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A continuous-time MaxSAT solver with high
analog performance
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Many real-life optimization problems can be formulated in Boolean logic as MaxSAT, a class

of problems where the task is finding Boolean assignments to variables satisfying the max-

imum number of logical constraints. Since MaxSAT is NP-hard, no algorithm is known to

efficiently solve these problems. Here we present a continuous-time analog solver for

MaxSAT and show that the scaling of the escape rate, an invariant of the solver’s dynamics,

can predict the maximum number of satisfiable constraints, often well before finding the

optimal assignment. Simulating the solver, we illustrate its performance on MaxSAT com-

petition problems, then apply it to two-color Ramsey number R(m, m) problems. Although it

finds colorings without monochromatic 5-cliques of complete graphs on N≤ 42 vertices, the

best coloring for N= 43 has two monochromatic 5-cliques, supporting the conjecture that R

(5, 5)= 43. This approach shows the potential of continuous-time analog dynamical systems

as algorithms for discrete optimization.
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D igital computing, or Turing’s model of universal com-
puting is currently the reigning computational paradigm.
However, there are large classes of problems that are

apparently intractable on digital computers, requiring resources
(time, memory, and/or hardware) for their solution that scale
exponentially in the input size of the problem (NP-hard)1. Such
problems, unfortunately, are abundant in sciences and engi-
neering, for example, the ground-state problem of spin-glasses in
statistical physics2,3, the traveling salesman problem4, protein
folding5, bioinformatics6, medical imaging7, scheduling8, design
debugging, Field Programmable Gate Array routing9, probabil-
istic reasoning10, etc. It is believed that in order to make progress
on solving such problems one might have to look beyond com-
putation with digital Turing machines. Analog computing and
quantum computing present two promising and possibly revo-
lutionary approaches, complementing complementary
metal–oxide–semiconductor technology11 in solving certain types
of hard computational problems. However, quantum computing
currently faces fundamental physics and engineering challenges
that still need to be solved12,13, leaving analog computing as a
possibly more feasible option14,15. Although explored in the
1950s, it was abandoned in favor of the digital approach, due to
the technical challenges it posed (for a historical survey see
ref. 16). By now, however, technology has matured enough to
control much better the physics at the small-scale, making it
worthwhile revisiting analog computing, at least at an
application-specific level. Accordingly, increasing effort is being
dedicated to both problem-driven17–29 but also general purpose
analog computing30–32, including analog computability theory32–
34.

One quintessential family of intractable problems that could
potentially be tackled with special-purpose analog devices are
Boolean satisfiability problems, both in their decision (SAT) and
optimization forms (MaxSAT). In SAT we are given a set of M
logical clauses in conjunctive normal form (CNF), C1, C2, …, CM

over Boolean variables x1,…, xN, xi∈ {0, 1}. Typically, one studies
k-SAT problems where every clause involves k literals (a literal is
a variable or its negation). The task is to set the truth values of all
the variables such that all the clauses evaluate to TRUE (“0”=
FALSE, “1”= TRUE). It is well known that k-SAT with k ≥ 3 is
NP-complete and thus any efficient solver for 3-SAT implies an
efficient solver for all problems in the NP class (Cook-Levin
theorem, 1971)8,35,36. The NP class is the set of all decision-type
problems where one can check in polynomial time the correctness
of a proposed solution (but finding such a solution can be
exponentially costly).
MaxSAT (or Max k-SAT) is the optimization version of SAT. It

has the same formulation as SAT (or k-SAT), but the task is to
maximize the number of satisfied clauses. It is harder than SAT as
one cannot guarantee in polynomial time the optimality of the
solution (unlike for SAT), for problems that do not admit full
satisfiability. Thus, although MaxSAT is NP-Hard, it is not
known to be in NP unless P=NP. Several discrete algorithms
were developed for MaxSAT, including statistical mechanics
inspired methods such as Survey Propagation37,38. SAT and
MaxSAT have a very large number of applications, with SAT
solvers becoming an important back-end technology. Applica-
tions include scheduling, planning and automated reasoning,
electronic design automation, bounded model checking, design of
experiments, coding theory, cryptography, and drug design, see
ref. 39–41.
A continuous-time deterministic system (CTDS) based on

ordinary differential equations (ODEs), was recently proposed as
an analog SAT solver, in ref. 42. It was designed such that all the
SAT solutions appear as attractive fixed points for the dynamics
while no other attractors exist trapping the dynamics. For hard

problems its behavior becomes chaotic, showing that problem
hardness and chaos43,44 are related notions within this context,
and thus chaos theory can be used to study computational
complexity. For fully satisfiable SAT problems the chaos is
necessarily transient45, with the trajectory eventually settling onto
one of its attracting fixed points (a SAT solution). Using
numerical experiments, the CTDS was shown to solve hard SAT
problems in polynomial continuous-time42, but at the expense of
auxiliary variables growing exponentially. In a hardware realiza-
tion, this implies a trade-off between time and energy costs.
However, since one can control/generate energy much better than
time itself, this presents a viable option for time-critical appli-
cations.46 proposed an analog circuit design for the CTDS,
showing a 104-fold speedup on hard 3-SAT problems, when
compared to state-of-the-art SAT solvers47,48 on digital machines.

