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Leveraging Stochasticity for      
In-Situ Learning in Binarized 
Deep Neural Networks  
Steven D. Pyle, Justin D. Sapp, and Ronald F. DeMara, University of Central Florida 
 

A recent thrust in Deep Neural Network (DNN) research has 
been towards binary approaches for compact and energy-
sparing neuromorphic architectures utilizing emerging devices. 
However, approaches to deal with device process variations 
and realization of stochastic behavior intrinsically within 
neural circuits have remained underexplored. Herein, we 
leverage a novel probabilistic spintronic device for low-energy 
recognition operations which improves DNN performance 
through active in-situ learning via mitigation of device 
reliability challenges. 
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D 

eep Neural Networks (DNNs) have realized impressive feats of intelligence, surpassing humans in specific tasks 
and achieving high efficacy at speech recognition, machine translation, and higher-level human-like reasoning 
activities such as interpretation and classification of visual art [1]. Although there are many successful architectural 
models used by DNNs, their common characteristic is the use of many layers of hidden nodes to realize “deep” 

topologies of non-linear neurons with linear weighted connections trained by backpropagation to distinguish complex inputs 
with high degrees of accuracy [2]. However, this beneficial characteristic of having many layers results in high computational 
demands and a large memory footprint [3]. Thus, recent works into reducing the computation and memory overheads of 
DNNs have investigated the possibility of attaining similar recognition capabilities using reduced-precision approaches which 
incur significantly lower computation and memory demands. By reducing these overheads, in-situ networks could potentially 
be realized on resource-constrained platforms such as mobile and Internet of Things (IoT) devices [4].  

Promising advancements towards this goal have focused on the substitution of high-precision floating-point parameters with 
binary representations, which replace expensive multiply-and-accumulate computations with bitwise logical operations and bit 
counting. These Binary Neural Networks (BNNs) have replicated some incredible feats of narrow intelligence demonstrated by 
Deep Learning with energy profiles that could be implemented on more resource-constrained systems by using efficient 
custom neuromorphic hardware with emerging computing devices [5-9]. This has led to the development of neuromorphic 
hardware accelerators that can implement such networks in a highly efficient manner [5-8]. The work presented herein extends 
these works by utilizing an emerging compact stochastic device, called the probabilistic bit (p-bit) [10], that naturally 
implements a non-linear Probabilistic Activation Function (PAF). The low-current operation of the p-bit allows for a seamless 
integration with low-voltage and high-resistance Resistive Random Access Memory (RRAM) crossbar and pseudo-crossbar 
arrays, which leads to very low energy consumption per computation. In addition to the novel PAF proposed herein, we 
analyze how process variations in RRAM devices impact the performance of BNNs that are implemented using our scheme, 
and how such variations can be mitigated with in-situ training.  

To summarize, this work provides the following contributions: 
1) We demonstrate the feasibility of a compact PAF that uses just 4.98 µW combined with parallel binary RRAM pseudo-
crossbar arrays for a low power of 75 nW per each weighted connection having an excitatory input, and 
2) We evaluate the effects of RRAM process variation rates up to 50% on the recognition rate for the CIFAR-10 image 
recognition dataset using a convolutional neural network and demonstrate how in-situ learning can mitigate the resulting 
performance degradation. 

 
DEEP NEURAL NETWORK ACCELERATION 
Convolutional Neural Networks (CNNs), the popular class of 
DNNs that we investigate herein, are multi-layered networks that 
typically consist of several convolution layers, which convert high 
dimensional data, such as RGB images, into features, followed by 
a number of fully connected layers and terminated with a Log 
SoftMax layer for classifying the input data objects into labels 
based on their features, as depicted in Figure 1 [2]. Within each 
layer, either convolutional or fully-connected, the primary 
computations are realized by abstract neurons that calculate the 
weighted-summation of their input connections. Each neuron 
then computes a non-linear activation function of that weighted-
sum. There are many different activation functions used with 
DNNs, such as rectified linear units, tanh, sigmoid, and others. Since 
DNNs traditionally utilize high precision floating-point 
representations of millions and sometimes billions of parameters, 
they incur significant memory requirements and computational 
operations during their training and deployment phases. They 
also are subject to the high latency overhead of transferring data 
between the memory and processor in traditional von-Neumann 
architectures. Thus, the development of BNNs which discretize 
the weights and activations of DNNs to binary values, as shown 
in Figure 1, can greatly reduce the memory and computation 

