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ABSTRACT: The assembly of magnetic Janus particles in a
quasi-two-dimensional environment with a dipole moment
shifted from the center and oriented perpendicular to the
Janus cap height is studied with optical microscopy and found
to adhere to a general model accounting for the particle dipole
strength, the particle Brownian dynamics, the initial
concentration, and, most importantly, the magnetic dipole
shift. The particle aggregates are treated as diffusing
spherocylinders with length and width dependent on the
magnetic dipole shift. Aggregation occurs irreversibly once
particle aggregates enter within a distance at which Brownian and dipole forces are equal, defined as the capture distance. The
capture distance model is expressed as a general Smoluchowski coagulation rate kernel for chains of an arbitrary length, dipole
strength, and dipole shift, allowing for aggregation rate predictions for related systems.

■ INTRODUCTION

When a uniform magnetic field is applied to a solution of
dispersed magnetic colloids, the particles assemble into long
linear chains parallel to the magnetic field.1 These chains resist
shearing and raise the effective viscosity of the fluid as a
monotonically increasing function of the field being applied.
This property is employed in magnetorheological fluids
(MRFs) that have numerous current industrial applications,
such as magnetorheological dampers for vehicles,2 and many
potential applications, such as artificial flagella.3 Current MRFs
are limited by uncontrolled aggregation and the monotonic
viscosity response, which might be addressed by a better
understanding of the relationship among colloidal component,
structure of aggregate, and rate of aggregation.2

Magnetic particle assembly rates have been studied to
understand the nature of MRFs.4 Characterizing the rate of
assembly is of academic and industrial interest as the transition
from a colloidal dispersion to a shear resistant system of
parallel chains influences the time-dependent material proper-
ties of the fluid.2 The large parameter space (particle size,
dipole strength, dipole position, concentration, viscosity, and
temperature) requires a theoretical model to determine what
kinds of particles will be most suited for a particular
aggregation response. Such a theoretical model would likely
consist of differential equations that can be numerically solved
to yield predictions for aggregation rates of systems not yet
synthesized.
Although much of the literature has focused on character-

izing the kinetics of linear magnetic chains made up of

spherical particles with magnetic dipoles directly in their
center,4 recent work has shown that the theoretical prediction
of magnetic colloid assembly sometimes requires the use of a
patchlike dipole rather than the standard point-dipole
assumption due to minor anisotropies in the distribution of
the magnetic components in the colloids.5,6 Besides isotropic
magnetic particles, other structures are also of interest.7−14

One of those structures is the Janus particle. Janus particles are
anisotropic particles with two halves of approximately equal
size.15 The two halves differ in at least one property, causing
the interactions of the particles to be anisotropic as well. Since
the first published example of controlled self-assembly of Janus
particles,16 it has been of interest to understand the impact of
the building block asymmetry on the assembly rate. The
thermodynamically stable structures that Janus particles self-
assemble into have been widely studied and characterized.17,18

However, general theories for the kinetics of the transition
from individual particles to aggregates have been difficult to
develop.19

Study of the synthesis of magnetic Janus particles has
produced methods that reliably create Janus particles with
desired qualities,20,21 including shape, amphiphilicity, and
other properties. For example, magnetic Janus particles with
anisotropy in the positioning of their magnetic dipole have
been synthesized.7−14 Importantly, while homogeneous
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magnetic particles have their magnetic dipole generally located
at their center of mass, the dipole of a magnetic Janus particle
is shifted away from its center of mass. The shift is either
perpendicular to the direction of the dipole8−11 or parallel to
the direction of the dipole.12,13 The unusual assembly behavior
observed for particle systems with shifted dipoles has garnered
the interest of many theoretical groups to develop models that
describe colloids with the dipole shifted parallel,22 perpendic-
ular,23−25 or at varying angle26−28 with or without an external
field. Our work studies the first case, i.e., the parallel-shifted
dipole, more specifically, the iron oxide-capped magnetic Janus
particle (FexOy JP) system.8

The shifted dipole positioning in the FexOy JP system gives
rise to unique interactions between the particles and variation
in aggregate shape. For example, the staggered chains formed
from Fe1−xO-capped magnetic Janus particles (Fe1−xO JPs) are
shorter and wider than analogous linear chains formed by
particles with dipoles of identical magnitude that are not
shifted.8 The difference in geometry yields a difference in
diffusivity,29 one of the two main driving forces of aggregation.
The other driving force, chain dipole strength, is also
influenced by the variance in geometry. An understanding of
the structures that shifted dipole particles assemble into when
exposed to a magnetic field can be used to predict the rate of
assembly for a system of quasi-two-dimensional (2D) magnetic
Janus particles. Figure 1 shows the various parameters relevant
in aggregation and the geometry of the assembled structure.

Here, we introduce a theoretical model to describe the
behavior observed for micron-sized magnetic Janus particles
with shifted dipoles, using the example of Fe1−xO Janus
particles. Particles are experimentally monitored with an
optical microscope and characterized with particle tracking
software yielding aggregation information. The model
proposed is used to predict the chain assembly rate of
Fe1−xO JP chains rather than merely finding a best-fit for the
data after running the experiments. The efficacy of three

models is compared: a model driven entirely by diffusion, a
model driven entirely by magnetic forces, and a hybrid of the
two models that introduces a new parameter, the capture
distance rcap. We arrive at a general model that enables the
prediction of the Fe1−xO JP chain assembly kinetics and
propose that the model can be generalized for other
assembling systems.