Here, we present an extension of the CTDS such as to solve
MaxSAT problems. The idea is based on the observation that the
CTDS makes no assumptions about problem satisfiability and
thus, even for unsatisfiable SAT problems, the dynamics will still
minimize the number of unsatisfied clauses. What we need to
determine, however, is the likelihood of the optimality of the best
solution found by analog time t, as function of t, which
we achieve heuristically, by analyzing the statistics of a dynamical
invariant, the escape rate45. In the following we will refer to our
analog MaxSAT solver as Max-CTDS. We test its performance
using hard benchmark MaxSAT problems, in particular, on all
the 454 random benchmark problems from the 2016 MaxSAT
competition49, showing that it achieves the same or very close
results to the overall best competition solver. As another appli-
cation of our approach, we consider the famous problem of
Ramsey numbers50,51. The Ramsey number R(m, m) is the
smallest order of a complete graph such that any coloring of its
edges with two colors has a monochromatic clique of order m.
The SAT formulation of this problem, of finding a coloring
without monochromatic m-cliques, is fully satisfiable below the
Ramsey number, whereas at the Ramsey number, it becomes
MaxSAT for the first time. R(5, 5) is still open, only the bounds
43 ≤ R(5, 5) ≤ 48 are known52,53. Finding Ramsey numbers is
challenging due to the convoluted structure of the search space,

and its sheer size: there are 2
N
2ð Þ possible colorings of a complete

labeled graph on N nodes (≈10271 for N= 43). For m= 5
(equivalent to a 10-SAT/MaxSAT problem) Max-CTDS finds
good colorings for up to N= 42, whereas for N= 43 finds a
coloring with only two monochromatic 5-cliques sitting on 6
nodes, the lowest energy coloring found so far, to our best
knowledge, adding further support to the conjecture that R(5, 5)
= 43. We conclude with a discussion on analog solvers and their
realization in hardware.

Results
A continuous-time dynamical system solver for MaxSAT. Here,
we focus on continuous-time systems, in which both the state
variables s= (s1, …, sN) and the time variable t are real numbers,
si 2 R, t 2 R, updated continuously by the algorithm (“soft-
ware”), in form of a set of ordinary differential equations (ODEs)
54 ds/dt= F(s(t), t), t 2 R, see ref. 32 for a review. The process of
computation is interpreted as the evolution of the trajectory (the
solution to the ODEs) s(t)=Ψt(s0), toward an attractive fixed-
point state s*: limt→∞ Ψt(s0)= s*, representing the answer/solution
to the problem. Clearly, we want to find s*, and the challenge is to
design F such that the solutions to the problem (when they exist)
appear as attractive fixed points for the dynamics and no other,
nonsolution attractors exist that could trap the dynamics.
Our MaxSAT solver is based on a previously introduced SAT

solver42, which we now briefly describe; more details are given in
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Methods. Let us assign the variable si= 2xi− 1 to every Boolean
variable xi (when xi= 0, si=−1 and when xi= 1, si= 1), but
allow si to vary continuously in the [−1, 1] interval. The
continuous dynamical system ds

dt ¼ _s ¼ F thus generates a
trajectory confined to the hypercube HN = [−1, 1]N with the
SAT solutions s* all located in its corners. To every clause Cm

(constraint) we associate the analog clause function KmðsÞ=
2�k QN

j¼1 1� cmjsj
� �

, where cmj= 1 (−1) if variable xi appears in

normal (negated) form in clause Cm, and cmj= 0 if it is missing
(in either form) from Cm. The normalization 2−k ensures that
Km∈ [0, 1]. One can easily check that Km= 0 in a corner s of HN
if and only if (iff) clause Cm is satisfied at s. We then introduce a
“potential energy” function V that depends on the Km-s such that
V= 0 iff all the clauses are satisfied, that is, Km= 0, ∀m= 1, …,
M:

Vðs; aÞ ¼
XM
m¼1

amKmðsÞ
2: ð1Þ

Here, the am are time-dependent, positive weights, or auxiliary
variables, am(t) > 0, ∀m= 1, …, M, ∀t ≥ 0. If they were constants,
the dynamics would easily get stuck in nonsolution attractors. To
prevent that, the dynamics of the auxiliary variables am is coupled
with the evolution of the clause functions Km. The dynamics of
the full system is defined via

_si ¼
dsi
dt ¼ � ∇sVð Þi¼ � ∂

∂si
Vða; sÞ ¼

PM
m¼1

2amcmiKmiKm; i ¼ 1; ¼ ;N

_am ¼ dam
dt ¼ amKm;m ¼ 1; ¼ ;M;

8><
>:

ð2Þ

where Kmi = 2�k QN
j¼1;j≠i 1� cmjsj

� �
. Note that (2) is just a

gradient descent in s-space on V, _s=−∇sV. For hard (but
satisfiable) SAT formulas the dynamics is transiently chaotic, but

eventually all trajectories converge to a solution. Since the
dynamics is hyperbolic42, the probability p(t) of a trajectory not
finding a solution by analog time t decreases exponentially:
p(t) ~ e−κt. The decay rate κ is an invariant of transient chaos,
called the escape rate55,56, and it characterizes the hardness of the
given SAT formula/instance.
Next, we introduce a modified version of the above solver to

solve MaxSAT. Note that if the global optimum s* is not a
solution with V= 0 (a true MaxSAT problem), then V will keep
changing in time as function of the auxiliary variables. The
dynamics is still biased to flow toward the orthants of HN with
low energy, and as shown, in Fig. 1a, it will find the global
optimum, but it will never halt there. Naturally, the question
arises: how do we know when we have hit an optimal assignment?
For that we use a heuristic based on a statistical approach: we
start many (relatively short) trajectories from random initial
conditions, look for the lowest energy found by each trajectory
and then exploit this statistic to help predict the lowest energy
state and the time needed to get there by the solver.
However, Eqs. (1) and (2) cannot directly be applied to

MaxSAT problems, one needs to modify the potential energy
function, first. To see why, notice that the potential V in the
center ofHN , in s= 0, is always V 0; að Þ= 2�2k

PM
m¼1 am, because

Km(0)= 2−k, ∀m. On the other hand, in a corner s′ of the
hypercube, where s′i

�� �� ¼ 1 ∀i, the value of each Km(s′) clause
function is 0 if the clause is satisfied or 1 if it is unsatisfied, so the
potential V in a corner is just the sum of auxiliary variables
corresponding to the unsatisfied clauses, i.e., Vðs′; aÞ=P

fm:Km≠0g am. Let a be the average value of the auxiliary

variables in a given time instance t, a= 1
M

PM
m¼1 am. Thus V(0, a)

= 2−2k aM and V(s′, a)≃ aE(s′), where we introduced E(x) to
denote the number of unsatisfied clauses for an assignment x,
which we will call “energy”, from here on. If s′ is the global
optimum and it’s energy is large enough (typically at large
constraint densities α=M/N), the center of the hypercube may
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Fig. 1 MaxSAT solver dynamics. The Max 3-SAT formula used here has N= 10, M= 80 (clauses given in the Supplementary Data 1). a The potential V, b
the radius R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
i s

