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Abstract— Efficient solutions to nonpolynomial (NP)-complete
problems would significantly benefit both science and industry.
However, such problems are intractable on digital computers
based on the von Neumann architecture, thus creating the
need for alternative solutions to tackle such problems. Recently,
a deterministic, continuous-time dynamical system (CTDS) was
proposed [1] to solve a representative NP-complete problem,
Boolean Satisfiability (SAT). This solver shows polynomial analog
time-complexity on even the hardest benchmark k-SAT (k > 3)
formulas, but at an energy cost through exponentially driven
auxiliary variables. This paper presents a novel analog hardware
SAT solver, AC-SAT, implementing the CTDS via incorporating
novel, analog circuit design ideas. AC-SAT is intended to be used
as a coprocessor and is programmable for handling different
problem specifications. It is especially effective for solving hard
k-SAT problem instances that are challenging for algorithms
running on digital machines. Furthermore, with its modular
design, AC-SAT can readily be extended to solve larger size
problems, while the size of the circuit grows linearly with
the product of the number of variables and the number of
clauses. The circuit is designed and simulated based on a 32-nm
CMOS technology. Simulation Program with Integrated Circuit
Emphasis (SPICE) simulation results show speedup factors of
~104 on even the hardest 3-SAT problems, when compared with
a state-of-the-art SAT solver on digital computers. As an example,
for hard problems with N = 50 variables and M = 212 clauses,
solutions are found within from a few nanoseconds to a few
hundred nanoseconds.

Index Terms— Boolean satisfiability solver, hardware for con-
strained optimization, mix analog digital integrated circuits.

I. INTRODUCTION
ITH Moore’s law coming to end [2], exploring novel
computational paradigms (e.g., quantum computing
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and neuromorphic computing) is more imperative than ever.
While quantum computing is a promising venue, it is far
from being brought to practical reality, with many challenges
still to be faced, both in physics and engineering. Neuro-
morphic computing systems, e.g., cellular neural networks
(CNNs) [3]-[5] and IBM’s TrueNorth [6], have been shown
to be promising alternatives for solving a range of problems
in, i.e., sensory processing (vision and pattern recognition) and
robotics. Analog mixed-signal information processing systems
such as CNNs can offer extremely power/energy efficient
solutions to some problems that are costly to solve by digital
computers [7]. Such systems have received increasing atten-
tion in recent years (see [8]-[10]), including parallel analog
implementations (see [11]).

In analog computing [12], the algorithm (representing the
“software”) is a dynamical system often expressed in the form
of differential equations running in continuous time over real
numbers, and its physical implementation (the “hardware”)
is any physical system, such as an analog circuit, whose
behavior is described by the corresponding dynamical system.
The equations of the dynamical system are designed such
that the solutions to problems appear as attractors for the
dynamics and that the output of the computation is the set
of convergent states to those attractors [13]. Although it has
been shown that systems of ordinary differential equations can
simulate any turing machine [3], [14], [15], and hence, they
are computationally universal, and they have not yet gained
widespread popularity due to the fact that designing such
systems is problem specific and usually difficult. However,
if an efficient analog engine can be designed to solve non-
polynomial (NP)-complete problems, then according to the
Cook-Levin theorem [16], it would help solve efficiently all
problems in the NP class, as well as benefit a very large
number of applications, both in science and engineering.

In this paper, we consider designing analog circuits for
solving a representative NP-complete problem, the Boolean
Satisfiability (SAT) problem. SAT is quintessential to many
electronic design automation problems, and is also at the heart
of many decision, scheduling, error-correction, and security
applications. Here, we focus on k-SAT, for which is well
known to be NP-complete for k > 3 [16]. The currently
best known deterministic sequential discrete algorithm that
exploits some properties of the search space has a worst case
complexity of O(1.473V) [17]. Other algorithms are based on
heuristics, and while they may perform well on some SAT
formula classes, there are always other formulas on which
they take exponentially long times or get stuck indefinitely.
Some of the better known SAT solvers include Zchaff [18],
MiniSat [19], RSat [20], WalkSAT [21], focused record-
to-record travel [22], and Focused Metropolis Search [23].

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



156 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 1, JANUARY 2018

They typically consist of decision, deduction, conflict analysis,
and other functions [24] that employ the capability of digital
computers to assign values to literals, conduct Boolean con-
straint propagation (BCP), and backtrack conflicts [25], [26].

A number of hardware-based SAT solvers have been
proposed in the past. FPGAs-based solutions have been inves-
tigated to accelerate the BCP part found in all “chaff-like”
modern SAT solvers [27]-[29]. Speedups of anywhere
between 3X and 38X have been reported when comparing
these FPGA-based solvers over MiniSat [19], a well-known,
high-performance software solver. A custom digital integrated-
circuit (IC)-based SAT solver, which implements a variant
of general responsibility assignment software patterns and
accelerates traversal of the implication graph and conflict
clause generation, has been introduced in [30] and [31].
A speed up of ~10° over MiniSat was reported based on
simulation with extrapolation. Performance of these hardware-
based approaches still has a lot of room for improvement since
the algorithms that these hardware accelerators are based on
are designed for digital computers and, thus, can typically
expect to achieve limited speedup.

Recently, an analog SAT solver circuit was introduced
in [32] using the theoretical proposal from [33] based on the
CNN architecture. However, the theory in [33] has exponential
analog-time complexity and, thus, is much less efficient than
the SAT solver from [1], which forms the basis for this
paper. Furthermore, the circuit from [32] seems to have been
implemented only for a 4 x 4 problem size, and no hardware
simulation and comparison results were reported.

Mostafa et al. [11] propose a distributed mixed (analog
and digital) algorithm that is implementable on VLSI devices.
It is based on a heuristic method combined with stochastic
search, drawing on the natural incommensurability of ana-
log oscillators. Assuming P NP, in order to have efficient,
polynomially scaling solution times, one would require expo-
nentially many computing elements, i.e., exponentially scaling
hardware resources. However, the method in [1] trades time-
cost for energy-cost, which in practical terms is preferable to
massive amounts of hardware resources. It is quite possible
that from an engineering point of view the ideal approach
combines both types of tradeoffs: time versus energy and time
versus hardware (distributed). The heuristic stochastic search
in [11] is effectively a simulated annealing method that implies
high exponential runtimes for worst case formulas. In con-
trast, the analog approach in [1] is fully deterministic and
extracts maximum information about the solution, embedded
implicitly within the system of clauses, and can solve effi-
ciently the hardest benchmark SAT problems—at an energetic
cost [1].

