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Self-assembly of magnetic colloids with shifted
dipoles†

Gabriel I. Vega-Bellido, a Ronal A. DeLaCruz-Araujo, a Ilona Kretzschmar b

and Ubaldo M. Córdova-Figueroa *a

The self-assembly of colloidal magnetic Janus particles with a laterally displaced (or shifted), permanent

dipole in a quasi-two-dimensional system is studied using Brownian dynamics simulations. The rate of

formation of clusters and their structures are quantified for several values of dipolar shift from the particle

center, which is nondimensionalized using the particle’s radius so that it takes values ranging from 0 to 1,

and examined under different magnetic interaction strengths relative to Brownian motion. For dipolar

shifts close to 0, chain-like structures are formed, which grow at long times following a power law, while

particles of shift higher than 0.2 generally aggregate in ring-like clusters that experience limited growth. In

the case of shifts between 0.4 and 0.5, the particles tend to aggregate in clusters of 3 to 6, while for all

shifts higher than 0.6 clusters rarely contain more than 3 particles due to the antiparallel dipole

orientations that are most stable at those shifts. The strength of the magnetic interactions hastens the rate

at which clusters are formed; however, the effect it has on cluster size is lessened by increases in the shift

of the dipoles. These results contribute to better understand the dynamics of magnetic Janus particles and

can help the synthesis of functionalized materials for specific applications such as drug delivery.

1 Introduction

Magnetic colloids are of particular interest in the field of
materials science due to the ease with which the structures
formed can be controlled when their magnetic interactions are
properly tuned. Nanoparticles of this nature have found myriad
applications in progressive technologies such as photonics,1

controlled motion,2–5 cancer treatment,6 and many others.7 To
be able to design systems of magnetic colloids which can be
easily controlled by exploiting their magnetic properties, we
must first understand their aggregation dynamics based on the
nature of the colloids.

The simplest model for the study of magnetic colloids is that
of the dipolar hard sphere (DHS), a sphere of diameter d with a
point dipole moment m located in the center, because of its
isotropic shape and simple potential.8–11 The DHS model has
been extensively studied, and its equilibrium properties are well
understood. Variations on the DHS model can be introduced by
adding shape or potential anisotropy. These variations produce

differences in structure and macroscopic behavior, the study of
which is the next step in understanding systems of magnetic
colloidal particles. The subject of this study is one such variation
on the DHS model, characterized by a lateral shifting of the
dipole with respect to the particle center, commonly called the
magnetic Janus particle. Similar systems of Janus particles are of
great interest in the field of colloids due to their unique
aggregation dynamics.12

Modern fabrication methods such as surface or bulk
modification have been used to successfully produce magnetic
Janus particles.13,14 One version of this method consists of
using vapor deposition to coat patches of the particle with a
metal such as iron oxide, thereby inducing a magnetic dipole
on the particle. Studies have shown that varying the deposition
rate causes the particles to exhibit distinct assembly behaviors in
a way analogous to the shifting of a dipole.15,16 This proves that
there are ways to tune the dipole of a magnetic colloidal particle,
and as such it is important to understand the structures which
pertain to each dipolar shift and magnetic potential, so as to
predict these structures in a real-world environment.

Previous research on these particles has mostly focused on
the effects that polydispersity, shape anisotropy, and dipole
placement have on the equilibrium behavior of the system.17–21

Studies of large systems of Janus particles through the use of
molecular dynamics simulations have been conducted,22 but
these also focused on equilibrium behavior. Only recently have
studies begun to delve into the dynamic aspects of these
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systems, such as the relaxation dynamics of systems driven by
time-dependent magnetic or electric fields and the control of
self-propelled systems.23–25 Previous work has shown that an
increasing dipolar shift causes the ground state structures of the
system to transition from chain-like to ring-like aggregates,26

with increasing dipoles leading to more compact structures, but
the dynamic growth and distribution of the structures in these
systems has not been reported on.