 
Figure 1: Convolutional DNN structure along with 
representative neurons for both floating-point and binary 
representations.  
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overheads of training and utilizing DNNs. Namely, the expensive floating-point operations can be simplified into highly-
efficient bitwise computations using bit-counting [5]. If we realize these memory and computation overhead reductions by 
implementing BNNs with custom neuromorphic accelerators using resistive devices in crossbar and pseudo-crossbar 
topologies [6-8], we can also reduce physical chip area, energy, and computation time requirements, which we expound upon 
in the following sections.  
 
The binarization of weights in BNNs are typically constrained to {-1, +1} values, while activation functions have been explored 
with both {0, 1} and {-1, +1} constraints [6-8]. Additionally, the activation function is typically implemented with a deterministic 
sign function due to its straightforward implementation on most hardware [6-8]. Stochastic binarization has been proposed as 
more appealing than deterministic binarization approaches [5], although very few works have investigated PAFs in BNNs. This 
is primarily due to the inherent difficulty, device count, and wiring complexity in implementing PAFs using standard CMOS-
only approaches. These can be beneficial for modeling and abstracting complex dynamic distributions, as identified broader 
literature [11]. Another consideration for BNN accelerators using resistive crossbar arrays is the effect that process variation has 
on the accuracy of the network. With deviations from the device’s ideal resistance values, the weights effectively shift from 
their intended values, which as we show later, can cause a significant increase in the error rate. However, we demonstrate that 
by incorporating the hardware into the neuromorphic training loop, it is possible to mitigate almost all degradations of 
accuracy associated with process variation. This is detailed in Figure 2, where Figure 2a shows the propagation of activations 
(x) between layers, which is computed using the accelerator circuitry for in-situ training or ideal values in software using off-
platform training, and Figure 2b shows the training loop for both in-situ and off-platform approaches where the error gradient 
(e) calculations and subsequent weight updates are performed in a connected CPU or ASIC. For the in-situ approach, the 
RRAM-based synaptic weights are physically updated, and these weights are used to compute activations in the next forward 
pass. For off-platform training, ideal software-based weight values are updated and used to calculate the activations based on 
ideal behavior.  
 

RECENT WORK  
Several recent works have aimed towards realizing BNN acceleration through the utilization of emerging devices, such as 
RRAM and spintronics, to compute the necessary binary operations in-memory. This frees up chip area and eliminates 
bottlenecks in the data pathways between memory and computational resources. A selection of these works in Table 1 is 
compared on the basis of Transistor Count, which determines the silicon die area that is needed to interface with and facilitate 
computational operations in the memory array, the Sequential/Parallel operation of the in-memory computations, and the 
Variation Degradation Factor. The latter quantifies the accuracy degradation, defined as the increase in mean percent 
recognition error across the CIFAR-10 dataset divided by the percentage value of single-sigma variation in resistance of the 
RRAM elements, as described subsequently herein. The influential work of Sun et al. proposed an RRAM-based XNOR BNN 
that is capable of both sequential operation (computing the XNOR of inputs and weights one input bit at a time, summing the 

 
Figure 2: Training illustration for in-situ and off-platform methods. a) propagations of activations (x) and error gradients (e) used for 
calculating weight updates during training. b) the training loop with differences between in-situ and off-platform training highlighted. 
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result, and then applying the sign activation function) and parallel operation (using two input lines per input bit and two 
single-transistor/single-resistive-element (1T1R) cells per weighted input to compute parallel bitwise XNOR operations and 
then using a Sense Amplifier output to realize the sign activation function) [6]. Ni et al. proposed a sneak-path-free binary 
crossbar using two types of RRAM devices that do not require a select transistor for each bit cell, and their activation function is 
determined by a voltage comparator, which uses 16 transistors [8]. They found that a 29% variation rate in the resistance values 
of the bit cells degraded accuracy by 4%, leading to a 
Variation Degradation Factor of 0.138. The work presented 
herein uses a compact, low-power PAF and an RRAM array 
to conduct parallel BNN computations that are resilient to 
RRAM variations. With a Variation Degradation Factor of 
0.02 when used with in-situ training, concerns about 
process variation are practically eliminated. Although 
additional works investigated mitigating the effects of 
process variations in non-binary RRAM crossbar 
approaches [12], comparisons herein are restricted to those 
utilizing binary encodings. Additionally, while FPGA-based 
accelerators offer off-the-shelf programmability and achieve 
orders of magnitude higher throughput in digits per second 
than CPUs on recognition benchmarks such as the MNIST 
dataset, significant energy-efficiency and area optimizations are sought beyond reconfigurable fabrics by using neuromorphic 
architectures. When adopting an in-situ accelerator-based approach towards this goal, the throughput during the training 
phase becomes bandwidth-limited only by the datapath between CPU/ASIC, RAM, and the accelerator itself. Thus, proper 
speed-matching among these components is essential. During the inference phase, throughput of a parallel crossbar remains 
comparable to similar binarized RRAM-based neural network approaches, which significantly exceed CPU, GPU, FPGA, or 
CMOS-ASIC approaches in-practice [8].” 
 
