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Abstract

Deep neural networks, in particular convolutional neural networks, have become highly effec-
tive tools for compressing images and solving inverse problems including denoising, inpainting,
and reconstruction from few and noisy measurements. This success can be attributed in part to
their ability to represent and generate natural images well. Contrary to classical tools such as
wavelets, image-generating deep neural networks have a large number of parameters—typically
a multiple of their output dimension—and need to be trained on large datasets. In this paper,
we propose an untrained simple image model, called the deep decoder, which is a deep neural
network that can generate natural images from very few weight parameters. The deep decoder
has a simple architecture with no convolutions and fewer weight parameters than the output
dimensionality. This underparameterization enables the deep decoder to compress images into
a concise set of network weights, which we show is on par with wavelet-based thresholding.
Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to
have state-of-the-art performance for denoising. The deep decoder is simple in the sense that
each layer has an identical structure that consists of only one upsampling unit, pixel-wise lin-
ear combination of channels, ReLU activation, and channelwise normalization. This simplicity
makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural
networks that enable them to form effective signal representations.

1 Introduction

Data models are central for signal and image processing and play a key role in compression and
inverse problems such as denoising, super-resolution, and compressive sensing. These data models
impose structural assumptions on the signal or image, which are traditionally based on expert
knowledge. For example, imposing the assumption that an image can be represented with few
non-zero wavelet coefficients enables modern (lossy) image compression [Ant+92] and efficient de-
noising [Don95].

In recent years, it has been demonstrated that for a wide range of imaging problems, from
compression to denoising, deep neural networks trained on large datasets can often outperform
methods based on traditional image models [Tod+16; Agu+17; The+17; Bur+12; Zha+17]. This
success can largely be attributed to the ability of deep networks to represent realistic images when
trained on large datasets. Examples include learned representations via autoencoders [HS06] and
generative adversarial models [Goo+14]. Almost exclusively, three common features of the recent
success stories of using deep neural network for imaging related tasks are that the corresponding
networks are over-parameterized (i.e., they have much more parameters than the dimension of
the image that they represent or generate), that the networks have a convolutional structure, and
perhaps most importantly, that the networks are trained on large datasets.
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An important exception that breaks with the latter feature is a recent work by Ulyanov et
al. [Uly+18], which shows that a deep neural network—over-parameterized and convolutional—can
solve inverse problems well without any training. Specifically, Ulyanov et al. [Uly+18] demonstrated
that fitting the weights of an over-parameterized deep convolutional network to a single image, when
done in combination with regularization by early stopping, can yield state-of-the-art performance
for inverse problems like denoising, superresolution, and inpainting. This result is surprising as
it suggests that the combination of the network structure and the early stopping regularization
provides an effective model for natural signals without a large training dataset.

In this paper, we propose a simple image model in the form of a deep neural network that
can generate natural images well, and thus enables image compression, denoising, and solving
other inverse problems with close-to or state-of-the-art performance. We call the network a deep
decoder, due to its resemblance to the decoder part of an autoencoder. The network does not require
training, and contrary to previous approaches, the network itself incorporates all assumptions on
the data, is under-parameterized, does not involve convolutions, and has a simplicity that makes
it amenable to theoretical analysis. The key features of the approach, and key contributions of the
paper are as follows:

• The network is not learned and itself incorporates all assumptions on the data. Instead of
being trained with a large dataset, the parameters of the network are optimized to fit a
single image. This has multiple benefits: the same network and code is usable for multiple
applications; and the method is not sensitive to a potential misfit between training and test
data, since there is no training. The method does not make assumptions on the class of
natural images as part of additional regularization, such as by stopping optimization early.

• The network is under-parameterized in the sense that there are fewer weight parameters than
the dimensionality of the output image. Thus, the network maps a lower-dimensional space to
a higher-dimensional space, similar to classical image representations such as sparse wavelet
representations. This feature enables image compression by storing the coefficients of the
network after its weights are optimized to fit a single image. In Section 2, we demonstrate
that the compression is on-par with wavelet thresholding [Ant+92], a strong baseline that
underlies JPEG-2000. An additional benefit of underparameterization is that it provides a
barrier to overfitting, which enables robustness to noise.

