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ABSTRACT

With an increase in the need for energy efficient data
centers, a lot of research is being done to maximize the use of
Air Side Economizers (ASEs), Direct Evaporative Cooling
(DEC), Indirect Evaporative Cooling (IEC) and multistage
Indirect/Direct Evaporative Cooling (I/DEC). The selection of
cooling configurations installed in modular cooling units is
based on empirical/analytical studies and domain knowledge that
fail to account for the nonlinearities present in an operational
data center. In addition to the ambient conditions, the attainable
cold aisle temperature and humidity is also a function of the
control strategy and the cooling setpoints in the data center.

The primary objective of this study is to use Artificial
Neural Network (ANN) modelling and Psychrometric bin
analysis to assess the applicability of various cooling modes to a
climatic condition. Training dataset for the ANN model is logged
from the monitoring sensor array of a modular data center
laboratory with an I/DEC module. The data-driven ANN model
is utilized for predicting the cold aisle humidity and temperatures
for different modes of cooling. Based on the predicted cold aisle
temperature and humidity, cold aisle envelopes are represented
on a psychrometric chart to evaluate the applicability of each
cooling mode to the territorial climatic condition. Subsequently,
outside air conditions favorable to each cooling mode in
achieving cold aisle conditions, within the ASHRAE
recommended environmental envelope, is also visualized on a
psychrometric chart. Control strategies and opportunities to
optimize the cooling system are discussed.
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ACU  Air Cooling Unit

AHU  Air Handling Unit

ANN  Artificial Neural Network
ASE Air Side Economization

CA Cold Aisle

DEC Direct Evaporative Cooling
DC Data Center

DP Dew Point Temperature

IEC Indirect Evaporative Cooling
MSE  Mean Square Error

OAH Outside Air Relative Humidity (%)
OAT Outside Air Temperature (F)
RH Relative Humidity

INTRODUCTION

Data centers need to be maintained within a certain
range of temperature and humidity for equipment reliability and
energy efficiency. Evaporative cooling can be used in many
guises to make data center cooling more efficient and enables
elimination of chiller-based cooling entirely. In addition to that,
evaporative cooling units along with air-side economization
provides the data center industry a sure pathway to gain cooling
efficiency. While disruptive cooling technologies such as liquid
cooling [1] and immersion cooling [2] present energy saving
benefits, the capital expenses in implementing evaporative
cooling for an existing air-cooled data center is comparatively
less.

Many studies show that majority of the energy used for
data center cooling is utilized for direct expansion air
conditioners (DX). Thus, to reduce the use of DX, other modes
of cooling are being used. This includes air side economization
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(ASE), direct evaporative cooling (DEC), indirect evaporative
cooling (IEC) and multi-stage cooling (I/DEC). Use of these
alternative modes of cooling reduces the power consumption of
an ACU by over 70% as compared to the DX [3]. But the use of
ASE is limited by the ambient air conditions such as temperature,
humidity, and pollutants. The added savings potential
represented by airside economization for favorable ambient
conditions based on psychrometric-based modeling approach
coupled with Typical Meteorological Year data for various
climate zones is well documented. In this study, we set to
investigate the applicability of ASE, IEC and IDEC cooling
modes for a hot and humid climatic condition. More importantly,
this study tests the feasibility of developing ANN models to
account for the non-linearities inherent in data center cooling.

PSYCHROMETRIC BIN ANALYSIS

A psychrometric chart represents the thermodynamic
properties of moist air, i.e. its graphical equation of state. The
territorial weather data is readily available as typical
meteorological year (TMY 3) data for a specific location [4]. The
hourly-bin TMY 3 weather data for the Dallas-Love field weather
station is shown in Figure la, visualized on a psychrometric
chart. The ASHRAE recommended environmental envelope for
ITE (Information Technology equipment) is considered in this
study as a desired target envelope for data center cold aisle
conditions. The recommended range is the guidance from ITE
manufacturers for high reliability, minimal power consumption
(of ITE) and maximum performance [5]. Figure 1b shows the
ASHRAE recommended envelope on the psychrometric chart
along with regions defined for categorization of territorial
outside air conditions. The regions A to H are defined by
considering all possible thermodynamic processes for each
cooling mode. The region C in Figure 1b is the targeted envelope
for cold aisle conditions whereas the regions A to H are defined
to categorize the outside air conditions over a typical year.

