
Page 1 of 8

Leveraging Stochasticity for
In-Situ Learning in Binarized
Deep Neural Networks
Steven D. Pyle, Justin D. Sapp, and Ronald F. DeMara, University of Central Florida

A recent thrust in Deep Neural Network (DNN) research has
been towards binary approaches for compact and energy-
sparing neuromorphic architectures utilizing emerging devices.
However, approaches to deal with device process variations
and realization of stochastic behavior intrinsically within
neural circuits have remained underexplored. Herein, we
leverage a novel probabilistic spintronic device for low-energy
recognition operations which improves DNN performance
through active in-situ learning via mitigation of device
reliability challenges.

Page 2 of 8

D

eep Neural Networks (DNNs) have realized impressive feats of intelligence, surpassing humans in specific tasks
and achieving high efficacy at speech recognition, machine translation, and higher-level human-like reasoning
activities such as interpretation and classification of visual art [1]. Although there are many successful architectural
models used by DNNs, their common characteristic is the use of many layers of hidden nodes to realize “deep”

topologies of non-linear neurons with linear weighted connections trained by backpropagation to distinguish complex inputs
with high degrees of accuracy [2]. However, this beneficial characteristic of having many layers results in high computational
demands and a large memory footprint [3]. Thus, recent works into reducing the computation and memory overheads of
DNNs have investigated the possibility of attaining similar recognition capabilities using reduced-precision approaches which
incur significantly lower computation and memory demands. By reducing these overheads, in-situ networks could potentially
be realized on resource-constrained platforms such as mobile and Internet of Things (IoT) devices [4].

Promising advancements towards this goal have focused on the substitution of high-precision floating-point parameters with
binary representations, which replace expensive multiply-and-accumulate computations with bitwise logical operations and bit
counting. These Binary Neural Networks (BNNs) have replicated some incredible feats of narrow intelligence demonstrated by
Deep Learning with energy profiles that could be implemented on more resource-constrained systems by using efficient
custom neuromorphic hardware with emerging computing devices [5-9]. This has led to the development of neuromorphic
hardware accelerators that can implement such networks in a highly efficient manner [5-8]. The work presented herein extends
these works by utilizing an emerging compact stochastic device, called the probabilistic bit (p-bit) [10], that naturally
implements a non-linear Probabilistic Activation Function (PAF). The low-current operation of the p-bit allows for a seamless
integration with low-voltage and high-resistance Resistive Random Access Memory (RRAM) crossbar and pseudo-crossbar
arrays, which leads to very low energy consumption per computation. In addition to the novel PAF proposed herein, we
analyze how process variations in RRAM devices impact the performance of BNNs that are implemented using our scheme,
and how such variations can be mitigated with in-situ training.

To summarize, this work provides the following contributions:
1) We demonstrate the feasibility of a compact PAF that uses just 4.98 µW combined with parallel binary RRAM pseudo-
crossbar arrays for a low power of 75 nW per each weighted connection having an excitatory input, and
2) We evaluate the effects of RRAM process variation rates up to 50% on the recognition rate for the CIFAR-10 image
recognition dataset using a convolutional neural network and demonstrate how in-situ learning can mitigate the resulting
performance degradation.

DEEP NEURAL NETWORK ACCELERATION
Convolutional Neural Networks (CNNs), the popular class of
DNNs that we investigate herein, are multi-layered networks that
typically consist of several convolution layers, which convert high
dimensional data, such as RGB images, into features, followed by
a number of fully connected layers and terminated with a Log
SoftMax layer for classifying the input data objects into labels
based on their features, as depicted in Figure 1 [2]. Within each
layer, either convolutional or fully-connected, the primary
computations are realized by abstract neurons that calculate the
weighted-summation of their input connections. Each neuron
then computes a non-linear activation function of that weighted-
sum. There are many different activation functions used with
DNNs, such as rectified linear units, tanh, sigmoid, and others. Since
DNNs traditionally utilize high precision floating-point
representations of millions and sometimes billions of parameters,
they incur significant memory requirements and computational
operations during their training and deployment phases. They
also are subject to the high latency overhead of transferring data
between the memory and processor in traditional von-Neumann
architectures. Thus, the development of BNNs which discretize
the weights and activations of DNNs to binary values, as shown
in Figure 1, can greatly reduce the memory and computation

Figure 1: Convolutional DNN structure along with
representative neurons for both floating-point and binary
representations.