Accelerator Design  
The neuromorphic accelerator described herein is 
depicted in Figure 3. It consists of multiple BNN layers, 
where each layer contains a pseudo-crossbar array, along 
with the associated PAFs at the outputs, and corresponds 
to either a convolution kernel or a fully-connected layer, 
as determined by the DNN architecture that is being 
implemented. In addition to the BNN layers, our 
simulations assume that a rudimentary on-board CPU or 
ASIC with access to sufficient RAM is used for handling 
the training logic and backpropagation calculations, as 
well as storing and delivering the training/test data and 
labels. Those resources do not significantly impact the 
computational burden, as the majority of the calculation 
workload is engaged when computing each DNN layer’s 
weighted sums and activation functions. 
 
Pseudo-Crossbar Operation 
Each layer in the neuromorphic accelerator performs 
three computations in parallel between all input and 
output bits. The first computation is the bitwise 
multiplication of the binary input and the stored binary 
weight between each input and each output. This 
computation is realized using two complementary 
memristors per input/output pair as well as two signal 
lines per input, which is similar to resistive pseudo-

 
Figure 3: (a) Accelerated BNN-based classification of training and 
evaluation images stored within memory, using (b) weighted input 
values derived from a resistive memory/logic array, and (c) activation 
function based on a tunable, stochastic Spin Hall Effect MTJ with 
circular nanomagnet. 

Table 1: Neuron attributes of recent BNN approaches. 

BNN 
Approach 

Transistor 
Count 

Sequential/
Parallel 

Variation 
Degradation Factor 

Sun et al. [6] 14 Mixed N/A 

Ni et al. [8] 16 Parallel 0.138 

Angizi et al. [9] >10 Sequential N/A 

Work Herein 4 Parallel 0.02 
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crossbars previously developed for processing BNNs [6-8]. As shown in Figure 3b, the paired input wire {in_i, in_i’} voltages 
signify a value of either ‘0’ or ‘1’. The signal level ‘0’ is represented by an input pair value of [Vss, Vdd] (here Vss is chosen to be 
-Vdd) which deactivates both the PMOS and NMOS transistors in the bit cell, allowing no current to flow regardless of the 
weight value. An input value of ‘1’ is represented by an input pair value of [GND, GND], which activates both transistors, 
allowing current to flow through both branches. Each memristor pair corresponds to a ‘-1’ or ‘+1’ weight, depending on which 
memristor is in the High Resistance (HR) state and which memristor is in the Low Resistance (LR) state, as depicted in Figure 
3b. When the input value is ‘1’, meaning both transistors in the bit cell are on, the branch with the LR memristor sinks/sources 
the vast majority of the current flow in the bit cell, due to the large resistance ratio between the LR and HR states. Thus, if the 
LR branch connects to the NMOS and Vss, it will sink current, corresponding to an output value of ‘-1’, and if the LR branch 
connects to the PMOS and Vdd, it will source current, corresponding to an output value of ‘+1’. Thus, the three possible output 
values of the bitwise input and weight multiplications are 0, -1, and +1. 
 