• The network does not have a convolutional structure. The majority of the networks for image
compression, restoration, and recovery have a convolutional structure [Tod+16; Agu+17;
The+17; Bur+12; Zha+17]. While convolutions are perhaps critical and certainly useful for
a number of important image related problems, our work suggests that they are not critical
for the specific problem of generating an image without learning.

• The network only consists of a simple combination of few building blocks, which makes it
amenable to analysis and theory. For example, we prove that the deep decoder can only
fit a small proportion of noise, which, combined with the empirical observation that it can
represent natural images well, explains its denoising performance.

The remainder of the paper is organized as follows. In Section 2, we first demonstrate that
the deep decoder enables concise image representations. We formally introduce the deep decoder
in Section 3. In Section 4, we show the performance of the deep decoder on a number of inverse
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problems such as denoising. In Section 5 we discuss related work, and finally, in Section 6 we
provide theory and explanations on what makes the deep decoder work.

2 Concise image representations with a deep image model

Intuitively, a model describes a class of signals well if it is able to represent or approximate a
member of the class with few parameters. In this section, we demonstrate that the deep decoder,
an untrained, non-convolutional neural network, defined in the next section, enables concise rep-
resentation of an image—on par with state of the art wavelet thresholding.

The deep decoder is a deep image model G : RN → R
n, where N is the number of parameters

of the model, and n is the output dimension, which is typically much larger than the number of
parameters (N ≪ n). The parameters of the model, which we denote by C, are the weights of the
network, and not the input of the network, which we will keep fixed. To demonstrate that the deep
decoder enables concise image representations, we choose the number of parameters of the deep
decoder, N , such that it is a small fraction of the output dimension of the deep decoder, i.e., the
dimension of the images1.

We draw 100 images from the ImageNet validation set uniformly at random and crop the center
to obtain a 512x512 pixel color image. For each image x∗, we fit a deep decoder model G(C) by
minimizing the loss

L(C) = ‖G(C)− x∗‖22
with respect to the network parameters C using the Adam optimizer. We then compute for each
image the corresponding peak-signal-to-noise ratio, defined as 10 log10(1/MSE), where MSE =

1
3·5122

‖x∗ −G(C)‖22, G(C) is the image generated by the network, and x∗ is the original image.
We compare the compression performance to wavelet compression [Ant+92] by representing each

image with the N -largest wavelet coefficients. Wavelets—which underly JPEG 2000, a standard for
image compression—are one of the best methods to approximate images with few coefficients. In
Figure 1 we depict the results. It can be seen that for large compression ratios (3 · 5122/N = 32.3),
the representation by the deep decoder is slightly better for most images (i.e., is above the red line),
while for larger compression ratios (3 · 5122/N = 8), the wavelet representation is slightly better.
This experiment shows that deep neural networks can represent natural images well with very few
parameters and without any learning.

The observation that, for small compression ratios, wavelets enable more concise representations
than the deep decoder is intuitive because any image can be represented exactly with sufficiently
many wavelet coefficients. In contrast, there is no reason to believe a priori that the deep decoder
has zero representation error because it is underparameterized.

The main point of this experiment is to demonstrate that the deep decoder is a good image
model, which enables applications like solving inverse problems, as in Section 4. However, it also
suggest that the deep decoder can be used for lossy image compression, by quantizing the coefficients
C and saving the quantized coefficients. In the appendix, we show that image representations of
the deep decoder are not sensitive to perturbations of its coefficients, thus quantization does not
have a detrimental effect on the image quality. Deep networks were used successfully before for the
compression of images [Tod+16; Agu+17; The+17]. In contrast to our work, which is capable of

1Specifically, we took a deep decoder G with d = 6 layers and output dimension 512× 512× 3, and choose k = 64

and k = 128 for the large and small compression ratios, respectively.
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Figure 1: The deep decoder (depicted on the right) enables concise image representations, on-
par with state-of-the-art wavelet based compression. The crosses on the left depict the PSNRs
for 100 randomly chosen ImageNet-images represented with few wavelet coefficients and with a
deep decoder with an equal number of parameters. A cross above the red line means the corre-
sponding image has a smaller representation error when represented with the deep decoder. The
deep decoder is particularly simple, as each layer has the same structure, consisting of one chan-
nelwise normalization (BN), a pixel-wise linear combination of channels, ReLU nonlinearity, and
upsampling.

compressing images without any learning, the aforementioned works learn an encoder and decoder
using convolutional recurrent neural networks [Tod+16] and convolutional autoencoders [The+17]
based on training data.

