M., Curnik, J., Revajova, V., & Levkut, M. (2005).
640 Sensitivity of *Borrelia* genospecies to serum complement from different animals and human: a

- 641 host-pathogen relationship. *FEMS immunology and medical microbiology*, 43(2), 165-172.
- 642 doi:10.1016/j.femsim.2004.07.012
- 643 Bishop, K. L., Khan, M. I., & Nielsen, S. W. (1994). Experimental infection of northern
- 644 bobwhite quail with *Borrelia burgdorferi*. *Journal of wildlife diseases*, 30(4), 506-513.
- 645 doi:10.7589/0090-3558-30.4.506
- 646 Blevins, J. S., Hagman, K. E., & Norgard, M. V. (2008). Assessment of decorin-binding protein
- 647 A to the infectivity of *Borrelia burgdorferi* in the murine models of needle and tick infection.
- 648 *BMC microbiology*, 8, 82. doi:10.1186/1471-2180-8-82
- 649 Blom, A. M., Hallstrom, T., & Riesbeck, K. (2009). Complement evasion strategies of
- 650 pathogens-acquisition of inhibitors and beyond. *Molecular immunology*, 46(14), 2808-2817.
- 651 doi:10.1016/j.molimm.2009.04.025
- 652 Breitner-Ruddock, S., Wurzner, R., Schulze, J., & Brade, V. (1997). Heterogeneity in the
- 653 complement-dependent bacteriolysis within the species of *Borrelia burgdorferi*. *Medical*
- 654 *microbiology and immunology*, 185(4), 253-260.
- 655 Brisson, D., Drecktrah, D., Eggers, C. H., & Samuels, D. S. (2012). Genetics of *Borrelia*
- 656 *burgdorferi*. *Annual review of genetics*, 46, 515-536. doi:10.1146/annurev-genet-011112-112140
- 657 Brooks, C. S., Hefty, P. S., Jolliff, S. E., & Akins, D. R. (2003). Global analysis of *Borrelia*
- 658 *burgdorferi* genes regulated by mammalian host-specific signals. *Infection and immunity*, 71(6),
- 659 3371-3383.
- 660 Brooks, C. S., Vuppala, S. R., Jett, A. M., Alitalo, A., Meri, S., & Akins, D. R. (2005).
- 661 Complement regulator-acquiring surface protein 1 imparts resistance to human serum in *Borrelia*
- 662 *burgdorferi*. *Journal of immunology*, 175(5), 3299-3308.

- 663 Burgess, E. C. (1989). Experimental inoculation of mallard ducks (*Anas platyrhynchos*
664 *platyrhynchos*) with *Borrelia burgdorferi*. *Journal of wildlife diseases*, 25(1), 99-102.
- 665 doi:10.7589/0090-3558-25.1.99
- 666 Bykowski, T., Woodman, M. E., Cooley, A. E., Brissette, C. A., Brade, V., Wallich, R., . . .
- 667 Stevenson, B. (2007). Coordinated expression of *Borrelia burgdorferi* complement regulator-
668 acquiring surface proteins during the Lyme disease spirochete's mammal-tick infection cycle.
- 669 *Infection and immunity*, 75(9), 4227-4236. doi:10.1128/IAI.00604-07
- 670 Caine, J. A., & Coburn, J. (2015). A short-term *Borrelia burgdorferi* infection model identifies
671 tissue tropisms and bloodstream survival conferred by adhesion proteins. *Infection and immunity*,
672 83(8), 3184-3194. doi:10.1128/IAI.00349-15
- 673 Caine, J. A., Lin, Y. P., Kessler, J. R., Sato, H., Leong, J. M., & Coburn, J. (2017). *Borrelia*
674 *burgdorferi* outer surface protein C (OspC) binds complement component C4b and confers
675 bloodstream survival. *Cellular microbiology*. doi:10.1111/cmi.12786
- 676 Coleman, A. S., Yang, X., Kumar, M., Zhang, X., Promnares, K., Shroder, D., . . . Pal, U.
677 (2008). *Borrelia burgdorferi* complement regulator-acquiring surface protein 2 does not
678 contribute to complement resistance or host infectivity. *PLoS one*, 3(8), 3010e.
679 doi:10.1371/journal.pone.0003010
- 680 Craig-Mylius, K. A., Lee, M., Jones, K. L., & Glickstein, L. J. (2009). Arthritogenicity of
681 *Borrelia burgdorferi* and *Borrelia garinii*: comparison of infection in mice. *The American*
682 *journal of tropical medicine and hygiene*, 80(2), 252-258.
- 683 Dowdell, A. S., Murphy, M. D., Azodi, C., Swanson, S. K., Florens, L., Chen, S., & Zuckert, W.
684 R. (2017). Comprehensive Spatial Analysis of the *Borrelia burgdorferi* Lipoproteome Reveals a

- 685 Compartmentalization Bias toward the Bacterial Surface. *Journal of bacteriology*, 199(6).
- 686 doi:10.1128/JB.00658-16
- 687 Eisen, R. J., & Eisen, L. (2018). The Blacklegged Tick, *Ixodes scapularis*: An Increasing Public
- 688 Health Concern. *Trends in parasitology*, 34(4), 295-309. doi:10.1016/j.pt.2017.12.006
- 689 El-Hage, N., Babb, K., Carroll, J. A., Lindstrom, N., Fischer, E. R., Miller, J. C., . . . Stevenson,
- 690 B. (2001). Surface exposure and protease insensitivity of *Borrelia burgdorferi* Erp (OspEF-
- 691 related) lipoproteins. *Microbiology*, 147(Pt 4), 821-830. doi:10.1099/00221287-147-4-821
- 692 Elias, A. F., Stewart, P. E., Grimm, D., Caimano, M. J., Eggers, C. H., Tilly, K., . . . Rosa, P.
- 693 (2002). Clonal polymorphism of *Borrelia burgdorferi* strain B31 MI: implications for
- 694 mutagenesis in an infectious strain background. *Infection and immunity*, 70(4), 2139-2150.
- 695 Exner, M. M., Wu, X., Blanco, D. R., Miller, J. N., & Lovett, M. A. (2000). Protection elicited
- 696 by native outer membrane protein Oms66 (p66) against host-adapted *Borrelia burgdorferi*:
- 697 conformational nature of bactericidal epitopes. *Infection and immunity*, 68(5), 2647-2654.
- 698 Feng, J., Wang, T., Zhang, S., Shi, W., & Zhang, Y. (2014). An optimized SYBR Green I/PI
- 699 assay for rapid viability assessment and antibiotic susceptibility testing for *Borrelia burgdorferi*.
- 700 *PloS one*, 9(11), e111809. doi:10.1371/journal.pone.0111809
- 701 Frank, K. L., Bundle, S. F., Kresge, M. E., Eggers, C. H., & Samuels, D. S. (2003). aadA confers
- 702 streptomycin resistance in *Borrelia burgdorferi*. *Journal of bacteriology*, 185(22), 6723-6727.
- 703 Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). *Borrelia burgdorferi* BBK32
- 704 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. *PLoS*
- 705 *pathogens*, 12(1), e1005404. doi:10.1371/journal.ppat.1005404
- 706 Ginsberg, H. S., Buckley, P. A., Balmforth, M. G., Zhioua, E., Mitra, S., & Buckley, F. G.
- 707 (2005). Reservoir competence of native North American birds for the lyme disease spirochete,

708 *Borrelia burgdorferi*. *Journal of medical entomology*, 42(3), 445-449. doi:10.1603/0022-
709 2585(2005)042[0445:RCONNA]2.0.CO;2

710 Hallstrom, T., Haupt, K., Kraiczy, P., Hortschansky, P., Wallich, R., Skerka, C., & Zipfel, P. F.
711 (2010). Complement regulator-acquiring surface protein 1 of *Borrelia burgdorferi* binds to
712 human bone morphogenic protein 2, several extracellular matrix proteins, and plasminogen. *The*
713 *Journal of infectious diseases*, 202(3), 490-498. doi:10.1086/653825

714 Hallstrom, T., Siegel, C., Morgelin, M., Kraiczy, P., Skerka, C., & Zipfel, P. F. (2013). CspA
715 from *Borrelia burgdorferi* inhibits the terminal complement pathway. *mBio*, 4(4).
716 doi:10.1128/mBio.00481-13

717 Hamdy, B. H. (1977). Biochemical and physiological studies of certain ticks (*Ixodoidea*).
718 Excretion during ixodid feeding. *Journal of medical entomology*, 14(1), 15-18.

719 Hart, T., Nguyen, N. T. T., Nowak, N. A., Zhang, F., Linhardt, R. J., Diuk-Wasser, M., . . . Lin,
720 Y. P. (2018). Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the
721 host complement in feeding ticks to facilitate tick-to-host transmission. *PLoS pathogens*, 14(5),
722 e1007106. doi:10.1371/journal.ppat.1007106

723 Hart, T., Yang, X., Pal, U., & Lin, Y. P. (2018). Identification of Lyme borreliae proteins
724 promoting vertebrate host blood-specific spirochete survival in *Ixodes scapularis* nymphs using
725 artificial feeding chambers. *Ticks and tick-borne diseases*. doi:10.1016/j.ttbdis.2018.03.033

726 Hartmann, K., Corvey, C., Skerka, C., Kirschfink, M., Karas, M., Brade, V., . . . Kraiczy, P.
727 (2006). Functional characterization of BbCRASP-2, a distinct outer membrane protein of
728 *Borrelia burgdorferi* that binds host complement regulators factor H and FHL-1. *Molecular*
729 *microbiology*, 61(5), 1220-1236. doi:10.1111/j.1365-2958.2006.05318.x

- 730 Heroldova, M., Nemec, M., & Hubalek, Z. (1998). Growth parameters of *Borrelia burgdorferi*
731 sensu stricto at various temperatures. *Zentralblatt fur Bakteriologie : international journal of*
732 *medical microbiology*, 288(4), 451-455.
- 733 Hinckley, A. F., Connally, N. P., Meek, J. I., Johnson, B. J., Kemperman, M. M., Feldman, K.
734 A., . . . Mead, P. S. (2014). Lyme disease testing by large commercial laboratories in the United
735 States. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of*
736 *America*, 59(5), 676-681. doi:10.1093/cid/ciu397
- 737 Hiramatsu, A., & Ouchi, T. (1963). On the Proteolytic Enzymes from the Commercial Protease
738 Preparation of *Streptomyces Griseus* (Pronase P). *Journal of biochemistry*, 54, 462-464.
- 739 Hodzic, E., Feng, S., & Barthold, S. W. (2013). Assessment of transcriptional activity of
740 *Borrelia burgdorferi* and host cytokine genes during early and late infection in a mouse model.
741 *Vector borne and zoonotic diseases*, 13(10), 694-711. doi:10.1089/vbz.2012.1189
- 742 Hovius, J. W., Bijlsma, M. F., van der Windt, G. J., Wiersinga, W. J., Boukens, B. J., Coumou,
743 J., . . . van der Poll, T. (2009). The urokinase receptor (uPAR) facilitates clearance of *Borrelia*
744 *burgdorferi*. *PLoS pathogens*, 5(5), e1000447. doi:10.1371/journal.ppat.1000447
- 745 Hyde, J. A., Trzeciakowski, J. P., & Skare, J. T. (2007). *Borrelia burgdorferi* alters its gene
746 expression and antigenic profile in response to CO₂ levels. *Journal of bacteriology*, 189(2), 437-
747 445. doi:10.1128/JB.01109-06
- 748 Hyde, J. A., Weening, E. H., Chang, M., Trzeciakowski, J. P., Hook, M., Cirillo, J. D., & Skare,
749 J. T. (2011). Bioluminescent imaging of *Borrelia burgdorferi* *in vivo* demonstrates that the
750 fibronectin-binding protein BBK32 is required for optimal infectivity. *Molecular microbiology*,
751 82(1), 99-113. doi:10.1111/j.1365-2958.2011.07801.x