Table 1: ASHRAE Recommended Range for ITE
Recommended Envelope
64°F (18°C)

Low End Temperature

High End Temperature | 81°F (27°C)

Low End Moisture 41.9°F DP (5.5°C)

High End Moisture 60% RH; 60°F DP (15°C)

Previous studies have been able to use the regional
weather data and estimate either the total number of hours
available for air-side economization based on similar regions
defined on a psychrometric chart or estimate the applicability of
available modes of cooling by analyzing the underlying
thermodynamic processes accompanying the various cooling
modes [6,7]. As shown in Figure lc, the 46% of outside air in
region A depicts the percentage of outside air that requires

dehumidification over a typical year to satisfy the targeted
recommended range for cold aisle conditions. Similarly, the
combined 50% of outside air from regions B, C and F can be
considered as the total air-side economizer hours available.
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Figure 1: a) Dallas-Love Field TMY3 hourly weather bin-data plot;
b) ASHRAE recommended envelope for ITE along with regions A to
H defined for categorization of territorial outside air conditions;
¢) Pie chart showing the percentage of weather bin-data
distributed in terms of the outside air regions A to H
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Figure 2: Monthly weather bins and percentage of total hours based on dew point temperature bounds
Furthermore, the wupper and lower dew point An ANN model has been developed using the

temperature bounds, as per the ASHRAE recommended
envelope, can be used as a reference for categorizing outside air
conditions when evaporative cooling is to be implemented in
addition to air-side economization. Figure 2 shows the
percentage of total hours each month for Dallas-Love Field
TMY3 data categorized based on the dew point temperature
bounds. When the percentage of outside air for region A is
considered month-wise in Figure 2, one can infer that the need
for dehumidification is predominantly during the summer
months. And the applicability of the direct and indirect
evaporative cooling is evident for the rest of the months.
However, such estimates of hours of applicability for air-side
economization and evaporative cooling based on weather data
and thermodynamic processes fail to account for the limitations
due to operational control strategy and cooling system design.

In this study, a test bed modular data center (MDC) with
a cooling module consisting of three types of cooling
configurations has been considered. These include the Air Side
Economizer (ASE), Direct Evaporative cooling (DEC) and
Indirect Evaporative Cooling (IEC). The MDC also consists of
an [T module and ductwork for supply to the CA and return from
the hot aisle. This MDC laboratory has been operating for several
years and the cooling module is an Indirect/Direct evaporative
cooling unit wherein air-side economization is also
implemented.

Levenberg-Marquardt algorithm function in MATLAB neural
network toolbox. This model was trained using the logged data
from a map of monitoring sensors for over a year from an
operational data center [8,9]. Tableau software and a Python code
was used for data pre-processing and cleaning. The trained
network was then used to predict the PUE and cold aisle
conditions for different modes of cooling. Using these predicted
results, different bounds for cold aisle conditions for the cooling
mode can be obtained. Further, the outside air conditions for
which the predicted cold aisle conditions were within the
ASHRAE recommended envelope were filtered out and new
outside air regions for each cooling mode are defined. These
results can be used to test the applicability of a cooling
configuration for different weather zones while designing new
data centers and for setting up control strategies in an existing
data center implementing various cooling modes.