■ EXPERIMENTAL DETAILS
Iron oxide-coated, sulfated-polystyrene Janus particles are synthesized
by the monolayer and physical vapor deposition techniques developed
and reported on previously.8 Relevant information is summarized
briefly.

Monolayer Synthesis. Microscope slides (1′ × 3′, Fisher
Scientific) are cleaned in a Nochromix/sulfuric acid solution. The
solution is prepared by mixing 4 g of Nochromix with 100 mL of
deionized (DI) water for 20 min. Glass slides are placed in a container
that allows the solution to fully coat them. The solution is added, and
the slides are cleaned for 20 min. The slides are then removed and
rinsed thoroughly with DI water. A slide−slide wedge is constructed
from two slides with the two slides at a 30° angle with respect to each
other. Of a 2.4 μm sulfated-polystyrene particle solution (0.1% v/v,
Invitrogen), 20 μL is pipetted into the wedge. A motorized syringe
pump is used to drag the top slide along the bottom one at a velocity
of 200 μm/s. As the slide moves at a constant rate, the particles form a
monolayer on the bottom slide.

Physical Vapor Deposition. The particle monolayers are placed
into a benchtop physical vapor deposition (PVD) machine
(TedPella), as schematically shown in Figure 2A. A tungsten filament

in the PVD machine is loaded with iron pellets (Kurt J. Lesker
Company). The pressure in the machine is lowered to 0.1 mPa. After
the first pump-down cycle, a 3:1 argon/oxygen mixture is leaked into
the chamber and the pressure is lowered again to purge any remaining
ambient gas. The Ar:O2 mixture is supplied at a constant 500 mPa,
which provides the oxygen needed to oxidize the iron as it deposits on
the particles.

For iron deposition, the filament is heated to the appropriate
temperature needed for the desired deposition rate to produce Fe1−xO
(1.0 ± 0.2 nm/s), and the shutter is opened.8 A thickness monitor
records the amount of material deposited and dictates when to end

Figure 1. Schematic of a single Janus particle with shifted dipole
indicated (upper left) and chain aggregation event. A pentuplet
(bottom) aggregates with a doublet (upper right) as it traverses the
distance between them (rij). When the aggregates are within the
capture distance, rcap (dotted line), the pair will aggregate irreversibly.
The driving forces of aggregation are the diffusive (Di, Dj) and the
magnetic properties (mi, mj) of each aggregate defined by the
aggregate size (ai, aj). The diffusive and magnetic properties for
particles of a given type are a function of the number of particles in
each aggregate (i, j).

Figure 2. Fabrication and assembly setup for magnetic Janus particles.
(A) Schematic of a physical vapor deposition onto a polystyrene
particle monolayer. (B) Schematic of a 20 μL particle suspension
droplet after sandwiching between glass slides with double-sided
sticky tape spacers (shaded areas). (C) Example of 2.4 μm Fe1−xO
Janus particles aggregating to form a chain with mi = 5 in an external
magnetic field (0.08 T) applied parallel to the imaging plane.
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the deposition (typically 50 nm). When the deposition is finished, the
machine is turned off, allowed to cool, and filled with N2 gas, and the
Fe1−xO-capped Janus particle monolayers are removed.
Particle Assembly Tracking. The monolayers of Janus particles

are sonicated in DI water, and the solution is sonicated for 1 min
before each trial in a sonication bath. Immediately after sonication, 14
μL of ∼0.1% (v/v) particle suspension is pipetted onto a slide with
two pieces of double-sided sticky tape (Scotch double-sided tape, 160
μm thickness) on two of its edges. Another slide is carefully placed on
top of the first one while taking care to not allow capillary forces to
displace the droplet of the solution. Sandwiching the water droplet
between two spaced slides creates a flat, nearly cylindrical environ-
ment (∼10 mm in diameter) for the particles to move around in
(Figure 2B). The slide is then placed under a BX51 microscope from
Olympus with a 5× objective.
The particles settle toward the bottom of the cell and hover slightly

above the glass−water interface (Figure 2B). A system setup to
observe settled particles limits their motion to two dimensions and
allows the trajectories of the particles to be tracked in 2D. The height
of the particles above the bottom cell wall is determined by the height
at which the gravity is equal to the silica−polystyrene electrostatic
repulsion force. Polystyrene particles (a = 1.2 μm) are used because
their equilibrium height is high enough to not dramatically impact
their diffusion coefficient (i.e., diffusion coefficient is measured to be
DPS = 0.19 ± 0.01, which is ∼90% of the Stokes−Einstein prediction
corresponding to particles located at >6 particle radii distance from
the surface; see Granick et al.30).
In-house software is used to determine the initial concentration of

particles by electronically counting the particles in a microscope
image obtained from the assembled cell and subsequently dividing the
area occupied by particles by the total frame area to determine the
area fraction for the image. If the concentration is not close to the
desired ∼1% area fraction, the bulk solution is diluted by adding DI
water or concentrated by removing the supernatant, a new cell is
created, and the area fraction is checked again until solutions are
obtained that yield a 1.0 ± 0.1% area fraction.
A horseshoe magnet (0.08 T) is placed around the cell with its