Here, we propose a novel analog hardware SAT solver,
referred to as AC-SAT.! AC-SAT is based on the determin-
istic continuous-time dynamical system (CTDS) in the form
of coupled ordinary differential equations presented in [1].
As mentioned above, this system finds SAT solutions in

'We refer to AC-SAT as an Analog Circuit SAT solver since its main
processing engine is analog. However, the entire system is a mixed-signal one
as a digital verification component is also included in the hardware system.

analog polynomial time, however, at the expense of aux-
iliary variables that can grow exponentially, when needed
(see [1], [34] for details). Though this CTDS is an incomplete
solver, it does minimize the number of unsatisfied clauses
when there are no solutions, and thus it is also a MaxSAT
solver. The overall design of AC-SAT is programmable and
modular, and thus, it can readily solve any SAT problem
of size equal or less than what is imposed by the hardware
limitations, and can also be easily extended to solve larger
problems. Moreover, to avoid resource-costly implementations
of the complex differential equations in CTDS, we introduce
a number of novel analog circuit implementation ideas which
lead to much smaller amount of hardware than straightforward
implementations, while preserving the critical deterministic
behavioral properties of CTDS equations.

We have validated our design through Simulation Pro-
gram with Integrated Circuit Emphasis (SPICE) simulations.
Our simulations show that AC-SAT can significantly out-
perform (over tens of thousands times faster than) MiniSat,
with the latter running on the latest, high-performance digital
processors. For hard SAT problems with 50 variables and over
200 clauses, compared with the projected performance of a
possible custom hardware implementation based on a recent
FPGA solver [29], AC-SAT offers more than ~600X speedup.
Monte Carlo simulations further demonstrate that AC-SAT is
robust against device variations.

In the rest of this paper, we first review the basic CTDS
theory and some of its variants in Section II. Section III
introduces the overall AC-SAT design. In Section III-D,
we present two alternative designs for a specific component in
AC-SAT. Section IV first discusses simulation-based valida-
tion of AC-SAT, compares the different component designs,
and then summarizes performance results for AC-SAT with
respect to a software implementation of the CTDS SAT
solver and MiniSat. Finally, we conclude this paper in
Section V.

II. BACKGROUND

Solving a k-SAT problem is to find an assignment to
N Boolean variables x; € {0,1}, i = 1,..., N, such that
they satisfy a given propositional formula F. F in conjunc-
tive normal form (CNF) is expressed as the conjunction of
M clauses Cpp, m = 1,..., M, ie., F = /\,A,:’=1 C,,, where
each clause is formed by the disjunction of k literals (which
are variables or their complements). An example of a clause
for 3-SAT would be Cs = (x3 V X19 V x53). Following [1],
an analog variable s;, which can take any real value in the
range s; € [—1, 1], is associated with the Boolean variable x;
such that s; = —1 corresponds to x; being FALSE (x; = 0)
and s; = 1 to x; being TRUE (x; = 1). The formula F =
/\f‘n/":1 Cy, can be encoded via the M x N matrix C = {c¢y,,;}
with ¢,,; = 1 when x; appears in clause Cy,, ¢;,,; = —1 when
its complement x; (negation of x;) appears in C,, and ¢;,,,; = 0
when neither appears in C,,. To every clause C,,, we associate
an analog function K,,(s) € [0, 1] given by

N
Kn(s) =271 = cmisi). (0

i=1
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It is easy to see that clause C,, is satisfied, iff K,, = O.
Defining a “potential energy” function

M
Vis,a) = > ank,, )
m=1

where a, > 0 are auxiliary variables, one can see that all
the clauses are satisfied iff V = 0. Thus the SAT problem
can be reformulated as search in s for the global minima of
V (since the condition V > 0 always applies). If the auxiliary
variables a,, are kept as constants, then for most hard problems
any hill-descending deterministic algorithm [which evolves
the variables s;(¢)] would eventually become stuck in local
minima of V and not find solutions. To avoid this, the auxiliary
variables are endowed with a time-dependence coupled to the
analog clause functions K,,. Ercsey-Ravasz and Toroczkai [1]
proposed

dsi 0

§§ = — =——V(s,a), i=1,...,N 3
Si a1 o5i (s,a), i 3)
oy = L0 K ... M (4)
a = —— =q m =
m dt m m 9 E

in which (3) describes a gradient descent on V, and (4) is
an exponential growth driven by the level of non-SAT in
K, (which also guarantees that a,, () > 0, at all times). (3)
can be rewritten as

ds; M
—= =2 anDp, )
m=1
where
Py N
Dpi= —51(31 = 2Kpnemi [ [ (1 = cmjs)- (©6)
1 .
j=1
J#i

For the auxiliary variables a,,, the formal solution to (4) is
am (t) =dm (0)6[6 dt K (s(7)) (7

and thus the expression (2) of V is dominated by those
K, terms that have been unsatisfied for the longest time during
the dynamics, resulting in an analog version of a focused
search-type [23] dynamics. Also note that systems (3), (4) are
not unique; however, it is simple from a theoretical point of
view, and incorporates the necessary ingredients for solving
arbitrary SAT problems, due to the exponentially accelerated
auxiliary variables. For details on the performance of the
algorithm, the reader is referred to [1].

It is important to observe that while the scaling of the
analog time ¢ to find solutions is polynomial, in hardware
implementations, the a,, variables represent voltages or cur-
rents and thus the energetic resources needed to find solutions
may become exponential for hard formulas which is, of course
necessary, assuming P#NP. However, the a, variables do
not need to grow exponentially all the time and unlimitedly,
as in (4) and for that reason form (4) is not ideal for physical
implementations. The challenge is then finding other variants
that still significantly outperform digital algorithms, yet they
are feasible in terms of physical implementations and costs.
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Note that such systems as ours essentially convert time costs
into energy costs.

Here we introduce another form with the help of time-
delays, which, however, still keeps the focused nature of the
search dynamics but allows the a,,’s to decrease as well when
the corresponding clauses are (nearly) satisfied

Y — Ko 5(0)) ~ 11 = S O1Kn (50— 0 (), ¥
®)
with
am(0) > 0, and 6,,(0) = 0, ¥m ©)

where the delay functions d,,(¢) € [0, t] determine the history
window of K, (s(t)) trajectory that has impact on the variation
of a,,. The formal solution to (8) is

am (t) =dam (0)6'[’[*% (1 dTKm(s(’)). (10)

Clearly, the case 0,,(t) = 1t corresponds to (4), while
om(t) = 0 recovers the case of constant a,, values that cor-
respond to the naive energy minimization case. One approach
to choosing d,, () is setting it to a small value initially and
doubling it every time the dynamics is stuck or hits an upper
threshold (set, e.g., by a maximum allowed voltage value).
This typically only requires a few iterations. Other delay
functions are being investigated. It is important to note that the
decrease of satisfied clause’s associated a,, due to this time-
delayed form relatively reduces the clause’s weight in (5), thus
increases other clauses’ weights in the focused search space,
enhancing the driving capability of unsatisfied clauses.