The purpose of this work is to explore the effect a Janus
nature has on the dynamics of quasi-two-dimensional magnetic
particle self-assembly. The growth of these systems was quantified
by studying the average cluster size and system nucleation over
time, with systems being categorized based on when they reach
equilibrium. Characteristic structures of the system at equilib-
rium were also studied by way of inter-dipolar angles and
population distributions. Circularity of clusters was also deter-
mined by measuring effective radius as a function of cluster size
and comparing values to the effective radius of an ideal chain
or circle. This article is organized as follows: in the Problem
formulation section the model is introduced, along with the
governing equations for the system and the parameters studied.
In the Results section we present the simulation results, including
graphs for dynamic cluster growth and equilibrium system struc-
tures. In the Conclusions section we draw conclusions and
discuss plans for future work.

2 Problem formulation
2.1 Model

The model consists of identical colloidal particles with a
permanent laterally shifted dipole modeled as hard spheres
submerged in a quasi-two-dimensional Newtonian fluid at
constant temperature. Fig. 1 shows the model system where
mi and mj are the dipolar moments, S is the distance of the
dipoles from the particle center, and a is the particle radius.
This figure also showcases the primed reference system
(x0, y0, z0) individual to each particle and the laboratory refer-
ence system universal to the simulation. Particles are initialized
with random positions and orientations in a periodic box with a
surface fraction fs = 0.01. Because of their associated computa-
tional cost, and since they have been shown to strictly slow
down kinetics in the nucleation process and speed it up in the
growth process for a dilute system,27,28 hydrodynamic interac-
tions are not accounted for in this model. The dipolar shift
is found dividing the absolute shift S by the particle radius a,
i.e., s = S/a. This model is representative of Janus particles
with a ferromagnetic cap moving between two glass slides, a
common way to study such particles experimentally.

2.2 Governing equations

Considering the particles are subjected solely to Brownian
motion, interparticle forces, and hydrodynamic drag, the fol-
lowing overdamped Langevin equations for the forces and
torques arise:

FD + FP + FB = 0, (1)

TD + TM + TB = 0, (2)

where FD and TD are the drag force and torque, FP is the
summation of forces due to magnetic and repulsive interactions
between particles, TM is the torque due to magnetic interactions,
and FB and TB are the Brownian force and torque. The magnetic
interaction force is modeled by the dipole–dipole interaction
potential:

FddðrdijÞ ¼ �m0
4p

3
mi � rdij
� �

mj � rdij
� �

rdij5
� mi �mj

� �
rdij3

� �
; (3)

rdij = rdi � rdj, rdij = |rdij|, (4)

where m0 is the vacuum permeability (4p� 10�7 H m�1), and rdij
is the dipole–dipole distance. The repulsive Weeks–Chandler–
Andersen (WCA)29 potential used to model steric repulsion
between particles is given by:

FWCAðrijÞ ¼ 4e
2a

rij

� �12

� 2a

rij

� �6
" #

; if rij � 21=62a

0; if rij 4 21=62a

8><
>: ;

where e is the potential strength, a is the particle’s radius, and
rij is the distance between particle centers of mass.

Upon integration over finite differences of eqn (1) and (2),
the resulting nondimensionalized equations of motion for
particle position and orientation arise:

r̃(t̃ + Dt̃ ) = r̃(t̃ ) + F̃P(t̃ )Dt̃ + Dr̃B, (5)

X(t̃ + Dt̃ ) = X(t̃ ) + T̃M(t̃ )Dt̃ + DXB, (6)

where Dr̃B and DXB are the random displacements inducing the
translational and rotational Brownian motion, respectively. In
these equations, the lengths were scaled with the particle radius
(r B a), the time was scaled with the characteristic diffusion

Fig. 1 Model system. The magnetic region of the spherical colloids is
represented in orange given a magnetic dipole moment (mi or mj) laterally
displaced a distance S from the particle center. The body fixed (x0, y0, z0)
and the laboratory reference (x, y, z) frames, and additional interparticle
interaction parameters are also shown.
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time (t B tD), the forces were scaled using the Brownian force
(FB kBT/a), and the torques with the Brownian torque (TB kBT).