ANN Modeling and Training

ANN is a machine learning tool that can predict the
results based on the learning data set. It uses the Levenberg-
Marquardt algorithm to establish a relation between the input
parameters with the outputs by assigning a set of values called as
weights. These weights are updated with each iteration thus
increasing the accuracy of the model. In this study, the curve
fitting ANN tool in MATLAB has been used for defining,
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training, and testing of the model. The ANN model uses the
Levenberg-Marquardt algorithm with 20 hidden neuros and a
non-linear activation function for the hidden layers and a linear
activation function for the output layer. The network uses seven
input parameters and 3 output parameters. These include outside
air temperature, humidity, IT load, temperature difference across
the servers and the three types of cooling as the inputs and Power
Usage Effectiveness (PUE) and the cold aisle temperature and
relative humidity as the output. The network model is shown in
Figure 3. The real time sensor data from the MDC laboratory in
Dallas has been used for training and validation of the network.
TMY 3 data for the Dallas Love-Field weather station has been
used for testing and prediction.
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Figure 3: ANN model (top) and the network topology depicting input
and output parameters (Bottom)

Figure 4 shows the variation of the error with each
iteration. It can be seen from the graph that the error starts at
around 5000 and then decreases with each iteration. The training
and validation stop when the MSE is stable at 11.035. This value
represents the maximum MSE among all the validation errors
and is called the best validation performance.

Figure 5 represents the regression graph, in which the
circles are the actual data points and the line represents the best
between the outputs and the targets. The average value for R is
0.9954 which is very close to 1 and it can be stated that the
trained network predictions are acceptable. The training and
validation errors is represented by the error histogram shown in
Figure 6. It can be observed from the graph that the majority
instances of the error lie between -3.5 and 2.8. The maximum
validation error is 11.035 which is considered as the best
performance achieved for the model.
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Figure 4: Performance Plot
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Figure 6: Error Histogram
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RESULT AND DISCUSSION

The TMY3 data from Dallas Love Field weather station
was used as inputs to test the network. The IT load was kept
constant at 15W and the rise in temperature across the servers
was set to be 20. The type of cooling mode was parameterized
for every run and the results were stored separately for each type
of cooling mode. The predicted results were then analyzed to see
how the cold aisle conditions varied over a typical year when the
model was run on only one type of cooling. The output results
from this ANN model are the predicted PUE, cold aisle
temperature and relative humidity. The ANN model is used to
predict the PUE of the data center for each type of stand-alone
cooling mode when the data center is operated over a typical
year. All the results are presented in this results and discussion
section. Our findings are not generalizable beyond the subset of
weather data examined and beyond the control logic and cooling
mode settings considered in this study. However, the analysis
framework and the results yielded in this study provide
preliminary evidence to suggest that ANN models can be
successfully used in place of traditional analysis methods.

Cold Aisle Envelopes Based on the Different Cooling
Modes:

For ASE, the process of mixing OA and return air from
the hot aisle is primarily dependent on the placement of the
mixed air temperature sensor and the control algorithm of the
damper system installed on OA and return air vents. Therefore,
the training data obtained from the MDC laboratory must
adequately capture this phenomenon when developing the ANN
model and the predicted CA conditions will be representative of
the control setpoints in the MDC laboratory. Figure 7 shows the
predicted CA conditions plotted on the psychrometric chart if the
DC operated on ASE for the whole year. We can see from Figure
7 that the dry bulb temperature is maintained between 64°F and
81°F for majority of time. The effectiveness of the mixing
process, of recirculating air with the OA, determines how
efficiently the extreme cold and extreme hot outside conditions
can be conditioned to the desired cooling setpoints in the CA.
Therefore, the CA envelope obtained for ASE can be further
improved by optimizing the mixing chamber of the cooling unit.