- 752 Isogai, E., Tanaka, S., Braga, I. S., 3rd, Itakura, C., Isogai, H., Kimura, K., & Fujii, N. (1994).
- 753 Experimental *Borrelia garinii* infection of Japanese quail. *Infection and immunity*, 62(8), 3580-3582.
- 755 Jones, K. L., Glickstein, L. J., Damle, N., Sikand, V. K., McHugh, G., & Steere, A. C. (2006).
- 756 *Borrelia burgdorferi* genetic markers and disseminated disease in patients with early Lyme disease. *Journal of clinical microbiology*, 44(12), 4407-4413. doi:10.1128/JCM.01077-06
- 758 Kenedy, M. R., & Akins, D. R. (2011). The OspE-related proteins inhibit complement deposition
- 759 and enhance serum resistance of *Borrelia burgdorferi*, the lyme disease spirochete. *Infection and*
- 760 *immunity*, 79(4), 1451-1457. doi:10.1128/IAI.01274-10
- 761 Kenedy, M. R., Lenhart, T. R., & Akins, D. R. (2012). The role of *Borrelia burgdorferi* outer
- 762 surface proteins. *FEMS immunology and medical microbiology*, 66(1), 1-19. doi:10.1111/j.1574-
- 763 695X.2012.00980.x
- 764 Kenedy, M. R., Vuppala, S. R., Siegel, C., Kraiczy, P., & Akins, D. R. (2009). CspA-mediated
- 765 binding of human factor H inhibits complement deposition and confers serum resistance in
- 766 *Borrelia burgdorferi*. *Infection and immunity*, 77(7), 2773-2782. doi:10.1128/IAI.00318-09
- 767 Kingry, L. C., Batra, D., Replogle, A., Rowe, L. A., Pritt, B. S., & Petersen, J. M. (2016). Whole
- 768 Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing
- 769 Pathogen, *Borrelia mayonii*. *PLoS one*, 11(12), e0168994. doi:10.1371/journal.pone.0168994
- 770 Kraiczy, P. (2016a). Hide and Seek: How Lyme Disease Spirochetes Overcome Complement
- 771 Attack. *Frontiers in immunology*, 7, 385. doi:10.3389/fimmu.2016.00385
- 772 Kraiczy, P. (2016b). Travelling between Two Worlds: Complement as a Gatekeeper for an
- 773 Expanded Host Range of Lyme Disease Spirochetes. *Vet. Sci.* , 3(2), 12-26. doi:
- 774 doi:10.3390/vetsci3020012

775 Kraiczy, P., Hellwage, J., Skerka, C., Becker, H., Kirschfink, M., Simon, M. M., . . . Wallich, R.
776 (2004). Complement resistance of *Borrelia burgdorferi* correlates with the expression of
777 BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H
778 and FHL-1 and is unrelated to Erp proteins. *The Journal of biological chemistry*, 279(4), 2421-
779 2429. doi:10.1074/jbc.M308343200

780 Kraiczy, P., Hunfeld, K. P., Breitner-Ruddock, S., Wurzner, R., Acker, G., & Brade, V. (2000).
781 Comparison of two laboratory methods for the determination of serum resistance in *Borrelia*
782 *burgdorferi* isolates. *Immunobiology*, 201(3-4), 406-419. doi:10.1016/S0171-2985(00)80094-7

783 Kraiczy, P., Hunfeld, K. P., Peters, S., Wurzner, R., Ackert, G., Wilske, B., & Brade, V. (2000).
784 Borreliacidal activity of early Lyme disease sera against complement-resistant *Borrelia afzelii*
785 FEM1 wild-type and an OspC-lacking FEM1 variant. *Journal of medical microbiology*, 49(10),
786 917-928. doi:10.1099/0022-1317-49-10-917

787 Kraiczy, P., Seling, A., Brissette, C. A., Rossmann, E., Hunfeld, K. P., Bykowski, T., . . .
788 Stevenson, B. (2008). *Borrelia burgdorferi* complement regulator-acquiring surface protein 2
789 (CspZ) as a serological marker of human Lyme disease. *Clinical and vaccine immunology : CVI*,
790 15(3), 484-491. doi:10.1128/CVI.00415-07

791 Kraiczy, P., Skerka, C., Brade, V., & Zipfel, P. F. (2001). Further characterization of
792 complement regulator-acquiring surface proteins of *Borrelia burgdorferi*. *Infection and*
793 *immunity*, 69(12), 7800-7809. doi:10.1128/IAI.69.12.7800-7809.2001

794 Kraiczy, P., & Stevenson, B. (2013). Complement regulator-acquiring surface proteins of
795 *Borrelia burgdorferi*: Structure, function and regulation of gene expression. *Ticks and tick-borne*
796 *diseases*, 4(1-2), 26-34. doi:10.1016/j.ttbdis.2012.10.039

- 797 Kumar, D., Ristow, L. C., Shi, M., Mukherjee, P., Caine, J. A., Lee, W. Y., . . . Chaconas, G.
- 798 (2015). Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for
- 799 the Integrin Binding Residues of the *B. burgdorferi* P66 Protein. *PLoS pathogens*, 11(12),
- 800 e1005333. doi:10.1371/journal.ppat.1005333
- 801 Kumru, O. S., Schulze, R. J., Slusser, J. G., & Zuckert, W. R. (2010). Development and
- 802 validation of a FACS-based lipoprotein localization screen in the Lyme disease spirochete
- 803 *Borrelia burgdorferi*. *BMC microbiology*, 10, 277. doi:10.1186/1471-2180-10-277
- 804 Kurtenbach, K., De Michelis, S., Etti, S., Schafer, S. M., Sewell, H. S., Brade, V., & Kraiczy, P.
- 805 (2002). Host association of *Borrelia burgdorferi* sensu lato--the key role of host complement.
- 806 *Trends in microbiology*, 10(2), 74-79.
- 807 Kurtenbach, K., Peacey, M., Rijpkema, S. G., Hoodless, A. N., Nuttall, P. A., & Randolph, S. E.
- 808 (1998). Differential transmission of the genospecies of *Borrelia burgdorferi* sensu lato by game
- 809 birds and small rodents in England. *Applied and environmental microbiology*, 64(4), 1169-1174.
- 810 Kurtenbach, K., Schafer, S. M., Sewell, H. S., Peacey, M., Hoodless, A., Nuttall, P. A., &
- 811 Randolph, S. E. (2002). Differential survival of Lyme borreliosis spirochetes in ticks that feed on
- 812 birds. *Infection and immunity*, 70(10), 5893-5895.
- 813 Lachmann, P. J. (2010). Preparing serum for functional complement assays. *Journal of*
- 814 *immunological methods*, 352(1-2), 195-197. doi:10.1016/j.jim.2009.11.003
- 815 Lambris, J. D., Ricklin, D., & Geisbrecht, B. V. (2008). Complement evasion by human
- 816 pathogens. *Nature reviews. Microbiology*, 6(2), 132-142. doi:10.1038/nrmicro1824
- 817 Lawrenz, M. B., Hardham, J. M., Owens, R. T., Nowakowski, J., Steere, A. C., Wormser, G. P.,
- 818 & Norris, S. J. (1999). Human antibody responses to VlsE antigenic variation protein of *Borrelia*
- 819 *burgdorferi*. *Journal of clinical microbiology*, 37(12), 3997-4004.

- 820 Lawrenz, M. B., Wooten, R. M., Zachary, J. F., Drouin, S. M., Weis, J. J., Wetsel, R. A., &
821 Norris, S. J. (2003). Effect of complement component C3 deficiency on experimental Lyme
822 borreliosis in mice. *Infection and immunity*, 71(8), 4432-4440.
- 823 Limberger, R. J. (2004). The periplasmic flagellum of spirochetes. *Journal of molecular
824 microbiology and biotechnology*, 7(1-2), 30-40. doi:10.1159/000077867
- 825 Lin, T., Gao, L., Zhang, C., Odeh, E., Jacobs, M. B., Coutte, L., . . . Norris, S. J. (2012). Analysis
826 of an ordered, comprehensive STM mutant library in infectious *Borrelia burgdorferi*: insights
827 into the genes required for mouse infectivity. *PLoS one*, 7(10), e47532.
828 doi:10.1371/journal.pone.0047532
- 829 Lin, Y. P., Benoit, V., Yang, X., Martinez-Herranz, R., Pal, U., & Leong, J. M. (2014). Strain-
830 specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme
831 disease spirochete. *PLoS pathogens*, 10(7), e1004238. doi:10.1371/journal.ppat.1004238
- 832 Lin, Y. P., Chen, Q., Ritchie, J. A., Dufour, N. P., Fischer, J. R., Coburn, J., & Leong, J. M.
833 (2015). Glycosaminoglycan binding by *Borrelia burgdorferi* adhesin BBK32 specifically and
834 uniquely promotes joint colonization. *Cellular microbiology*, 17(6), 860-875.
835 doi:10.1111/cmi.12407
- 836 Lin, Y. P., Greenwood, A., Nicholson, L. K., Sharma, Y., McDonough, S. P., & Chang, Y. F.
837 (2009). Fibronectin binds to and induces conformational change in a disordered region of
838 leptospiral immunoglobulin-like protein B. *The Journal of biological chemistry*, 284(35), 23547-
839 23557. doi:10.1074/jbc.M109.031369
- 840 Liveris, D., Wang, G., Girao, G., Byrne, D. W., Nowakowski, J., McKenna, D., . . . Schwartz, I.
841 (2002). Quantitative detection of *Borrelia burgdorferi* in 2-millimeter skin samples of erythema

842 migrans lesions: correlation of results with clinical and laboratory findings. *Journal of clinical*
843 *microbiology*, 40(4), 1249-1253.

844 Marcinkiewicz, A., Kraiczy, P., & Lin, Y.-P. (2017). There is a method to the madness:
845 Strategies to study host complement evasion by Lyme disease and relapsing fever spirochetes.
846 *Frontiers in microbiology*, 8(328). doi:10.3389/fmicb.2017.00328

847 Marcinkiewicz, A. L., Lieknina, I., Kotelovica, S., Yang, X., Kraiczy, P., Pal, U., . . . Tars, K.
848 (2018). Eliminating Factor H-Binding Activity of *Borrelia burgdorferi* CspZ Combined with
849 Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. *Frontiers in*
850 *immunology*, 9, 181. doi:10.3389/fimmu.2018.00181

851 McDowell, J. V., Frederick, J., Miller, D. P., Goetting-Minesky, M. P., Goodman, H., Fenno, J.
852 C., & Marconi, R. T. (2011). Identification of the primary mechanism of complement evasion by
853 the periodontal pathogen, *Treponema denticola*. *Molecular oral microbiology*, 26(2), 140-149.
854 doi:10.1111/j.2041-1014.2010.00598.x

855 McDowell, J. V., Wolfgang, J., Tran, E., Metts, M. S., Hamilton, D., & Marconi, R. T. (2003).
856 Comprehensive analysis of the factor h binding capabilities of borrelia species associated with
857 lyme disease: delineation of two distinct classes of factor h binding proteins. *Infection and*
858 *immunity*, 71(6), 3597-3602.