magnetic field aligned parallel to the imaging plane, and a video of the
aggregation process is recorded after a 5 s delay. The particles
maintain a constant dipole under these conditions and align the long
axis of their caps with the external field. Four videos are captured at
5× magnification with an average of 1650 ± 142 particles per video
for 700 s at 3 fps. The particle size and area fractions are chosen to
optimize the number of particles in the frame and the number of
collisions that take place during an experiment run. Concentration
profiles from these videos are averaged together with one standard
deviation reported as the error. The video length is chosen to be 2
orders of magnitude larger than the Brownian time. Figure 2C shows
the zoomed-in snapshots of an assembly of a quintet for illustrative
purposes of an assembly event. Note, our initial field of view contains
singlets (51 ± 8%), doublets (27 ± 4%), triplets (12 ± 1%), and
longer chains (11 ± 5%) owing to the 5 s delay between adding the
magnetic field and starting the video recording (see Figure S1 in the
Supporting Information). Particle tracking software developed in-
house is used to process the four videos and obtain both contour data
and particle trajectories (see Figure S2 and Video S1 in the
Supporting Information). From the video analysis, relevant
information is extracted such as the number of each aggregate type
as a function of time (t), the rate of various chain length aggregation
events (Kij), diffusion coefficients (Di), the magnetic dipole strength
(mi, mj), the angle between the particles in the chains (θ), and the
length of the chains (Li).

■ RESULTS AND DISCUSSION
The data reported here is derived from the trajectory
information collected from optical microscope videos. Videos
are collected and processed with in-house particle tracking
software. Subsequently, the trajectory information is used to
determine the time evolution of the particle aggregate types

(theoretically described by a population balance equation
known as the Smoluchowski coagulation equation) and the
pair−pair distances of particle aggregates as they aggregate to
form chains.
The length of the particle aggregates is measured, and the

number of particles in each aggregate is counted for each frame
of the experiment. The aggregation rate of chain length i is
described generally by the Smoluchowski coagulation equation,
eq 1

n
t

n K n n K n n
d
d
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2
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i j j i j j
j

ij i j
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=

−

− −
=

∞

(1)

where Kij and Ki−j are the rate constants (or “aggregation
kernels”) for the aggregation rates of each type of aggregation,
and ni, nj, and ni−j are the concentrations of the chains of
lengths i and j. The magnitude of the rate constants is
determined by the forces driving aggregation. A general
method that produces these rate constants would yield a
complete description of the chain aggregation rate, as discussed
below.
To empirically study the rate constants in an aggregating

experimental system, the terms of the Smolukowski equation
must be truncated to avoid dealing with an infinitely large
system of coupled differential equations. The terms that can be
neglected are determined by tracking a count of all events of
each type occurring for each frame of the experiment. In the
case studied here, 70% of aggregation events are found to
involve at least one singlet (see Figure S3). Additionally, direct
counting shows that for chains containing four or more
particles (i ≥ 4) aggregating with a singlet, the ratio of collision
rates to chain concentration (ni) is constant and equal to the
product of the rate constant and the concentration of singlets
(K1Nn1)

n n n
K n

rate rate
...

rate N

N
N

1,4

4

1,5

5

1
1 1≈ ≈ ≈ ≈

(2)

Therefore, only aggregation events K11, K12, K13, and K1N are
included in the analysis. The Kij values account for the most
common aggregation events occurring in the Fe1−xO JP system
on the time scale of the experimental run (700 s) and
introduce the additional term K1N that combines all K1i (i ≥ 4)
to reduce the number of fitting variables. Any aggregation
events not involving singlets are not included in the
Smoluchowski fitting owing to their rare occurrence compared
to singlet events. Then, a complete system of differential
equations to solve as shown in eq 3a through eq 3e can be set
up and implemented in a fitting algorithm to find K11, K12, K13,
and K1N

n K n K n n K n nN j1 11 1
2

12 1 2 1 1∑′ = − − − (3a)

n K n K n n0.52 11 1
2

12 1 2′ = − (3b)

n K n n K n nN3 12 1 2 1 1 3′ = − (3c)

n K n n K n nN N4 1 1 3 1 1 4′ = − (3d)

For i > 4

n K n n K n n K n n n( )i N i N i N i i1 1 1 1 1 1 1 1′ = − = −− − (3e)

Applying the system of Smoluchowski coagulation equations,
eqs 3a−3e, to the experimental data, numeric solutions to the
differential equations are found with the four rate constants as
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the degrees of freedom. From the initial solutions, the rate
constants are adjusted, and the method is repeated iteratively
until a least-squares fit of the experimental data is determined.
The least-squares fit is performed on the four averaged data
sets by minimizing the sum of the R2 values of each of the
chain types, resulting in rate constants of K11 = 12, K12 = 20,
K13 = 25, and K1N = 30.
Area concentrations of various chain types are plotted in