Page 3 of 8

overheads of training and utilizing DNNs. Namely, the expensive floating-point operations can be simplified into highly-
efficient bitwise computations using bit-counting [5]. If we realize these memory and computation overhead reductions by
implementing BNNs with custom neuromorphic accelerators using resistive devices in crossbar and pseudo-crossbar
topologies [6-8], we can also reduce physical chip area, energy, and computation time requirements, which we expound upon
in the following sections.

The binarization of weights in BNNs are typically constrained to {-1, +1} values, while activation functions have been explored
with both {0, 1} and {-1, +1} constraints [6-8]. Additionally, the activation function is typically implemented with a deterministic
sign function due to its straightforward implementation on most hardware [6-8]. Stochastic binarization has been proposed as
more appealing than deterministic binarization approaches [5], although very few works have investigated PAFs in BNNs. This
is primarily due to the inherent difficulty, device count, and wiring complexity in implementing PAFs using standard CMOS-
only approaches. These can be beneficial for modeling and abstracting complex dynamic distributions, as identified broader
literature [11]. Another consideration for BNN accelerators using resistive crossbar arrays is the effect that process variation has
on the accuracy of the network. With deviations from the device’s ideal resistance values, the weights effectively shift from
their intended values, which as we show later, can cause a significant increase in the error rate. However, we demonstrate that
by incorporating the hardware into the neuromorphic training loop, it is possible to mitigate almost all degradations of
accuracy associated with process variation. This is detailed in Figure 2, where Figure 2a shows the propagation of activations
(x) between layers, which is computed using the accelerator circuitry for in-situ training or ideal values in software using off-
platform training, and Figure 2b shows the training loop for both in-situ and off-platform approaches where the error gradient
(e) calculations and subsequent weight updates are performed in a connected CPU or ASIC. For the in-situ approach, the
RRAM-based synaptic weights are physically updated, and these weights are used to compute activations in the next forward
pass. For off-platform training, ideal software-based weight values are updated and used to calculate the activations based on
ideal behavior.

RECENT WORK
Several recent works have aimed towards realizing BNN acceleration through the utilization of emerging devices, such as
RRAM and spintronics, to compute the necessary binary operations in-memory. This frees up chip area and eliminates
bottlenecks in the data pathways between memory and computational resources. A selection of these works in Table 1 is
compared on the basis of Transistor Count, which determines the silicon die area that is needed to interface with and facilitate
computational operations in the memory array, the Sequential/Parallel operation of the in-memory computations, and the
Variation Degradation Factor. The latter quantifies the accuracy degradation, defined as the increase in mean percent
recognition error across the CIFAR-10 dataset divided by the percentage value of single-sigma variation in resistance of the
RRAM elements, as described subsequently herein. The influential work of Sun et al. proposed an RRAM-based XNOR BNN
that is capable of both sequential operation (computing the XNOR of inputs and weights one input bit at a time, summing the

Figure 2: Training illustration for in-situ and off-platform methods. a) propagations of activations (x) and error gradients (e) used for
calculating weight updates during training. b) the training loop with differences between in-situ and off-platform training highlighted.

Page 4 of 8

result, and then applying the sign activation function) and parallel operation (using two input lines per input bit and two
single-transistor/single-resistive-element (1T1R) cells per weighted input to compute parallel bitwise XNOR operations and
then using a Sense Amplifier output to realize the sign activation function) [6]. Ni et al. proposed a sneak-path-free binary
crossbar using two types of RRAM devices that do not require a select transistor for each bit cell, and their activation function is
determined by a voltage comparator, which uses 16 transistors [8]. They found that a 29% variation rate in the resistance values
of the bit cells degraded accuracy by 4%, leading to a
Variation Degradation Factor of 0.138. The work presented
herein uses a compact, low-power PAF and an RRAM array
to conduct parallel BNN computations that are resilient to
RRAM variations. With a Variation Degradation Factor of
0.02 when used with in-situ training, concerns about
process variation are practically eliminated. Although
additional works investigated mitigating the effects of
process variations in non-binary RRAM crossbar
approaches [12], comparisons herein are restricted to those
utilizing binary encodings. Additionally, while FPGA-based
accelerators offer off-the-shelf programmability and achieve
orders of magnitude higher throughput in digits per second
than CPUs on recognition benchmarks such as the MNIST
dataset, significant energy-efficiency and area optimizations are sought beyond reconfigurable fabrics by using neuromorphic
architectures. When adopting an in-situ accelerator-based approach towards this goal, the throughput during the training
phase becomes bandwidth-limited only by the datapath between CPU/ASIC, RAM, and the accelerator itself. Thus, proper
speed-matching among these components is essential. During the inference phase, throughput of a parallel crossbar remains
comparable to similar binarized RRAM-based neural network approaches, which significantly exceed CPU, GPU, FPGA, or
CMOS-ASIC approaches in-practice [8].”