Figure 8 shows the predicted CA conditions plotted on
the psychrometric chart if the DC operated in IEC mode. Here
the air is cooled sensibly and hence there is not much rise in the
humidity content of the cooled air. Hence, we can see that the
relative humidity remains under 70%. Similarly, Figure 9 shows
the predicted CA conditions plotted on the psychrometric chart
if the DC operated on IDEC over a typical year.
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Figure 8: Predicted CA condition when operating the data center in
IEC mode throughout a typical year
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From Figure 9, we can see that the dew point
temperature increases compared to the previous chart as there is
humidification of the supply air due to DEC. The combined
effect of both the direct and indirect evaporative coolers deliver
an increased overall cooling effect. This can be easily inferred by
comparing the lower dry bulb temperature bound of the CA
envelopes plotted in Figure 7, 8 and 9. These Figures also
suggest that humidity excursions are prevalent in the cold aisle
regardless of the cooling configuration. The extent of
humidification is a clear function of the operational saturation
efficiency of the wet cooling media wall and the OAT. The
validity of the data collection approach in the CA contributes to
lower cooling setpoints [10] and thereby can also lead to in
excessive humidification. Rapid changes in the OAT and
stratification of inlet air can result in scenarios of excessive
humidification [11]. Erroneous control strategy can lead to such
high humidity (95% RH) conditions in the cold aisle and this can
be catastrophic due to condensation related ITE failures in the
data center [12].

The box and whisker plot in Figure 10, 11 and 12 show
variability of the CA temperature and humidity over each month
for different but stand-alone cooling modes. For ASE and IEC
modes, the monitoring sensor location and the CA cooling
setpoint is generally temperature-based and the variability in CA
humidity is a function of OAT. By optimizing the mixing process
of outside air and return air, there is a possibility of reducing the
variability in CA conditions. Control strategies to achieve
incremental humidification in DEC is further explored in [11].

Outside Air Envelopes Based on Different Cooling
Modes

The applicability of a cooling mode, for a specified
location, is often reported in terms of the total OA hourly bins
available for adequate cooling provisioning [6,7]. However,
thermodynamic and analytical models in previous studies
assume an idealized airflow distribution and cooling control
mechanism. In this study, such nonlinearities are inherent in the
training data used for developing the ANN model. The predicted
CA conditions from the ANN model yielded some interesting
findings. By extracting the OA input conditions for which the
predicted CA conditions satisfy the ASHRAE recommended
envelope, OA envelopes can be visualized on a psychrometric
chart. Using these results, the total effective hours of operation
for a cooling mode over a typical year, as well as for each month,
was obtained for all the cooling modes considered in this study.
Figure 13 shows the OA plots for which ASE can be used to
maintain the CA conditions within the ASHRAE recommended
region. It can be observed that the high humidity and low
temperature air was conditioned to be within the recommended
bounds by mixing it with the hot and dry air from the hot aisle
using ASE. But there are no points in the high humidity region
once the temperature goes above 60°F.
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Figure 10: Variability of the CA condition when operatlng the data
center in ASE mode throughout a typical year
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center in [IEC mode throughout a typical year
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center in IDEC mode throughout a typical year
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Figure 13: OA conditions when using ASE for achieving CA
operating conditions in the ASHRAE Recommended Envelope

Also, depending on the effectiveness of the control algorithm, a
large part the IEC utilizes return air for sensible cooling and adds
no moisture to the supply air. This is evident in Figure 14, as the
dataset used for training the ANN model was obtained from the
MDC wherein the IEC operated by recirculating the return air
when the outside air is hot and humid or just too humid. Thus,
OA envelope for IEC in Figure 14 spans the high humidity region
although in reality the majority of the return air is recirculated
for cooling purposes.
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conditions in the ASHRAE Recommended Envelope

In the MDC laboratory, the control algorithm was setup
in such a way as to always initiate IEC first and switch to IDEC
only when additional cooling was required. During IDEC, the
OA first undergoes sensible cooling with no moisture added. In
the second stage, the pre-cooled air is then passed through the
direct evaporative cooling pads further reducing its temperature.
Also, a significant increase in seen in the humidity of the air

during this second stage. As a result, the final supply air is cool
and humid. Thus, I/DEC is mostly used for dry and very hot OA
conditions. Again, erroneous control can lead to over-
humidification of the pre-cooled air.
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Figure 15: OA Envelope using IDEC for achieving CA operating
conditions in the ASHRAE Recommended Envelope