The Brownian displacement and rotation contributions in eqn (5)
and (6) can be characterized by the following statistical properties:

hDr̃Bi = 0, hDr̃BDr̃Bi = 2IDt̃, (7)

hDXBi = 0, hDXBDXBi = 3/2IDt̃. (8)

In order to properly track the rotation of the particle dipoles
in three dimensional space, the quaternion parameters w, Z, x,
and z are used to define their orientation. Using these quater-
nions we define the transformation matrix A as in:30,31

A¼
�x2 þ Z2 � z2 þ w2 2ðzw� xZÞ 2ðZzþ xwÞ

�2ðxZþ zwÞ x2 � Z2 � z2 þ w2 2ðZw� xzÞ
2ðZz� xwÞ �2ðxzþ ZwÞ �x2 � Z2 þ z2 þ w2

0
BBB@

1
CCCA:

The magnetic torque on the particles primed reference
system is obtained with TM0 = A�TM. This magnetic torque is
used to find the principle axis angular velocity by dividing the
changing orientation portion of eqn (6) by the time step, Dt.
The time evolution of the quaternions is related to the principle
axis angular velocity, o0, via the following matrix:30,31

_x

_Z

_z

_w

0
BBBBBB@

1
CCCCCCA

¼ 1

2

�z w x Z

�w �z Z x

Z �x w �z

x Z z w

0
BBBBBB@

1
CCCCCCA

ox
0

oy
0

oz
0

0

0
BBBBBBB@

1
CCCCCCCA
:

2.3 Parameters used

The strength of the magnetic interaction potential between particles
is dictated by the dipolar coupling constant l, a dimensionless
parameter, which represents the ratio of magnetic to Brownian
forces and is defined as:

l ¼ m0m
2

4pa3kT
: (9)

For the repulsive WCA potential, we varied the energy para-
meter e depending on the strength of the magnetic interactions.

The values studied for shift range from 0.0–0.6 as it has been
shown by Yener and Klapp22 that higher values yield few new
insights and are not experimentally relevant. An emphasis is
given to small shifts due to the substantial change in cluster
properties for shifts smaller than 0.2. The results shown are for
l = 15–45, values lower than this were shown to not produce any
aggregation, while values higher than 75 caused all systems to
exhibit system size dependence through cluster agglomeration.
In order to resolve the fastest time scale in the system, which is
the characteristic diffusion time of the particles tD, the time
step is nondimensionalized using it, i.e., Dt̃ = Dt/tD. For low and
medium shift cases the time step is kept at 10�4, but it is
increased for simulations in which the shift is higher than 0.5
due to the strength of the magnetic potential rising sharply
when the distance between dipoles is smaller than 1. The WCA

potential energy parameter e is also only increased when the shift
is higher than 0.5 in order to balance the sharply increasing
magnetic potential. System size effects were studied in cases of
small-shift by varying the amount of particles from 250–750, while
systems of medium and high shift were kept at 500 particles
since system-size effects are negligible for those cases.

2.4 Cluster properties

Two particles are considered to be in a cluster if the distance
between their centers is below the interaction range, i.e.,
rij/2a o a. The value of the interaction range used in this work, to
avoid misquantification of clusters (as linear or ring structures), is
a = 1.2. The unfolding method is used to account for the periodic
boundary conditions.32,33 Using the number of clusters Nc and
the amount of particles in each cluster Nc,p, the weight averaged
mean cluster size can be calculated using the formula:

hNci ¼

PNc

p¼1

ðNc;pÞ2

PNc

p¼1

Nc;p

* +
: (10)

In order to quantify the nucleation and growth phases, the
nucleation factor is calculated for each system using the formula:

nc ¼ Nc �NS

Np
; (11)

where NS is the number of singlets in the simulation and Np is
the number of particles. It is important to note that for the
purposes of this formula, singlets also count as clusters. The
cluster size distribution P(Nc) is also calculated.