The second parallel calculation performed in the BNN layer is the bit-counting operation, which is the summation of the 
parallel bitwise multiplications described previously along a single output path. This is accomplished by connecting the in- 
terminal of the p-bit to GND and the in+ terminal to the bit line that connects all of the bit-cells within a single column, whereby 
the accumulation of currents according to Kirchoff’s current law corresponds to parallel input-weight multiplications, which 
equates to one of the {0, -1, +1} current-level values described previously. The final calculation in the BNN layer uses the 
accumulated current summation from the previously described computation as the input to a PAF, which outputs a ‘0’ or ‘1’ 
with a probability according to a sigmoidal function as shown in Figure 3c. The implementation of the PAF is described next. 
 
Concerning RRAM variability, in order to continually measure resistance over a period of time, there can be application of a 
read voltage to the memory cell and retention results for a 1 Kb array to maintain at least 5x resistance ratio at high temperature 
are published [16]. CBRAM readily provides R_on and R_off around 12Kohm and 100Kohm, respectively, and using nominal 
read voltages around 0.3V, the read disturbance is very low [17]. 
 
Probabilistic Activation  
In order implement the PAF, we leverage the probabilistic-bit (p-bit) design proposed by Camsari et al. [10] and shown in 
Figure 3c, which is a low-power and compact circuit capable of generating random bits from thermal fluctuations. The p-bit is a 
Spin-Hall-Effect driven Magnetic Tunnel Junction (MTJ) device with a very low energy barrier [10], which allows thermal 
agitations to stochastically switch the free layer of the MTJ between its parallel and antiparallel states on sub-nanosecond 
timescales. Since a current flowing through the bottommost heavy metal layer can effectively bias the free layer of the MTJ, the 
probability of the MTJ being in HR or LR states can be tuned along a sigmoidal function via the input current, as shown in 
Figure 3c. By placing a resistor, Rmid, having a fixed resistance equal to the average of the HR and LR states of the MTJ between 
the MTJ and Vdd, we can use a voltage divider to switch a pair of inverters, giving us a digital representation of the state of the 
MTJ, which represents the output of the PAF. Since the energy barrier of the p-bit is very low, it requires current on the order of 
100’s of nA to bias the PAF, which allows for low-energy BNN calculations using low voltage and highly-resistive scaled 
RRAM devices for weighted connections. 
 
SIMULATION FRAMEWORK  
The simulation framework utilized herein is depicted in 
Figure 4 and consists of HSPICE modeling of the 
circuit-level parallel bitwise and bit-counting 
operations of the RRAM pseudo-crossbar as well as the 
p-bit PAF for determining the circuit behavior under 
different RRAM variations and PAF properties, which 
are then modeled in PyTorch for training and testing on 
Nvidia Tesla V100 GPU clusters. 
 
HSPICE Simulations 
On the HSPICE platform utilized, 14nm PTM transistor 
models [11] were deployed along with RRAM 
resistance values of Ν(5	𝑀Ω, σ) for the LR state, and 

 
Figure 4: Emerging device model-driven simulation flow.  
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Ν(50	𝑀Ω, σ) for the HR state, where Ν(𝜇, σ) is a normal distribution with a mean of 𝜇 and a standard deviation of 𝜎, where 𝜎 is 
varied from 0%-50% of 𝜇 in 5% increments, and the p-bit is modeled using experimentally verified physics modules from the 
Modular Spintronics Library [14] at a Vdd of 0.6V. PAF activation probability was measured using Monte Carlo simulations of 
100 samples each for 480 different p-bit input currents. The results, shown in Figure 3c, depict the sigmoidal probability of the 
p-bit’s output voltage representing either a ‘1’ or a ‘0’ signaling level. 
 
PyTorch Simulations 
For training BNNs using the PyTorch framework, we extend the code developed in [5] to include the impacts of weight-
resistance distortion resulting from device variations, as well as implementing our p-bit based PAF. During training, high-
precision weight values are stored in RAM, which are used for gradient calculations as per the training algorithm for BNNs 
developed by Hubara et al [5]. However, the activations in the forward pass are determined strictly by the binary weight values 
with their associated variations, as if the computation was done in-situ. Although some mismatch may still occur between the 
high-precision weights used for the backward pass and the in-situ weight variations used for the forward pass, we found that 
performance is still improved by using the real in-situ weights during the forward pass. The p-bit PAF circuit from the HSPICE 
simulation is approximated with a probabilistic hard sigmoid function. 
 