3 The deep decoder

We consider a decoder architecture that transforms a randomly chosen and fixed tensorB1 ∈ R
n1×k1

consisting of k1 many n1-dimensional channels to an nd × kout dimensional image, where kout = 1
for a grayscale image, and kout = 3 for an RGB image with three color channels. Throughout, ni

has two dimensions; for example our default configuration has n1 = 16 × 16 and nd = 512 × 512.
The network transforms the tensor B1 to an image using batch-normalization and upsampling
operations, pixel-wise linearly combining the channels, and applying rectified linear units (ReLUs).
Specifically, the channels in the (i+ 1)-th layer are given by

Bi+1 = Uirelu(bn(BiCi)), i = 1, . . . , d.

Here, the coefficient matrices Ci ∈ R
ki×ki+1 contain the weights of the network. Each column of

the tensor BiCi ∈ R
ni×ki+1 is formed by taking linear combinations of the channels of the tensor

Bi in a way that is consistent across all pixels.
Then, bn(·) performs the batch norm operation [IS15], which is equivalent to normalizing each

channel individually. Specifically, let Zi = BiCi be the channels in the i-th layer, and let zij be the
j-th channel in the i-th layer. Then batch normalization performs the following transformation:

z′ij =
zij−mean(zij)√

var(zij)+ǫ
γij + βij , where mean and var compute the empirical mean and variance, and γij
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and βij are parameters, learned independently for each channel, and ǫ is a fixed small constant.
Learning the parameters γ and β helps the optimization but is not critical.

The operator Ui ∈ R
ni+1×ni is an upsampling tensor, which we choose throughout so that it

performs bi-linear 2x upsampling. For example, if the channels in the first layer have dimensions
n1 = 16× 16, then the upsampling operator U1 upsamples each channel to dimensions 32× 32. In
the last layer, we do not upsample, which is to say that we choose the corresponding upsampling
operator as the identity. Finally, the output of the d-layer network is formed as

x = sigmoid(BdCd+1),

where Cd+1 ∈ R
kd×kout . Throughout, our default architecture is a d = 6 layer network with ki = k

for all i, and we focus on output images of dimensions nd = 512 × 512. See Figure 1 for an
illustration. Recall that the parameters of the network are given by C = {C1,C2, . . . ,Cd,Cd+1},
and the output of the network is only a function of C, since we choose the tensor B1 at random
and fix it. Therefore, we write x = G(C). Note that the number of parameters is given by
∑d

i=1(kiki+1+2ki)+kd+1kd, where the term 2ki corresponds to the two free parameters associated
with the batch norm. We choose the number of output (i.e. color) channels throughout as kout = 3
and the other parameters as ki = k, for all i. Thus, the number of parameters is dk2 + 2dk + 3k.

We finally note that taking pixelwise linear combinations of channels (with a consistent trans-
formation across all pixels) is equivalent to performing 1x1 convolutions. To stress the fact that 1x1
convolutions are degenerate convolutions that do not exploit locality within images by extracting
features from local image patches, we refrain from naming this operation a convolution throughout
the paper. The deep decoder is not a convolutional neural network.

4 Solving inverse problems with the deep decoder

In this section, we use the deep decoder as a structure-enforcing model for solving standard inverse
problems: denoising, super-resolution, and inpainting. In all of those inverse problems, the goal is
to recover an image x from a noisy observation y = f(x) + η. Here, f is a known forward operator
(possibly equal to identity), and η is structured or unstructured noise.

We recover the image x with the deep decoder as follows. Motivated by the finding from the
previous section that a natural image x can (approximately) be represented with the deep decoder
as G(C), we estimate the unknown image from the noisy observation y by minimizing the loss

L(C) = ‖f(G(C))− y‖22
with respect to the model parameters C. Let Ĉ be the result of the optimization procedure. We
estimate the image as x̂ = G(Ĉ).