2.5 Structure properties

In order to quantify the orientational ordering of the particles,
the bonded particle orientation distribution function P(mi�mj)
is calculated, considering that two particles are bonded as long as
they satisfy the distance criterion described above. The effective
radius of clusters as a function of cluster size is also studied as
a means to gage the ‘‘circularity’’ of clusters.

3 Results
3.1 Dynamic cluster growth

We begin our discussion by showing some of the structures
formed for various combinations of dipolar shift, a magnetic
interaction potential strength of 45, and a surface fraction of
0.01 over the course of the simulation in Fig. 2. Qualitatively,
three main cluster types can be observed for low (s = 0–0.1),
medium (s = 0.2–0.5), and high dipolar shifts (s = 0.6–1). For low
shifts, as shown in Fig. 2a–f, clusters tend to be in the form of
long chains or large loops that continuously grow in size as the
simulation progresses. It is expected that at very long times all
particles would form part of a single cluster in these systems,
hence the size of these clusters depends on the amount of
particles simulated and the length of the simulation. At medium
shifts, as shown in Fig. 2g–i, particles aggregate in compact
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Fig. 2 Simulation renderings of systems of s = 0.0, 0.1, 0.2, and 0.6 over time. Panels (a), (d), (g), and (j) show overviews of the initial clusters formed.
Panels (b), (e), (h), and (k) show the first signs of the clusters that characterize each system forming. Panels (c), (f), (i), and (l) contain overviews of the
simulation at long times and closeups of each system’s characteristic clusters. Magnetic dipoles are shifted into orange regions.
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ringlike structures, which experience some growth throughout
the simulation. At high shifts, as shown in Fig. 2j–l, mostly anti-
parallel doublets and triplets are present, as new particles rarely
aggregate with existing triplet clusters. For all the renderings
presented in Fig. 2: repulsive surfaces are shown in white, and
magnetic surfaces are shown in orange; from left to right Fig. 2
follows a pattern of initial simulation snapshot (t/tD = 0), early
simulation clusters snapshot (t/tD = 40), and late simulation
closeup (t/tD 4 2000) of characteristic clusters. Videos of these
systems can be found in the ESI.†

The ground state structures found by previous studies26

match those seen for systems of medium and high shift.
In order to quantify the dynamic growth of the system, we graph

the average cluster size and the nucleation factor over time, as seen
in Fig. 3a and b. A distinction is made for systems of low shift by
graphing them using open symbols due to their time-dependent
nature. This nature is demonstrated by the fact that the system does
not reach an equilibrium of average cluster sizes as the simulation
progresses, but rather continues to increase following a power law
behavior as clusters continue to acquire more particles. The con-
tinued growth of these systems is due to the chainlike configuration
in which the particles bond that allows for easier bonding of
particles as soon as they find themselves in the range of another
particle’s magnetic interaction potential. This continued growth is a
characteristic of Diffusion Limited Aggregation (DLA), as particles
bond irreversibly and the process is limited only by their mutual
diffusion. Unlike DLA processes with isotropic potentials, clusters
in Janus particle systems such as this one are not ramified, but
rather consist of loose single chains of particles.

As the mean cluster size graph shows in Fig. 3a, the trend
observed is that the average cluster size decreases as the shift

parameter increases, with the largest average cluster size of
around 20 being reached by the lowest shift system of 0.0, and the
smallest long time average cluster size of 3 pertaining to systems
with a shift of 0.6. The trend of decreasing cluster size is caused by
how the shift parameter affects the way particles bond. As the shift
parameter increases, clusters begin to contract and the dipoles
move towards the center of the cluster, making it difficult for new
particles to enter clusters as the attractive forces between particles
inside the cluster and those outside decrease greatly with increas-
ing distance. The distance eventually causes attractive forces to be
insufficient to overcome the potential barrier induced by the
repulsive forces between particles. Because of this, systems of
medium and high shift reach an equilibrium phase where the
average cluster size ceases to increase. The equilibrium size is
determined by a balance between aggregation due to magnetic
attraction and dis-aggregation due to Brownian motion. This
behavior is indicative of Reaction Limited Aggregation (RLA),34

and is the crucial distinction between high and the low-shift
systems. For cases of l 4 75 cluster sizes continue to grow past
the point where equilibrium is found in other systems, because
the magnetic attraction becomes strong enough to overcome
inter-particle repulsion regardless of particle orientation.