859 Meri, S. (2016). Self-nonself discrimination by the complement system. *FEBS letters*, 590(15),
860 2418-2434. doi:10.1002/1873-3468.12284

861 Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015). Complement
862 System Part I - Molecular Mechanisms of Activation and Regulation. *Frontiers in immunology*,
863 6, 262. doi:10.3389/fimmu.2015.00262

- 864 Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V., & Roumenina, L. T.
- 865 (2015). Complement System Part II: Role in Immunity. *Frontiers in immunology*, 6, 257.
- 866 doi:10.3389/fimmu.2015.00257
- 867 Moriarty, T. J., Shi, M., Lin, Y. P., Ebady, R., Zhou, H., Odisho, T., . . . Chaconas, G. (2012).
- 868 Vascular binding of a pathogen under shear force through mechanistically distinct sequential
- 869 interactions with host macromolecules. *Molecular microbiology*, 86(5), 1116-1131.
- 870 doi:10.1111/mmi.12045
- 871 Morrison, T. B., Ma, Y., Weis, J. H., & Weis, J. J. (1999). Rapid and sensitive quantification of
- 872 *Borrelia burgdorferi*-infected mouse tissues by continuous fluorescent monitoring of PCR.
- 873 *Journal of clinical microbiology*, 37(4), 987-992.
- 874 Norman, M. U., Moriarty, T. J., Dresser, A. R., Millen, B., Kubes, P., & Chaconas, G. (2008).
- 875 Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a
- 876 living host. *PLoS pathogens*, 4(10), e1000169. doi:10.1371/journal.ppat.1000169
- 877 Ojaimi, C., Brooks, C., Casjens, S., Rosa, P., Elias, A., Barbour, A., . . . Schwartz, I. (2003).
- 878 Profiling of temperature-induced changes in *Borrelia burgdorferi* gene expression by using
- 879 whole genome arrays. *Infection and immunity*, 71(4), 1689-1705.
- 880 Olsen, B., Gylfe, A., & Bergstrom, S. (1996). Canary finches (*Serinus canaria*) as an avian
- 881 infection model for Lyme borreliosis. *Microbial pathogenesis*, 20(6), 319-324.
- 882 doi:10.1006/mpat.1996.0030
- 883 Parveen, N., & Leong, J. M. (2000). Identification of a candidate glycosaminoglycan-binding
- 884 adhesin of the Lyme disease spirochete *Borrelia burgdorferi*. *Molecular microbiology*, 35(5),
- 885 1220-1234.

- 886 Piesman, J., Dolan, M. C., Schriefer, M. E., & Burkot, T. R. (1996). Ability of experimentally
887 infected chickens to infect ticks with the Lyme disease spirochete, *Borrelia burgdorferi*. *The*
888 *American journal of tropical medicine and hygiene*, 54(3), 294-298.
- 889 Purser, J. E., & Norris, S. J. (2000). Correlation between plasmid content and infectivity in
890 *Borrelia burgdorferi*. *Proceedings of the National Academy of Sciences of the United States of*
891 *America*, 97(25), 13865-13870. doi:10.1073/pnas.97.25.13865
- 892 Radolf, J. D., Caimano, M. J., Stevenson, B., & Hu, L. T. (2012). Of ticks, mice and men:
893 understanding the dual-host lifestyle of Lyme disease spirochaetes. *Nature reviews.*
894 *Microbiology*, 10(2), 87-99. doi:10.1038/nrmicro2714
- 895 Revel, A. T., Talaat, A. M., & Norgard, M. V. (2002). DNA microarray analysis of differential
896 gene expression in *Borrelia burgdorferi*, the Lyme disease spirochete. *Proceedings of the*
897 *National Academy of Sciences of the United States of America*, 99(3), 1562-1567.
898 doi:10.1073/pnas.032667699
- 899 Richter, D., Spielman, A., Komar, N., & Matuschka, F. R. (2000). Competence of American
900 robins as reservoir hosts for Lyme disease spirochetes. *Emerging infectious diseases*, 6(2), 133-
901 138. doi:10.3201/eid0602.000205
- 902 Ristow, L. C., Miller, H. E., Padmore, L. J., Chettri, R., Salzman, N., Caimano, M. J., . . .
- 903 Coburn, J. (2012). The beta(3)-integrin ligand of *Borrelia burgdorferi* is critical for infection of
904 mice but not ticks. *Molecular microbiology*, 85(6), 1105-1118. doi:10.1111/j.1365-
905 2958.2012.08160.x
- 906 Roantree, R. J., & Rantz, L. A. (1960). A Study of the Relationship of the Normal Bactericidal
907 Activity of Human Serum to Bacterial Infection. *The Journal of clinical investigation*, 39(1), 72-
908 81. doi:10.1172/JCI104029

- 909 Rogers, E. A., Abdunnur, S. V., McDowell, J. V., & Marconi, R. T. (2009). Comparative
910 analysis of the properties and ligand binding characteristics of CspZ, a factor H binding protein,
911 derived from *Borrelia burgdorferi* isolates of human origin. *Infection and immunity*, 77(10),
912 4396-4405. doi:10.1128/IAI.00393-09
- 913 Rogers, E. A., & Marconi, R. T. (2007). Delineation of species-specific binding properties of the
914 CspZ protein (BBH06) of Lyme disease spirochetes: evidence for new contributions to the
915 pathogenesis of *Borrelia* spp. *Infection and immunity*, 75(11), 5272-5281.
916 doi:10.1128/IAI.00850-07
- 917 Samuels, D. S. (1995). Electroporation of the spirochete *Borrelia burgdorferi*. *Methods in
918 molecular biology*, 47, 253-259. doi:10.1385/0-89603-310-4:253
- 919 Seshu, J., Boylan, J. A., Gherardini, F. C., & Skare, J. T. (2004). Dissolved oxygen levels alter
920 gene expression and antigen profiles in *Borrelia burgdorferi*. *Infection and immunity*, 72(3),
921 1580-1586.
- 922 Seshu, J., Esteve-Gassent, M. D., Labandeira-Rey, M., Kim, J. H., Trzeciakowski, J. P., Hook,
923 M., & Skare, J. T. (2006). Inactivation of the fibronectin-binding adhesin gene *bbk32*
924 significantly attenuates the infectivity potential of *Borrelia burgdorferi*. *Molecular microbiology*,
925 59(5), 1591-1601. doi:10.1111/j.1365-2958.2005.05042.x
- 926 Shi, Y., Xu, Q., Seemanaplli, S. V., McShan, K., & Liang, F. T. (2008). Common and unique
927 contributions of decorin-binding proteins A and B to the overall virulence of *Borrelia*
928 *burgdorferi*. *PloS one*, 3(10), e3340. doi:10.1371/journal.pone.0003340
- 929 Showman, A. C., Aranjuez, G., Adams, P. P., & Jewett, M. W. (2016). Gene *bb0318* Is Critical
930 for the Oxidative Stress Response and Infectivity of *Borrelia burgdorferi*. *Infection and
931 immunity*, 84(11), 3141-3151. doi:10.1128/IAI.00430-16

- 932 Siegel, C., Schreiber, J., Haupt, K., Skerka, C., Brade, V., Simon, M. M., . . . Kraiczy, P. (2008).
- 933 Deciphering the ligand-binding sites in the *Borrelia burgdorferi* complement regulator-acquiring
- 934 surface protein 2 required for interactions with the human immune regulators factor H and factor
- 935 H-like protein 1. *The Journal of biological chemistry*, 283(50), 34855-34863.
- 936 doi:10.1074/jbc.M805844200
- 937 Sjoberg, A. P., Trouw, L. A., & Blom, A. M. (2009). Complement activation and inhibition: a
- 938 delicate balance. *Trends in immunology*, 30(2), 83-90. doi:10.1016/j.it.2008.11.003
- 939 Sojka, D., Franta, Z., Horn, M., Caffrey, C. R., Mares, M., & Kopacek, P. (2013). New insights
- 940 into the machinery of blood digestion by ticks. *Trends in parasitology*, 29(6), 276-285.
- 941 doi:10.1016/j.pt.2013.04.002
- 942 Steere, A. C., Strle, F., Wormser, G. P., Hu, L. T., Branda, J. A., Hovius, J. W., . . . Mead, P. S.
- 943 (2016). Lyme borreliosis. *Nature reviews. Disease primers*, 2, 16090. doi:10.1038/nrdp.2016.90
- 944 Tilly, K., Krum, J. G., Bestor, A., Jewett, M. W., Grimm, D., Bueschel, D., . . . Rosa, P. (2006).
- 945 *Borrelia burgdorferi* OspC protein required exclusively in a crucial early stage of mammalian
- 946 infection. *Infection and immunity*, 74(6), 3554-3564. doi:10.1128/IAI.01950-05
- 947 Tokarz, R., Anderton, J. M., Katona, L. I., & Benach, J. L. (2004). Combined effects of blood
- 948 and temperature shift on *Borrelia burgdorferi* gene expression as determined by whole genome
- 949 DNA array. *Infection and immunity*, 72(9), 5419-5432. doi:10.1128/IAI.72.9.5419-5432.2004
- 950 van Dam, A. P., Oei, A., Jaspars, R., Fijen, C., Wilske, B., Spanjaard, L., & Dankert, J. (1997).
- 951 Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. *Infection*
- 952 and immunity

- 953 Wang, G., van Dam, A. P., Schwartz, I., & Dankert, J. (1999). Molecular typing of *Borrelia*
954 *burgdorferi* sensu lato: taxonomic, epidemiological, and clinical implications. *Clinical*
955 *microbiology reviews*, 12(4), 633-653.
- 956 Weening, E. H., Parveen, N., Trzeciakowski, J. P., Leong, J. M., Hook, M., & Skare, J. T.
957 (2008). *Borrelia burgdorferi* lacking DbpBA exhibits an early survival defect during
958 experimental infection. *Infection and immunity*, 76(12), 5694-5705. doi:10.1128/IAI.00690-08
- 959 Wickramasekara, S., Bunikis, J., Wysocki, V., & Barbour, A. G. (2008). Identification of
960 residual blood proteins in ticks by mass spectrometry proteomics. *Emerging infectious diseases*,
961 14(8), 1273-1275. doi:10.3201/eid1408.080227
- 962 Wilhelm, D. L. (1973). Mechanisms responsible for increased vascular permeability in acute
963 inflammation. *Agents and actions*, 3(5), 297-306.
- 964 Woodman, M. E., Cooley, A. E., Miller, J. C., Lazarus, J. J., Tucker, K., Bykowski, T., . . .
- 965 Stevenson, B. (2007). *Borrelia burgdorferi* binding of host complement regulator factor H is not
966 required for efficient mammalian infection. *Infection and immunity*, 75(6), 3131-3139.
967 doi:10.1128/IAI.01923-06
- 968 Xu, Q., Seemanapalli, S. V., Reif, K. E., Brown, C. R., & Liang, F. T. (2007). Increasing the
969 recruitment of neutrophils to the site of infection dramatically attenuates *Borrelia burgdorferi*
970 infectivity. *Journal of immunology*, 178(8), 5109-5115.
- 971 Yang, X. F., Pal, U., Alani, S. M., Fikrig, E., & Norgard, M. V. (2004). Essential role for
972 OspA/B in the life cycle of the Lyme disease spirochete. *The Journal of experimental medicine*,
973 199(5), 641-648. doi:10.1084/jem.20031960