2
i

q
, and c the number of unsatisfied clauses (energy) E as function of analog time t for the original dynamics corresponding to b= 0

(red) and the modified dynamics with b= 0.0725 (black). d–g Colormaps of the potential V(s(t), a(t)) in the plane (s1, s2). At a given time instant t we fix
all values sj(t), j= 3, …, N and am(t), ∀m and change only s1, s2 in the [−1, 1] × [−1, 1] plane, showing the instantaneous potential energy landscape V in this
plane. The curves indicate the projection of the trajectory onto (s1, s2) up to the indicated time t. In t= 0, s1= s2=−1. For b= 0, the dynamics converges to
s= 0, which is the centre of a deep well in the potential landscape. For b= 0.0725, the centre is not a minimum anymore and at time t= 10 the orthant
with minimal energy Emin= 3 is found (the solution), shown as a blue dotted line in the E(t) figure
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have a smaller potential energy value (due to the 2−2k factor),
than any of the corners of the hypercube, and it may become a
stable attractor, trapping the dynamics. Figure 1 shows an
example of this trapping on a small MaxSAT problem with N=
10 variables and M= 80 clauses, given in Supplementary Data 1.
To prevent this, we need to modify the potential energy function.
We do this by adding a term V′(s, a) to V(s, a) such that it
satisfies the following conditions: (1) it is symmetric in all si so
that there is no bias introduced in the search dynamics, (2) the
energy in s= 0 is always sufficiently large so that it never becomes
an attractor, (3) the added term does not modify the energy in the
corners of the hypercube, and (4) similarly to the original
dynamics, s always stays within the hypercube HN , which
demands that ∂V′/∂si= 0 for all i along the boundary of HN . We
may imagine this added term in the form of a “hat” function: it
has a maximum at s= 0 that keeps growing together with the
time-dependent auxiliary variables (never to become permanently
smaller than the potential energy in the global optimum), but
vanishing at the boundary surface of the hypercube.
There are several possibilities for such terms, here we focus on

one version that works well in simulations:

Vðs; aÞ ¼
XM
m¼1

amKmðsÞ
2 þ bαa

XN
i¼1

cos2
π

2
si

� �
; ð3Þ

where a is the average value of the auxiliary variables, α=M/N is
the constraint density and b is a constant factor tuning the
strength of the last term to be always larger than the first, when
chosen properly. The sum with the cos2 πsi=2ð Þ terms ensures the
symmetric hat form, vanishing in the corners of HN . Note that
the first term on the rhs of (3) is never larger than aM. We now
have V(0, a)= (2−2k+ b)aM and b can be chosen such as to
avoid the trapping phenomenon by the origin as described above,
see also Fig. 1b. To do that, we simply demand that the potential
in the origin V(0, a) keeps growing approximately at the same
rate as the potentials in the corners of the hypercube, never
getting smaller than the potential in the global minimum (the
smallest potential value in the corners). Thus, as long as V(0, a) ≥
V(s′, a), where s′ is some corner of the hypercube accessed by the
dynamics, the dynamics will not get attracted by the origin of the
hypercube. Since V(s′, a)≃ aE(s′), this implies that
b � 1

MEðs′Þ � 2�2k, where E(s′)/M is the fraction of unsatisfied
clauses in s′. Clearly, the b value can be chosen arbitrarily large,
however, if it is too large, then it forces the dynamics to keep
running close to the boundary of the hypercube, somewhat
lowering its performance. In practice, an E′= E(s′) is easily found
by running a trajectory with a sufficiently large b value for some
short time, then resetting b � E′

M � 2�2k. If chosen this way, the
search dynamics would not be too sensitive to this parameter b.
The new dynamical system is therefore:

_si ¼ � ∂V
∂si

¼
PM
m¼1

2amcmiKmiðsÞKmðsÞ þ π
2 bαa sin πsið Þ; 8i ¼ 1; ¼ ;N

_am ¼ amKm; 8m ¼ 1; ¼ ;m:

8<
:

ð4Þ

Figure 1 illustrates the difference between the two dynamics
(see also Supplementary Fig. 1). While for b= 0 (original system)
the dynamics converges rapidly to s= 0 (seen, e.g., by monitoring
the radius R2 ¼

P
i s

2
i ! 0), the modified system with a properly

chosen b > 0 continues the search. It finds an orthant with the
minimum energy quite quickly (by t= 10), but it does not halt
there, it continues the dynamics and returns to this minimum
repeatedly (e.g., around t ≈ 16, 22, 41). Figure 1d–g shows the
potential energy function landscape V(s, a) in the (s1, s2) plane.

An energy-dependent escape rate. The escape rate is an invariant
measure of the dynamics introduced for characterizing transiently
chaotic systems55,56. In a transiently chaotic system the asymp-
totic dynamics is not chaotic, but, for example, settles onto a
simple attractor, or escapes to infinity (in open systems), how-
ever, the nonasymptotic dynamics is chaotic, usually governed by
a chaotic repeller. It is well known that for hyperbolic, transiently
chaotic dynamical systems the probability of a randomly started
trajectory not converging to an attractor by time t (i.e., not
finding a SAT solution in our case) decreases exponentially in
time: p(t) ~ e−κt, where κ is the escape rate45,55. The escape rate
can also be interpreted as the inverse of the average lifetime τ of
trajectories κ= 1/τ. For permanently chaotic systems, such as our
MaxSAT solver, however, this definition does not work, as there
is no simple asymptotic attractor in the dynamics and the system
is closed. To be able to use a similar notion also for MaxSAT, we
use a thresholding on the energy of the visited states. More
precisely, we monitor the probability p(E, t) that a trajectory has
not yet found an orthant of energy smaller than E by analog time
t. Here, E acts as a parameter of the distribution. This can be
measured by starting many trajectories from random initial
conditions and monitoring the fraction of those that have not yet
found a state with an energy less than E by analog time t. In
Fig. 2a we show these distributions for different E values for a
MaxSAT problem. For large E, all trajectories almost immediately
find orthants with fewer unsatisfied clauses, but for lower E values
the distributions decay exponentially. We call their decay rates
energy-dependent escape rates κ(E). Naturally, if an energy level
does not exist in the system (e.g., for E < Emin), the escape rate for
that energy level is meaningless (extrapolates to zero or a negative
number). This suggests that the κ(E) dependence could be used to
predict where this minimum energy is reached. However, to
capture this energy limit, it is more convenient to plot the E(κ)
function, instead (see Fig. 2b). From extensive simulations, we
observe a power-law behavior with an intercept E0:

E ¼ E0 þ cκβ: ð5Þ

Since E0 is not an integer in general, we have Emin ¼ E0b c þ 1.
This observation is at the basis of our method to predict the
global energy minimum for MaxSAT.