We use the Adam optimizer for minimizing the loss, but have obtained comparable results with
gradient descent. Note that this optimization problem is non-convex and we might not reach a
global minimum. Throughout, we consider the least-squares loss (i.e., we take ‖·‖2 to be the ℓ2
norm), but the loss function can be adapted to account for structure of the noise.

We remark that fitting an image model to observations in order to solve an inverse problem
is a standard approach and is not specific to the deep decoder or deep-network-based models in
general. Specifically, a number of classical signal recovery approaches fit into this framework; for
example solving a compressive sensing problem with ℓ1-norm minimization amounts to choosing
the forward operator as f(x) = Ax and minimizing over x in a ℓ1-norm ball.
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Figure 4: Denoising with the deep decoder and the deep image prior: Due to under-
parameterization, the deep decoder can only fit a small proportion of the noise, and thus enables
image denoising. Early stopping can enhance the performance. The deep image prior can fit
noise very well, but fits an image faster than noise, thus early stopping is critical for denoising
performance.

whereas the deep decoder is under-parameterized. ii) Since the DIP is highly over-parameterized, it
critically relies on regularization through early stopping and adding noise to its input, whereas the
deep decoder does not need to be regularized (however, regularization can enhance performance).
iii) The DIP is a convolutional neural network, whereas the deep decoder is not.

We further illustrate point ii) comparing the DIP and deep decoder by denoising the astronaut
image from Figure 2. In Figure 4(a) we plot the Mean Squared Error (MSE) over the number of

iterations of the optimizer for fitting the noisy astronaut image x + η (i.e.,
∥

∥G(Ct)− x
∥

∥

2

2
where

Ct are the parameters of the deep decoder after t iterations). In Figure 4(b) and (c), we plot the

loss or MSE associated with fitting the noiseless astronaut image, x, (
∥

∥G(Ct)− x
∥

∥

2

2
) and the noise

itself, η, (
∥

∥G(Ct)− η
∥

∥

2

2
).

The plots in Figure 4 show that with sufficiently many iterations, both the DIP and the DD can
fit the image well. However, even with a large number of iterations, the deep decoder can not fit the
noise well, whereas the DIP can. This is not surprising, given that the DIP is over-parameterized
and the deep decoder is under-parameterized. In fact, in Section 6 we formally show that due to
the underparameterization, the deep decoder can only fit a small proportion of the noise, no matter
how and how long we optimize. As a consequence, it filters out much of the noise when applied
to a natural image. In contrast, the DIP relies on the empirical observation that the DIP fits a
structured image faster than it fits noise, and thus critically relies on early stopping.

6 Discussion on what makes the decoder work

In the previous sections we empirically showed that the deep decoder can represent images well and
at the same time cannot fit noise well. In this section, we formally show that the deep decoder can
only fit a small proportion of the noise, relative to the degree of underparameterization. In addition,
we provide insights into how the components of the deep decoder contribute to representing natural
images well, and we provide empirical observations on the sensitivity of the parameters and their
distribution.
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6.1 The deep decoder can only fit little noise

We start by showing that an under-parameterized deep decoder can only fit a proportion of the
noise relative to the degree of underparameterization. At the heart of our argument is the intuition
that a method mapping from a low- to a high-dimensional space can only fit a proportion of the
noise relative to the number of free parameters. For simplicity, we consider a one-layer network,
and ignore the batch normalization operation. Then, the networks output is given by

G(C) = U1relu(B1C1)c2 ∈ R
n.

Here, we take C = (C1, c2), where C1 is a k× k matrix and c2 is a k-dimensional vector, assuming
that the number of output channels is 1. While for the performance of the deep decoder the
choice of upsampling matrix is important, it is not relevant for showing that the deep decoder
cannot represent noise well. Therefore, the following statement makes no assumptions about the
upsampling matrix U1.