974 Zhi, H., Weening, E. H., Barbu, E. M., Hyde, J. A., Hook, M., & Skare, J. T. (2015). The BBA33
975 lipoprotein binds collagen and impacts *Borrelia burgdorferi* pathogenesis. *Molecular*
976 *microbiology*. doi:10.1111/mmi.12921

977 Zhi, H., Xie, J., & Skare, J. T. (2018). The Classical Complement Pathway Is Required to
978 Control *Borrelia burgdorferi* Levels During Experimental Infection. *Frontiers in immunology*, 9,
979 959. doi:10.3389/fimmu.2018.00959

980 Zipfel, P. F., & Skerka, C. (2009). Complement regulators and inhibitory proteins. *Nature*
981 *reviews. Immunology*, 9(10), 729-740. doi:10.1038/nri2620

982 Zuckert, W. R., Kerentseva, T. A., Lawson, C. L., & Barbour, A. G. (2001). Structural
983 conservation of neurotropism-associated VspA within the variable *Borrelia* Vsp-OspC
984 lipoprotein family. *The Journal of biological chemistry*, 276(1), 457-463.
985 doi:10.1074/jbc.M008449200

986

987

988

989

990

991

992

993

994

995

996

997 **Table 1. CspZ-Y207A/Y211A does not bind to Factor H from human or quail.**

Recombinant CspZ proteins	Factor H source	K_D (μM)
GST-CspZ	Human	0.29±0.07
	Quail	0.91±0.14
GST-CspZ-Y207A/Y211A	Human	n.b. ^a
	Quail	n.b.
GST ^b	Human	n.b.
	Quail	n.b.

998 All values represent the mean ± SEM of three experiments determined by ELISA.

999 ^aNo binding activity was detected.1000 ^bGST was included as a negative control.

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016 **Table 2. Strains and plasmids used in this study.**

Strain or plasmid	Genotype or characteristic	Source
<i>B. burgdorferi</i>		
B313	High-passage <i>B. burgdorferi</i> B31 missing lp5, lp17, lp21, lp25, lp28-1, lp28-2, lp28-3, lp28-4, lp36, lp38, lp54, lp56, cp9, cp32-4, cp32-6, cp32-8, cp32-9	(Hallstrom et al., 2013)
B31-A3	Clone of <i>B. burgdorferi</i> B31 missing cp9	(Elias et al., 2002)
B31-A3ΔcspZ	B31-A3ΔcspZ::KanR ^a	(Coleman et al., 2008)
B31-A3ΔcspZ/pKFSS-1	B31-A3ΔcspZ::KanR carrying plasmid pKFSS-1	This study
B31-A3ΔcspZ/pCspZ- WT	B31-A3ΔcspZ::KanR complemented with intact <i>cspZ</i>	This study
B31-A3ΔcspZ/pCspZ- Y207A/Y211A	B31-A3ΔcspZ::KanR complemented with intact <i>cspZ-Y207A/Y211A</i>	This study
<i>E. coli</i>		
DH5α	F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ- F-, ompT hsdSB (rB- mB-) gal dcm (DE3)	ThermoFisher
BL21(DE3)	BL21(DE3) producing GST-tagged residues 19 to 237 of CspZ	Novagen
BL21(DE3)/pGEX4T2- CspZ	BL21(DE3) producing GST-tagged residues 19 to 237 of CspZ-Y207A/Y211A	This study
BL21(DE3)/pGEX4T2- CspZ-Y207A/Y211A	BL21(DE3) producing GST-tagged residues 19 to 237 of CspZ-Y207A/Y211A	This study
Plasmids		
pJET1.2/Blunt	AmpR ^b ; PCR cloning vector	ThermoFisher
pGEX4T2	AmpR; GST-tagged protein expression vector	Qiagen
pGEX4T2-CspZ	AmpR; pGEX4T2 encoding GST fusion protein residue 19 to 237 of CspZ	This study
pGEX4T2-CspZ- Y207A/Y211A	AmpR; pGEX4T2 encoding GST fusion protein residue 19 to 237 of CspZ-Y207A/Y211A	This study

	pKFSS-1	StrR ^c ; Borrelia shuttle vector	(Frank et al., 2003)
	pKFSS-1/pCspZ-WT	StrR; pKFSS-1 encoding intact <i>cspZ</i>	This study
	pKFSS-1/pCspZ-Y207A/Y211A	StrR; pKFSS-1 encoding intact <i>cspZ</i> -Y207A/Y211A	This study
1017		^a Kanamycin resistant	
1018		^b Ampicillin resistant	
1019		^c Streptomycin resistant	
1020			
1021			
1022			
1023			
1024			
1025			
1026			
1027			
1028			
1029			
1030			
1031			
1032			
1033			
1034			
1035			
1036			
1037			
1038			

1039 **FIGURE LEGENDS**

1040 **Figure 1. The surface production of CspZ was enhanced in human blood-treated *B.***

1041 ***burgdorferi* compared to untreated spirochetes.** Approximately 5×10^6 cells of the *B.*
1042 *burgdorferi* strain B31-A3 were cultivated in BSK-II medium with or without (“Untreated”) 5%
1043 blood (“Blood”) for 48 hours. **(A)** RNA from blood-treated or untreated spirochetes was
1044 extracted. The expression levels of *cspZ*, the constitutively expressed genes *16s rRNA*, and *recA*
1045 were determined using qRT-PCR. The expression levels of *recA* (control) and *cspZ* are presented
1046 by normalizing to the expression levels of the gene encoding *16s rRNA*. Each bar represents the
1047 mean of four independent determinations \pm SEM. The asterisk (“**”) indicates significant
1048 differences ($p < 0.05$; Mann-Whitney test) in the normalized expression levels of *cspZ* in blood-
1049 treated spirochetes relative to that of untreated spirochetes. **(B)** Representative histograms of
1050 flow cytometry analysis showing the levels of CspZ surface production to blood-treated or
1051 untreated spirochetes. The shaded histograms are derived from untreated or blood-treated
1052 spirochetes incubated only with Alexa 647-conjugated goat anti-mouse IgG as control. **(C to F)**
1053 The production of FlaB (negative control), CspA or CspZ on the surface of blood-treated or
1054 untreated spirochetes was detected by flow cytometry. The mean fluorescence index (“MFI”)
1055 represents the production levels of FlaB, CspA, or CspZ in unpermeabilized (filled bars) or
1056 methanol-permeabilized (opened bars) **(C)** *B. burgdorferi* strain B31-A3, **(D)** B31-A3 Δ *cspZ*
1057 harboring the vector pKFSS-1 (“B31-A3 Δ *cspZ*/Vector”), or **(E)** this *cspZ* mutant strain
1058 producing CspZ (“B31-A3 Δ *cspZ*/pCspZ”) or **(F)** CspZ-Y207A/Y211A (“B31-A3 Δ *cspZ*/pCspZ-
1059 Y207A/Y211A”). Each bar represents the mean of four independent determinations \pm the
1060 standard deviation. The asterisk (“**”) indicates significantly different protein production ($p <$
1061 0.05 by Kruskal-Wallis test with Dunn’s multiple comparison) between blood-treated and

1062 untreated indicated *B. burgdorferi* strains. Note that the production of FlaB, CspA, or CspZ
1063 among different spirochete strains when these strains were in blood-treated or untreated
1064 conditions is no different ($p > 0.05$ by Kruskal-Wallis test with Dunn's multiple comparison).

1065

1066 **Figure 2. Tyrosine-207 and -211 of CspZ were critical for blood-treated *B. burgdorferi* to**
1067 **bind to human, mouse, and quail FH.** Human blood-treated *B. burgdorferi* strain B313, B31-
1068 A3, B31-A3 Δ cspZ harboring the vector pKFSS-1 ("B31-A3 Δ cspZ/Vector"), or this cspZ mutant
1069 strain producing CspZ ("B31-A3 Δ cspZ/pCspZ") or CspZ-Y207A/Y211A ("B31-
1070 A3 Δ cspZ/pCspZ-Y207A/Y211A") was incubated with either PBS (negative control, data not
1071 shown) or FH from human, mouse, or quail. The bacteria were stained with a sheep anti-FH
1072 polyclonal IgG (for the spirochetes incubated with human or mouse FH) or a mouse anti-FH
1073 monoclonal antibody VIG8 (for the spirochetes incubated with quail FH) followed by an Alexa
1074 647-conjugated donkey anti-sheep IgG or goat anti-mouse IgG prior to flow cytometry analysis.
1075 **(Left panel)** Representative histograms of flow cytometry analysis showing the levels of FH
1076 from **(A)** human, **(B)** mouse, or **(C)** quail binding to the indicated *B. burgdorferi* strains. **(Right**
1077 **panel)** The levels of *B. burgdorferi* binding to FH from **(A)** human, **(B)** mouse, or **(C)** quail were
1078 measured by flow cytometry and presented as mean fluorescence index ("MFI"). Each bar
1079 represents the mean of three independent determinations \pm SEM. Significant differences ($p <$
1080 0.05 by Kruskal-Wallis test with Dunn's multiple comparison) in the levels of FH binding
1081 relative to the strain B313 ("Φ"), the strain Δ cspZ/Vector ("*"), or between two strains relative to
1082 each other ("#") are indicated.

1083

1084 **Figure 3. CspZ-mediated FH-binding activity decreased MAC deposition on the surface of**
1085 **blood-treated *B. burgdorferi*.** Human blood-treated *B. burgdorferi* strain B313, B31-A3, B31-
1086 A3 Δ cspZ harboring the vector pKFSS-1 (“B31-A3 Δ cspZ/Vector”), or this cspZ mutant strain
1087 producing CspZ (“B31-A3 Δ cspZ/pCspZ”) or CspZ-Y207A/Y211A (“B31-A3 Δ cspZ/pCspZ-
1088 Y207A/Y211A”) was incubated with either PBS (negative control, data not shown) or serum
1089 from human or mouse at a final concentration of 20%. The bacteria were stained with a mouse
1090 anti-MAC monoclonal antibody aE11 (for spirochetes incubated with human serum), or a rabbit
1091 anti-MAC polyclonal IgG (for spirochetes incubated with mouse serum) followed by a goat anti-
1092 mouse IgG, or a goat anti-rabbit IgG, prior to flow cytometry analysis. **(A)** Representative
1093 histograms of flow cytometry analysis showing the deposition levels of mouse MAC on the
1094 surface of indicated *B. burgdorferi* strains. **(B)** The deposition levels of human or mouse MAC
1095 on the surface of *B. burgdorferi* were measured by flow cytometry and presented as mean
1096 fluorescence index (“MFI”). Each bar represents the mean of three independent determinations \pm
1097 SEM. Significant differences ($p < 0.05$ by Kruskal-Wallis test with Dunn’s multiple comparison)
1098 in the deposition levels of MAC relative to the strain B313 (“Φ”), the strain B31-
1099 A3 Δ cspZ/Vector (“*”), or between two strains relative to each other (“#”) are indicated.