Procedure for predicting the global minimum. Here, we
describe the algorithm along with the halting criterion for system
(4) with details presented in the Methods section along with a
flowchart shown in Supplementary Fig. 2. The exponentially
decaying nature of the p(E, t) distributions implies that sooner or
later every trajectory will visit the orthant with the lowest energy.
Nevertheless, instead of leaving one trajectory to run for a very
long time, it is more efficient starting many shorter trajectories
from random initial conditions and tracking the lowest energy
reached by each trajectory (see Supplementary Fig. 3). This also
generates good statistics for p(E, t) and for obtaining the prop-
erties of the chaotic dynamics that are then exploited along with
(5) to predict the value of the global minimum and to decide on
the additional number of trajectories needed to find a lower
energy state with high probability.
The basic step of the algorithm is to run a trajectory ω from a

random initial condition up to a given time tmax and record the
lowest energy found by this particular trajectory, denoted by
Es(ω). Let Γ denote the total number of trajectories run so far, T
the set of these trajectories (thus Γ= Tj j), and EðΓÞ=
minω2T EsðωÞ be the lowest energy found by all these trajectories.
Using statistical methods and the relation between energy and
escape rate κ(E) (shown in (5)), the algorithm repeatedly predicts
(as Γ grows) the expected number of trajectories we need to run
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in total to find the lower energy value E � 1, i.e., Γpred E � 1
� �

and

the global minimum energy Epred
min . We then monitor Epred

min for
saturation and once the saturation criterion is reached, it outputs
a decision Edec

min, representing the final energy value predicted by
the algorithm as the global minimum. If this energy value has
already been attained (found at least one assignment for it), the
algorithm outputs the corresponding assignment(s). If it did not
attain it then it keeps running until finds such an assignment or
reaches the preset maximum limit Γmax on the number of runs. In
the latter case it outputs the lowest energy value attained and the
corresponding assignment(s) and the consistency status of the
predicted value.

Performance on random Max 3-SAT problems. We first test our
algorithm and its prediction power on a large set (in total 4000) of
random Max 3-SAT problems with N= 30, 50, 100 variables and
constraint densities α= 8, 10. (In 3-SAT the SAT-UNSAT tran-
sition is around α≃ 4.26757). We compare our results with the
true minimum values (Emin) provided by the exact algorithm
MaxSATZ58,59. In Fig. 3, we compare the lowest energy found by
the algorithm E, the predicted minimum Epred

min and the final
decision by the algorithm Edec

min with the true optimum Emin, by
showing the distribution of their deviations from Emin across
many random problem instances. We use tmax= 25 and at most
Γmax= 150,000 runs, after which we stop the algorithm even if the
prediction is not final. Thus, one expects that the performance of
the algorithm decreases as N increases, (e.g., at N= 100), so that
we would need to run more trajectories to obtain the same per-
formance. Nevertheless, the results show that all three distribu-
tions have a large peak at 0. Most errors occur in the prediction
phase, but many of these can be significantly reduced through
simple decision rules (see Methods), because they occur most of
the time at easy/small problems, where the statistics is insufficient
(e.g., too few points since there are only few energy values). To
show how the error in prediction depends on the hardness of
problems, we studied the correlation between the error Epred

min �
Emin and the hardness measure applicable to individual instances
η=−ln κ/ln N (see ref. 43), see Fig. 3d (and Supplementary
Fig. 4). Interestingly, larger errors occur mainly at the easiest
problems with η < 2. Calculating the Pearson correlation coeffi-

cient between Epred
min � Emin

��� ��� and η (excluding instances where the

prediction is correct) we obtain a clear indication that often
smaller η (thus for easier problems) generates larger errors.
Positive errors are much smaller and shifted toward harder
problems. Negative errors mean that the algorithm consistently
predicts a slightly lower energy value than the optimum, which is
good as this gives an increased assurance that we have found the
optimum state. In Supplementary Fig. 4b, we show the correlation
coefficients calculated separately for problems with different N
and α.

Performance evaluation on hard MaxSAT competition pro-
blems. Next, we present the performance of our solver on Max-
SAT competition problems, from 201649. We are foremost
interested if Max-CTDS is capable of predicting the global
minimum energy value and finding assignments corresponding to
that energy value for hard problems, within a reasonable time.
For illustration purposes, here we first discuss an extremely

hard competition problem instance with N= 250 variables and
M= 1000 clauses, called “HG-3SAT-V250-C1000-1.cnf”, which
was reposted for several years. This problem was also used in
Fig. 2. No complete competition algorithm could solve this
problem. The best complete solver in 2016, the CCLS2akms has
found a state with energy value 5, but could not prove that it is
optimal within the allotted time (30 min). We ran our algorithm
on a regular 2012 iMac 21.5, 3.1 GHz, Intel Core i7 computer and
it predicted the lowest energy of 5 (unsatisfied clauses), after 21
min 24 s of running time and produced an assignment for it after
9.168 h of running time. The minimum energy prediction was
achieved already after Γ= 7000 trajectories, whereas finding an
assignment with this minimum energy took a total of Γ= 189,562
trajectories to run. The minimum energy assignment correspond-
ing to Edec

min ¼ 5 is provided in Supplementary Data 2. (The
problem can be downloaded from the competition site49). We ran
the complete and exact algorithm, MaxSatz58,59 for over 5 weeks
on this problem and the smallest energy it found was E= 9. The
details of how the Max-CTDS algorithm performs are shown in
Fig. 4. Similar figures for other hard problems such as for a 4-SAT
problem and a spin-glass problem are shown in Supplementary
Figs. 5 and 6.
Figure 5a shows the lowest energy values (+ symbol) for all the