Figure 16 shows the predicted month-wise usage of
different type of cooling modes. It can be seen from the graph
that the trend is similar for all types of cooling. The utilization is
higher expect during the summer months. This is mainly because
of the rise in the outside air temperature and humidity during the
summer. It should be noted that the lack of utilization of any
mode of cooling during the summer resulting in CA conditions
within the ASHRAE recommended envelope is primarily due to
the large fluctuations in humidity.

Feb March Apri May June v Avg Sept ot Nov Dex

- ASE - |EC == |/DEC

Figure 16: Month-wise %OA for different types of cooling satisfying
ASHRAE Recommended Envelope

The cooling setpoints in data center cannot reliably consider
humidity setpoints due to the lack of refined humidity control in
evaporative cooled data centers without any dehumidification
available. Even the humidification process due to the direct
evaporative cooling lacks incremental humidification effect if
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the wet cooling media wall is not vertically staged with discrete
pumps [11]. Therefore, alternative cooling such as direct
expansion cooling or dehumidification of supply air must be
used to maintain the server within the ASHRAE recommended
zone during these months. Depending on the type of ITE
populated in the data center, short humidity and temperature
excursions can be safe and energy efficient. Taken altogether, the
data presented here provide evidence that the three cooling
modes i.e., ASE, IEC and IDEC can be used for cooling the
outside air to the recommended envelope. From the OA
envelopes, 53% of the outside air is compatible for ASE, 10%
for IEC and 8% for IDEC when the targeted CA condition is the
ASHRAE  recommended  envelope.  Minimizing  or
accommodating the humidity excursions can further improve
these figures. However, for total minimization of cooling power,
controls must be set to first use ASE as it has the lowest PUE and
thus minimizes the cost of cooling. Figure 17 represents the
scenario when all the cooling modes are available, and the
control algorithm mimics the controls set up on the MDC
laboratory.

% of Total Hours

10%
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Figure 17: Month-wise Predicted Utilization for all cooling modes in
tandem when targeting ASHRAE recommended CA conditions

There is a possibility of using data-driven ANN models
to facilitate control strategies that can pro-actively minimize the
operational cost. For the optimum sequence of operation and
switching between cooling modes, further investigation is
necessary. The transients involved in initiating a cooling mode
and the temperature and humidity variations within the CA are
all important operational features of the cooling system design
that can be captured with an ANN model. The challenge in
developing such models would primarily be in acquiring the
right and enough training data set. Computational Fluid
Dynamics models of data centers have been used to generate
robust training data sets to predict the temperature and airflow
distribution within a data center [13-15]. Future studies will have
to continue to explore how the complex features of an
operational data center can be extracted and adequately
represented in a training dataset to develop better ANN models.

CONCLUSION

In this study, the logged field data from a modular data
center was used to train the ANN model which was then used to
predict the conditions inside the cold aisle. The results presented
in this paper show that ANN can be utilized to predict the
performance of the cooling systems which can be then used to
set up control algorithms for the data centers. Firstly, the ANN
model predicted the cold aisle conditions achieved when only
one cooling mode is used over a typical year. For each cooling
mode operated over a typical year, a CA envelope was visualized
on a psychrometric chart. These results can be used to understand
the variations in the cold aisle with respect to the cooling mode
in different weather zones. Furthermore, OA envelopes were
visualized on a psychrometric chart to determine the variability
of the outside air conditions over which a cooling mode can be
effectively used to attain ASHRAE recommended CA
conditions. The ANN model accounts for the non-linearities
developed in the data center due to the interdependence of
mechanical, electrical and control systems and hence give a more
realistic results compared to other analysis methods.
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