Accelerator Design
The neuromorphic accelerator described herein is
depicted in Figure 3. It consists of multiple BNN layers,
where each layer contains a pseudo-crossbar array, along
with the associated PAFs at the outputs, and corresponds
to either a convolution kernel or a fully-connected layer,
as determined by the DNN architecture that is being
implemented. In addition to the BNN layers, our
simulations assume that a rudimentary on-board CPU or
ASIC with access to sufficient RAM is used for handling
the training logic and backpropagation calculations, as
well as storing and delivering the training/test data and
labels. Those resources do not significantly impact the
computational burden, as the majority of the calculation
workload is engaged when computing each DNN layer’s
weighted sums and activation functions.

Pseudo-Crossbar Operation
Each layer in the neuromorphic accelerator performs
three computations in parallel between all input and
output bits. The first computation is the bitwise
multiplication of the binary input and the stored binary
weight between each input and each output. This
computation is realized using two complementary
memristors per input/output pair as well as two signal
lines per input, which is similar to resistive pseudo-

Figure 3: (a) Accelerated BNN-based classification of training and
evaluation images stored within memory, using (b) weighted input
values derived from a resistive memory/logic array, and (c) activation
function based on a tunable, stochastic Spin Hall Effect MTJ with
circular nanomagnet.

Table 1: Neuron attributes of recent BNN approaches.

BNN
Approach

Transistor
Count

Sequential/
Parallel

Variation
Degradation Factor

Sun et al. [6] 14 Mixed N/A

Ni et al. [8] 16 Parallel 0.138

Angizi et al. [9] >10 Sequential N/A

Work Herein 4 Parallel 0.02

Page 5 of 8

crossbars previously developed for processing BNNs [6-8]. As shown in Figure 3b, the paired input wire {in_i, in_i’} voltages
signify a value of either ‘0’ or ‘1’. The signal level ‘0’ is represented by an input pair value of [Vss, Vdd] (here Vss is chosen to be
-Vdd) which deactivates both the PMOS and NMOS transistors in the bit cell, allowing no current to flow regardless of the
weight value. An input value of ‘1’ is represented by an input pair value of [GND, GND], which activates both transistors,
allowing current to flow through both branches. Each memristor pair corresponds to a ‘-1’ or ‘+1’ weight, depending on which
memristor is in the High Resistance (HR) state and which memristor is in the Low Resistance (LR) state, as depicted in Figure
3b. When the input value is ‘1’, meaning both transistors in the bit cell are on, the branch with the LR memristor sinks/sources
the vast majority of the current flow in the bit cell, due to the large resistance ratio between the LR and HR states. Thus, if the
LR branch connects to the NMOS and Vss, it will sink current, corresponding to an output value of ‘-1’, and if the LR branch
connects to the PMOS and Vdd, it will source current, corresponding to an output value of ‘+1’. Thus, the three possible output
values of the bitwise input and weight multiplications are 0, -1, and +1.

The second parallel calculation performed in the BNN layer is the bit-counting operation, which is the summation of the
parallel bitwise multiplications described previously along a single output path. This is accomplished by connecting the in-
terminal of the p-bit to GND and the in+ terminal to the bit line that connects all of the bit-cells within a single column, whereby
the accumulation of currents according to Kirchoff’s current law corresponds to parallel input-weight multiplications, which
equates to one of the {0, -1, +1} current-level values described previously. The final calculation in the BNN layer uses the
accumulated current summation from the previously described computation as the input to a PAF, which outputs a ‘0’ or ‘1’
with a probability according to a sigmoidal function as shown in Figure 3c. The implementation of the PAF is described next.