Figure 3. Note, a2 is chosen as a nondimensionalization factor
to allow fitting with radius-independent models. Singlets,
doublets, triplets, and quadruplets are plotted in Figure 3A−D,
respectively. The Smoluchowski coagulation equation solution
for each individual chain (green line) matches the averaged
experimental data (red line) well, and the match is reflected in
their high R2 values of 0.9. Over the plotted time period, the
plotted chain concentrations are mostly being influenced by
consumption events. The plots portray a high rate of
consumption as all of the chain concentrations have a negative
derivative for most of the experimental run.
Each chain has aggregation events most relevant to their

concentration change, which are determined by comparison of
the aggregation rates (experimentally determined to be K11n1n1
> K12n1n2 > K13n1n3 > K1Nn1ni at short times) and direct
counting of aggregation events. The relevant aggregation
reactions are displayed on the plot of the respective
concentration profile. For singlets, it is the singlet−singlet
aggregation (as K11n1n1 > K12n1n2). For doublets, it is the
singlet−doublet aggregation (as 0.5K11n1n1 < K12n1n2), causing
the concentration of doublets to only decrease owing to the
initial presence of doublets in the solution. For triplets, a hint
of triplet formation is observed at short times due to the
singlet−double aggregation (K12n1n3 > K13n1n3, n3′(t < 5) > 0),
which is swiftly overcome by the singlet−triplet aggregation

(K12n1n2 < K13n1n3), causing the concentration of triplets to
decrease for most of the run. For quadruplets, the initial
formation of quadruplets from the singlet−triplet aggregation
is more apparent at short times (K13n1n3 > K1Nn1n4, n4′(t < 10)
> 0) but is again overwhelmed by the singlet−quadruplet
aggregation at t ≈ 10, causing the concentration to decrease for
the majority of the run. The maxima observed in Figure 3C,D
are also confirmed by the chain counts shown in Figure S1.

Model Development. A comprehensive theory of particle
chain aggregation would offer predictions of rate constants
(Kij) for chain pairs of all lengths (i and j). The function for the
rate constants will only require the driving forces for the
aggregation of the individual aggregates, the chain lengths (i,
j), the collision cross section, and the median interparticle
distances (⟨rij⟩), which are a function of concentrations, ni. The
driving forces for aggregation are quantitatively the diffusive
forces (Di, Dj) and the magnetic forces (mi, mj). The collision
cross section is taken to be a function of only the single particle
radius, a, and not of the chain lengths as the aggregations occur
only tip-to-tip. Therefore, the function will be of the form
depicted in eq 4

K f D D m m a r( , , , , , , )ij i j i j ijμ= ⟨ ⟩ (4)

The relative strength of the driving forces can be quantified by
a Pećlet number (Pe) defined as the ratio of the characteristic
Brownian time, tB = 2a2/(Di + Dj), to the characteristic
magnetic time, tM = a/U, given by eq 531

Pe
t
t

r mm

D
i jB

M

4
0μ

πμ
= =

−

(5)

When Pe < 1, diffusive forces dominate; when Pe > 1, the
magnetic forces dominate, and when Pe = 1, the two forces are

Figure 3. Area concentration of singlets (A), doublets (B), triplets (C), and quadruplets (D) nondimensionalized by the square of the particle
radius a plotted vs dimensionless time. Red lines represent averaged experimental chain concentrations with one standard deviation, green lines are
the Smoluchowski coagulation equation least-squares fits to the experimental data, dashed blue lines are the Brownian predictions, dash-dotted blue
lines are the magnetic predictions, and solid blue lines are the capture distance predictions. The most prominent aggregation events are shown in
each plot.
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equivalent. The clearly defined boundary between the
Brownian and the magnetic regimes (Pe = 1) allows for an
unambiguous determination of the dominant force that drives
assembly.
Brownian Model. In a system, in which diffusive forces are

much stronger than magnetic forces (Pe ≪ 1), the “Brownian
kernel” can be used to predict rate constants. Focusing on the
Brownian kernel simplifies the function as Brownian forces
neither are a function of the magnetic dipole strength of the
chains nor are they dependent on the median interparticle
distance (eq 6)

K f D D a( , , )ij i j
Brown = (6)

For individual components that aggregate when they enter ri +
rj and are diffusing according to Di and Dj, the general
aggregation kernel, Kij, is shown in eq 7a. An explicit Brownian
kernel, Kij

Brown, for 2D systems with the Stokes−Einstein
diffusion and particle diameter collision distance is shown in eq
7b

K D D r r a a2( )( )/( )ij i j i j i j= + + + (7a)

K D D2( )ij i j
Brown = + (7b)

In dimensionless time, the rate constant is given in units of D.
So, the rate constant for the singlet−singlet aggregation is K11*
= 2. As the diffusion decreases with increasing length,4 all other
diffusion kernel rate constants are less than the singlet−singlet
aggregation rate constant in the Brownian kernel model: Kij* ≤
2. Using the diffusion equations for spherocylinders described
by Löwen, eq 8a,29 we can express the diffusion coefficient for
a general shifted dipole chain with eqs 8b−8d, where θ is the
angle a doublet makes with a line perpendicular to the
magnetic field

( )
D k T

L L L
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= + +
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−
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d31
B

πμ
=

(8b)
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>
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(8d)