III. SYSTEM DESIGN

In this section, we present AC-SAT, our proposed analog
SAT solver circuit based on the CTDS theory in Section II.
Though it is possible to implement the CTDS equations
digitally, the hardware would be much more costly in terms
of area, power, and performance. Thus, we opt for an analog
implementation that also bears affinity with the operations in
the CTDS. Our circuit design aims to keep the hardware solver
configurable and modular while keeping the circuit simple and
power efficient. These considerations require careful design
of the overall architecture and some modifications to the
algorithm itself, which will be elaborated later in this paper.

Fig. 1 shows the high-level block diagram of AC-SAT.
It consists of three main components: signal dynamics cir-
cuit (SDC) which implements the dynamics of variable sig-
nals s;s in (5), auxiliary variable circuit (AVC) which imple-
ments the dynamics of auxiliary variables a,,s in (4), and
digital verification circuit (DVC) which checks whether all the
clauses have been satisfied and outputs the satisfied assign-
ments of variables. The AVC contains .# identical elements,
each of which receives the relevant s;s signals from the SDC
as inputs, and generates a,, (m € [1, M]) (where M < %)
variables as outputs. The SDC, containing .4 identical ele-
ments, in turn receives a,,s as feedback from the AVC and
evolves the s; (i € [1, N]) signals (with N < .4), accordingly.
The SDC outputs the analog values of s;s to the AVC and the
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sl €[1,M]
N Signal dynamics w— a,, variable M
elements circuit (SDC) ‘ circuit (AVC) elements
am,m €[1,M]

si,iE[1,A/]‘

Digital verification
circuit (DVC)

» Success or Fail

Fig. 1. High-level block diagram of AC-SAT. The SDC contains 4" elements
while the AVC contains . elements. It can solve k-SAT problem instances
with up to .4/ variables and .# clauses.

digital version of s;s to the DVC. Based on the digital values
of s;, the DVC determines whether a solution to the given
SAT problem has been found at that time.

The given block diagram can solve any k-SAT problem with
N or up to ./ Boolean variables and M or up to .# clauses.
However, a naive and direct implementation of the dynamical
equations (4), (5), and (6) would incur large hardware costs.
Instead, here we present implementations of the SDC and AVC
circuits that are much more resource-efficient than the direct
approach. Below, we elaborate the design of the three circuit
components using the 3-SAT problem (i.e., three nonzero
¢m,js for each clause) as an example. AC-SAT for any
k-SAT problem can be designed following the same principle.

A. Signal Dynamics Circuit

The SDC contains an array of analog elements that realize
the dynamics specified by (5) and (6). Though it is possible to
implement the multiplications and voltage controlled current
source (VCCS) in (5) and (6) straightforwardly based on
operational amplifiers, such implementations can be rather
costly. We introduce several novel circuit design ideas to
implement the dynamics in (5) and (6). We will show that the
accuracy of the circuit is sufficient for the type of dynamical
systems being considered here.

Given a 3-SAT problem with N variables, the SDC enables
an array of N analog elements, referred to as s; element, for
evaluating the s; (i = 1,..., N) signals. Fig. 2(a) shows the
conceptual design of the s; element that realizes (5). The s;
element contains a capacitor C connected to the M branch
blocks (where M is the total number of clauses in the
3-SAT problem), an analog inverter, an inverted Schmitt trig-
ger, and a digital inverter. The voltage across capacitor C,
i.e., Vi, and the output of the analog inverter V; represent
the analog value of signal s; and —s;, respectively. Signal
si € [—1,1] (respectively, —s; € [1,—1]) is mapped to
Vi € [GND, Vpp] (respectively, Vi € [Vpp, GND]). The
inverted Schmitt trigger and the digital inverter output the
digital versions of —s; and s;, denoted by Q—S, and Qy,
(i.e., taking on values of either GND or Vpp).

To see why the s; element in Fig. 2(a) can be used to
evaluate (5), let us denote the current from each of the branch
block as [, ;. Then, we have

M
dv;
C dtl = Z[m,,‘.

m=1

Y

-
gy
Qs

Branch 2
: T =i (>c o
Branch m f Analog V;

inverter

3

.¢

@
VDD—O Qfm,i Rm,i SWn,i Rm:iz Rm,i3 [m ;
J_—O/O—DX\ANJO/ TS

- Ray, (b)

Fig. 2. (a) Design of one array element in the SDC. (b) Detailed conceptual
design of the branch block.

Comparing (5) with (11), we see that the s; element in Fig. 2(a)
precisely realizes (5) if we have

Im,i = CamDm,io (12)

In order to design a branch block to satisfy (12), we first make
some observations related to the Dy, ; quantities. In a 3-SAT
problem, there are only three nonzero ¢y, ;s in each Cy, clause.
Let us denote them as ¢, i, Cm,ip» and ¢y ;5. Then Dy, ; in (5)
can be shown to have the following form:

Dm,i
=272 x Cm,i(1 - Cm,isi)(l - Cm,izsiz)z(l - Cm,i3si3)2
272(_’_1 —si)(1 — Cm,igsiz)z(l - Cm,i3si3)2 if Cm,i =1
if ¢, =0
272(=1 = s:)(1 = Cm,iy8in) > (1 = Cm,iysiy)? if emyi = —1.
(13)

|
o

Referring to (13), one can readily see that D, ; has the
following properties.

1) If any of s;, si,, and s;; is satisfied, i.e., reaches 1 or —1
(indicating x; is either TRUE or FALSE), D,, ; becomes
zero. According to (5), a zero Dy, ; means that clause Cy,
has no impact on the variation of s;. On the other hand,
when none of the three variables is satisfied, but one
of them gets closer to being satisfied, the magnitude of
D,,; reduces, again.

2) The sign of D,, ; is the same as that of ¢, ; since (1—s;)
cannot be negative. If ¢,; = 1 (respectively, —1),
the contribution of D,,; to ds;/dt is positive (respec-
tively, negative), i.e., it tries to push s; toward +1
(respectively, —1).