Concerning RRAM variability, in order to continually measure resistance over a period of time, there can be application of a
read voltage to the memory cell and retention results for a 1 Kb array to maintain at least 5x resistance ratio at high temperature
are published [16]. CBRAM readily provides R_on and R_off around 12Kohm and 100Kohm, respectively, and using nominal
read voltages around 0.3V, the read disturbance is very low [17].

Probabilistic Activation
In order implement the PAF, we leverage the probabilistic-bit (p-bit) design proposed by Camsari et al. [10] and shown in
Figure 3c, which is a low-power and compact circuit capable of generating random bits from thermal fluctuations. The p-bit is a
Spin-Hall-Effect driven Magnetic Tunnel Junction (MTJ) device with a very low energy barrier [10], which allows thermal
agitations to stochastically switch the free layer of the MTJ between its parallel and antiparallel states on sub-nanosecond
timescales. Since a current flowing through the bottommost heavy metal layer can effectively bias the free layer of the MTJ, the
probability of the MTJ being in HR or LR states can be tuned along a sigmoidal function via the input current, as shown in
Figure 3c. By placing a resistor, Rmid, having a fixed resistance equal to the average of the HR and LR states of the MTJ between
the MTJ and Vdd, we can use a voltage divider to switch a pair of inverters, giving us a digital representation of the state of the
MTJ, which represents the output of the PAF. Since the energy barrier of the p-bit is very low, it requires current on the order of
100’s of nA to bias the PAF, which allows for low-energy BNN calculations using low voltage and highly-resistive scaled
RRAM devices for weighted connections.

SIMULATION FRAMEWORK
The simulation framework utilized herein is depicted in
Figure 4 and consists of HSPICE modeling of the
circuit-level parallel bitwise and bit-counting
operations of the RRAM pseudo-crossbar as well as the
p-bit PAF for determining the circuit behavior under
different RRAM variations and PAF properties, which
are then modeled in PyTorch for training and testing on
Nvidia Tesla V100 GPU clusters.

HSPICE Simulations
On the HSPICE platform utilized, 14nm PTM transistor
models [11] were deployed along with RRAM
resistance values of Ν(5	𝑀Ω, σ) for the LR state, and

Figure 4: Emerging device model-driven simulation flow.

HSPICE

•p-bit physics model
•RRAM mean and std. dev.
•circuit design

Parameters

PyTorch

•PAF characteristics
? with effect of variations

•energy results

•error rate
•on-chip vs off-chip training

•training data

Results

Page 6 of 8

Ν(50	𝑀Ω, σ) for the HR state, where Ν(𝜇, σ) is a normal distribution with a mean of 𝜇 and a standard deviation of 𝜎, where 𝜎 is
varied from 0%-50% of 𝜇 in 5% increments, and the p-bit is modeled using experimentally verified physics modules from the
Modular Spintronics Library [14] at a Vdd of 0.6V. PAF activation probability was measured using Monte Carlo simulations of
100 samples each for 480 different p-bit input currents. The results, shown in Figure 3c, depict the sigmoidal probability of the
p-bit’s output voltage representing either a ‘1’ or a ‘0’ signaling level.

PyTorch Simulations
For training BNNs using the PyTorch framework, we extend the code developed in [5] to include the impacts of weight-
resistance distortion resulting from device variations, as well as implementing our p-bit based PAF. During training, high-
precision weight values are stored in RAM, which are used for gradient calculations as per the training algorithm for BNNs
developed by Hubara et al [5]. However, the activations in the forward pass are determined strictly by the binary weight values
with their associated variations, as if the computation was done in-situ. Although some mismatch may still occur between the
high-precision weights used for the backward pass and the in-situ weight variations used for the forward pass, we found that
performance is still improved by using the real in-situ weights during the forward pass. The p-bit PAF circuit from the HSPICE
simulation is approximated with a probabilistic hard sigmoid function.