Proposition 1. Consider a deep decoder with one layer and arbitrary upsampling and input ma-

trices. That is, let B1 ∈ R
n1×k and U1 ∈ R

n×n1. Let η ∈ R
n be zero-mean Gaussian noise with

covariance matrix I. Assume that k2 log(n1)/n ≤ 1/32. Then, with probability at least 1− 2n−k2

1 ,

min
C

‖G(C)− η‖22 ≥ ‖η‖22
(

1− 20
k2 log(n1)

n

)

.

The proposition asserts that the deep decoder can only fit a small portion of the noise energy,
precisely a proportion determined by its number of parameters relative to the output dimension, n.
Our simulations and preliminary analytic results suggest that this statement extends to multiple

layers in that the lower bound becomes
(

1− c
k2 log(

∏d
i=1

ni)
n

)

, where c is a numerical constant.

6.2 Upsampling

Upsampling is a vital part of the deep decoder because it is the only way that the notion of locality
enters the signal model. The choice of the upsampling method strongly affects the ‘character’ of
the resulting signal estimates. We now discuss the impacts of a few choices of upsampling matrices
Ui, and their impact on the images the model can fit.

No upsampling: If there is no upsampling, or, equivalently, if Ui = I, then there is no notion
of locality in the resulting image. All pixels become decoupled, and there is then no notion of
which pixels are near to each other. Specifically, a permutation of the input pixels (the rows of
B1) simply induces the identical permutation of the output pixels. Thus, if a deep decoder without
upsampling could fit a given image, it would also be able to fit random permutations of the image
equally well, which is practically equivalent to fitting random noise.

Nearest neighbor upsampling: If the upsampling operations perform nearest neighbor
upsampling, then the output of the deep decoder consists of piecewise constant patches. If the
upsampling doubles the image dimensions at each layer, this would result in patches of 2d × 2d

pixels that are constant. While this upsampling method does induce a notion of locality, it does
so too strongly in the sense that squares of nearby pixels become identical and incapable of fitting
local variation within natural images.
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Figure 5: The blue curves show a one-dimensional piecewise smooth signal, and the red crosses show
estimates of this signal by a one-dimensional deep decoder with either linear or convex upsampling.
We see that linear upsampling acts as an indirect signal prior that promotes piecewise smoothness.

Linear and convex, non-linear upsampling: The specific choice of upsampling matrix
affects the multiscale ‘character’ of the signal estimates. To illustrate this, Figure 5 shows the
signal estimate from a 1-dimensional deep decoder with upsampling operations given by linear
upsampling (x0, x1, x2, . . .) 7→ (x0, 0.5x0 + 0.5x1, x1, 0.5x1 + 0.5x2, x2, . . .) and convex nonlinear
upsampling given by (x0, x1, x2, . . .) 7→ (x0, 0.75x0 + 0.25x1, x1, 0.75x1 + 0.25x2, x2, . . .). Note that
while both models are able to capture the coarse signal structure, the convex upsampling results in a
multiscale fractal-like structure that impedes signal representation. In contrast, linear upsampling
is better able to represent smoothly varying portions of the signal. Linear upsampling in a deep
decoder indirectly encodes the prior that natural signals are piecewise smooth and in some sense
have approximately linear behavior at multiple scales

6.3 Network input

Throughout, the network input is fixed. We choose the network input B1 by choosing its entries
uniformly at random. The particular choice of the input is not very important; it is however
desirable that the rows are incoherent. To see this, as an extreme case, if any two rows of B1 are
equal and if the upsampling operation preserves the values of those pixels exactly (for example, as
with the linear upsampling from the previous section), then the corresponding pixels of the output
image is also exactly the same, which restricts the range space of the deep decoder unrealistically,
since for any pair of pixels, the majority of natural images does not have exactly the same value at
this pair of pixels.

