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Abstract: We present a novel class of composite Higgs models in which the top and gauge
partners responsible for cutting off the Higgs quadratic divergences form a continuum. The
continuum states are characterized by their spectral densities, which should have a finite gap
for realistic models. We present a concrete example based on a warped extra dimension with
a linear dilaton, where this finite gap appears naturally. We derive the spectral densities in
this model and calculate the full Higgs potential for a phenomenologically viable benchmark
point, with percent level tuning. The continuum top and gauge partners in this model evade
all resonance searches at the LHC and yield qualitatively different collider signals.
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1 Introduction

The cornerstone of conventional solutions to the hierarchy problem, e.g. supersymmetry and
composite Higgs (CH) [1–9], is the existence of new states around the TeV scale. The role of
these top and gauge partners is to cut off the quadratically divergent radiative corrections to
the Higgs potential from the top quark and gauge bosons. In recent years, searches at the
LHC have placed the naturalness paradigm under pressure by setting significant lower bounds
on the masses of top and gauge partners of about 1.2–1.4 TeV [10–15] and 2.2–2.5 TeV [16–18],
respectively.

However, many of these searches assume that the top and gauge partners are particles that
can be produced on-shell. In this paper we introduce a new class of models in which the top
and gauge partners are gapped continuum states [19–22], rather than ordinary particles.
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The simplest example of a spectrum with gapped continuum modes is that obtained from
the finite potential well in standard quantum mechanics (QM). While the bound states inside
the well form a discrete set, the scattering states form a continuum with energies above the
well. Another example is a strongly-interacting theory with a critical behavior in the IR that
gives rise to a gapped continuum1. For example, it is believed that at the bottom of the
conformal window of supersymmetric QCD, a gapped continuum can be generated by turning
on a squark mass [21].

In this work we present a CH model in which continuum top and gauge partners arise as
the composites of a strong sector with critical behavior in the IR. Inspired by the AdS/CFT
correspondence [27] and holographic realizations of CH models [3, 28], our gapped continuum
arises from a warped 5D geometry [29] with a linear dilaton [30–32]. The resulting Green’s
functions have a branch cut starting at a finite gap µ corresponding to the slope of the linear
dilaton, indicating the emergence of a continuum.

Based on this linear dilaton geometry, we construct a fully realistic CH model with partial
compositeness [33–37] and gauge-Higgs unification [38–43]. Similar to the standard warped
5D realizations of CH, our setting involves AdS5 with a UV brane and an IR brane. However,
in our case, the fifth dimension continues beyond the IR brane to infinity, with a dilaton
rising in the deep IR [44–46]. The other ingredients of the model are identical to standard
CH models: a bulk gauge symmetry SO(5)× U(1) broken to SO(4)× U(1) on the IR brane
and to SU(2)L × U(1)Y on the UV brane; the A5 of SO(5)/SO(4) playing the role of the
pseudo-Nambu-Goldstone (pNGB) Higgs; and the Standard Model (SM) fermions and their
partners embedded in bulk SO(5) representations.

The result is a realistic CH model in which the top and gauge partners are all continua, with
no BSM resonances within the reach of the LHC. We demonstrate this by focusing on one
point in our parameter space, for which we get a realistic Higgs potential (with 1% tuning)
with gaps of about 1–2 TeV.

The paper is structured as follows. In Section 2 we present the effective action for continuum
states, and how the properties of the continua are encoded in their spectral densities. In
Section 3 we show how to model gauge and fermion continua in a warped 5D geometry with a
linear dilaton. We give an intuitive argument for the emergence of a gapped continuum from
this geometry, based on an effective Schrödinger equation, and then calculate the continuum
spectral densities in a procedure inspired by AdS/CFT. Using linear dilaton geometry, we
construct a realistic CH model with gauge-Higgs unification and continuum top and gauge
partners in Section 4. For the purpose of breaking the bulk SO(5) symmetry, we introduce an
IR brane. However, the fifth dimension continues beyond the IR brane to a region where the
linear dilaton dominates and leads to the gapped continuum. The role of the Higgs is played

1For example, see [23–26].
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as usual by the A5 of the SO(5)/SO(4) generators, while the SM Yukawa couplings originate
from the jump conditions for the bulk fields on the IR brane.