Based on the above observations, let us examine the con-
ceptual design of the branch block in Fig. 2(b). Specifically,
the branch block contains two switches and four tunable
resistive elements. (The resistive elements here are used to
simplify the drawing, and the details about their design
will be described later.) Here, R, ; represents the resistive
element associated with s;, while R, ;, and R, ;; represent
the resistive elements associated with the other two signals
si, and s;; in (13). R,, represents the resistive element
associated with auxiliary variable a,,. One switch is controlled
by signal sw,, ;, which is left open if ¢,,; = O (indicating that
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Fig. 3. Detailed design of the branch block in Fig. 2(b). (a) Conceptual
design of the branch block. (b) Circuit implementation for Ry, j, and Ry, i
[elements in the green box in Fig. 3(a)]. (c) Circuit implementation for the
switch as well as Rq,, and Ry, ; [elements in the red box in Fig. 3(a)].

600 15

QCm,iz = Vpp

R (kOhm)

Qcm,i2 = Vpp

N\

Qfm,iz =0
0 0
0 02 04 06 08 1 0 0.2 0.4 0.6 0.8 1
@ v, (v) ®) v, (V)
Fig. 4. SPICE simulation results depicting (a) value of resistor

Rpiy or Ry iy in Fig. 3(a) as a function of V; and (b) value of resis-
tor Ry, i||Rq, in Fig. 3(a) as a function of V.

x; does not appear in clause Cj,), and is closed otherwise.
The other switch is controlled by O, ;, the digital version
of ¢p,i. If ¢, = 1 (respectively, —1), indicating that x;
(respectively, X;) is present in the clause, the switch controlled
by Qc,, connects to Vpp (respectively, GND). It can be
readily seen that

L,
(Vop = Vi)/(Rm.il|Ray, + Rimiy + Rm,iy) if cmi =1
=10 if ey =0
(GND — V;)/(Rm,il|Ra,, +Rm i, + Rm,i3) if cpui = —1.
(14)

If the values of Ry,,, Ry i, Rn,i,, and Ry, ;; are chosen prop-
erly, the I,,; value derived from the branch block would have
the same properties as identified for D,, ; above.

The actual realization of the four resistive elements
in Fig. 2(b) is given in Fig. 3. The implementation of R, ;,
and that of R, ;; are the same and the one for Ry, ;, is shown
in Fig. 3(b). Consider the Ry, ;, block. The two terminals of the
transmission gate formed by transistor M, and M, correspond
to the terminals of Ry, ;,. The gate terminals of M, and M,
are connected to V;, and V;, via four additional transmission
gates controlled by Q,, and Q,, . It can be derived
that this realization of R, ;, exhibits the desired properties
outlined above for D,, ; in (13). The SPICE simulation results
depicting the relationship between the resistance value and V;
are given in Fig. 4(a). For example, assuming that ¢, ;, is 1,
ie., Qcm’,.2 = Vpp [corresponding to the red line in Fig. 4(a)],

the gates of M, and M, are connected to V_,z and V,,,
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respectively. If variable s;, is satisfied, i.e., V;, is close to Vpp
[where Vpp = 1 V in Fig. 4(a)] and V;, is close to GND,
then both M,, and M, are OFF, R, ;, has a very large value
(around 200 k) and I, ; is close to zero. This means that
clause C,, has no impact on the variation of s; which is exactly
the desired behavior. On the other hand, if s;, is not satisfied,
as it gets closer to its target (i.e., +1), the magnitude of I, ;
reduces because Ry, ;, increases as can be seen by the increase
in the resistance value as V; gets close to Vpp. The blue line
in Fig. 4(a) corresponds to the case where ¢, ;, = —1 and its
behavior can be explained in the same way as above.

The circuit block for implementing the switch controlled
by O, and the two resistive elements R,,,; and Ry, is
shown in Fig. 3(c). The gates of transistor M,; and M
(respectively, M;,1 and M,) control the connection to Vpp
(respectively, GND). One of the gates connects directly to
O, (representing the negated ¢y, ; signal), while the other is
controlled by

Vc,7 = Vam Qcm’i

Note that though V,, in (15) (as input to the two NAND gates)
seems to be treated as a digital signal, it actually remains as
an analog signal while the NAND gates and inverters operate
in the linear V;, — V,,; region to produce analog outputs as
desired. The SPICE simulation results in Fig. 4(b) indicate
that the block realizes the switch function due to ¢, ; as
well as (+1 — s;) and (=1 — ;) in (13), and incorporates
the a, term in (5). Consider the case that ¢,; = -1,
ie., Oc,; = 0. Then Ve, = Vbbp and V., = V,,, which
means that the block in Fig. 3(c) is connected to GND and
the current flowing through the block is dependent on the
voltage representing a,, Vg,. The blue line in Fig. 4(b)
shows the equivalent resistance value of the block versus V.
As 'V, getslarger, M, exhibits smaller resistance, resulting in
larger impact of a,, on the current flowing through the block.
Note that initially V,,, is very small, and thus the right two
transistors My and M, that are of smaller sizes than M
and M,,; are employed to ensure proper current flow as well as
serve as a current boost. The red line in Fig. 4(b) corresponds
to the case where ¢,y = 1, i.e., Oc,; = Vpb.

The SDC also converts the analog signals V;s to digital
signals Qy;, via an inverted Schmitt trigger. The inverted
Schmitt trigger circuit is shown in Fig. 5(a). The digital
signals are then sent to the DVC to check if a solution
has been found. The inverted Schmitt trigger circuit exhibits
hysteresis in its transfer curve as seen from the simulation
result in Fig. 5(b) and, hence, can perform analog-digital
conversion with minimal noise impact. Putting all the above
discussions together, one can conclude that the SDC correctly
implements the system dynamics defined by (3).

respectively, V., =V, Qc, ;. (15)

B. Auxiliary Variable Circuits

As pointed out in Section II, the auxiliary variables, a;,s as
defined in (4), are used to help avoid the gradient descent
search being stuck in nonsolution attractors. The a,, signal
follows an exponential growth driven by the level of non-
SAT in clause Cj,. A direct way to implement an exponential
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Fig. 6. (a) Conceptual design of one element in the AVC. Actual realization of
the resistive element is similar to the circuit in Fig. 3(b). (b) SPICE simulation
result depicting the waveform of V,,,, versus time. V,, (0) represents the initial
value of Vg, .

function is through an operational amplifier (op-amp), which
we present below. Note that we have realized the analog
version of equation (4) in a resource-efficient manner, similar
to the implementation in DVC, to avoid costly multiplications
and VCCS implementations.