1100

1101 **Figure 4. CspZ-mediated FH-binding activity contributed to the survival of blood-treated**
1102 **spirochetes in human and quail serum.** Human blood-treated *B. burgdorferi* strain B31-A3,
1103 B31-A3 Δ cspZ harboring the vector pKFSS-1 (“B31-A3 Δ cspZ/Vector”), or this cspZ mutant
1104 strain producing CspZ (“B31-A3 Δ cspZ/pCspZ”) or CspZ-Y207A/Y211A (“B31-
1105 A3 Δ cspZ/pCspZ-Y207A/Y211A”) was incubated for four hours with untreated (filled bars) or
1106 heat-inactivated (“Heat-treated”, hatched bars) serum at a final concentration of 40%. These sera

1107 include (A) normal human serum, (B) C3-depleted human serum (“Human C3⁻ serum”), or (C)
1108 quail serum. The number of motile spirochetes was assessed microscopically. The percentage of
1109 surviving *B. burgdorferi* was calculated using the number of mobile spirochetes at four hours
1110 post incubation normalized to that immediately after incubation with serum. Each bar represents
1111 the mean of three independent determinations \pm SEM. Significant differences ($p < 0.05$ by
1112 Kruskal-Wallis test with Dunn’s multiple comparison) in the percentage of surviving spirochetes
1113 relative to the strain B31-A3 Δ *cspZ*/Vector incubated with untreated serum (“*”) or between two
1114 strains relative to each other (“#”) are indicated.

1115

1116 **Figure 5. CspZ-mediated FH-binding activity promoted bacteremia and tissue colonization**
1117 **of blood-treated *B. burgdorferi* in mice.** BALB/c mice were subcutaneously infected with 10^3
1118 cells of human blood-treated *B. burgdorferi* strain B31-A3, B31-A3 Δ *cspZ* harboring the vector
1119 pKFSS-1 (“B31-A3 Δ *cspZ*/Vector”), or this *cspZ* mutant strain producing CspZ (“B31-
1120 A3 Δ *cspZ*/pCspZ”) or CspZ-Y207A/Y211A (“B31-A3 Δ *cspZ*/pCspZ-Y207A/Y211A”). These
1121 mice were sacrificed at **(left panel)** 7 or **(right panel)** 14 days post-infection (“dpi”). The
1122 spirochete burdens in the **(A)** Blood, **(B)** inoculation site of skin (“Inoc. Site”), **(C)** heart, **(D)**
1123 bladder, and **(E)** tibiotarsus joints were determined by qPCR and normalized to 1 μ g total DNA.
1124 Shown are the geometric mean \pm geometric standard deviation of 14 (blood from B31-A3-
1125 infected mice at 7dpi), 15 (blood from B31-A3 Δ *cspZ*/Vector- or B31-A3 Δ *cspZ*/pCspZ-
1126 Y207A/Y211A-infected mice at 7dpi), 12 (blood from B31-A3 Δ *cspZ*/pCspZ-infected mice at
1127 7dpi), 6 (blood from B31-A3-infected mice at 14 dpi), 8 (tibiotarsus joints from B31-A3-infected
1128 mice), 16 (Inoc. Site from B31-A3- or B31-A3 Δ *cspZ*/pCspZ-infected mice at 14dpi), 9 (bladder
1129 or heart from B31-A3-infected mice at 14dpi), 7 (blood from B31-A3 Δ *cspZ*/Vector-infected

1130 mice or bladder or heart from B31-A3 Δ cspZ/pCspZ-infected mice at 14dpi) or 10 (all others)
1131 mice per group. Significant differences (p < 0.05 by Kruskal-Wallis test with Dunn's multiple
1132 comparison) in the spirochete burdens relative to the strain B31-A3 Δ cspZ/Vector ("*") or
1133 between two strains relative to each other ("#") are indicated. ("n.d."): not determined.

1134

1135 **Figure 6. CspZ-mediated FH-binding activity facilitated bacteremia and tissue colonization**
1136 **of blood-treated spirochetes by evading the mouse complement.** BALB/c C3^{-/-} mice were
1137 subcutaneously infected with 10³ cells of human blood-treated *B. burgdorferi* strain B31-A3,
1138 B31-A3 Δ cspZ harboring the vector pKFSS-1 ("B31-A3 Δ cspZ/Vector"), or this cspZ mutant
1139 strain producing CspZ ("B31-A3 Δ cspZ/pCspZ") or CspZ-Y207A/Y211A ("B31-
1140 A3 Δ cspZ/pCspZ-Y207A/Y211A"). The mice were sacrificed at **(left panel)** 7 or **(right panel)**
1141 14 days post-infection ("dpi"). The spirochete burdens in the **(A)** blood, **(B)** inoculation site of
1142 skin ("Inoc Site"), **(C)** heart, **(D)** bladder, and **(E)** tibiotarsus joints were determined by qPCR
1143 and normalized to 1 μ g total DNA. Shown are the geometric mean \pm geometric standard
1144 deviation of 5 (tibiotarsus joints from B31-A3 Δ cspZ/pCspZ-Y207A/Y211A-infected mice at
1145 7dpi) or 6 (all others) mice per group. There were no significant differences (p < 0.05 by
1146 Kruskal-Wallis test with Dunn's multiple comparison) in the spirochete burdens relative to the
1147 strain B31-A3 Δ cspZ/Vector or between two strains relative to each other.

1148

1149 **Figure 7. CspZ-mediated FH-binding activity promoted *B. burgdorferi* colonization in**
1150 **quail.** *Coturnix coturnix* quail were subcutaneously infected with 10⁶ cells of human blood-
1151 treated *B. burgdorferi* strain B31-A3, B31-A3 Δ cspZ harboring the vector pKFSS-1 ("B31-
1152 A3 Δ cspZ/Vector"), or this cspZ mutant strain producing CspZ ("B31-A3 Δ cspZ/pCspZ") or

1153 CspZ-Y207A/Y211A (“B31-A3 Δ cspZ/pCspZ-Y207A/Y211A”). The quail were sacrificed at
1154 seven days post-infection (“dpi”). The spirochete burdens in the **(A)** inoculation site of skin
1155 (“Inoc. Site”) and **(B)** brain were determined by qPCR and normalized to 1 μ g total DNA. Shown
1156 are the geometric mean \pm geometric standard deviation of 8 (B31-A3-infected quail), 14 (Inoc.
1157 Site from B31-A3 Δ cspZ/pCspZ-infected quail), 9 (brain from B31-A3 Δ cspZ/pCspZ-infected
1158 quail), 6 (all others) quail per group. Significant differences ($p < 0.05$ by Kruskal-Wallis test
1159 with Dunn’s multiple comparison) in the spirochete burdens relative to the strain B31-
1160 A3 Δ cspZ/Vector (“*”) or between two strains relative to each other (“#”) are indicated.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176 **SUPPLEMENTARY MATERIAL**

1177 **SUPPLEMENTAL FIGURE LEGENDS**

1178 **Figure S1. Recombinant CspZ but not CspZ-Y207A/Y211A bound to human and quail FH.**

1179 The indicated concentrations of GST-tagged CspZ (“CspZ”) or CspZ-Y207A/Y211A, or GST

1180 were added in triplicate to wells coated with 1 μ g of BSA (negative control, data not shown), or

1181 human or quail FH, and protein binding was quantified by ELISA. The experiments were

1182 performed on three independent occasions; in each experiment, samples were run in duplicate.

1183 All experiments were performed with a single preparation of recombinant proteins. Shown is a

1184 representative experiment from the average of two replicates. The K_D values (Table 1)

1185 representing the FH-binding affinity of each protein were determined from the average of three

1186 experiments.

1187

1188 **Figure S2. Substitution of tyrosine-207 and -211 with alanine in CspZ did not affect its**

1189 **structure.** Far-UV CD analysis of CspZ and CspZ-Y207A/Y211A. The molar ellipticity, Φ ,

1190 was measured from 190-250nm for 10 μ M of each protein in PBS buffer.

1191

1192 **Figure S3. Substitution of tyrosine-207 and -211 with alanine in CspZ did not affect its**

1193 **ability to bind fibronectin, plasminogen, and laminin.** The indicated concentrations of various

1194 recombinant GST-tagged CspZ (“CspZ”) or CspZ-Y207A/Y211A, or GST (negative control)

1195 were added in triplicate to wells coated with 1 μ g of BSA (negative control, data not shown), **(top**

1196 **panel)** fibronectin, **(middle panel)** plasminogen, or **(bottom panel)** laminin. The protein binding

1197 was quantified by ELISA. The experiments were performed on three independent occasions;

1198 within each occasion, samples were run in triplicate. Shown is one representative experiment

1199 with mean \pm SEM of three replicates in that particular experiment. The K_D values of mean \pm
1200 SEM of three experiments for the fibronectin-, plasminogen-, and laminin-binding activity of
1201 CspZ and CspZ-Y207A/Y211A were shown in the tables at the top of each panel. There was no
1202 significant difference ($p > 0.05$; Mann-Whitney test) between the affinity of CspZ and CspZ-
1203 Y207A/Y211A in binding to fibronectin, plasminogen, or laminin.

1204

1205 **Figure S4. Determination of the viability and generation times of blood-treated and**
1206 **untreated *B. burgdorferi* strains.** 10^6 cells of *B. burgdorferi* strain B31-A3, B31-A3 Δ cspZ
1207 harboring the vector pKFSS-1 (“B31-A3 Δ cspZ/Vector”), or this *cspZ* mutant strain producing
1208 CspZ (“B31-A3 Δ cspZ/pCspZ”) or CspZ-Y207A/Y211A (“B31-A3 Δ cspZ/pCspZ-
1209 Y207A/Y211A”) were treated with human blood (“Blood-treated”). Untreated strains were
1210 included as control. **(A)** At 48 hours post treatment, the spirochetes were washed and stained by
1211 SYBR Green and propidium iodide to evaluate their viability under fluorescence microscopy.
1212 The experiments were performed on three independent occasions; within each occasion, the
1213 number of bacteria was counted from four fields of view. Shown are representative micrographs.
1214 The percentage of live spirochetes is presented in the Table S2. There were no significant
1215 differences ($p > 0.05$ with Kruskal-Wallis test and Dunn’s multiple comparison) in the viability
1216 between any strains. **(B and C)** At 48 hours post treatment, the spirochetes were washed and
1217 cultivated in fresh BSK-II medium at 33°C. The concentration of each of these strains was
1218 quantified microscopically at the indicated time points. The experiments were performed on
1219 three independent occasions; within each occasion, the number of bacteria was counted from
1220 three fields. Shown are the geometric mean number of spirochetes \pm geometric standard
1221 deviation of three different experiments. The generation time was calculated and shown in the

1222 Table S3. There were no significant differences ($p > 0.05$ with Kruskal-Wallis test and Dunn's
1223 multiple comparison) in the generation time between any strains.