454 random MaxSAT problems of the 2016 competition49,
obtained by the (incomplete/heuristic) competition solvers, and
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Fig. 2 Energy dependent escape rate. a The p(E, t) distributions for a hard, benchmark MaxSAT competition problem with N= 250, M= 1000 (α= 4.0),
“HG-3SAT-V250-C1000-1.cnf”, from ref. 49. We find Emin= 5 with our algorithm after running Γ= 2 × 105 trajectories with b= 0.002375. The escape
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the escape rate κ using the values obtained from the fitting shown in (a) (black) and using the rough estimate for the escape rates κest(E)≃−ln(p(E, tmax))/
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Both curves result in E0∈ (4, 5] thus predicting the global optimum Epredmin ¼ 5
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the predicted and found lowest energies attained by Max-CTDS
(green star and solid red circle symbol, respectively). See
Supplementary Fig. 7 for more comparisons with other competi-
tion solvers. One can see that Max-CTDS is capable of predicting
and achieving the same energy levels as the overall best, for
almost all of the high-girth MaxSAT problems “HG3”, “HG4”,
and “s3” (Abrame-Habet). There are, however, small deviations
in the “s2” group, where Max-CTDS achieves energy levels close
to the overall best. These deviations are presented in detail in
Fig. 5b, while in Fig. 5c we are showing them normalized by the
total number of clauses M, for every problem, indicating that
Max-CTDS solved all the problems within 0.8% of the best value.
The main reason for the discrepancy in “s2” is the stiffness of the
equations60, in this category. Since in Max 2-SAT there are only
two variables that can satisfy a clause, the problems are more
constrained, and additionally, the problems in the “s2” category
also have a high minimum energy value (“s2” had also the largest
problems with N∈ [120, 200], M∈ [1200, 2600]). This causes the
effects of stiffness to appear earlier in the simulations than for the
other problems, slowing them down; see Supplementary Note 1
and Supplementary Fig. 8 for a more detailed description. The
fact that the Max-CTDS solver still finds very close solutions even
for these problems shows, that it has a “smart” search dynamics.

In terms of computation time (wall-clock time) on digital
machines (using standard computers), Max-CTDS typically took
on the order of hours to find an assignment for the minimum
energy value. The average time over all the problems was 4.35 h,
with a standard deviation of 5.05 h: in the “s2” category the
average time was 10.93h, in “s3”: 0.52h, in “HG3”: 5.69h, and in
“HG4”: 0.28 h. The lowest search time was 1.08s, for problem
“s3v70c700-5.cnf”, with the best heuristic competition solver
taking 0.64 seconds for this problem. The worst search time by
Max-CTDS was for a very stiff problem, “s2v120c2500-2.cnf” at
4 days and 14.47h, with the best heuristic solver for this problem

taking only 1.36s. These numbers certainly depend on the digital
hardware used. Note that in an analog circuit implementation, the
current flow or voltage behavior would correspond to the
equations of the solver, eliminating numerical integration issues
and thus the algorithm should run much faster (46 shows a
possible 104 speedup).

Application to Ramsey numbers. Ramsey theory deals with the
unavoidable appearance of order in large sets of objects parti-
tioned into few classes, with deep implications in many areas of
mathematics51,61 but also with practical applications62. Although
it has several variants, in the standard, two-color Ramsey number
problem we have to find the order for the smallest complete
graph for which no matter how we color its edges with two colors
(red and blue), we cannot avoid creating a monochromatic m-
clique. The number of nodes for the smallest such complete graph
is denoted by R(m, m). The proof that R(3, 3)= 6 is trivial. For m
= 4 the answer is R(4, 4)= 18 and it is harder to prove63. The m
= 5 case is still open, only the bounds 43 ≤ R(5, 5) ≤ 48 are
known52. The best lower bound of 43 was first found in 1989 by
Exoo64, and the upper bound was only recently reduced from
4953 to 48 by Angeltveit and McKay65. Using various heuristic
methods, researchers have found in total 656 solutions (328
graphs and their complements) for the complete graph on 42
nodes53. It has been conjectured by McKay and Radziszowski53

that there are no other solutions for N= 42. Starting from these
solutions they searched for a 5-clique-free coloring in 43. As no
solution was found, McKay, Radziszowski, and Exoo make the
strong conjecture that R(5, 5)= 4353.

To tackle Ramsey number problems with our algorithm, we
first transform them into k-SAT66,67: every edge i (i= 1, …, N(N
− 1)/2) to be colored is represented by a Boolean variable xi (with
xi∈ {0, 1}, 1= blue, 0= red). A clique of size m has m(m− 1)/2
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edges. We are satisfied with a coloring (a solution) when no m-
clique is monochromatic, i.e., every m-clique with set of edges {i1,
…, im(m−1)/2} must have both colors, expressed as the statement
formed by the conjunction of the two clauses

xi1 _ ¼ _ ximðm�1Þ=2

� �
^ xi1 _ ¼ _ ximðm�1Þ=2

� �
ð6Þ

being true. This means that for every m-clique we have two
clauses and thus there are a total of 2ðNMÞ clauses to satisfy. Since
the number of clauses (O(Nm)) for m ≥ 2 grows faster in N than
the number of variables N, there will be a lowest N value
corresponding to UNSAT, which is the sought R(m, m) Ramsey
number. Thus, for m= 3 we have a 3-SAT problem, for m= 4 a
6-SAT problem and for m= 5 a 10-SAT problem. For graphs
with N= 42 nodes the number of clauses is 2´ ð425 Þ= 1,701,336

and the search space has 2ð
42
2 Þ = 2861≃ 1.5 × 10259 colorings. If we

were to compute the familiar constraint density α, it would be α
= 2ð425 Þ=ð

42
2 Þ= 1976, indeed above the SAT/UNSAT transition

point for random 10-SAT, which is estimated to be αs|10−SAT≃
70768.