The CNN used herein is the same one used for [6], which has six convolutional layers and three fully-connected layers and was 
trained on the CIFAR-10 dataset [15]. We do not include any pooling layers, however we utilize a stride of 2 on CNN layers 2, 
4, and 6. Although it is not explicitly claimed within other BNN hardware accelerator literature, we found that binarizing the 
final layer results in a significant increase in the error rate, whereby if only the last layer is chosen to be LogSoftmax, the error 
rate reduces to very tractable levels. Thus, we use LogSoftmax for the final layer, which would be computed using the CPU or 
ASIC in our scheme. Since the final layer is a small fraction of the total size of the network, the large accuracy improvement can 
be worthwhile given the acceptable minimal performance degradation incurred. 
 
In-situ vs. Off-Platform Training 
When developing BNN accelerator hardware, one has the choice to either train the network Off-Platform using ideal {-1, +1} 
weight values and then download the final weight configuration to the as-built hardware, or train the network in-situ, using 
the actual circuit and its associated process variations within the training loop. The latter approach is a distinguishing feature of 
our design scheme developed herein. We leverage the useful property that device-to-device resistance variations are effectively 
variations to the {-1, +1} weight values computed when training and testing the network in PyTorch. We compare the 
performance of in-situ and Off-Platform training techniques with respect to the final error rates under multiple levels of 
resistance variation, and we show that even with the anticipated rates of variation measured experimentally for fabricated 
devices, in-situ training allows the learning mechanism to produce BNN configurations that achieve error rates that are nearly 
identical to the error rates corresponding to idealized networks without device variation. 
 
RESULTS  
The results for the simulations conducted as described in the previous section can be summarized in Figure 5 as follows. We 
simulated at least 100 epochs for in-situ and Off-Platform training with weight variations from 0% to 50% in 5% increments for 
as-built process variation and/or degradation over the devices’ lifetime of operation. The lowest error rate for each condition is 
shown in Figure 5b, and we show the error rate per epoch for a selection of test cases in Figure 5a. The lowest error rate for 
ideal weights with no variation is determined to be 15.38%. The increase in error rate due to weight variations for the Off-
Platform training condition is negligible under 15% variation, staying within a 2% error rate increase for up to 30% variation, 
but increases significantly thereafter, reaching a maximum of 12.17% increase in error rate at 50% variation. However, for the 
in-situ training approach developed herein, the increase in error rate fluctuates within 1% for all weight variations, 
demonstrating the robustness that is achieved by utilizing the intrinsic device variations within the forward pass for training. 
Such a result is crucial for deeply-scaled beyond-CMOS devices that exhibit significant process variation. In addition to the 
error rate analysis, our HSPICE simulations demonstrated that each bit cell that has an input value of ‘1’ consumes an average 
power of 75 nW, and that the p-bit PAF uses just 4.98 µW, demonstrating a very low-power scheme for accelerating BNNs. The 
clock speed of the accelerator is dependent upon the retention time of the p-bit, which can be sub-nanosecond [10]. Therefore, 
with a clock speed of 1 GHz, this implementation uses just 75 aJ per active synapse and 4.98 fJ per PAF calculation. The 
throughput of this approach, for the training phase, would be limited by the datapaths between CPU/ASIC, RAM, and the 
accelerator, and as such, it would be critically-dependent upon the implemented components. For the inference phase after the 
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training phase, the accelerator throughput could be comparable to similar binarized RRAM-crossbar neural network 
approaches, which is significantly higher than CPU, GPU, FPGA, or CMOS-ASIC approaches [8]. 
 
CONCLUSION  
The BNN hardware accelerator introduced herein proposed the use of a novel spintronic device for a compact implementation 
of a PAF that naturally integrates with current-summation-based crossbar and pseudo-crossbar arrays for low-power parallel 
BNN computations of just 75 nW per activated bit cell and 4.98 uW per PAF. Additionally, we demonstrated that this approach 
is highly resilient, even to extreme process variation, when utilizing an in-situ training framework. Taken altogether, such a 
scheme is well-situated for highly-scaled BNN acceleration on resource-constrained platforms such as mobile and IoT.  
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Figure 5: (a) Training error rate per epoch for a selection of test cases; (b) Error rates corresponding to weight variations 
for both in-situ and Off-Platform training methods. 
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