The AVC contains an array of .# a,, elements where .# is
the maximum number of clauses in a given problem that the
AVC can handle. Fig. 6 illustrates the conceptual design of
the a,, element, similar to a noninverting integrator. Here, the
value of a,, (for clause C,,) is represented by the voltage
at the output of the op-amp, i.e., V,,. Resistive elements
Ruiys Rm,iy> and Ry, ;; are associated with the three signals in
an’s clause while R;n,il, R;/n,iy and R,/n,i3 are identical to Ry, ;,,
R iy, and Ry, ;;, respectively. The two capacitors, C and C/,
have identical values as well. Together with the resistive
elements, they control the speed of V,,, growth. The switch
controlled by EN is realized by a transmission gate to control
the start of the a,, element. The first order differential equation
of V,,, can be written as

dvy,
dt

C - Vam/(Rm,i1 + Rm,ig + Rm,i3)~ (16)

The Rs in Fig. 6(a) are tunable resistive elements implemented
by transmission gates which have similar circuit topology to
that shown in the green box in Fig. 3. For example, for
Ry,i; and R;n’il, the transmission gates (M, and M,) are
controlled, via four other transmission gates, by analog signals
Vi, and Vl/l , representing x;s presence in clause C,. The other
two pairs of Rs are designed in the same way. If any of the
three variables in clause C,, is satisfied, the corresponding
Vi turns off the respective transmission gate and cut off the
current paths from op-amp’s inverting input to ground and
from noninverting input to V,,,.

The circuit in Fig. 6(a) exactly realizes the exponential
growth specified in (4) up to an upper bound on V,,, i.e., the
op-amp’s supply voltage. Fig. 6(b) plots an example V,,, value
growth with time before and after associated signals s;s get
satisfied. After EN is set to 1 (i.e., the switch is closed),
Vi, starts to grow exponentially, following the differential
equation in (16). According to Fig. 4(b), as V,,, increases,
the resistant value of Ry, ;|| Ry, drops down, leading to a larger
current /,,; in the corresponding branch block in Fig. 2(b),
which is consistent with (12). This current, together with other
currents that are associated with V; in Fig. 2(a), contributes
to the variation of V; which is specified in (11). There are
two cases that may stop the evolution of V,,,, which are as
follows.

1) As stated above, if any one of the three analog signals
in clause C,, is satisfied, the current paths in Fig. 6(a) is
cut off, and V,,, stops at a certain voltage. This indicates
that V,,, has finished its utility as an auxiliary variable
to drive the corresponding clause to the satisfied state.

2) If V,,, reaches its upper bound before any of the three
variables in the corresponding clause is satisfied, the cir-
cuit stops evolving since the V,,,, value is unable to drive
this yet unsatisfied clause any more. This impacts the
effectiveness of avoiding being stuck in a nonsolution
attractor during the gradient descent search process.

The upper bound on V,,, imposes a physical limitation on the
hardware realization of the CTDS theory.?

Although the AVC design given in Fig. 6 realizes the
exponential growth, it requires .# op-amps, resulting in a
large amount of area and power consumption. There exist
other ways to achieve exponential signal growth, e.g., circuits
with positive feedback often have exponential growth in cer-
tain ranges. Besides the exponential growth implementation,
we will introduce alternative AVC designs in the next section.

C. Digital Verification and Interface Circuits

The goal of the DVC is to determine if a solution (the
set of s;s8) to the given problem has been found within a
user specified time bound. The DVC is implemented readily
through the use of an array of 3M XOR gates and an array

2As discussed in Section II, (3) and (4) are not unique, and the effect of
the maximum voltage limitation depends on the equations themselves. For
example, Section II introduces an alternative, delay-based formulation for ay,
in (8), which allows a;;, to decrease when the corresponding clause is satisfied.
This delay-based formulation of a;, postpones reaching the a;; upper bound.
The implementation of (8) for the op-amp-based approach is currently under
development.
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Fig. 7. Schematic of the DVC.

of M NAND gates as shown in Fig. 7. The input to the
DVC is the digital representation of s;’s and —s;’s, i.e., Oy
and Q,,, from the SDC. Each NAND gate corresponds to a
clause and its inputs correspond to the literals present in the
clause. Note that in the DVC, we only include those ¢, ;s
whose values are +1 (represented by logic signal “1”) and
—1 (represented by logic “0”). The outputs of the DVC are
analog values Qc,,, for clauses C,,, and indicator, which is
set to 1 if the circuit finds a solution, otherwise it remains
at 0. The DVC is an asynchronous circuit, and the output of
the DVC constantly records whether a solution is found or not.
By setting a time bound 7, the DVC regards the problems
whose solutions are found within 7' as satisfiable problems,
the rest are considered either unsatisfiable or unsatisfiable
within the alloted time. Note that for problem instances where
no solutions are found in the given time bound, our approach
does not provide a formal proof of unsatisfiability (as our
algorithm is an incomplete algorithm). However, our solver
is a MaxSAT solver, because it does not use any assumptions
about the solvability of the formula and minimizes the number
of unsatisfied clauses within the allotted resources or time.
Theoretical analysis of the performance of the solver as a
MaxSAT solver is out of the scope of this paper and will
be presented elsewhere.

It is easy to see that all three components, SDC, AVC,
and DVC, are modular and programmable. By modular,
we mean that the basic elements in each circuit can be repeated
for different problem sizes (i.e., the number of variables N and
the number of clauses M). By programmable, we mean that
any k-SAT problem instance can be solved by the same SDC,
AVC, and DVC implementation as long as the problem size is
less than or equal to the hardware specification.

Below, we briefly describe the I/O interface between the
CPU and AC-SAT. AC-SAT is used as a coprocessor, Simi-
larly to other reconfigurable coprocessors (such as dynamically
reconfigurable FPGAs). To facilitate configuration, AC-SAT
can be augmented with an on-chip reconfiguration memory as
well as a simple controller. Based on the problem descrip-
tion (given in the CNF), CPU writes to memory the con-
figuration information. The controller then uses the memory
contents to set the respective switches in the SDC, AVC, and
DVC components.
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The main configuration information sent from CPU to
AC-SAT includes the following: EN, Sy i, Swm,i, and Qc,, ;.
EN activates AC-SAT. S,,; describes the appearance of vari-
able signals in the corresponding clauses, e.g., S, =1 (or 0)
means that variable s; is (or is not) in the mth clause. swy, ; is
used to deactivate unused branch blocks in the SDC, e.g.,
swp,; = 0 would deactivate the mth branch block for vari-
able s;. Oc,,; is the digital version of ¢, ; (see Section III-A
for its definition). AC-SAT receives the inputs from CPU
and delivers sw;,; and Qc, . to the memory associated with
the SDC component. Since S,,; cannot be used directly by
the resistive elements in the DVC and AVC that require the
internal variable signals V;s [see Figs. 3 and 6(a)], we use
A switch crossbars [Fig. 8(b)] to accomplish the mapping
from the variable signals V; to each resistive element in
the SDC and AVC based on S, ; (i.e., Sy, is used to set
the state of the corresponding switch). For output, AC-SAT
indicates Qy; and Qc,, and indicator from the DVC to CPU.
Q,; indicates the values of variable signals, and Qc,, indicates
the states of all clauses (satisfied or not). All the inputs and
outputs are digital signals. Once AC-SAT finds a solution,
signal indicator acts as an interrupt to CPU and CPU reads the
AC-SAT outputs, i.e., Oc,, and Q. On the other hand, if the
circuit runs out of time and no solution is found, AC-SAT
outputs the results with minimum unsatisfiable clauses, but
with indicator = 0.