The CNN used herein is the same one used for [6], which has six convolutional layers and three fully-connected layers and was
trained on the CIFAR-10 dataset [15]. We do not include any pooling layers, however we utilize a stride of 2 on CNN layers 2,
4, and 6. Although it is not explicitly claimed within other BNN hardware accelerator literature, we found that binarizing the
final layer results in a significant increase in the error rate, whereby if only the last layer is chosen to be LogSoftmax, the error
rate reduces to very tractable levels. Thus, we use LogSoftmax for the final layer, which would be computed using the CPU or
ASIC in our scheme. Since the final layer is a small fraction of the total size of the network, the large accuracy improvement can
be worthwhile given the acceptable minimal performance degradation incurred.

In-situ vs. Off-Platform Training
When developing BNN accelerator hardware, one has the choice to either train the network Off-Platform using ideal {-1, +1}
weight values and then download the final weight configuration to the as-built hardware, or train the network in-situ, using
the actual circuit and its associated process variations within the training loop. The latter approach is a distinguishing feature of
our design scheme developed herein. We leverage the useful property that device-to-device resistance variations are effectively
variations to the {-1, +1} weight values computed when training and testing the network in PyTorch. We compare the
performance of in-situ and Off-Platform training techniques with respect to the final error rates under multiple levels of
resistance variation, and we show that even with the anticipated rates of variation measured experimentally for fabricated
devices, in-situ training allows the learning mechanism to produce BNN configurations that achieve error rates that are nearly
identical to the error rates corresponding to idealized networks without device variation.

RESULTS
The results for the simulations conducted as described in the previous section can be summarized in Figure 5 as follows. We
simulated at least 100 epochs for in-situ and Off-Platform training with weight variations from 0% to 50% in 5% increments for
as-built process variation and/or degradation over the devices’ lifetime of operation. The lowest error rate for each condition is
shown in Figure 5b, and we show the error rate per epoch for a selection of test cases in Figure 5a. The lowest error rate for
ideal weights with no variation is determined to be 15.38%. The increase in error rate due to weight variations for the Off-
Platform training condition is negligible under 15% variation, staying within a 2% error rate increase for up to 30% variation,
but increases significantly thereafter, reaching a maximum of 12.17% increase in error rate at 50% variation. However, for the
in-situ training approach developed herein, the increase in error rate fluctuates within 1% for all weight variations,
demonstrating the robustness that is achieved by utilizing the intrinsic device variations within the forward pass for training.
Such a result is crucial for deeply-scaled beyond-CMOS devices that exhibit significant process variation. In addition to the
error rate analysis, our HSPICE simulations demonstrated that each bit cell that has an input value of ‘1’ consumes an average
power of 75 nW, and that the p-bit PAF uses just 4.98 µW, demonstrating a very low-power scheme for accelerating BNNs. The
clock speed of the accelerator is dependent upon the retention time of the p-bit, which can be sub-nanosecond [10]. Therefore,
with a clock speed of 1 GHz, this implementation uses just 75 aJ per active synapse and 4.98 fJ per PAF calculation. The
throughput of this approach, for the training phase, would be limited by the datapaths between CPU/ASIC, RAM, and the
accelerator, and as such, it would be critically-dependent upon the implemented components. For the inference phase after the

Page 7 of 8

training phase, the accelerator throughput could be comparable to similar binarized RRAM-crossbar neural network
approaches, which is significantly higher than CPU, GPU, FPGA, or CMOS-ASIC approaches [8].

CONCLUSION
The BNN hardware accelerator introduced herein proposed the use of a novel spintronic device for a compact implementation
of a PAF that naturally integrates with current-summation-based crossbar and pseudo-crossbar arrays for low-power parallel
BNN computations of just 75 nW per activated bit cell and 4.98 uW per PAF. Additionally, we demonstrated that this approach
is highly resilient, even to extreme process variation, when utilizing an in-situ training framework. Taken altogether, such a
scheme is well-situated for highly-scaled BNN acceleration on resource-constrained platforms such as mobile and IoT.

ACKNOWLEDGEMENTS
This work was supported by the Center for Probabilistic Spin Logic for Low-Energy Boolean and Non-Boolean Computing
(CAPSL), one of the Nanoelectronic Computing Research (nCORE) Centers as task 2759.006, a Semiconductor Research
Corporation (SRC) program sponsored by the NSF through CCF-1739635. We would like to acknowledge and thank the
Advanced Research Computing Center at the University of Central Florida for provision of computing resources used herein.

Figure 5: (a) Training error rate per epoch for a selection of test cases; (b) Error rates corresponding to weight variations
for both in-situ and Off-Platform training methods.

