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Abstract—Fast mechanical disconnect switches (FMS) are 
an integral part of hybrid circuit breakers, which are 
proposed as protection devices to clear faults in medium 
voltage distribution systems. The proposed FMS is a 
vacuum switch that is operated by an amplified 
piezoelectric actuator. Such actuators enable 
unprecedented speed and contact separation in less than 
one millisecond. The limitations that come with such 
designs are the low contact separation of typically less than 
one millimeter in open position and low contact force in 
the order of 100 N in closed position. This requires a new 
design of the contacts to operate under such constraints. 
The geometry of the contacts must be carefully designed to 
minimize electrical resistance when closed and minimize 
electric field enhancement when open. The paper presents 
finite element analysis and experimental results with the 
aim of identifying the most suitable contact geometry for 
FMS. The experiments show that optimized contact 
geometries have up to 40% less resistance than the initial 
spherical geometry.  
 

Index Terms—Disconnector, Electrical Contact, Fault Current 
Limitation, Hybrid Circuit Breaker, Piezoelectric Actuator.  

I. INTRODUCTION  

The fault current levels in the electric grid is expected to 
increase with increase in distributed generation and DC 
systems [1, 2]. Interconnecting substations to increase the 
reliablity and resiliency of the distribution system also 
increases the fault current levels. The hybrid circuit breaker – 
which combines  fast, low loss protection and fault current 
limitation – is increasingly proposed for protection of 
distribution systems that suffer under excessive fault current 
levels. Hybrid circuit breakers are a combination of solid state 
switch and a fast mechanical disconnect switch (FMS) 
connected in parallel,  where the mechanical switch provides 
a low loss path during normal operation and the solid state 
switch (a semiconductor device) breaks the fault current. 

While most of the research on hybrid circuit breaker 
technology has focused on different topologies of power 
electronic circuits [3] for breaking fault current and its 
operation in tandem with the FMS [4], work on the design of 
FMS is rather limited with two variants: Those base on 
Thompson coil actuators [5] and those based on amplified 
piezoelectric actuators (AMA) [6]. The FMS faces unique 
constraints such as sub-millimeter contact separation when 
open and high current carrying capability and limited contact 
force when closed. The optimal design of electric contacts is 

essential for the FMS to work satisfactorily under these 
constrains.  

The electric of contacts of the FMS should have a contact 
geometry that results in nearly uniform electric field (no field 
enhancement) to minimize the risk of electric breakdown 
when the contacts are open. Also, the contacts should have low 
power loss, which requires the contacts to have low bulk and 
constriction resistance. This requires careful selection of the 
material and geometry of the contact. This paper explores 
different contact geometries for the proposed design of the 
FMS, consisting of a switchgear paddle housing the AMA, the 
contacts, and the conductors, all in a vacuum switching 
chamber [7, 8, 9].  

The proposed FMS is rated 15 kV and 600 A continuous 
current and has two ceramic bushings that act as electrical and 
thermal terminals on top of the grounded vacuum chamber. 
The piezoelectric actuator has an elliptical shell that amplifies 
the mechanical response. The shell is housed in a polymeric 
frame to which the outer conductors and the contact tabs are 
attached. The polymer of choice is polyether ether ketone 
(PEEK) due to its exceptionally low outgassing rate, low water 
absorption, and high glass transition temperature. The actuator 
is controlled by charging and discharging its electrostatic 
capacitance. The wires pass through a multi-pin feedthrough 
so that they can be interfaced from outside the vacuum 
chamber. The electric contacts of the FMS has spherical 
contacts of 5 mm radius, which have a maximum separation 
of 0.5 mm when they are open. This paper explores different 
contact geometries of Bruce and Rogowski shape [10, 11, 12, 
13], which are used to make electrodes for applications that 
require uniform electric fields. Also considered are Ernst and 
Chang profiles [14, 15, 16], which were developed to produce 
uniform electric field to obtain glow discharge in TE gas 
lasers. Elliptical and flat contacts are also studied for the sake 
of comparison. The electric field across the gap and contact 
resistance is compared for all these geometries using finite 
element models and experiments. To approximate the contacts 
of the proposed FMS, all the studied contacts have a circular 
base of 5 mm diameter and a contact travel distance of 0.5 mm. 