The nucleation graph in Fig. 3b shows the nucleation and
growth phases for each system. The initial slope demonstrates
particle–particle aggregation, the nucleation phase, where
singlets begin to aggregate into clusters. Stable clusters in our
systems aggregate irreversibly, and as such there will be almost
no singlet particles at long times, when this point is reached it
signals that the nucleation phase has ended. Past that, the
particles experience cluster–cluster aggregation, the growth
phase, where all particles form part of some cluster and clusters

Fig. 3 Time effect on the aggregation behavior of a dilute system of magnetic Janus particles at l = 45. Panel (a) shows weight averaged mean cluster
size, hNci, as a function of time for various s. Additionally, the continuous lines represent the power law aggregation behavior at long time. Panel (b) shows
the nucleation and growth process for the same dipolar shifts, s, as presented in panel (a). In both panels filled symbols correspond to cases where
we observe systems with time-independency, while open symbols correspond to systems that are time-dependent. This style is adhered to for all
following graphs.

Soft Matter Paper

View Article Online

https://doi.org/10.1039/c8sm02591f


This journal is © The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 4078--4086 | 4083

begin to aggregate with one another. For low shift systems, the
growth phase will theoretically continue until all particles are
part of one cluster, but the dilute nature of the simulation slows
down the process such that it becomes too computationally
taxing to achieve. Systems with medium shifts experience slower
and limited growth due to their RLA nature, and eventually reach
an equilibrium similar to the mean cluster size graph. For high
shifts the basic doublet and triplet clusters do not experience
much growth and as such the system quickly reaches equilib-
rium once nucleation ceases.

3.2 Population distribution

Fig. 4 contains the population distribution of clusters, which is
used to study in detail the differences in aggregation behavior
caused by the dipolar shift. The total time simulated isE3000tD
(see Fig. 3a) and the data in Fig. 4 represents the average of the
last 20% of the simulations. Low shifts are graphed using open
symbols in order to indicate their time-dependent nature,
though it is clear that these systems create the largest clusters
by a significant margin. It is clear that at longer times the
population distributions would show the peaks just shifted to
the right. For medium shifts, clusters can reach sizes of up to 12
for a shift of 0.2, but they generally consist of 3–8 particle
clusters. For high shifts, cluster size varies very little, only from
2 to 4 particles, with a majority of clusters consisting of 2 or
3 particles. Increasing l causes larger clusters to form, but the
effect is most prominent for systems of low shift while being
negligible for systems of high shift. These results coincide with
the findings regarding the orientations of particles found in
Fig. 5. The negligible amount of singlets for all cases also
confirms that stable clusters in all systems studied aggregate
irreversibly. In order to tune these distributions for systems
that reach equilibrium, the surface fraction can be increased,
leading to more clusters in the 4–8 particle region; but increas-
ing the surface fraction also leads to increased cluster–cluster
aggregation. Population distributions showing these behaviors
can be found in the ESI† (Fig. S1).

3.3 Structural properties

Fig. 5 displays the distribution of dipole orientations for particles
that share a cluster and the accompanying characteristic clusters
for each system. Similar to Fig. 4, the data in Fig. 5 represents the
average of the last 20% of the simulations. Systems with shifts of
zero have a large peak at 1, indicating an angle of 01. This angle
corresponds to the chain configuration, which is the most stable
state for bonded particles with a centered dipole. For systems with
shift equal to 0.1 the distribution begins to slant towards values
between 0.5 and 1, corresponding to angles between 451 and 01,
indicating that the clusters are beginning to contract and form
amorphous, ring-like structures.