Page 8 of 8

STEVEN D. PYLE is a Ph.D. Candidate in
computer engineering at the University of Central
Florida (UCF).
JUSTIN D. SAPP is a NSF Research
Experiences for Undergraduates (REU)
baccalaureate student in computer engineering at
UCF.
RONALD F. DEMARA is a professor of
electrical and computer engineering at UCF.
Contact him at ronald.demara@ucf.edu or visit
http://cal.ucf.edu

REFERENCES
1. A. Lecoutre, B. Negrevergne, and F. Yger, “Recognizing Art Style Automatically
in painting with deep learning,” Proceedings of the Ninth Asian Conference on
Machine Learning, PMLR 77, 2017, pp. 327-342.
2. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 521(7553), 2015,
pp. 436-444.
3. R. Zand, K. Y. Camsari, S. D. Pyle, I. Ahmed, C. H. Kim, and R. F. DeMara,
“Low-Energy Deep Belief Networks using Intrinsic Sigmoidal Spintronic-based
Probabilistic Neurons,” Proceedings of 27th IEEE/ACM Great Lakes Symposium on
VLSI (GLSVLSI-2018), 2018, pp. 15-20.
4. J. Tang, D. Sun, S. Liu, and J. L. Gaudiot, “Enabling deep learning on IoT
devices,” Computer, 50(10), 2017, pp. 92-96.
5. H. Itay, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. "Binarized neural networks," Advances in neural information
processing systems, 2016, pp. 4107-4115.
6. X. Sun, S. Yin, X. Peng, R. Liu, J-S. Seo, and S. Yu. "XNOR-RRAM: A scalable and parallel resistive synaptic architecture
for binary neural networks." Proceedings of the 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE
2018), Vol. 2018-January, 2018, pp. 1423-1428.
7. X. Sun, X. Peng, P-Y. Chen, R. Liu, J-S. Seo, and S. Yu, “Fully parallel RRAM synaptic array for implementing binary neural
network with (+ 1,− 1) weights and (+ 1, 0) neurons,” Proceedings of the 23rd Asia and South Pacific Design Automation
Conference, 2018, pp. 574-579.
8. L. Ni, Z. Liu, H. Yu, and R. V. Joshi, “An energy-efficient digital ReRAM-crossbar-based CNN with bitwise parallelism," IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits, Vol. 3, 2017, pp. 37-46.
9. S. Angizi and D. Fan, "IMC: energy-efficient in-memory convolver for accelerating binarized deep neural network." In
Proceedings of the Neuromorphic Computing Symposium (NCS ‘17), 2017, Article no. 3.
10. K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, “Stochastic p-bits for invertible logic,” Physical Review X, Vol. 7, Issue
3, 2017, p. 031014.
11. S. Gu, S. Levine, I. Sutskever, and A. Mnih. "Muprop: Unbiased backpropagation for stochastic neural networks." arXiv
preprint arXiv:1511.05176 (2015).
12. Liu, Beiye, Hai Li, Yiran Chen, Xin Li, Qing Wu, and Tingwen Huang. "Vortex: variation-aware training for memristor x-bar."
In Proceedings of the 52nd Annual Design Automation Conference, 2015, pp.15.
13. S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring sub-20nm FinFET design with predictive technology
models,” Design Automation Conference (DAC), 49th ACM/EDAC/IEEE, 2012, pp. 283-288.
14. K. Y. Camsari, S. Ganguly, and S. Datta, “Modular Approach to Spintronics,” Scientific Reports, Vol. 5, p. 10571.
15. A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, tech. report, Univ. of Toronto, Vol. 1, No.
4, 2009.
16. X. Huang, H. Wu, D. C. Sekar, S. N. Nguyen, K. Wang, and H. Qian, “Optimization of TiN / TaO x / HfO 2 / TiN RRAM
Arrays for Improved Switching and Data Retention,” Vol. 1C, 2015, pp. 6–9.
17. Jameson, J & Blanchard, P & Cheng, C & Dinh, J & Gallo, A & Gopalakrishnan, V & Gopalan, C & Guichet, B & Hsu, S &
Kamalanathan, D. (2013). Conductive-bridge memory (CBRAM) with Excellent High-Temperature Retention. Tech. Digest
IEDM. 738-741.