II. CONTACT GEOMETRIES 

The section gives an overview of the different contact 
geometries considered in this paper. It gives details on the 
mathematical functions of these geometries and the selection 
of function parameters. All the geometries (except cylindrical 
contacts with flat tops) are shown in the half-plane. The three-
dimensional contact geometry can be obtained by revolving 
this half plane around its z-axis by 360 degrees.  
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Fig. 1. Picture of the switch paddle of fast mechanical disconnect switch 
(top); CAD model and picture of the complete switch assembly (bottom 
left); Picture of the disconnect switch with feedthroughs (bottom right) – 

patent pending [8]. 
 

A) Flat Geometry 
The electrical contacts are in the shape of a cylinder with the 
circular faces of the two contacts facing each other. This 
contact geometry is studied for comparison purposes only. 

 

B) Spherical Geometry 
The spherical geometry has one variable, the radius, and is 
given by the equations 
 

𝑥 ൌ 𝑅𝑐𝑜𝑠ሺ𝜃ሻ ൅ 𝑥௖ 
 

𝑦 ൌ 𝑅𝑠𝑖𝑛ሺ𝜃ሻ ൅ 𝑦௖ 
 

where R is the radius, xc and yc are the coordinates of the center 
point, and θ is swept over 0 ൑ 𝜃 ൑

గ

ଶ
. 

 

C) Elliptical Geometry 
The radius and the height can be controlled independently. It 
is given by the equations  
 

𝑥 ൌ 𝑎𝑐𝑜𝑠ሺ𝜃ሻ ൅ 𝑥௖ 
 

𝑦 ൌ 𝑏𝑠𝑖𝑛ሺ𝜃ሻ ൅ 𝑦௖ 
 

where a and b are the radius and height of the contact 
respectively.  
 

D) Rogowski Geometry 
The Rogowski geometry has two sections: an exponential and 
a circular section that make a smooth transition. The geometry 
was derived by calculating the electric field associated with a 
flat plane above and infinite ground plane. The exponential 
section of the geometry is defined by the equations [10,11,13].  
 

𝑥 ൌ
𝐴௥

𝜋
ሺ𝜙 ൅ 𝑒థ𝑐𝑜𝑠𝜓ሻ 

𝑦 ൌ
𝐴௥

𝜋
ሺ𝜓 ൅ 𝑒థ𝑠𝑖𝑛𝜓ሻ 

 

where 𝜙 is the electrostatic line of force, 𝜓 is the equipotential 
surfaces and 𝐴௥ is the distance separating the flat plane and the 
ground plane. This can be assumed to be the distance of 
separation between the contacts and the Rogowski geometry 
can be drawn for a given distance of separation. The transition 
between circular and exponential section takes place at 𝜙 ൌ 0. 
To ensure smooth transition between circular and exponential 
section, the coordinates of the center of the circle are 
calculated to be  
 

𝑥௖ ൌ െ
𝐴௥

𝜋
 

 

𝑦௖ ൌ
𝐴௥

𝜋
ሺ
ሺ1 ൅ 𝑐𝑜𝑠𝜓ሻଶ

𝑠𝑖𝑛𝜓
൅ 𝑠𝑖𝑛𝜓 ൅ 𝜓ሻ 

 

The circular section ends at the point where the slope 
becomes vertical. The computer program used to generate 
the geometry can identify the end point.  
 

E) Bruce Geometry 
The Bruce geometry has three sections: a circular section, a 
sinusoidal section and a plane section. The contact geometry 
is drawn similar to the Rogowski profile with the circular 
section acting as the end points when it’s slope gets vertical 
and the plane section completely eliminated. The sinusoidal 
section is expressed by the equation [11, 12, 13].  
 