D. Alternative AVC Designs

The op-amp-based AVC described in Section III-B realizes
an exponentially growing a,, variable aiming to address hard
SAT problems (some SAT instances with constraint density
a=M/N 2z 4.25) within its physical limitation. However,
for application type SAT problems, i.e., which are not spe-
cially designed to be very hard, exponential growth for ay,
is not always necessary. Below we describe two alternative
circuit designs to implement an a, function that has a



162 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 1, JANUARY 2018

Vam
Voo O—ANP—AN\P—AM ———
T¢

Rm,i1 Rm,iz Rm,i3

Fig. 9. Conceptual design of the AVC element realizing the (1—es e 9")-type
growth. Implementation of the resistive elements is similar to those in Fig. 3.

(1 — exe™9")-type growth to a saturation value. In the remain-
der, we will refer to this version of a,, growth as the “simpler
version.”

Fig. 9 depicts the conceptual design of the a,, element real-
izing the simpler a,, growth, where capacitor C is charged to
Vpp through three tunable resistors. The first order differential
equation that governs V,,, can be written as

dvy,
dt

Rumiy» Rm.ip, and Ry, ;, are the same as the resistors in Fig. 6,
realized by transmission gates controlled by V;,, V;,, and Vj,,
similar to that in Fig. 3. If any of the three variables s; in
clause C,, is satisfied, the corresponding V; turns off the
respective transmission gate and cuts off the current path from
Vpp to the capacitor. This circuit guarantees the continuous
growth of a,, since V,, is charged by Vpp till it reaches its
upper bound Vpp or any of the three variables in the clause
is satisfied.

It is important to note that as the circuit in Fig. 9 does
not realize the exponential growth specified in (4), it can
indeed get captured into nonsolution attractors indefinitely for
some very hard formulas. However, we have found that even
for many hard problems, it works more efficiently than the
op-amp-based a,, element (with the same threshold value) in
finding solutions for smaller size problems (as long as they
are solvable), and the dynamics would only rarely get stuck.
We will discuss this aspect more in the evaluation section via
simulation results.

Similar to the op-amp-based AVC, in the simpler AVC design
in Fig. 9, some Vs may reach Vpp before the CTDS con-
verges to a solution. One way to alleviate this physical limita-
tion is to increase the range of V,, . However, such an approach
has its limitations in practical circuits (e.g., the limited voltage
supply allowed). This, in fact, is a fundamental limitation due
to the NP hardness of 3-SAT. Nonetheless, it is possible to
improve the V,,, driving capability in the CTDS and increase
the size of the hard problems that can be solved with the
same physical range of V,,. Below, we discuss an alternative
implementation of the simpler a,, element to demonstrate that
it is worthwhile to investigate different implementations of
the AVC.

Recall that the delay function d,,(t) in (8) is to assist
ap to keep relevant information from a limited range of
the trajectory’s past history instead of the entire history.
We consider combining the simpler a,, element with this
time-delayed form, and choose J,,(f) = 0 (meaning that we
are integrating over a fixed time window of length ¢). The
corresponding a,, element is shown in Fig. 10. Capacitor C is
charged to Vpp through three tunable resistive elements and

C = (Vbop — Va,)/(Rm,iy + Rm,iy + Rm,i3).  (17)

Rm,iz Rm,i3

=

WA
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[

Fig. 10. Circuit realization of the time-delayed simpler a;, growth.

discharged to GND through the other three resistive elements.
The first order differential equation of V,,, can be written as

CdVam VDD - Vam + _Vam
dt Rm,i1 + Rm,ig + Rm,i3 R;n,il + R;n,iz + R;n,i_a
(18)

The six resistive elements are implemented by transmis-
sion gates similar to those for R, ;, in Fig. 3. Specifically,
R, iR, ,andR, . arecontrolled by s values (representing
all s; values) earlier values, i.e., s(t — d,). A chain of an
odd number of analog inverters is used to realize the delay ¢
as shown at the right of Fig. 10. If signals s(z) reach their
targets at time ¢, the path from Vpp to capacitor C is cut off,
while the discharge path is still conducting current. V,, keeps
decreasing until the discharge path is cut off after ¢. Hence,
the circuit properly implements the time-delayed simpler ay,
growth function.

1V. EVALUATION

In this section, we present our evaluation study of AC-SAT.
We first describe the basic functional validation and then
discuss the robustness of AC-SAT against device variations.
We finally compare the performance of AC-SAT with a state-
of-the-art digital solver.

A. Functional Validation

We have built our proposed analog SAT solver, AC-SAT,
at the transistor level in HSPICE based on the predic-
tive technology model 32-nm CMOS model [35]. All the
circuit components use Vpp = 1V. To achieve suf-
ficient driving capability, the minimum transistor size is
set to W = 1lum and L = 40nm while actual tran-
sistor sizes are selected according to their specific roles.
For logic gates, the transistor sizes are chosen to ensure
equal pull-up and pull-down strength. For the branch block
in Fig. 3, the relative W/L values of transistor M1 and M,
(i.e., the size of R,,,) with respect to the W/L values of the
other transistors (i.e., the sizes of Ry, ;, Ry iy, and R, ;;) deter-
mine the contribution of a,, to I, ;. Thus, tradeoff between
the size of R,, and the impact of a, should be carefully
considered. In our implementation, since R, ; (dependent on
the size of M, and M,;) is mainly used for proper current
flow at the beginning, it should not dominate the current flow
as Ry, starts affecting I,, ;. Hence, we chose the transistor
sizes such that they result in the ratio of Ry, t0 Ry, Ru,iy,
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and R, ;; being 64, 4, and 4, respectively. The sizes of
the transistors in other circuits are determined in a similar
fashion. Note that the transistor sizes shown above are just
a lower bound for the technology model that we are using.
The absolute values of the transistor sizes are not critical (the
equations of the solver are adimensional), and other transistor
sizes should also work as long as their relative sizes are close
to the ones that we have shown.