1224

1225 **Figure S5. CspZ is not essential for untreated *B. burgdorferi* to bind to human, mouse,**
1226 **and quail FH.** Untreated *B. burgdorferi* strain B313, B31-A3, or B31-A3 Δ cspZ harboring the
1227 vector pKFSS-1 ("B31-A3 Δ cspZ/Vector") was incubated with either PBS (negative control, data
1228 not shown) or FH from human, mouse, or quail. The bacteria were stained with a sheep anti-FH
1229 polyclonal IgG (for the spirochetes incubated with human or mouse FH) or a mouse anti-FH
1230 monoclonal antibody VIG8 (for the spirochetes incubated with quail FH) followed by an Alexa
1231 647-conjugated donkey anti-sheep IgG or goat anti-mouse IgG prior to flow cytometry analysis.
1232 **(Left panel)** Representative histograms of flow cytometry analysis showing the levels of FH
1233 from **(A)** human, **(B)** mouse, or **(C)** quail binding to the indicated *B. burgdorferi* strains. **(Right**
1234 **panel)** The levels of *B. burgdorferi* binding to FH from **(A)** human, **(B)** mouse, or **(C)** quail were
1235 measured by flow cytometry and presented as mean fluorescence index ("MFI"). Each bar
1236 represents the mean of three independent determinations \pm SEM. Significant differences ($p <$
1237 0.05 by Kruskal-Wallis test with Dunn's multiple comparison) in the levels of FH binding
1238 relative to the strain B313 ("Φ") are indicated.

1239

1240 **Figure S6. CspZ was not required to reduce the levels of MAC deposition on the surface of**
1241 **untreated *B. burgdorferi*.** Untreated *B. burgdorferi* strain B313, B31-A3, or B31-A3 Δ cspZ
1242 harboring the vector pKFSS-1 ("B31-A3 Δ cspZ/Vector") was incubated with either PBS
1243 (negative control, data not shown) or serum from human or mouse at a final concentration of
1244 20%. The bacteria were stained with a mouse anti-MAC monoclonal antibody aE11 (for

1245 spirochetes incubated with human serum), or a rabbit anti-MAC polyclonal IgG (for spirochetes
1246 incubated with mouse serum) followed by a goat anti-mouse IgG, or a goat anti-rabbit IgG, prior
1247 to flow cytometry analysis. **(A)** Representative histograms of flow cytometry analysis showing
1248 the deposition levels of mouse MAC on the surface of indicated *B. burgdorferi* strains. **(B)** The
1249 deposition of human or mouse MAC on the surface of *B. burgdorferi* were measured by flow
1250 cytometry and presented as mean fluorescence index (“MFI”). Each bar represents the mean of
1251 three independent determinations \pm SEM. Significant differences ($p < 0.05$ by Kruskal-Wallis
1252 test with Dunn’s multiple comparison) in the deposition levels of MAC relative to the strain
1253 B313 (“ Φ ”) are indicated.

1254

1255 **Figure S7. Untreated *B. burgdorferi* did not require CspZ to survive in human and quail**
1256 **serum.** Untreated *B. burgdorferi* strain B31-A3 or B31-A3 Δ cspZ harboring the vector pKFSS-1
1257 (“B31-A3 Δ cspZ/Vector”) was incubated for four hours with untreated (filled bars) or heat-
1258 inactivated (“Heat-treated”, hatched bars) serum at a final concentration of 40%. These sera
1259 include **(A)** normal human serum, **(B)** C3-depleted human serum (“Human C3 $^-$ serum”), or **(C)**
1260 quail serum. The number of motile spirochetes was assessed microscopically. The percentage of
1261 surviving *B. burgdorferi* was calculated using the number of mobile spirochetes at four hours
1262 post incubation normalized to that immediately after incubation with serum. Each bar represents
1263 the mean of three independent determinations \pm SEM. No significant differences ($p > 0.05$ by
1264 Kruskal-Wallis test with Dunn’s multiple comparison) in the percentage survival of spirochetes
1265 relative to the strain B31-A3 Δ cspZ/Vector were observed.

1266

1267 **Figure S8. CspZ was not required to facilitate bacteremia and tissue colonization of**
1268 **untreated *B. burgdorferi* in mice.** BALB/c mice were subcutaneously infected with 10^3 cells of
1269 untreated *B. burgdorferi* strain B31-A3 or B31-A3 Δ cspZ harboring the vector pKFSS-1
1270 (“ Δ cspZ/Vector”). These mice were sacrificed at **(left panel)** 7 or **(right panel)** 14 days post-
1271 infection (“dpi”). The spirochete burdens in the **(A)** blood, **(B)** inoculation site of skin (“Inoc.
1272 Site”), **(C)** heart, **(D)** bladder, and **(E)** tibiotarsus joints were determined by qPCR and
1273 normalized to $1\mu\text{g}$ total DNA. Shown are the geometric mean \pm geometric standard deviation of
1274 5 mice per group. There were no significant differences ($p > 0.05$ by Mann-Whitney test) in the
1275 spirochete burdens between strains.

1276

1277 **Figure S9. Dissemination of blood-treated *B. burgdorferi* in *Coturnix* quail.** *Coturnix*
1278 *coturnix* quail were subcutaneously infected with 10^6 cells of human blood-treated *B.*
1279 *burgdorferi* strain B31-A3. At 3 and 7 days post-infection (dpi), the spirochete loads in the
1280 inoculation site of skin (“Inoc. Site”), blood, liver, heart, and brain were determined by qPCR
1281 and normalized to $1\mu\text{g}$ total DNA. Shown are the geometric mean of bacterial loads \pm geometric
1282 standard deviation of 6 (for samples at 3dpi) or 8 (for samples at 7dpi) quail per group.
1283 Significant differences ($p < 0.05$; Mann-Whitney test) in colonization relative to 3 dpi are
1284 indicated (“*”).

1285

1286

1287

1288

1289

1290 **SUPPLEMENTAL TABLES**1291 **Table S1. CspZ-Y207A/Y211A displayed undistinguishable levels of fibronectin, laminin,**
1292 **and plasminogen binding as WT CspZ.**

Ligands	Recombinant CspZ proteins	K _D (μM)	P ^a
Fibronectin	GST-CspZ	1.16±0.01	0.15
	GST-CspZ-Y207A/Y211A	1.03±0.10	
	GST ^b	n.b. ^c	
Laminin	GST-CspZ	3.27±1.12	0.61
	GST-CspZ-Y207A/Y211A	3.89±1.64	
	GST	n.b. ^c	
Plasminogen	GST-CspZ	1.36±0.71	0.59
	GST-CspZ-Y207A/Y211A	1.88±1.36	
	GST	n.b. ^c	

1293 All values represent the mean ± SEM of three experiments determined by ELISA.

1294 ^a The statistical analysis of the K_D values derived from the binding of a particular ligand to GST-
1295 CspZ or GST-CspZ-Y207A/Y211A determined by Mann-Whitney test.1296 ^b GST was included as a negative control.1297 ^c No binding activity was detected.

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307 **Table S2. The viability of *B. burgdorferi* with no treatment or after treatment with human**
1308 **blood.**

Strain	Percentage of live spirochetes	
	Untreated	Blood-treated
B31-A3	97.4±0.1 ^a	90.4±0.5
ΔcspZ/pKFSS	97.9±0.2	95.1±0.2
pCspZ-B31	96.7±0.2	93.8±0.3
pCspZ-Y207A/Y211A	97.5±0.3	96.6±0.00

1309 ^aThe mean of live spirochetes percentage ± standard deviation of three samples per group.
1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326 **Table S3. The generation time of untreated and human blood-treated *B. burgdorferi* strains**
 1327 **used in this study.**

Strain	Generation time (hour) ^a	
	Untreated	Blood-treated
B31-A3	15.8±2.1	17.5±1.2
ΔcspZ/pKFSS	15.8±2.3	17.5±0.4
pCspZ-B31	17.9±2.1	18.1±0.7
pCspZ-Y207A/Y211A	16.2±1.0	17.3±1.8

1328 ^a The mean of generation time ± standard deviation of three samples per group.
 1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347 **Table S4. Primers used in this study.**

Primer	Sequence ^a	Amplified DNA fragment	Purpose
CSPZF-3	agacgctattataacgaatgtacaggag c	<i>BBcspZ</i>	qRT-PCR quantification
CSPZR-4	cagcaacatgtctggcattagacac		
BBpCspZ_pKFSS-1_fp	gc <u>GCATGC</u> Gcaatttttaaaaaat at	<i>BBcspZ</i> promoter	For transforming shuttle vector
BBpCspZ_pKFSS-1_rp	gc <u>GTCGAC</u> atttctccctgctaaa at		
BBCspZ_pKFSS-1_fp	gc <u>GTCGAC</u> atgaaaaaaaaagttttta t	<i>BBcspZ</i>	For transforming shuttle vector
BBCspZ_pKFSS-1_rp	gc <u>GGATCC</u> ctataataaaagtttgctt a		
BBCspZ_prt_fp	gc <u>GGATCC</u> gatgttagtagattaaat c	BBCspZ AA residues 19-237	For transforming expression vector
BBCspZ_prt_rp	gc <u>GTCGAC</u> ctataataaaagtttgctt a		
Borrelia_16srRNAfp	gcttcgctttagatgagtcgc	<i>Borrelia 16s</i>	qRT-PCR
Borrelia_16srRNArp	ttccagtgacccgttcacc	<i>rRNA</i>	control
BBRecAfp	gtggatctattgtattagatgaggctcgc	<i>BBrecA</i>	qRT-PCR
BBRecArp	gccaaggctctgcaacattaacacctaagg		control; qPCR spirochete burden
ColE1fp	ctacatacctcgctctgctaatc	pKFSS-1 origin	PCR
ColE1rp	cggaaaccgcacaggactataaa	of replication	confirmation of transformation
mNidfp	ccagccacagaatccatcc	<i>mNidogen</i>	qPCR control
mNidrp	ggacatactctgctgccatc		
oIMR1325	atcttgagtgcaccaagcc	<i>mC3</i>	Genotyping
oIMR1326	ggttgcagcagtctatgaagg		BALB/c C3 ^{-/-} mice
oIMR7415	gccagaggccacttgttag		
qβ-actinfp	ctggcacctagcacaatgaa	qβ-actin	qPCR control
qβ-actinrp	ctgcttgcgtatccacatct		