𝑦 ൌ െ𝑅௘sin ሺ
𝑥

𝑋଴

𝜋
2

ሻ 
 

To ensure smooth transition between circular and sinusoidal 
sections, 𝑅௘ and 𝑋଴ are given by 
 

𝑋଴ ൌ
𝐴஻

𝑐𝑜𝑠𝛼
 

 

𝑅௘ ൌ
2
𝜋

𝑋଴𝑡𝑎𝑛𝛼 
 

where α is the characteristic angle of the sinusoidal section. AB 
is the distance separating the flat plane from the ground plane. 
 

F) Chang Geometry 
To construct the Chang geometry, two complex planes 𝑧 ൌ
𝑥 ൅ 𝑖𝑦 and 𝑊ሺ𝑧ሻ ൌ 𝑈 ൅ 𝑖𝑉 are defined where U is the flux 
function and V is the potential function. The analytical 
function is given by the equation [14,16].  
 

𝑧 ൌ 𝑊 ൅ 𝐾𝑠𝑖𝑛ℎ𝑊 
 

where K is a constant that can be chosen arbitrarily and a 
different curve is generated for each value of K. The 
corresponding flux and potential function in the z-plane are 
given by the equations 
 

𝑥 ൌ 𝑈 ൅ 𝐾𝑐𝑜𝑠𝑉𝑠𝑖𝑛ℎ𝑈 
 

𝑦 ൌ 𝑉 ൅ 𝐾𝑠𝑖𝑛𝑉𝑐𝑜𝑠ℎ𝑈 
 

To construct the geometry, the value of V is selected to be 
గ

ଶ
൅

𝜃, where θ is a variable and the values of x and y are calculated 
by sweeping the variable U from 0 to a point where the slope 
of the curve becomes vertical. So the Chang geometry is 



controlled by 2 variables: θ and K and does not depend on the 
distance of separation between the contacts. The Chang 
geometry results in more compact contacts than Bruce or 
Rogowski geometry. Since all the contacts studied here have 
a radius of 5 mm, the Chang contacts have a flat section at its 
center, which gives more area of contact when the contacts are 
closed.  
 

G) Ernst Geometry 
The Ernst geometry results in a more compact geometry than 
the Chang geometry. The analytical function is given by 
[15,16].  
 

𝑧 ൌ  𝑊 ൅ 𝑘଴𝑠𝑖𝑛ℎ𝑊 ൅ 𝑘ଵ𝑠𝑖𝑛ℎ2𝑊 ൅ 𝑘ଶ𝑠𝑖𝑛ℎ3𝑊 
 

where 𝑘଴, 𝑘ଵ and 𝑘ଶ are constants chosen arbitrarily and 𝑧 and 
𝑊 are two complex planes similar to the Chang geometry. The 
corresponding flux and potential function in the z plane are 
given by the equations 
 

𝑥 ൌ 𝑈 ൅ 𝑘଴𝑐𝑜𝑠𝑉𝑠𝑖𝑛ℎ𝑈 ൅ 𝑘ଵ𝑐𝑜𝑠2𝑉𝑠𝑖𝑛ℎ2𝑈
൅ 𝑘ଶ𝑐𝑜𝑠3𝑉𝑠𝑖𝑛ℎ3𝑈 

 

𝑦 ൌ 𝑉 ൅ 𝑘ଵ𝑠𝑖𝑛𝑉𝑐𝑜𝑠ℎ𝑈 ൅ 𝑘ଶ𝑠𝑖𝑛2𝑉𝑐𝑜𝑠ℎ2𝑉
൅ 𝑘ଶ𝑠𝑖𝑛3𝑉 𝑐𝑜𝑠ℎ3𝑉 

 

The value of V is selected to be 
గ

ଶ
൅ 𝜃, where θ is a variable 

and the value of x and y are calculated by sweeping the 

variable U from 0 to a point where the slope of the curve 
becomes vertical. The geometry is controlled by 4 variables: 
θ, 𝑘଴, 𝑘ଵ and 𝑘ଶ. The variables are generally chosen such that 
𝑘଴ ൐ 𝑘ଵ ൐ 𝑘ଶ. The geometry is more compact than Chang but 
harder to construct as the variables are chosen arbitrarily and 
the wrong combination of variables make the geometry go out 
of proportion. 