To demonstrate that AC-SAT indeed behaves as specified by
the CTDS dynamics in (3) and (4), we examine the waveforms
of signals s; and a,,. Fig. 11 shows three sets of s; and ay,
waveforms from a 3-SAT problem instance having 50 variables
and 212 clauses: Fig. 11(a) for the op-amp-based a,, imple-
mentation [realizing the (e; e9")-type a, growth], Fig. 11(b)
for the simpler a,, implementation (realizing the (1 —¢; e™9")-
type a,, growth), and Fig. 11(c) for the time-delayed simpler
a, implementation. For all three designs, AC-SAT success-
fully finds a solution after a certain time as indicated by the
vertical dashed lines. Note that AC-SAT determines whether
a solution is found via the DVC. As can be seen from the
s; trajectories, the s; signals stabilize (i.e., converge) after a
solution is found. Comparing the a,, trajectories in the three
different designs, one can see that the a,,s grow most rapidly
in the op-amp-based design due to the exponential growth
function while some of the a,,s (the ones corresponding to the
satisfied clauses) in the time-delayed implementation decrease
after they reach their peak magnitude, just as predicted by (8).

B. Scaling Considerations

Besides functionality, the impact of interconnect parasitics
on the circuit is another important consideration toward prac-
tical and modular designs of the solver. As the circuit size
increases [i.e., O(.# .#")], for each variable array element
in the SDC, the total parasitic capacitance from the branch
blocks (Fig. 2) increases linearly with the number of branch
blocks ., namely the maximum number of clauses that the
solver can handle. Given a problem instance, if variable x
is involved in y clauses (y < .#), then y branch blocks
associated with x are active, while all other branch blocks are
turned off. However, all the branch blocks contribute parasitic
capacitance to the dynamical evolution of the variable x.
To investigate the impact of parasitic capacitance, we have
conducted a number of simulations of the solver circuit with
various number of branch blocks (i.e., .#) in the SDC,
i.e., 100, 500, 1000, 5000, and 10000 branch blocks for each
variable array element. We used the circuits to solve various
problem instances with 10, 20, and 30 variables, and evaluated
the time to find a solution. Simulation results shown in Fig. 12
demonstrate that as the solver circuit becomes larger, the solver
still functions correctly, but takes longer time to find solutions
due to larger parasitic capacitance.

Another issue due to interconnect scaling is the capacitance
value associated with the AVC elements. As the parasitic
capacitance associated with variable signals increases with
the number of branch blocks, the dynamic evolution of the
variable signals becomes slower due to the RC charging
rule. As a consequence, the AVC element, whose internal
capacitance (i.e., contributed by the two capacitors in the
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Fig. 11. Waveforms of signals representing s;(z) and a, (¢) for a 3-SAT
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a constraint density a=M/N=4.25, and are considered to be hard problems.
(a) With €je9'ay, growth. (b) With 1 — exe™9%a,, growth. (c) With time
delayed a;; growth.

AVC element) is much smaller than the parasitic capacitance
associated with the variable signals, will charge V,,, quickly,
and reach the V,, upper bound before the variable signals
find the solution. This trend could make the AVC element less
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Fig. 12. SPICE simulation run times to find a solution with various AC-SAT
circuit sizes. N is the number of variables in a problem instance. The number
of clauses in each problem instance is 4.25 x N (corresponding to hard
problems).

effective and thus lead to the solver not able to find a solution.
Therefore, it is critical to increase the values of the capacitors
in the AVC elements as the circuit size increases. A basic
approach is to choose the capacitance value such that the Vs
RC constant is comparable or smaller than the variable signal
RC constant. As the parasitic capacitance of the SDC increases
linearly with the number of branch blocks, the capacitance in
the AVC element should also scale proportionally.

C. Device Variation Study

After validating that AC-SAT indeed can solve SAT
problems correctly, we further investigate the robustness of
AC-SAT against device variations. Typical analog circuits can
be rather sensitive to device variations if not designed well.
However, AC-SAT has two unique advantages in this aspect.
First, the circuit itself does not rely on device matching.
Second, the CTDS theory has been shown in theory to be
robust against noise [36]. To demonstrate the robustness of
our proposed AC-SAT system, we have conducted Monte
Carlo simulations with respect to transistor size variations
for randomly chosen 3-SAT problems. Specifically, we let the
transistor widths follow a Gaussian distribution with standard
deviation (AW/W) of 0.05um/+/W x L for all transistor
widths, which is an acceptable variance distribution for the
32-nm technology node [37]. In other words, the solver
circuit is simulated with the Monte Carlo method considering
5% transistor width variations. For each problem, 100 Monte
Carlo runs were performed. Fig. 13 shows the waveforms of
one a;, () signal and one s;(r) signal plus the output of DVC
for one problem instance for 100 Monte Carlo simulations.
As can be seen from the signal trajectories, the signals
evolve consistently in the Monte Carlo simulations, and the
results demonstrate the robustness of the circuit. Moreover,
since analog circuits generally use mature technology nodes
(e.g., 180 and 90 nm), we in fact validated our design in a rela-
tively aggressive way. The circuit is expected to perform much
better under mature technologies, whose variations would be
much smaller than 5%.

To get a better comparison between the different designs,
we performed Monte Carlo simulations on both the
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Fig. 13.  Waveforms of signals representing a single a, (f) and s;(¢) for a

3-SAT problem instance (op-amp-based design) with 42 clauses and 10 signal
variables under Monte Carlo simulations. The third row represents the output
of DVC, which turns to Vpp once the solution is found.

op-amp-based and the simpler a,-based AC-SAT. The two
designs are used to solve 2000 randomly generated, hard
(a = 4.25) 3-SAT problems containing 1000 instances of
a small problem size (N = 10) and 1000 instances of a
larger problem size (N = 50). It has been verified that all
these 2000 instances are solvable. With the same fixed supply
voltage and initial conditions, AC-SAT with the op-amp-
based a,, design solves 91.1.% of the N = 10 instances and
58.2% of the N = 50 instances, respectively, while AC-SAT
with the simpler a,, design solves 86.9% of the N = 10
instances and 46.5% of the N = 50 instances, respectively.
(Note that AC-SAT did not solve all the problems because
of the physical voltage limit we imposed.)’> These results
indicate that, as expected, within the same physical constraints,
AC-SAT based on the exponential growth a,, is more effective
than AC-SAT with the (1 — ¢ e 9")-type a,, growth. Note
that an exponential growth a,, circuit implemented with an
op-amp does consume larger area and energy, while the
simpler a,, circuit trades off area and energy with solver
capability.