In eq 8a, σ is the width of the cylinder and L is the length of
the cylinder. D1 is the diffusion coefficient of a sphere and

approximates a singlet, eq 8b. D2 is the diffusion coefficient for
a spherocylinder with a length of two particle diameters, L =
2d, and a width of 1 diameter, σ = d, and approximates a
doublet, eq 8c. Di>2 is the diffusion coefficient of a longer
spherocylinder and approximates longer chains. The σ and L of
longer chains (n > 2) are affected by the angle θ between
particles in the chain, where i represents the number of
particles in a chain. As θ is often the reported characteristic of
shifted dipole particles, eq 8a is modified to characterize the
geometry of chains with an axial shift, as shown in eq 8d. θ is
determined by the shift in the dipole and determines the
geometric variation from dipoles that are located at the center
of mass. For triplets and longer chains, a rectangle of minimum
size encapsulating the aggregate is defined through contour
detection, and their diffusion coefficients are calculated by
taking the long side as the length (cos(θ)d(i − 1) + d) and the
short side as the width (sin(θ)d + d), as shown in eq 8d. The
dimensions of the rectangle reflect the relationship between
the dipole shift and geometry of the aggregate. Diffusion
directly impacts the Smoluchowski coagulation equation
constants in the diffusion model from eqs 7a and 7b.

Magnetic Model. The other extreme regime is when
magnetic forces are much greater than diffusive forces (Pe ≫
1). Here, aggregation occurs due to the dipole−dipole
attraction of the chains at their tips (eq 9)

K f m m a r( , , , , )ij i j ij
magnetic μ= ⟨ ⟩ (9)

The dipole force between a chain with its closest neighbor
(excluding other chains in the system) is given by the dipole−
dipole interaction force between the two chains, eq 10, where
the bold symbols are vector properties

F r m m
r

r

m r m m r m

m m r
m r m r

r

( , , )
3

4
( ) ( )

( )
5( )( )

1 2 2 1

1 2
1 2

1 2
0
5

2

μ
π

=
−

· + ·

+ · − · ·
(10)

In radial units for aligned particles, eq 10 simplifies to eq 11

F r m m
m m

r
( , , )

3

2m 1 2
0 1 2

4

μ
π

=
−

(11)

For systems in the Stokes flow regime, forces are equal to the
viscous drag force. The drag force for a single sphere is defined
by eq 12

F av6D πμ= (12)

Using the constraint that the drag force opposes the magnetic
attraction, Fm = −FD, we obtain an expression for the velocity
(eq 13), which yields a solvable differential equation for r as a
function of time

r v r
m m

a4
4 0 1 2

2

μ
π μ

′ = = −
(13)

Solving eq 13 yields a pair trajectory, eq 14, with the constant
C defined in eq 15

r t r Ct( ) 0
55= − (14)

C
m m

a
r PeD
a

5

4
50 1 2

2

4μ
π μ
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(15)
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Equation 14 dictates the time it takes long chains of a given
type to aggregate from a given distance when magnetic forces
dominate (Pe ≫ 1). Here, r0 is the initial distance.
The magnetic dipole strength, m1, needed for the calculation

of constant C is a function of cap preparation8 and determines
the attractive force between two particles during the
aggregation process. Magnetic dipole moments of Janus
particles can be determined in various ways using the magnetic
rolling,32 particle−particle pair interaction plots,33 or tradi-
tional SQUID-based MPMS measurements.33 Here, the dipole
strength is determined by plotting particle distances as a
function of time for all aligned singlet pairs, and each is fitted
to the pair trajectory equation, eq 14.
An assumption of aligned, deterministic dipole−dipole

interaction is used for determining the strength of the dipole,
m1. The model assumes an r5 ∝ t dependence, eq 14, where r is
the distance between two aggregating pairs and t is the time.
The time dependence can be verified experimentally by
plotting the distance, r, between each aggregating pair as a
function of time (Figure 4A), where tr = 0 is iteratively
determined by finding the time where r changes from a purely
stochastic function to a monotonically decreasing function.
Next, all particle pair functions obtained are normalized by the
point of completed aggregation, tr = 5, and plotted. Averaging
of all aggregating pairs (dashed line in Figure 4A) leads to an r
vs t curve, where r = 16.20 μm at tr = 0. Plotting of the average
as an r5 over t plot is then fitted with a linear least-square best-
fit with a C constant of C = −105.33 and an R2 value of 0.99,
confirming the r5 ∝ t dependence (Figure 4B, black line).
Using the analysis, the average of the dipole strength is
determined to be ∼0.05 A μm2 for the Fe1−xO JP system
studied here, which is consistent with earlier predictions on the
dipole strength per volume of Fe1−xO reported by Ren et al. of
132 emu/cm3.8 The pair trajectory equation, eq 14, is
converted into a Smoluchowski coagulation equation kernel
by determining the median interparticle distance for the
chains. The median interparticle distance is given by
considering a random distribution of two-dimensional particles
and finding the median distance of such a distribution,34 eq 16

r
n

ln(2)
ij

ijπ
=

(16)

Using the distance, rij, in the pair trajectory equation, an
expression for the half-life can be obtained (eq 17), as half of
the chains are within the median interparticle distance and half
of the chain pairs will have aggregated after they deterministi-
cally aggregate according to the pair trajectory equation (eq
14)

t
r

C
ij

1/2

5

=
(17)

The half-life equation for second-order reactions (eq 17)
provides an expression for the magnetic kernel (eq 18)