For shifts of 0.2, a spread of peaks are found between 0 and 1,
indicating angles between 901 and 01. These angles correspond to
rings of 4 or more particles. The most common values for a shift of
0.4 are 0 and �0.5, corresponding to angles of 901 and 1201,
indicating clusters of 4 and 3 particles, respectively. A 901 angle
indicates a head-to-side orientation, meaning the particles dipoles
arrange in a square formation. A 1201 angle indicates that the
particle dipoles arrange themselves in an equilateral triangle for-
mation. For a shift of 0.6, there are very clear peaks at �0.5 and�1,
indicating clusters of 3 and 2 particles respectively. Doublets and
triplets are the most common structure for shifts higher than 0.6,
with doublets becoming more probable as the shift approaches 1.
For dipolar shifts in the range 0 r s r 0.5, the WCA potential
strength, e, is kept at 100. This causes noticeable interpaticle
separation at s = 0 (see Fig. 5b), which is reduced as s increases
(see Fig. 5b, d, f and h). This is because as s increases the magnetic
force increases (due to the magnetic dipoles being closer to each
other), consequently, the equilibrium distance of the total inter-
action potential decreases. At s4 0.5, the magnetic force overcomes
the WCA potential force for e = 100, causing overlapping between
particles. To avoid overlapping, e was significantly increased (e =
1000), leading to the increased distance between particles noticeable
at s = 0.6 (see Fig. 5j), similar to that observed at s = 0.

This clearly shows the effect the dipolar shift has on the
favored structures for each system, causing them to go from long
chains, to ringlike structures, to triplets and doublets. Increasing
l did not have an effect on the orientation distribution of systems
with sZ 0.1, but for very low shift systems (s = 0.0 and 0.05) it led
to a significantly higher portion of particles forming a straight
chain, effectively increasing the rigidity of those clusters. A figure
detailing these results can be found in the ESI† (Fig. S2).

Fig. 6 represents the effective radius of clusters as a function
of cluster size throughout the aggregation process. The beha-
vior of effective radius for straight chains (Reff,chains) and ideally
circular rings (Reff,rings), nondimensionalized with the particle
radius a, is plotted using the following equations:

Reff,chains = Nc, (12)

Reff;rings ¼ 1þ 1

sinðp=NcÞ: (13)

Systems of 0.0 shift tend strongly towards chain-like behavior,
and they exhibit large standard deviations in effective radius
when clusters contain 15 or more particles due to the

Fig. 4 Effect of shift on cluster size distributions, P(Nc), for the same
systems studied in Fig. 3. Filled symbols correspond to cases where the
mean cluster size is time-independent, while open symbols correspond to
cases where we observe time-dependency.
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Brownian forces randomly bending the chains, which is con-
sistent with what is observed in the literature.22 For 0.05 shift
the behavior is similar, up until around 15 particles, where
effective radius decreases as clusters start transitioning into
amorphous rings due to the dipole shift curving the clusters in

a particular direction. At 0.1 shift, the transition from chains
into rings occurs around a cluster size of 6 particles, and leads
to more compact clusters than lower shift systems. Systems of
shifts 0.2, 0.4, and 0.6 exhibit very similar behavior, forming
compact clusters that hardly deviate from ideally circular

Fig. 5 Effect of shift on orientational distribution function. Panels (a), (c), (e), (g), and (i) demonstrate the bonded particle orientation distribution
functions for the same five systems studied in Fig. 3. Panels (b), (d), (f), (h), and (j) contain the characteristic clusters for each of the systems.
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systems. The radius of gyration hRgi shows essentially the same
behavior as hReffi when it’s plotted as a function of hNci (see
Fig. S3 in the ESI†).