III. ELECTRIC FIELD ANALYSIS 

Electric breakdown in vacuum can take place either due to 
field emission or thermionic emission. The former causes 
electrostatically induced electrons to be emitted from the 
surface and the latter causes thermally charge carriers to flow 
over a potential barrier. While both field and thermionic 
emission can take place between the open contacts of FMS, 
only field emission is affected by the magnitude of electric 
field between the contacts. High electrostatic can result due to 
contaminants on the contact surface or change in the structure 
of the contacts due to deformation, friction and wear 
experienced by the contacts during the operation of FMS. 
Having a geometry that minimizes the electric field in the gap 
between the contacts can reduce the possibility of a 
breakdown when the contacts are open.  

 

 
                           (a)                                                                 (b)                                                                  (c) 
 
 

   
                           (d)                                                                 (e)                                                                  (f) 
 

 
(g) 

 
Fig. 2. Finite Element Result of Normalized Electric Field Distribution for contacts with 5mm base radius  

(a) Spherical, (b) Elliptical h = 3 mm, (c) Flat h = 5 mm, d) Rogowski ϕ=360°, (e) Bruce α = 50° Contact, (f) Chang k = 0.2, 
(g) Ernst  𝑘ଵ ൌ  0.3,  𝑘ଶ ൌ  𝑘ଷ ൌ  10ିସ.  



The electric field is modelled using a finite element model 
with 0.5 mm separation between the contacts for all 
geometries. All contacts have a circular base with radius of 5 
mm. Since the electric contacts are symmetrical in two axes, a 
2D axisymmetric model is used. The medium between the 
contacts is vacuum. The top contact is given a potential of 1 V 
and the bottom contact is grounded. The normalized electric 
field, i.e. the electric field vector normal to the surface, is 
plotted along the surface of the 1 V contact. The maximum 
electric field along the surface of the contact is tabulated. If the 
electric field is completely uniform, the normalized electric 
field will have a maximum value of 2 V/mm. The normalized 
electric field in the gap between the contacts for different 
geometries is shown in Fig. 2.  

 
A) Spherical, Elliptical and Flat Geometry 

 

Fig. 3 shows the variation of normalized electric field along 
the surface of the contact for circular, elliptical and flat 
contacts. It is seen that elliptical and flat geometries have lower 
electric field than circular geometry at the centre (0 mm in the 
x-axis). However, flat contacts have high electric field at the 
edges of the contact, which make them unsuitable as contacts 
of FMS. The peak electric field along the contact surface for 
these geometries are shown in Table I. 

 
Fig. 3. Variation of Normalized Electric Field along surface for Spherical, 

Flat and Elliptical geometries. 

 
TABLE I 

PEAK ELECTRIC FIELD OF SPHERICAL, FLAT AND ELLIPTICAL CONTACTS (RADIUS = 5 MM) 

Contact Geometry Peak Electric Field (V/mm)
Spherical 2.0685 

Flat 2.7577 
Elliptical (h = 2 mm) 2.0271 
Elliptical (h = 3 mm) 2.0406 
Elliptical (h = 4 mm) 2.0544 

 
B) Rogowski and Bruce Geometry 

 

Fig. 4 shows the variation of normalized electric field along 
the surface of the contact for different Rogowski geometries. 
Rogowski geometries with 𝜙 ൌ 270°, 360°, 450° and 540° 
have a lower peak electric field than spherical geometry. The 
peak electric fields are shown in Table II.  
  

 
Fig. 4. Variation of Normalized Electric Field along surface for different 

Rogowski geometries. 
 

TABLE II 
PEAK ELECTRIC FIELD OF ROGOWSKI CONTACTS (RADIUS = 5 MM) 

Contact Geometry Peak Electric Field (V/mm)

𝜙 ൌ 180° 2.1790 

𝜙 ൌ 270° 2.0380 

𝜙 ൌ 360° 2.0081 

𝜙 ൌ 450° 2.0017 

𝜙 ൌ 540° 2.0000 

 
Fig. 5 shows the variation of normalized electric field along 

the surface of the contact for different Bruce geometries. All 
the Bruce geometries shown have a lower peak electric field 
than spherical geometry.  The peak electric fields are shown in 
Table III.  
 