Applying our algorithm for the m= 4 Ramsey problem, we can
easily find coloring solutions for N ≤ 17, while for N= 18 it
predicts that there is no solution, indeed confirming that R(4, 4)
= 18. This is seen from the plot of E vs. κ in Fig. 6. For N ≤ 17 the
smooth portion of the curve fitted by (5) suddenly cuts off, κ
being the same for all energy values lower than a threshold value,
meaning that after reaching a state corresponding to the
threshold energy level, the solution (i.e., E= 0) is immediately
found. This is simply due to the fact that (5) is a statistical average
behavior characteristic of the chaotic trajectory, from the
neighborhood of the chaotic repeller of the dynamics and away
from the region in which the solution resides. However, once the
trajectory enters the basin of attraction and nears the solution, the
dynamics becomes simple, nonchaotic, and runs into the solution,
reflected by the sudden drop in energy. This is not due to
statistical errors, because the curve remains consistent when
plotting it using 103, 104, or 105 initial conditions (the figure
shows 105 initial conditions).

Searching for the value of R(5, 5) one can relatively easily find
coloring solutions without 5-cliques up to N= 35 for which the
number of variables is 595 and the number of clauses 649,264,
already huge for a 10-SAT problem for other types of SAT and

MaxSAT solvers. To find solutions faster for N ≥ 36, however, we
employ a strategy based on circulant matrices69 helping us find
solutions (proper colorings) up to and including N= 42 in a
relatively short time (on the order of hours), see the description in
the Methods. This approach places the trajectories relatively close
to the solution and a proper coloring can be found in hours even
for N= 42, (see Fig. 7a, b, and Supplementary Data 3 for an easily
readable list of edge colorings), for which other heuristic
algorithms take many days of computational time53, even with
the circulant matrix strategy. Applying the same strategy for N=
43 we did not find any complete coloring solutions, however, we

did find a coloring that creates only two (out of
43
5

� 	
= 962,598

possible) monochromatic 5-cliques, see Fig. 7c, d, and the specific
coloring provided in Supplementary Data 4.

Discussion
In summary, we presented a continuous-time dynamical system
approach to solve a quintessential discrete optimization problem,
MaxSAT. The solver is based on a deterministic set of ordinary
differential equations and a heuristic method that is used to
predict the likelihood that the optimal solution has been found by
analog time t. The prediction part of the algorithm exploits the
statistics of the ensemble of trajectories started from random
initial conditions, by introducing the notion of energy-dependent
escape rate and extrapolating this dependence to predict both the
minimum energy value (lowest number of unsatisfied clauses)
and the expected time needed by the algorithm to reach that
value. This statistical analysis is very simple; it is quite possible
that more sophisticated methods can be used to better predict
minima values and time lengths. Due to its general character, the
presented approach can be extended to other optimization pro-
blems as well, to be presented in forthcoming publications.
Instead of a numerical implementation on a digital computer,

one would ideally like to use a direct implementation by analog
circuits, the feasibility of which has been shown in ref. 46, as it
promises to be a faster (by orders of magnitude) and more effi-
cient approach. One reason for this is that in such analog circuits
the von Neumann bottleneck is eliminated, with the circuit itself
serving its own processor and memory, see ref. 46 for details.
Implementation on a digital computer, however, (as it was done
here) requires the use of an ODE integrator algorithm, which
discretizes the continuous-time equations and evolves them step
by step, while controlling for errors. Note that in this case the
continuous time variable t is also simulated and evolved in steps
t 7!t þ Δt. The time-cost of the dynamics in this case is the wall-
clock time (not t), which also depends on the computer hardware
and the numerical integration method used. However, in a phy-
sical implementation, the t variable would be the real time-cost of
the “computation”. In digitized form, the solver is not performing
better than current MaxSAT competition solvers simply because
the dynamics evolves many (several thousands or more) coupled
ODEs, and this integration is time consuming on digital
machines. Additionally, to manage the occasional stiffness of the
differential equations, one needs to use implicit or higher-order
integration methods, also contributing to the slowing down of the
simulations. Note that this would not be an issue for analog
circuit implementations, as there are no discretization schemes or
numerical integration methods; the physical system evolves its
currents and voltages according to the ODEs, flowing toward a
halting condition, solving the problem. Nevertheless, even when
simulated on a digital machine, the solver finds very good solu-
tions to hard problems in reasonable time. This is because
continuous-time analog dynamical systems represent an entirely
novel family of solvers and search dynamics, and for this reason
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Fig. 6 Finding the Ramsey number R(4, 4). The E(κ) relationship for the 6-
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E0 > 0, and thus the 6-SAT problem becomes MaxSAT
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they behave differently and thus may perform better, than
existing algorithms on certain classes of hard problems.
It is also important to note that the system (4) is not unique,

other ODEs can be designed with similar or even better proper-
ties. This is useful, because the form given in (4) is not readily
amenable to simple hardware implementations, due to the con-
stantly growing auxiliary variable dynamics (all variables repre-
sent a physical characteristic such as a voltage or a current and
thus they will have to have an upper limit value for a given
device). However, the auxiliary variables do not need to grow
always exponentially, one can devise other variants in which they
grow exponentially as needed, otherwise they can decay (to be
presented in a future publication), allowing for better hardware
implementations.
To illustrate the effectiveness of our solver, we applied it to the

famous two-color Ramsey problem and in particular for R(5, 5),
which is still open. We have shown, that the two-color Ramsey
problem avoiding monochromatic m-cliques can be translated
into an mðm�1Þ

2 -SAT problem and thus a 10-SAT for m= 5. Note
that digital SAT solving algorithms focus on 3-SAT or 4-SAT
problems, and usually are unable to handle directly the much
harder 10-SAT. Our solver when run on the corresponding 10-
SAT problem was able to find colorings of the complete graph of
order 42 without monochromatic 5-cliques, and a coloring with
only two monochromatic 5-cliques on 6 nodes for the complete
graph on 43 vertices (colorings in the literature for N= 43 quote
500+ monochromatic 5-cliques70). Note that after posting our
paper to arxiv, Geoffrey Exoo in a private communication

mentioned that he also found the same, smallest energy coloring
as presented here. This adds further support to the conjecture that
R(5, 5)= 43.