D. Performance Comparisons

To further investigate the effectiveness of AC-SAT,
we compare the simpler a,-based AC-SAT design with:
1) a software program that solves the systems (3), (4) using
an adaptive Runge-Kutta, fifth-order Cash-Karp method and
2) the software MiniSat solver [19]. The software programs
are running on the same digital computer. We randomly
generated 5000 hard (a = 4.25) 3-SAT problems that con-
tain 1000 instances for each problem size of N=10, 20,
30, 40, 50. The same initial conditions are applied whenever
appropriate. Table I summarizes the average time needed
to find solutions for each problem size. The AC-SAT col-
umn reports the analog/physical times taken by AC-SAT.

3This is not a limitation of the CTDS theory, but rather the supply voltage
bound set in our design. In fact, our software implementation of CTDS is able
to solve all the problems. Relaxing the voltage bound will help solve more
problem instances, which is left for future work.
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TABLE I

PERFORMANCE COMPARISON OF AC-SAT,
SOFTWARE CTDS, AND MINISAT

SAT solver AC-SAT CTDS MiniSat
ASIC Ir}tel Core Ir}tel Core
Platform 39nm CMOS 17-4700 17-4700
@24 GHz @ 24GHz
Average N=10 4%10~9 440x10~%  23x10~%
time fir N=20 7x10~9 391x1073  24x10~4
. N=30 108 1.62x1072  2.8x10~%
each size _g _3 _a
N=40 1.2x10 5.22x10 3.1x10
N (s)
N=50 14%x10~8 1.13x10~1  37x10~%

The CTDS and MiniSat columns report the CPU times of the
two software implementations, respectively. (To be fair, only
the times taken by the solved problems for all three methods
are included.) Observe that the times in the CTDS column
increase nearly exponentially as the problem size increases.
This is natural, since the numerical integration happens on
a digital Turing machine, and in order to ensure the pre-set
accuracy of computing the chaotic trajectory the Runge-Kutta
algorithm has to do a very large number of window-refining
discretization steps. As seen from the data in Table I, AC-SAT
demonstrates average speedup factors of ~103 to ~10°
and ~10* over software CTDS and MiniSat, respectively.

AC-SAT is also very competitive compared with existing
hardware-based approaches. For example, a recent work [29]
reported a CPU+FPGA-based MiniSat solver achieving ~4X
performance improvement over CPU-based MiniSat. Since
ASIC implementations typically achieves a maximum of
10X performance improvement over their FPGA counter-
parts [38], compared with a projected ASIC version of
the FPGA design in [29], AC-SAT would still result in
~600X or higher speedup. We do not directly compare with
the custom digital IC in [30] since our simulation-based system
cannot solve the large size problems considered in [30]. (Note
that the total solving times reported in [30] are extrapolated
instead of directly obtained from simulation.) It is reported
in [30] that an average speedup of ~103X over CPU-based
MiniSat is obtained. As contrast, AC-SAT achieves ~10*X
speedup over CPU-based MiniSat. T

Readers may be concerned with the complexity of the
analog hardware design as well as other issues such as
noise. It is important to note that the analog solver core
is modular and consists of arrays with the same topology.
Furthermore, the CTDS theory has been shown to be robust
against noise [36]. AC-SAT is programmable, which means
that different problem instances can be programmed or mapped
to the AC-SAT circuit. AC-SAT is also modular, implying
that: 1) it can be more easily extended to construct a larger
solver and 2) multiple AC-SAT components can be used
to solve the same problem instance by providing different
initial conditions, hence allowing larger space to be searched
simultaneously.

The current implementation of AC-SAT, however, does
have some limitations. In particular, while the modular struc-
ture allows possible expansion to solve problems with larger
numbers of variables and clauses, it can only address problems
with clauses that have no more than the given number of
k literals (k = 3 here). One way to solve such problems is

165

to use the host processor to convert k-SAT problems (where
k > 3) to 3-SAT problems (which can be done in polynomial
time [16]). How to directly tackle such challenges in hardware
is left for future work.

V. CONCLUSION

We presented a proof-of-principle analog system, AC-SAT,
based on the CTDS in [1] to solve 3-SAT problems. The design
can be readily extended to general k-SAT problems. AC-SAT
is modular, programmable and can be used as a SAT solver
coprocessor. In this implementation the circuit size grows
polynomially [O(N?)] as the problem size increases. Three
different design alternatives were proposed and verified for
implementing the auxiliary variable dynamics required by the
CTDS. Detailed SPICE simulation results show that AC-SAT
can indeed solve SAT problems efficiently and can tolerate
well device variations. Compared with other SAT solvers,
AC-SAT can achieve ~10*x speedup over MiniSat running
on a state-of-the-art digital processor, and can offer over
600x speedup over projected digital ASIC implementation of
MiniSat.

Regarding the practical use of a hardware solver, we note
that there are instances in the SAT contests that take a very
long time (e.g., days or even months) to solve. The reason
for the long (and exponentially growing) running time is
due not only to the size of the problems, but also to their
hardness. It has been demonstrated that when the constraint
density (M/N) of a problem instance is between 4 and 5 (for
3-SAT), the problem can be very hard and take exponentially
growing time for current software solvers to find a solution.
Our work, together with its theoretical basis, however, provides
a means to trade time for energy in order to speed up
computations. With the circuit-friendly theory and proof-of-
principle hardware implementation, we can solve hard SAT
problems much faster than with software solvers on digital
machines, however, at the expense of other resources such
as energy (voltage and or/current values). Such tradeoffs are
desirable for certain time-sensitive problems.

The CTDS equations (especially the dynamics for the
auxiliary variables) and their analog implementations are not
unique. It is quite possible that better forms and implementa-
tions exist. The fact that our proof-of-principle circuit imple-
mentations significantly outperform state-of-the-art solvers on
digital computers are an indication that analog hardware
SAT solvers have a great potential as application-specific
processors for discrete optimization. As future work, we will
further investigate alternative implementations of the auxiliary
variable dynamics as well as methods to handle problem
instances that do not fit on a given hardware implementation,
e.g., through problem decomposition. Moreover, we will
explore other methods that can, in principle, solve SAT
problems even more efficiently, e.g., by combining clause
learning (handled by a digital processor) with our analog
solver.
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