3.4 Combined effect of k and shift

Fig. 7 shows the weight averaged mean cluster size at long times
as a function of shift for various l, also presented are the results
of Yener et al.22 for 3D systems of f = 0.07 and l = 6.67–53.33.
Again the data in Fig. 7 represents the average of the last 20% of
the simulations. Systems which are time-dependent are graphed

with open symbols since the values would differ depending on
the final time simulated. For the region of systems that are time-
independent the average cluster size follows an inverse power
law behavior with respect to the dipolar shift (Nc B s�0.6�0.1).
Since l mainly serves to increase the rate of aggregation, its
effect is more pronounced in the time-dependent systems as
clusters will continue to grow until all particles form one cluster,
while time-independent systems reach an equilibrium average
cluster size where growth ceases. Comparison with the Yener
results shows some deviation for low shift values as the average
cluster size for these systems depends greatly on interaction
strength, particle density and simulation time; all of which differ
for our simulations, particularly the density (0.01 vs. 0.07)
and simulation time (3000 vs. 7500). The 3D nature of the
Yener’s system allows for the formation of staggered loops in
systems of shift 0.1–0.2, which contain a larger amount of
average particles than the loops present in our simulations.
The results are in agreement for shifts of 0.3 and higher where
systems reach a given equilibrium size regardless of particle
density or simulation time.

4 Conclusions

We studied the dynamics of magnetic Janus particles with
differing combinations of dipolar shifts and magnetic inter-
action potentials. An inverse relationship was found between
the lateral shift of the dipole and the average cluster size; as
the dipole shift increases, the average cluster size decreases.
Three basic cluster types were identified based on the dipolar
shift: chains or loops, rings, and triplets or doublets; clusters
characteristic of the low, medium and high shift regimes,
respectively. Systems with shifts very close to 0 are time
dependent because they favor chainlike aggregation, which
allows for low-potential barriers to cluster growth, giving them
a DLA nature that allows for continuous cluster growth. As the
dipolar shift reaches 0.2 and beyond, the favorable orientation
between dipoles of bonded particles leads clusters to contract,
increasing the potential barrier for cluster growth such that the
average cluster size reaches an equilibrium determined by the
balance between attractive and repulsive forces. Our study of
the effective radius as a function of cluster size shows that
systems of shift higher than 0.2 exhibit clusters with great
circularity, and there exists a transition point for systems of
lower shift where they go from favoring linear structures to
circular ones when clusters are large enough.

The main effect of l increasing is a shorter aggregation time,
though at high l of over 75 cluster–cluster aggregation starts to
happen for all systems, meaning that all systems become size
dependent. Although our study did not consider the effects of
hydrodynamic forces, it has been shown that even for systems
of much higher particle concentration accounting for hydro-
dynamic forces does not change the qualitative nature of the
system’s aggregation.27 Understanding the factors that influence
self-assembly can help characterize materials based on the
geometry of their aggregation, or design them for specific uses

Fig. 6 Effective radius of clusters as a function of cluster size throughout
the aggregation process. Also graphed as a solid black line and a dashed
black line are the effective radius for ideally circular rings and straight
chains, respectively.

Fig. 7 Long time weight averaged mean cluster sizes, hNciN, as a function
of dipolar shift for several magnetic coupling constant, l. Filled symbols
correspond to cases where the mean cluster size is time-independent,
while open symbols correspond to cases where we observe time-
dependency. A continuous line representing the power-law behavior of
mean cluster size with respect to shift is shown for the time independent
region. The results of Yener et al.22 for 3D systems of f = 0.07 and l =
6.67–53.33 are also graphed for comparison.

Paper Soft Matter

View Article Online

https://doi.org/10.1039/c8sm02591f


4086 | Soft Matter, 2019, 15, 4078--4086 This journal is © The Royal Society of Chemistry 2019

such as droplet manipulation or microfluidic mixing.35,36 The
design process of new materials can also benefit from the
fact that one can control the structures by tuning the para-
meters that affect self-assembly. Future work will include
higher quantities and concentrations of particles, and three-
dimensional simulations.
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