1348 ^a Restriction sites used are shown in underlined capital letters

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

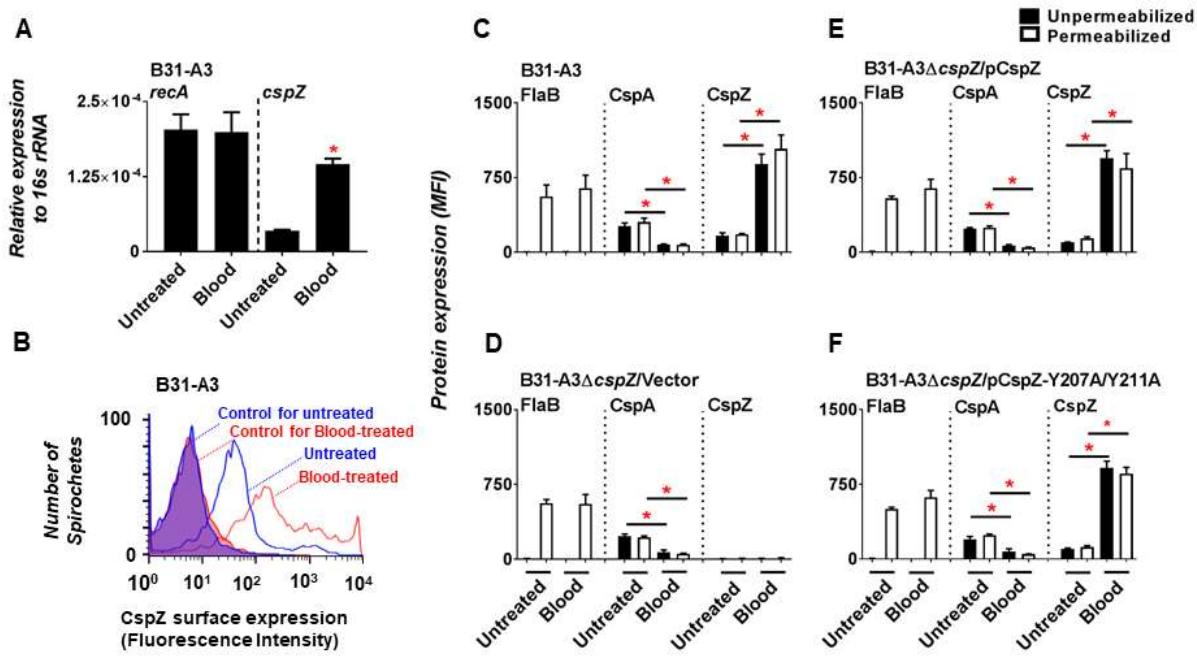
1363

1364

1365

1366

1367


1368

1369

1370

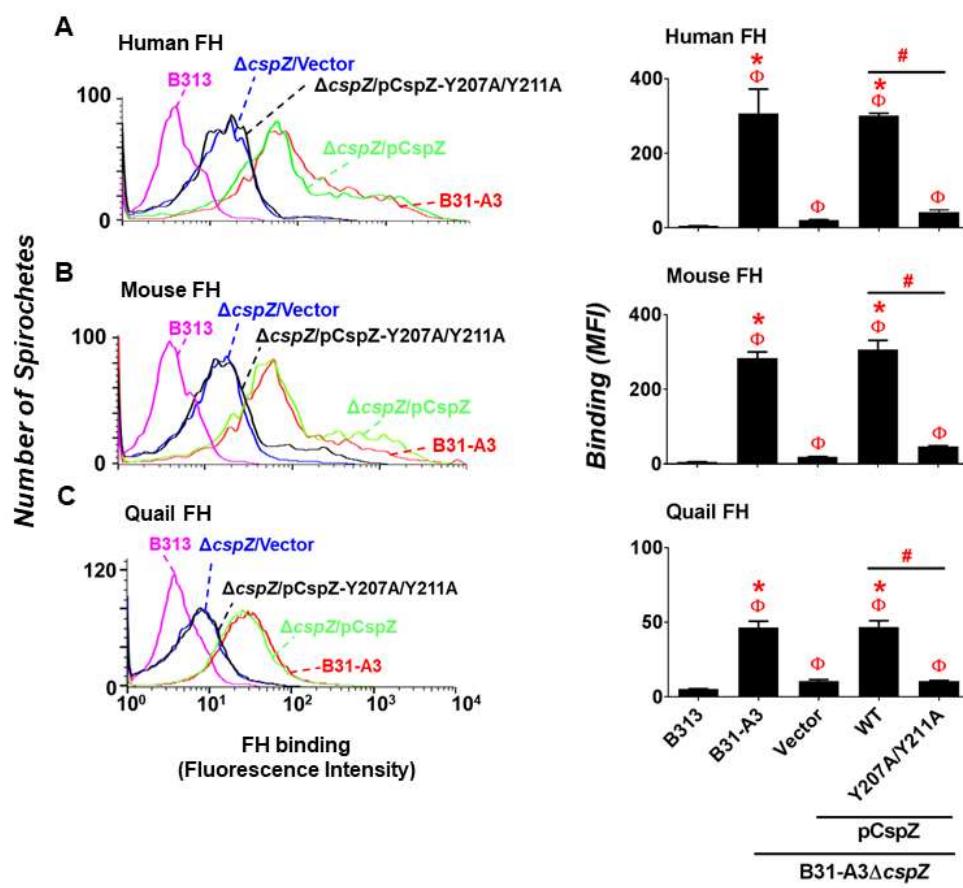

1371

Fig. 1

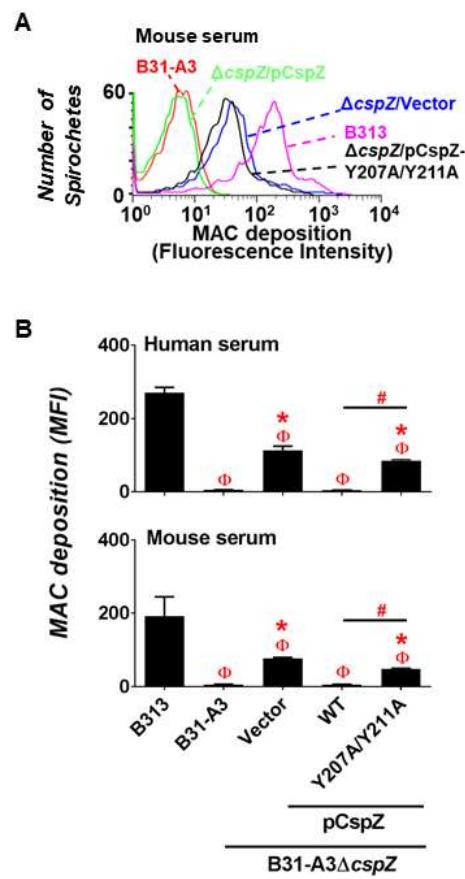

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

Fig. 2

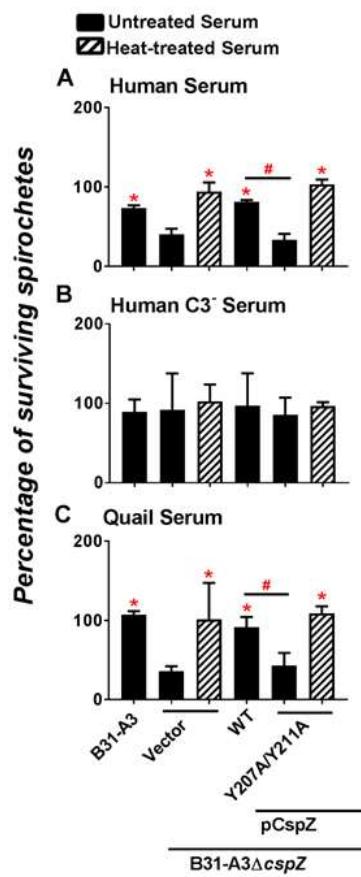

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

Fig. 3

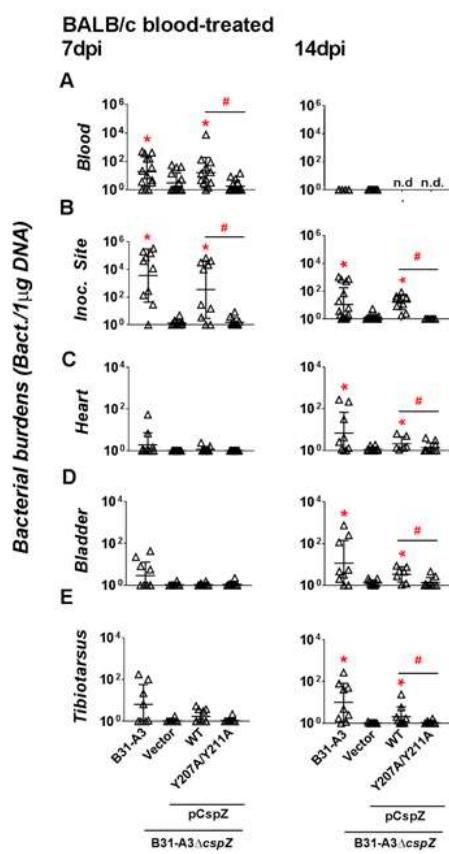

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

Fig. 4

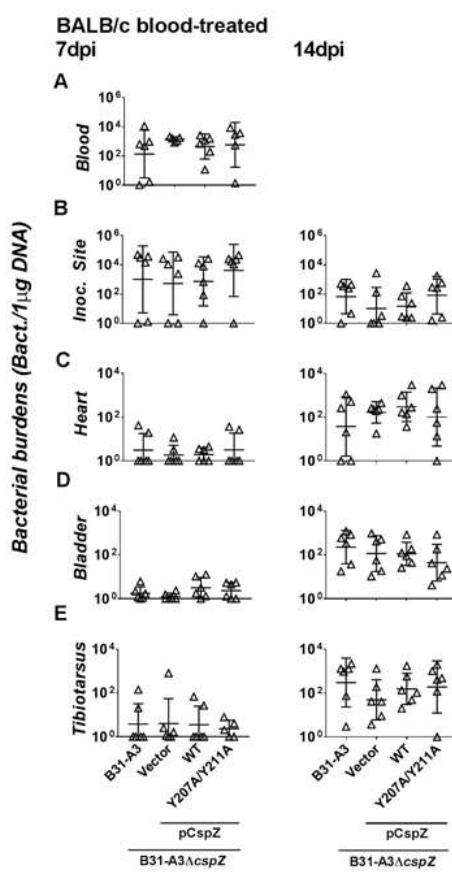

1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459

Fig. 5

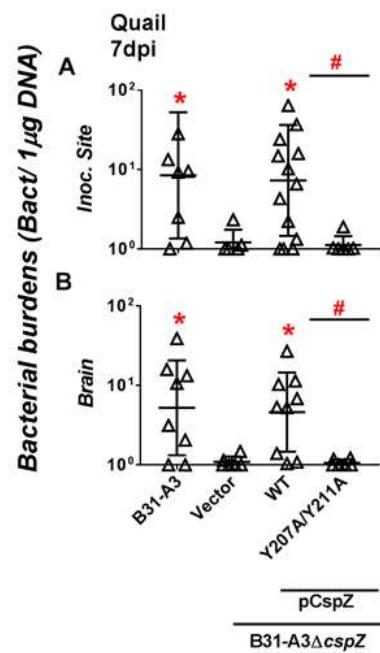

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

Fig. 6

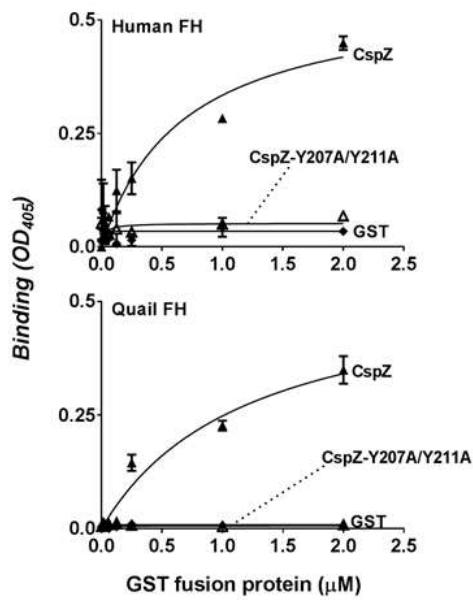

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Fig. 7

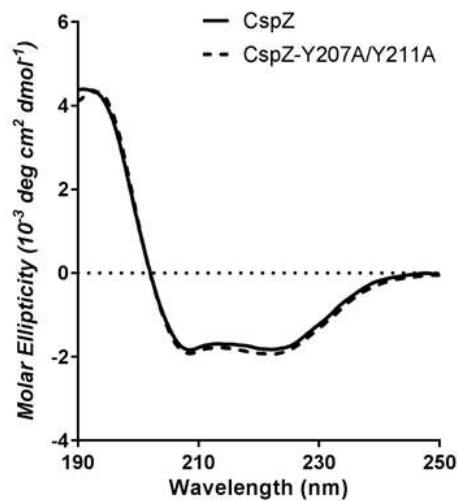