 
Fig. 5. Variation of Normalized Electric Field along surface for different 

Bruce geometries. 

 
TABLE III 

PEAK ELECTRIC FIELD OF BRUCE CONTACTS (RADIUS = 5 MM) 

Contact Geometry Peak Electric Field (V/mm)

𝛼 ൌ 30° 2.0023 

𝛼 ൌ 40° 2.0023 

𝛼 ൌ 50° 2.0019 

𝛼 ൌ 60° 2.0013 

𝛼 ൌ 70° 2.0007 
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C) Chang and Ernst Geometry 
 

Fig. 6 shows the variation of normalized electric field along 
the surface of the contact for different Chang geometries. 
Although the electric field near the center of the geometry is 
uniform, field enhancement at the edges can lead to higher 
peak electric fields. Chang geometries with 𝑘 ൌ 0.2, 0.3 and 
0.4 have a lower peak electric field than spherical geometry. 
The peak electric fields are shown in Table IV.  
 

 
Fig. 6. Variation of Normalized Electric Field along surface for different 

Chang geometries. 

 
TABLE IV 

PEAK ELECTRIC FIELD OF CHANG  CONTACTS (RADIUS = 5 MM) 

Contact Geometry Peak Electric Field (V/mm)
𝑘 ൌ 0.2 2.0276 
𝑘 ൌ 0.3 2.0438 
𝑘 ൌ 0.4 2.0535 
𝑘 ൌ 0.5 2.0821 

 
Fig. 7 shows the variation of normalized electric field along 

the surface of the contact for different Ernst geometries. 
Although the electric field near the center of the geometry is 
uniform, field enhancement at the edges can lead to higher 
peak electric fields. All the Ernst geometries shown in Table V 
have a lower peak electric field than spherical geometry. 
 

 
Fig. 7. Variation of Normalized Electric Field along surface for different  

Ernst geometries. 

TABLE V 
PEAK ELECTRIC FIELD OF ERNST CONTACTS (RADIUS = 5 MM) 

Contact Geometry Peak Electric Field 
(V/mm)

𝑘ଵ ൌ 0.2, 𝑘ଶ ൌ 10ିଷ, 𝑘ଷ ൌ 10ି଺ 2.0271 
𝑘ଵ ൌ 0.2, 𝑘ଶ ൌ 10ିଶ, 𝑘ଷ ൌ 10ିସ 2.0218 
𝑘ଵ ൌ 0.3, 𝑘ଶ ൌ 10ିଷ, 𝑘ଷ ൌ 10ି଺ 2.0432 
𝑘ଵ ൌ 0.3, 𝑘ଶ ൌ 10ିଶ, 𝑘ଷ ൌ 10ିସ 2.0376 

IV. CONTACT RESISTANCE MEASURMENT 

The electrical resistance of the contact geometries are 
measured experimentally. The experimental setup is shown in 
Figure 8. 
 
 

 

 

 
 
Fig. 8. Picture of the Contact Experiment Setup (top left); CAD rendering of 
contact experiment with parts labelled (top right); Close up view of electric 

contacts showing banana plugs (bottom). 
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The setup consists of a six-way cross, which is a spherical 
chamber with ConFlat vacuum flanges at the six ends (top, 
bottom, front, back, left and right). On two opposite flanges, a 
feedthrough and a linear motion actuator are attached. Electric 
contacts are bolted to the copper feedthrough and a copper rod 
which is attached to the linear motion actuator through a load 
cell and a vibration mount. The force between the contacts is 
adjusted by manually rotating the actuator, which will press 
one contact onto the other. The load cell will measure the force 
between the contacts and the vibration mount is used to reduce 
the spring constant of the system. This allows the force 
between the contacts to be adjusted with an accuracy of +/- 
1 N. The measurements taken inside the chamber, such as 
force and the electric contact resistance are read outside the 
chamber through a multipin feedthrough. The chamber is 
evacuated using a pump and the measurements are taken at a 
maximum pressure of 10- 3 mbar.  
 