6.4 Image generation by successive approximation

The deep decoder is tasked with coverting multiple noise channels into a structured signal primarily
using pixelwise linear combinations, ReLU activation funcions, and upsampling. Using these tools,
the deep decoder builds up an image through a series of successive approximations that gradually
morph between random noise and signal. To illustrate that, we plot the activation maps (i.e.,
relu(BiCi)) of a deep decoder fitted to the phantom MRI test image (see Figure 6). We choose
a deep decoder with d = 5 layers and k = 64 channels. This image reconstruction approach is
in contrast to being a semantically meaningful hierarchical representation (i.e., where edges get
combined into corners, that get combined into simple shapes, and then into more complicated
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Appendix

A Proof of Proposition 1

Suppose that the network has two layers, i.e., G(C) = Udrelu(B1C)c2. We start by re-writing
B2 = relu(B1C) in a convenient form. For a given vector x ∈ R

n, denote by diag(x > 0) the
matrix that contains one on its diagonal if the respective entry of x is positive and zero otherwise.
Let cjci denote the i-th column of Cj , and denote by Wji ∈ {0, 1}k×k the corresponding diagonal
matrix Wji = diag(Bjcjci > 0). With this notation, we can write

B2 = relu(B1C1) = [W11B1c1c1, . . . ,W1kB1c1ck].

Thus,

G(C) = U1[W11B1, . . . ,W1kB1]







c1c1[c2]1
...

c1c1[c2]k






,

where [c2]i denotes the i-th entry of c2. Thus, G(C) lies in the union of at-most-k2-dimensional
subspaces of Rn, where each subspace is determined by the matrices {W1j}kj=1. The number of

those subspaces is bounded by nk2 . This follows from the fact that for each matrix W1j , by
Lemma 1 below, the number of different matrices is bounded by nk. Since there are k matrices,
the number of different sets of matrices is bounded by nk2 .

Lemma 1. For any W ∈ R
n×k and k ≥ 5,

|{diag(Wv > 0)W|v ∈ R
k}| ≤ nk.
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Next, fix the matrixes {W1j}j . As G(C) lies in an at-most-k2-dimensional subspace, let S be
a k2-dimensional subspace that contains the range of G for these fixed {W1j}j . It follows that

min
C

‖G(C)− η‖22 ≥
‖PScη‖22
‖η‖22

. (1)

Now, we make use of the following bound on the projection of the noise η onto a subspace.

Lemma 2. Let S ⊂ R
n be a subspace with dimension ℓ. Let η ∼ N (0, In) and β ≥ 1. Then,

P

[

‖PScη‖22
‖η‖22

≥ 1− 10βℓ

n

]

≥ 1− e−βℓ − e−n/16.

Proof of Lemma 2. From Laurent and Massart [LM00, Lem. 1], if X ∼ χ2
n, then

P
[

X − n ≥ 2
√
nx+ 2x

]

≤ e−x,

P
[

X ≤ n− 2
√
nx

]

≤ e−x.

With these, we obtain

P [X ≥ 5βn] ≤ e−βn if β ≥ 1, (2)

P [X ≤ n/2] ≤ e−n/16. (3)

We have
‖PScη‖2

2

‖η‖2
2

= 1− ‖PSη‖
2
2

‖η‖2
2

. Note that ‖PSη‖2 ∼ χ2
ℓ and ‖η‖22 ∼ χ2

n. Applying inequality (2) to

bound ‖PSη‖2 and inequality (3) to bound ‖η‖22, a union bound gives that claim.

Thus, by inequality (1) and Lemma 2 with ℓ = k2, for all β ≥ 1,

P

[

1

‖η‖22
min
C

‖G(C)− η‖22 ≥ 1− 10βk2

n

∣

∣

∣

∣

∣

{W1j}j
]

≥ 1− e−k2β − e−n/16. (4)

Since the number of matrices {W1j}j is bounded by nk2
1 , by a union bound,

P

[

1

‖η‖22
min
C

‖G(C)− η‖22 ≤ 1− 10βk2

n

]

≤ nk2

1 (e−βk2 + e−n/16) ≤ 2n−k2

1 , (5)

where the last inequality follows with choosing β = 2 log(n1) and by the assumption that k2 <
n

32 logn1
. This proves the claim in Proposition 1.

A.1 Proof of Lemma 1

Our goal is to count the number of sign patterns (Wv > 0) ∈ {0, 1}. Note that this number is
equal to the maximum number of partitions one can get when cutting a k-dimensional space with n
many hyperplanes that all pass through the origin, and are perpendicular to the rows of W. This
number if well known (see for example Winder [Win66]) and is upper bounded by

2
n−1
∑

i=0

(

n− 1

k

)

.
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