Methods
SAT/MaxSAT definitions. Boolean satisfiability in conjunctive normal form
(CNF) is a constraint satisfaction problem formulated on N Boolean variables xi∈
{0, 1}, i= 1, …, N and M clauses C1, …, CM. A clause is the disjunction (OR
operation) of a set of literals, a literal being either the normal (xi) or the negated
(NOT) form xið Þ of a variable, an example clause being: C4= x9 _ x10 _ x27ð Þ. The
task is to find an assignment for the variables such that all clauses are satisfied, or
alternatively, the conjunctive formula F = C1∧ … ∧CM evaluates to 1 (TRUE). If
all clauses contain exactly k literals, the problem is k-SAT. For k ≥ 3 this is an NP-
complete decision problem35, meaning that a candidate solution is easily (poly-
time) checked for satisfiability, but finding a solution can be hard (exp-time).
Oftentimes, when studying the performance of algorithms over sets of randomly
chosen problems the constraint density α=M/N is used as a statistical guide to
problem hardness71,72. MaxSAT has the same formulation as SAT, but the task is
to maximize the number of satisfied clauses. For both SAT and MaxSAT, all known
algorithms require exponentially many computational steps (in N) in the worst
case, to find a solution. However, guaranteeing optimality of solution for MaxSAT
is as hard as finding the solution itself, and thus MaxSAT is harder than SAT (NP-
hard). Max 2-SAT (i.e., k= 2) is already NP-hard.

Properties of the analog SAT solver. Eq. (2) preserves the positivity of the
auxiliary variables at all times, since Km ≥ 0. According to (2), the auxiliary variables
grow exponentially whenever the corresponding clause functions are not satisfied,
however, once Km= 0, _am = 0, they stop growing. Eq. (2) ensures that whenever the
dynamics would get stuck in a local, nonsolution minimum of V, the exponential
acceleration changes the shape of V such as to eliminate that local minimum. This

can be seen by first solving formally (2): am(t)= am0 exp
R t
0 dτKmðsðτÞÞ

� �
, then
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Fig. 7 Colorings for the R(5, 5) Ramsey number problem. a A coloring of the complete graph on N= 42 nodes that avoids monochromatic 5-cliques. b The
adjacency matrix corresponding to the coloring in (a), using the same colors. c The best coloring of the complete graph on N= 43 nodes containing only 2
monochromatic (red) 5-cliques, sitting on 6 nodes (highlighted with thicker edges). d The adjacency matrix corresponding to the coloring in (c), using the
same colors. The thicker red (blue) edges from (c) are represented with darker red (blue) cells. Supplementary Fig. 9 shows a reordered version of this
matrix such that the 5-cliques can be seen in the upper left corner of the matrix
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inserting it into (1): V=
PM

m¼1 am0e
R t

0
dτKmK2

m . Due to the exponentially growing
weights, the changes in V are dominated by the clause that was unsatisfied the
longest. Keeping only that term in V and inserting it into (2), it is easily seen that
the dynamics drives the corresponding clause function toward zero exponentially
fast, until another clause function takes over. This is repeated until all clauses are
satisfied, for solvable SAT problems. The properties and performance of this solver
have been discussed in previous publications42–44. In43 we show that the notion of
escape rate κ can be used to characterize the hardness of individual problem
instances. We demonstrate this on Sudoku puzzles (all Sudoku problems can easily
be translated into SAT), showing that η ¼ �log10 κ indeed provides a good
hardness measure that also correlates well with human ratings of puzzle hardness.

Algorithm description. Here, we give a simple, nonoptimized variant of the
algorithm (see flowchart in Supplementary Fig. 2). Better implementations can be
devised, for example with better fitting routines, however the description below is
easier to follow and works well. Given a SAT problem, we first determine the b
parameter as described previously. Step 1: initially we set E ¼ M, Γmin,
Γmax � Γmin, Γ

pred E � 1
� �

= Γmin þ 1 and tmax. Unless specified otherwise, in our
simulations we used Γmin= 100, Γmax= 2 × 106, tmax= 50. Step 2: to initialize our
statistics, we run Γmin trajectories up to tmax, each from a random initial condition.
For every such trajectory ω we update the p(E, t) distributions as function of the
energies of the orthants visited by ω. We record the lowest energy value found
E Γminð Þ. Step 3: starting from Γ= Γmin+ 1 and up to Γmax, we continue running
trajectories in the same way and for each one of them check: (a) If Es � E, set
Emin :¼ Es; E

� �
, update p(E, t) and go to Step 4. (b) If Γ just reached Γpred E � 1

� �
,

go to Step 4. (c) If Γ= Γmax, output “Maximum number of steps reached, increase

Γmax”, output the lowest energy value found, the predicted Epred
min and the quality of

fit for Epred
min , then halt. Step 4: using the p(E, t) distributions, estimate the escape

rates κ(E) as described in the corresponding Methods section. Step 5: the κ(E) curve
is extrapolated to the E− 1 value obtaining κ(E− 1) and then using this we predict
Γpred E � 1

� �
(as described in another Methods section). Further extrapolating the κ

(E) curve to κ= 0 we obtain Epred
min (see the corresponding Methods section). Step 6:

we check the consistency of the prediction defined here as saturation of the pre-

dicted values. We call it consistent, if Epred
min has not changed during the last 5

predictions. If it is not consistent yet, we continue running new trajectories (Step
4). If the prediction is consistent, we check for the following halting conditions: (i)

If Epred
min ¼ EðΓÞ then we decide the global optimum has been found: Edec

min ¼ Epred
min ¼

EðΓÞ and skip to Step 7. (ii) If the fitting is consistently predicting Epred
min >EðΓÞ

(usually it is very close, EðΓÞ þ 1) we check the number of trajectories that has
attained states with EðΓÞ, i.e., n E

� �
= 1� p EðΓÞ; tmax

� �
 �
Γ. If it is large enough (e.g.