K
C
n r

r PeD
an r
5

ij
ij ij ij ij

magnetic
5

4

5= =
(18)

Using the known system constants (concentration, dipole
strength, diffusion coefficient, and particle size), the exper-
imentally determined kernels can be compared to the
theoretically predicted kernels. The measured magnetic dipole
for a singlet is compared to a rotation averaged dipole with a
bias toward alignment with the external magnetic field using a
probability density function shown in eq 19, making the net
force with its nearest-neighbor less than that of an aligned
dipole

i ePDF( 1, 0 2 ) F kTcos( )/alignedθ π= < < ∼ θ (19)

The net force, Fnet, of the other chains with their neighbors is
larger than that of singlets, as they have more particles. More
specifically, for aligned interactions (θ = π/2), Fnet‑aligned
linearly increases as per eq 20 (where i is the number of
particles in the aggregate) and they are stabilized in an aligned
orientation due to additional particles in the chain

F i iF( )net aligned net aligned=‐ ‐ (20)

Using the measured magnetic dipole and concentrations of the
particle aggregates, the values for the rate constants are
calculated as K11 = 150, K12 = 180, K13 = 206, and K14 = 226.

Capture Distance Model. If the time it takes a pair to
assemble from the Pe = 1 distance is significantly less than the
time it takes the particles to enter within this distance, then the
Pe = 1 distance can be defined as a capture distance, rcap, as
shown in Figure 1. A capture distance model requires

Figure 4. Determination of the magnetic moment and constant C, eq 15. (A) Plot of the distance between all aggregating singlet pairs vs time. With
a relative time of tr = 5 used as the instant of completed aggregation for the particle pairs. The light gray lines are individual pair aggregation events.
The dark gray line is an average of all pairs observed, and the bars represent one standard deviation. The black dashed line is the best-fit for the
averaged data. Times before tr = 0 do not show a monotonically decreasing trend and are not pictured as they are in the stochastic Brownian
regime. (B) Average particle pair data is plotted as the distance raised to the fifth power vs time. The experimental data is shown in red with bars
indicating one standard deviation. The black line shows a linear least-squares fit (r5 = −105.33 t + 106, R2 = 0.99).
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information about the viscosity, diffusion coefficients, dipole
strengths, and the particle radius of the components eq 21

K f D D m m a( , , , , , )ij i j i j
cap μ= (21)

When a pair of particles enter within rcap, the particles will
deterministically aggregate on a short time scale. The fast,
deterministic behavior of particles within rcap allows the use of
eq 7a by substituting the particle radius in eq 8a for rcap defined
in eqs 22a and 22b (by solving eq 5 for Pe = 1)

r
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2
4
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πμ

=
(22a)
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i j
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0 1

2

4
μ

πμ
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+−
(22b)

Solving eqs 22a and 22b for our system, we find a capture
distance of rcap = 16 μm for the singlet−singlet interactions,
which is in remarkable good agreement with the distance r =
16 μm at tr = 0 obtained for the average shown in Figure 4A.
Substituting the capture distance into eq 7a, we find a
prediction for the K11 to be 12.5. As the attractive dipole force
increases linearly with increasing chain length and the diffusion
coefficient decreases according to eqs 8a−8d, the general
expression for rate constants in the capture distance model is
given by eq 23, where ai and aj refer to the radii of the
interacting aggregates (Figure 1)

K D D
r

a a
2( )ij i j

ij

i j

cap
chain chain

cap= +
+− −
−

(23)

Figure 4A already independently confirms the validity of our
capture distance estimates in two ways: (1) the particle pairs
act stochastically as Brownian particles at distances greater
than the capture distance, rcap = 16 μm, and (2) the dipole
calculated by the average best-fit for the pairs produces a
dipole that corresponds to the proposed capture distance. In
addition, the analysis of the cumulative probability function of
nearest-neighbors for all chains was performed (see Figure S4
in the Supporting Information). The analysis shows that the
median nearest-neighbor distance obtained from our 2.4 μm
Fe1−xO JP particle system is best fitted with a hard sphere
system of particles with d = 15 μm, further supporting our
capture distance model with rcap = 16 μm.
Equation 23 can be used in combination with eqs 8a−8d,

22a, and 22b as a full characterization of the general rate
constants with the inputs of a finite list of attributes of an
individual particle and the solution the particles are in:
temperature, viscosity, dipole moment, and dipole shift.
Hydrodynamic Forces. Particle−particle hydrodynamic

forces also influence the aggregation rate of aggregating
systems. The particle−particle approach slows down due to
fluid flow fields generated by the two particles as they move. At
short distances, hydrodynamic forces compete with Brownian
and magnetic forces. These forces can be accounted for by
modifying each model to account for the slowing, hydro-
dynamic force. The Brownian model can be modified by
lowering the effective diffusion coefficient of the chains
according to hydrodynamic approximations of diffusion
coefficients of approaching pairs.35 Accounting for the
hydrodynamic forces (eq 24a)36 lowers the rate constant of
the diffusion model. Magnetic models can likewise lower their