 

Fig. 9. Contact bolted to linear motion actuator 

 
The design of contacts used in the experiment is shown in 

Fig.  10. All the contacts are made of high-purity 101 copper 
and are machined in a CNC mill. Copper is chosen due to its 
high conductivity and relative ease of obtaining the material 
(compared to actual contact materials like AgWC) for 
experimental purposes.  All the contacts have a circular base 
with radius 5 mm. They are mounted on a 4 mm thick circular 
plate of 25 mm diameter. The plate has countersunk holes that 
allow the contact to be bolted to the feedthroughs without the 
bolt heads protruding. All the tested contacts have similar 
volume with 11% difference in volume between contact with 
the highest and lowest volume. So the difference in contact 
resistance between different geometries is mostly due to 
constriction resistance and not bulk resistance. 
 

 
Fig. 10. CAD model of electric contact with parts labelled (left); Machined 

Rogowski contacts (ϕ = 3π) (right). 

 
Direct current is passed through the contacts using a fully 

programmable Magna Power TS Series power supply. The 
copper conductors to which the contacts are bolted have a hole 
through which banana plugs are inserted. The voltage drop 
between these terminals divided by the current is considered 
the resistance of the contacts for this experiment. The contacts 
are cleaned to remove any contaminants on its surface. The 

resistance is measured at currents of 5, 10, 15, 20 and 25 A as 
a function of force by adjusting the force between the contacts 
from 5 N to 200 N. Since the currents are fairly low passed for 
a short duration (less than 1 minute), any effect on contact 
resistance due to Joule heating is minimized. Fig. 11 shows the 
contacts’ resistance as a function of force for different contact 
geometries.   
 

 
Fig. 11. Contact Resistance vs Force for different contact geometries. 

 

The contact resistance has 3 components: bulk resistance, 
constriction resistance and film resistance [17]. At low loads, 
the film resistance will dominate as the oxide films, that have 
higher resistance than copper, are in contact. As the load is 
increased, the constriction resistance dominates as the number 
of a-spots increases. At high loads, the bulk resistance of the 
contacts will dominate as the real area of contact is very close 
to the nominal area of contact. In Fig. 6, the difference in 
volume between different geometries is 11% between the 
geometry with highest volume (flat) and lowest volume 
(Ernst). So the difference in contact resistance between 
different geometries cannot be due to the difference in bulk 
resistance.  

It can be seen that spherical contacts, which are currently 
used in the FMS based on AMA, have the highest resistance 
and flat contacts have the lowest resistance. However, flat 
contacts have high electric field at their edges which make 
them unsuitable as contacts of the FMS. Optimized contact 
geometries such as Bruce, Rogowski, Ernst and Chang have 
low contact resistance as well as uniform electric field, which 
make them very suitable as contacts of a FMS. While contacts 
with higher nominal area of contact are generally observed to 
have lower resistance than contacts with lower nominal area, 
this is not true for elliptical contacts, which have lower contact 
resistance despite having lower nominal area of contact than 
Rogowski and Chang profiles. This could be due to the contact 
being slightly misaligned when placed in the experimental 
setup, which may have increased its nominal area of contact. 
Also, the surface roughness of the contacts have not been 
measured which could have caused elliptical contacts to have 
lower than expected resistance.  
 



V. CONCLUSIONS AND FUTURE WORK 

The electric contacts of FMS should have a geometry that 
results in low power loss when closed and uniform electric 
field when open. Different contact geometries such as 
Elliptical, Bruce, Rogowski, Ernst and Chang are explored to 
be used in proposed FMS. Finite element models show that 
optimized contact geometries have more uniform electric field 
that spherical geometry. Experimental results show that 
optimized geometries have upto 40% lower contact resistance 
than spherical geometry. Further research needs to be done on 
the effect of surface roughness on the contact resistance. The 
effect on electric contact material also has a significant effect 
on the performance on FMS and needs to be explored. The 
long term performance of contacts with proposed geometries 
also needs to be investigated.  
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