>100), we decide to stop running new trajectories and set Edec
min ¼ EðΓÞ and go to

Step 7. (iii) If Epred
min <EðΓÞ then we most probably have not found the global opti-

mum yet and we go to Step 4. We added additional stopping conditions that can
shorten the algorithm in case of easy problems, see Methods corresponding section,

but these are not so relevant. Step 7: the algorithm ends and outputs Epred
min , E

dec
min, E

values, the Boolean variables corresponding to the optimal state found, along with
the quality of fit.

Estimation of the escape rates. As seen in Fig. 2 and Supplementary Fig. 1 the
exponential decay of the p(E, t) distribution settles in after a short transient period.
Theoretically the escape rate can be obtained by fitting the exponential on that last
part of the curves (Fig. 2a). However, while running the algorithm it would be
difficult to automatically estimate the region where the exponential should be fitted.
The simple approach that works well is to estimate the escape rates as κ(E)≃−ln(p
(E, tmax)/tmax, which practically would correspond to the exponential behavior
being valid on the whole (0, tmax) interval. Note, the p(E, t) is a cumulative dis-
tribution with p(E, 0)= 1. Usually this estimation is very close to the fitted values
(Fig. 2c), but notice that what matters here is the scaling behavior of the escape
rates, and this is quite precisely obtained this way because it simply uses the scaling
behavior of the p(E, tmax) values, instead of the fittings, which is sensitive to the
chosen interval.

Predicting the number of trajectories. After calculating the escape rates κ(E) one
can estimate the number of expected trajectories needed to find a lower energy
value: Γpred E � 1

� �
as described below. Clearly, p(E, tmax) is the probability that a

trajectory has not reached the energy level E up to time tmax. This means that 1− p
(E, tmax) is the probability that a trajectory did reach energy E, up to time tmax.
Running Γ trajectories, thus n E

� �
= 1� p E; tmaxð Þ½ �Γ will give the expected number

of trajectories that reached energy E. Thus, the expected number of trajectories we
need to run in total to find the E � 1 energy value at least once is:

Γpred E � 1
� �

¼ 1

1� p tmax; E � 1
� � : ð7Þ

However, no trajectory has reached energy E � 1 yet, and thus we don’t have

p E � 1; tmax

� �
. Instead, it is computed from p E � 1; tmax

� �
≃ e�κ E�1ð Þtmax , after

extrapolating the κ(E) curve to obtain κðE � 1Þ.

Predicting the global optimum. When fitting the curve E= E0+ aκβ on our data
points we used the Numerical Recipes implementation73 of the
Levenberg–Marquardt nonlinear curve fitting method74,75. This implementation
has some weaknesses, one could choose to use other implementations or other
methods. Sometimes a three-parameter fitting is too sensitive and does not give
good results. Because we do not need a very precise value for E0 (we just need to
find the integer interval it falls into, because Epred

min ¼ ½E0� þ 1, [.] meaning the
integer part) we perform a series of fittings always fixing E0 and leaving only 2
unknown parameters (a, β). For each E0= E;E � 0:1; E � 0:2; ¼ : we then per-
form a fitting and check the χ2 error. The fitting with minimal error is chosen as the
final E0 and final fitted curve.

Additional stopping conditions. There are cases usually for easy problems, when
the fitting using the form (5) does not work well, but based on certain simple
conditions we can trust that the global optimum has been found. For example, if
there aren’t enough (e.g., less than 5) data points in the κ(E) curve fitted (this partly
explains why the fitting does not give good prediction), but the lowest energy has
already been found many times (n E

� �
>nmax, e.g., nmax= 1000). This happens for

very easy problems. Or, if the fitting is consistently predicting another Epred
min ≠E, but

n E
� �

is very large and Γ>Γpred E � 1
� �

, so according to the dynamics, it seems a
lower energy should have been found already.

In such cases we exit the algorithm (Step 7) with the decision: E≠Epred
min ,

Edec
min ¼ E.

Circulant matrices for the Ramsey number problem. Kalbfleisch69 argued that
there should be coloring solutions of complete graphs for the Ramsey problem that
can be described with a circulant form adjacency matrix (e.g., all red edges are 0-s,
blue edges are 1-s in this matrix), or matrices that are close to such a circulant
form. Although there is no formal proof of this statement, one expects this to be
true also from the SAT formulation of the Ramsey problem. In the SAT for-
mulation, the clauses have a very high degree of symmetry: all variables participate
in the same way (4) in all the clauses, which run over all the possible m-cliques.
This observation on symmetry can be exploited, allowing us to do part of the
search in a much smaller space than the original space, where all the variables
could in principle change independently from one another. More precisely, we first
define a MaxSAT problem which has only N− 1 variables (instead of the full N(N
− 1)/2 by choosing, e.g., those associated with the links of the first node: x1= a1,2,
x2= a1,3, …, xN−1= a1,N as problem variables (here ai,j denotes the adjacency
matrix) and defining the variables of the links of the other nodes by the circular
permutation of this vector x, to obtain a circulant matrix (e.g., a2,3= a1,2, ai,j= ai−1,

j−1). Taking the SAT form of the Ramsey problem we replace the variable of a link
ai,j with xj−i, thus reducing the number of independent variables from N(N− 1)/2
to N− 1. The number of clauses will also be reduced, because we can now elim-
inate the repeated ones. This way we obtain a much smaller MaxSAT problem, on
which we apply our solver, and starting from random initial conditions we search
for low-energy states, which are relatively easily found. We save the x vectors (the
Boolean values) corresponding to such low-energy circulant matrix states. For N=
42 we have found circulant type matrices having only 6, 14, 20, 26, etc. mono-
chromatic 5-cliques, indicating that they may already be close to a solution. After
saving these circulant matrix states (with small number of monochromatic 5-
cliques) we return to the original 10-SAT problem (with N(N− 1)/2 variables,
without the symmetry constraint), and start a new trajectory from the corner of the
hypercube corresponding to the saved matrix state, but now without symmetry
restriction.

Data availability
Datasets generated and/or analysed during the current study are available from the
corresponding author on reasonable request. The source code for the analog
MaxSAT solver can be accessed at https://github.com/molnarb14/analog-maxSAT-
solver.
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