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

Fig. S1

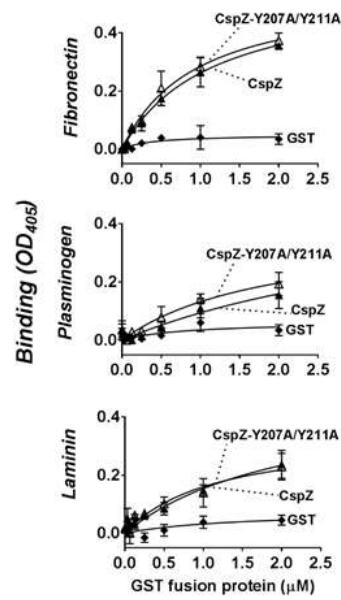

1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547

Fig. S2

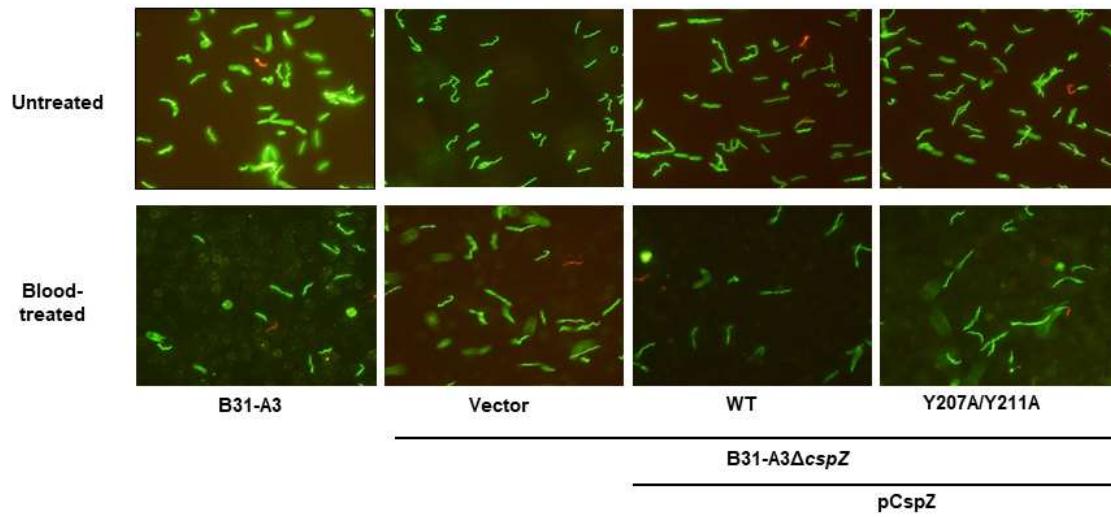
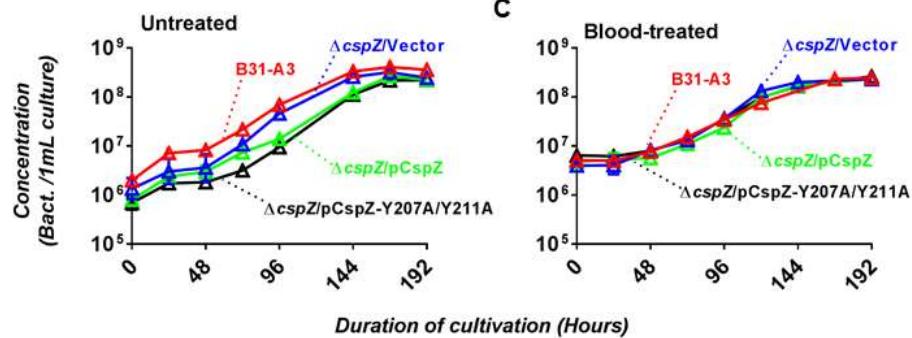
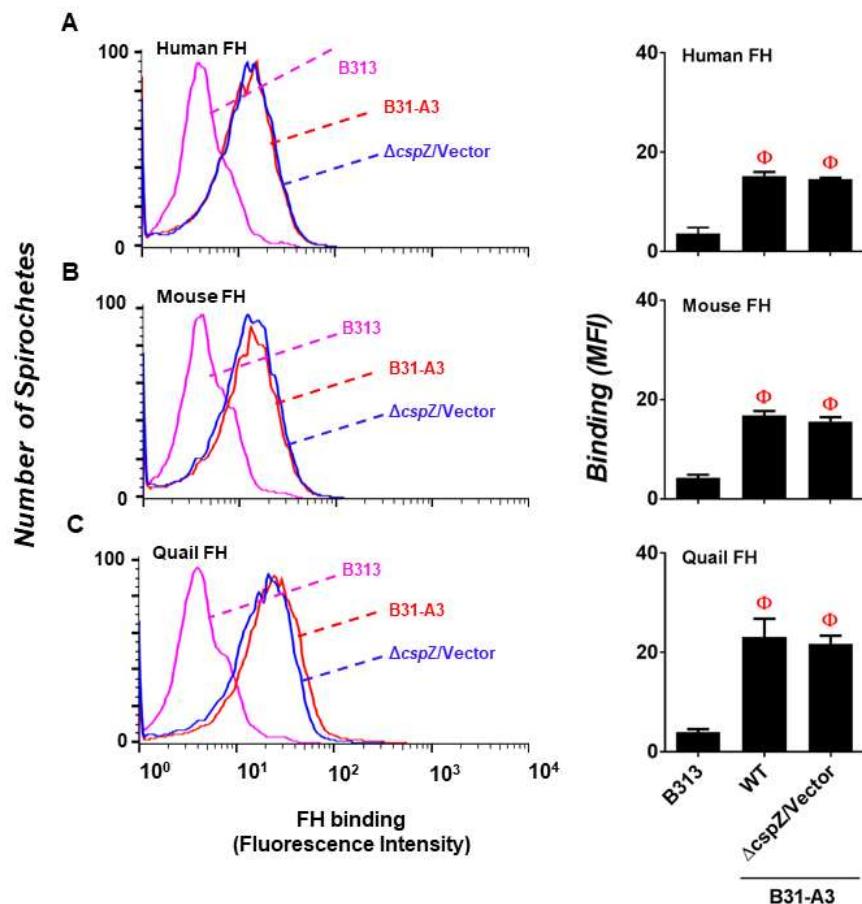

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569

Fig. S3



1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591

Fig.
S4 A


B

C

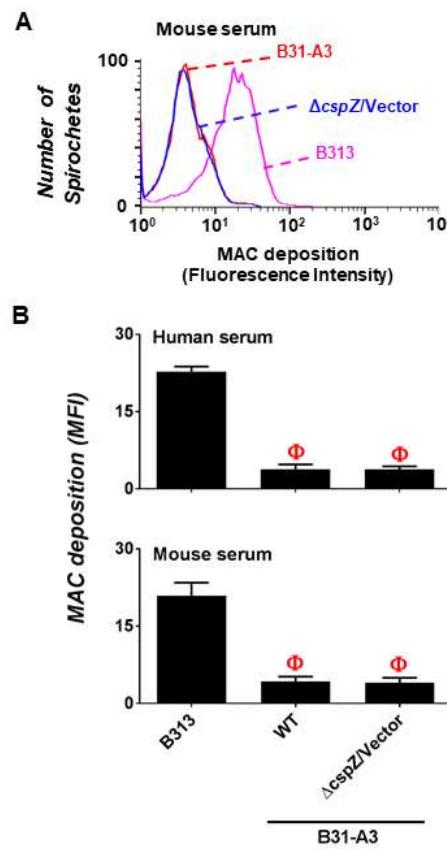

1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613

Fig. S5

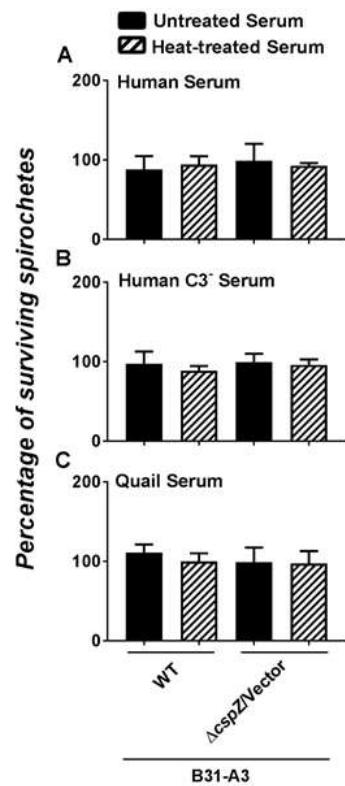

1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

Fig. S6

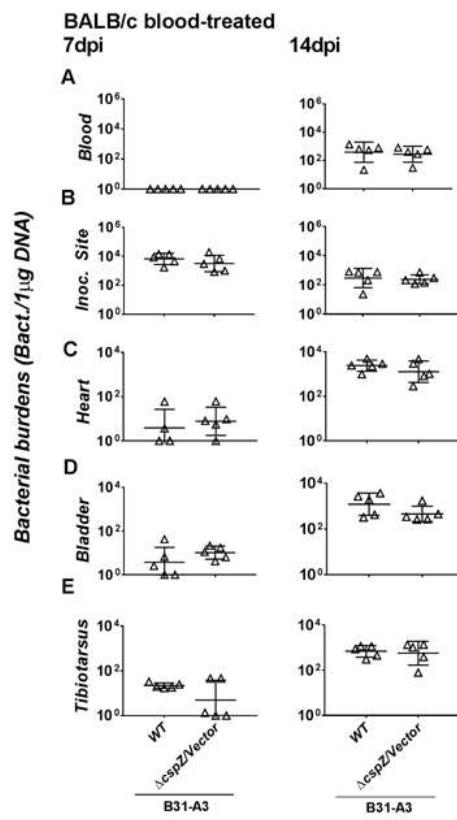

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657

Fig. S7

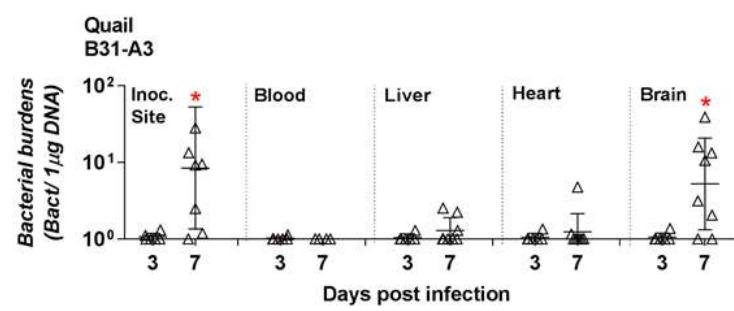

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679

Fig. S8

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

Fig. S9

1702