approach velocity, incorporating hydrodynamic resistance
between pairs
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However, for many systems, magnetic forces will be much
greater than hydrodynamic forces. To determine if we are in a
regime where the magnetic forces are much greater than the
hydrodynamic forces during aggregation-rate-relevant steps in
the process, we take a ratio of the hydrodynamic forces to the
magnetic forces (eq 24b) at our capture distance. If FL,∞/FM
≪ 1, then the magnetic forces dominate and the hydro-
dynamic forces can be ignored. In our system, FL,∞/FM ∼ 10−5.
Therefore, the hydrodynamic forces do not need to be taken
into account when approximating rate constants.
The Pećlet number of a system of magnetic particles

determines the aggregation regime the particles are in. When
Pe ≪ 1, the diffusive model has been shown to accurately
predict aggregation constants, eq 7b. When Pe ≫ 1, the
magnetic model accurately predicts the aggregation rate
constants, eq 18. When Pe is of intermediate value, the capture
distance model accurately predicts the aggregation rate
constants, eq 23.
Using these models as a foundation, the equations for

nonshifted magnetic particle aggregation rates can be modified
to determine the aggregation rates of particles with an arbitrary
shift. Accounting for the shift’s effect on the aggregation rate is
done by modeling the diffusion of particle aggregates as
spherocylinders and applying the correct diffusion coefficients
for the aggregates.
Each model offers clear predictions for the Smoluchowski

coagulation equation rate constants. These rate constants can
be compared against the best-fit rates to see which model best
represents the Fe1−xO JP system. Table 1 summarizes the
direct rate measurements based on the counting of each
aggregation event, the various rate constants for each model,
and the R2 value averages of best-fits.

The “direct count” row is information-collected by tracking
each particle and counting the number of aggregation events
happening in a given moment. As the system is optically
observed, each individual chain formation event can be
counted, resulting in a count of chains for each instance of
the experiment. The instantaneous rates are averaged over a
small time interval to eliminate moments in which no

Table 1. Aggregation Rate Constants from Various Models

constant

model K11
a K12

a K13
a K14

a average R2 b

direct count 12 60 58 57 0.89 ± 0.04
equation fit eq 1 12 20 25 30c 0.94 ± 0.02
Brownian eq 7b 2 2 2 1 −9 ± 2
magnetic eq 18 150 180 206 226 −0.24 ± 1.00
capture dis eq 23 15 18 21 23 0.92 ± 0.02

aRate constant obtained from averaged data of four videos with 1650
± 142 particles. bAverage R2 value from best-fit of K11, K12, K13, and
K14.

cK14 = K1N, see Experimental Details for Smoluchowski
coagulation equation rate constants.
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aggregation occurs. The counts are then normalized over the
time interval to obtain a rate for the given event type. The
direct count rate is then divided by the appropriate
concentrations to obtain the rate constant for the event. The
direct count of the rate constant measurement is the most
accurate method of direct rate measurement, and the accuracy
is reflected in the R2 value. The divergence of the direct count
measurement from the data comes from the variability of the
rate constant over multiple intervals. The direct count gives a
reasonable approximation for the average R2 values to be
expected in sufficiently explanatory models (R2 ∼ 0.9).
The “equation fit” row is a least-squares minimization of the

Smoluchowski coagulation equation (eq 1) to the data. The
rate constants are adjusted until the average R2 is minimized.
The equation fit provides an upper bound for how close to 1
the R2 value can be. The divergence of the equation fit from a
perfect fit comes from the variability between experimental
initial states, the inherent stochasticity of the experiments, the
fact that experiments are discrete counts rather than
concentrations in the infinitely large sample size limit, and
any additional physics (e.g., the impact of nonuniform drift)
not accounted for. The equation fit demonstrates that the
Smoluchowski coagulation equation is a valid model of the
data, as R2 is found to be 0.94 ± 0.02.
The “Brownian” row shows the accuracy of the Brownian

model with cylindrical approximations for the aggregate
diffusion coefficients (eq 7b). Unsurprisingly, we see that all
rate constants are much lower than the direct count data or
equation fit data and the R2 value is negative meaning that the
Brownian kernel is not a good model for the system. The poor
fit shows that assuming an aggregation driven purely by the
Brownian motion is insufficient to model the Fe1−xO JP system
and tells us that modeling the system as “Brownian particles
that irreversibly aggregate when they collide” is incomplete and
additional driving forces need to be accounted for.
The “magnetic” row shows the accuracy of the magnetic

model with aligned dipoles (eq 18). It can be seen that the
magnetic model rate constants are much higher than the rate
constants in the direct count data or equation fit data, and the
R2 value is, again, negative indicating a bad fit and an
incomplete model. The poor fit being far below the actual
concentration profile data shows that the deterministic, aligned
magnetic model overrepresents the dipole moment as a driving
force in aggregation. The particles are not perfectly in line with
their nearest-neighbor and such a model would be more suited
for symmetric forces.
The “capture dis” row shows the accuracy of the capture

distance model (eq 23). In the capture distance model, it can
be seen that the rate constants are similar to the rate constants
in the first two rows and increase as longer chains are involved.
The average R2 value is close to 0.9, indicating that the capture
distance model is a good fit for the system. The accuracy of the
fit is reflected in how close the concentration profiles for the
data, fit, and capture distance model are with each other
(Figure 3), i.e., accounting for Brownian forces and angle-
dependent magnetic forces is sufficient to model aggregation
rates for the Fe1−xO JP system.
The capture distance model can be used as a basis to predict

the concentration profiles over time for all systems of shifted
dipole magnetic particles. When the median interparticle
distance is large enough to make hydrodynamic forces
negligible in their contribution to the aggregation rate and
any additional forces are negligible, the capture distance model

can be used directly to accurately determine the concentration
profiles of the system. With the concentration profiles known, a
connection needs to be made between an aggregate
distribution and the viscosity of the system to predict a
rheological response in the quasi-2D Fe1−xO JP system. The
capture distance model as formulated in eq 23 allows the
variation of particle diameter, viscosity, and temperature
through the diffusion coefficient and the magnitude of
attractive interaction (see eq 23), thereby reducing the need
for lengthy synthetic trials to explore an arbitrary amount of
systems quickly.
The ratio of the actual to initial chains (nc/n0 = (∑ni)/n0

with i = 1−10) is plotted in Figure 5 for experimental data (red

line with error bars) and the four models (green line, the
Smoluchowski coagulation equation least-squares fit, dashed
blue line, the ratio predicted by the Brownian model, dash-
dotted line, the ratio predicted by the magnetic model, and
solid blue line, the ratio predicted by the capture distance
model). Summing the individual Smoluchowski concentration
profiles shown in Figure 3 and including longer chains (up to i
= 10) yield the sum of the individual Smoluchowski
coagulation equation solutions (nc

Smol). nc
Smol/n0 (green line)

is found to have good agreement with the experimental data
with an R2 = 0.91 comparable to the R2 values obtained from
the Smoluchowski fit for the individual chain types, Figure 3
(green lines) and Table 1. Similarly, the experimentally found
nc/n0 ratio agrees well with the ratio predicted by the capture
distance model (R2 = 0.89), while the Brownian and magnetic
models again fail to predict the correct ratio. The ability to fit
the experimental data for the individual chain formation and
the overall number of aggregates, nc, independently demon-
strate the validity of the fundamental description of the system,
i.e., a balance of formation and aggregation events for the
individual aggregate types that naturally tends toward longer
and fewer chains at long times.
The capture distance model has limitations. It does not

currently account for hydrodynamic forces. Fortunately,
hydrodynamic forces are unimportant for systems when the
magnetic force is greater than the lubrication-squeezing force
at the capture distance, as is the case for the Fe1−xO JP system.
But such forces could be added as a “diffusion-reducing” force,
making the diffusion component of the rate constant equations

Figure 5. Ratio of the actual to initial chains (nc/n0) vs time in
dimensionless units. Red line represents averaged experimental chain
fraction with one standard deviation, green line is the Smoluchowski
coagulation equation least-squares fit to the experimental data, dashed
blue line is the Brownian prediction, dashed-dotted blue line is the
magnetic prediction, and solid blue line is the capture distance
prediction for the total number of chains.
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a function of the nearest-neighbor distance. Another limitation
is the minimal discussion of shearing and breakup. Our system
involved no shear forces or breakup, but shear forces and
breakup will be common in many magnetorheological
systems.2 These influences on concentration profiles have
been explored in the literature37 but will need to be modified
for shifted dipole systems by use of our capture distance
model.
Through the development of the capture distance model, we

have gained knowledge of the aggregation behavior of
magnetic Janus particles with shifted dipoles. The quasi-2D
model shows good agreement with experimentally observed
chain formation in the 2.4 μm Fe1−xO JP system and provides
a better understanding of the relationship between the
inherently shifted dipole of the Janus particle, the resulting
structure of the aggregate, and the rate of aggregation. More
specifically, the model shows that the impact of the shifted
dipole can be included through careful consideration of the
aggregate dimensions that, in turn, impact the diffusion
coefficients of the aggregates during chain formation and
aggregation rate. Connecting the aggregate structure and
number to viscosity will require the study of the mechanical
properties of the chains to predict a rheological response. In
addition to shifted magnetic dipole systems, the capture
distance model can also be applied to characterize the
aggregation rates of systems with forces acting at a distance
that are anisotropic. For instance, the electrical dipole forces
that cause charged Janus particles to assemble.38

■ SUMMARY AND CONCLUSIONS

The aggregation of staggered magnetic particle chains from
Fe1−xO Janus particles has been studied, and the staggered
geometry has been found to be a relevant difference between
shifted magnetic dipole particles and particles with a magnetic
dipole in their center. The change in geometry can be
accounted for in the rate constants by modeling how the
magnetic dipole shift of the individual particles changes the
geometry of the chains, using a spherocylindrical geometry in a
modified diffusion coefficient expression. The modified
diffusion is an effect that can reduce diffusion (and therefore
rate constants) by as much as 17%.
The capture distance model for the rate constants is then

used to predict the concentration profiles of each cluster type
and is found to accurately predict the time evolution of the
concentration profiles. We recommend the capture distance
model with modified diffusion constants for use in related
systems to find the time evolution of their aggregate
concentration profiles. The required variables of temperature,
viscosity, dipole moment, and dipole shift can be input into the
analytic expression of the capture distance model to find the
net chain aggregation rate and each specific chain concen-
tration profile. The ability to model individual chain
concentration profiles for systems involving particles with
shifted dipoles enables a better understanding and prediction
of the rheological response of magnetic JP systems.
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