Our results are summarized in Section 5, while the detailed calculation of the gauge and
fermion spectral densities is given in Section 6 (and in the appendices). To extract the fermion
spectral densities, we solve the 5D inhomogeneous equations of motion (EOM) subject to the
UV boundary conditions and the IR jump conditions. We account for the bulk VEV of the
Higgs–A5 by rotating it into the IR jump conditions as usual [47]. We diagonalize the resulting
20 × 20 fermionic Green’s function matrix to obtain all of the fermionic spectral densities in
our model. The gauge spectral densities are calculated in a similar manner.

In Section 7 we calculate the Coleman-Weinberg potential for the Higgs from the spectral den-
sities of our benchmark point in parameter space. We obtain a fully realistic Higgs potential,
consistent with electroweak precision bounds on v/f and with a tuning of 1%, compared to
per mille level tuning in a corresponding composite Higgs model with the same IR scale R′

and the same choice of bulk representations [48]. Finally, we comment on the phenomenology
of continuum partners: the lack of resonances within the reach of the LHC, bounds from
the running of αs, and the way to calculate the pair-production cross section for continuum
fermions. The phenomenology of continuum partners will be explored further in an upcoming
work [49].

2 Effective Action for Continuum States

The essential ingredients of CH models are the tower of composite top and gauge partners.
These states cancel the one-loop SM top and gauge contributions to the Higgs potential below
the confinement scale of Λ, which we take to be about 2–3 TeV. The main new aspect of the
model we present in this paper is that the critical IR dynamics give rise to a continuum of top
and gauge partners rather than a tower of ordinary particles. To study the phenomenology
of such continuum top and gauge partners we need to first explain how to write an effective
action for these states.

We will illustrate this by presenting the general effective action for a continuum Weyl fermion.
We start with the Lagrangian for an ordinary massless left-handed (LH) Weyl fermion χ:

Lχ = − iχ̄σ̄µpµχ . (2.1)

The two-point function in momentum space is simply the inverse of the bilinear term in Eq. 2.1,

〈χ̄χ〉 =
i

σ̄µpµ
=
iσµpµ
p2

. (2.2)

The Lagrangian for a continuum Weyl fermion generalizes Eq. 2.1 by including a momentum-
dependent form factor G(p2):

Lcont.χ = − iχ̄ σ̄µpµ
p2G(p2)

χ , (2.3)
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Figure 1: A cartoon of a typical fermionic spectral density. The delta function corresponds to
a massive particle in the spectrum, while the continuous part indicates a fermion continuum.
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Figure 2: A cartoon of a typical fermionic spectral density in the case of an infinite tower of
massive fermions (KK modes).

from which we can extract the two point function

〈χ̄χ〉cont = iσµpµG(p2) . (2.4)

Clearly, in the limit G(p2)→ p−2, the continuum fermion just reduces to the massless particle
limit. In general, G(p2) is a complex function whose poles correspond to massive particles
and whose branch cut corresponds to a continuum. This complex structure is easily captured
by introducing the (real-valued) spectral density function ρ(s), such that

G(p2) =

∫ ∞
0

ρ(s)

s− p2 − iε
ds , ρ(s) =

1

π
ImG(s) . (2.5)

The spectral density contains all the relevant spectral information for the fermion χ, and is
essentially the famous Källén-Lehmann spectral density [50, 51]. Its typical form is illustrated
in Fig. 1, with the delta functions corresponding to massive particles and the continuous part
encoding the fermion continuum. For comparison, in Fig. 2, we show the spectral density for
a tower of massive fermions, which, in the narrow width approximation, is just a sequence of
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delta functions. This is the typical KK spectrum obtained by putting a Weyl fermion in the
bulk of 5D Randall-Sundrum geometry [29]. One can indeed think of the continuum as the
merging of the spectral density of the KK modes as their separation goes to zero while their
width remains finite.

3 Modeling the Continuum Dynamics with Linear Dilaton Geometry

The effective action presented in the previous section was completely generic in the sense that
it did not assume a specific functional form for the spectral density ρ(s). However, to say
something meaningful about the continuum dynamics, we would like to find a model of the
strong dynamics responsible for the emergence of continuum modes that allows us to calculate
quantities below the strong scale. Inspired by the AdS/CFT duality, we seek to model the
continuum dynamics in some weakly coupled, warped 5D geometry. We build on past work
on how to model continuum dynamics. The authors of [22] showed, among other things,
how a bulk Dirac fermion in AdS5 is dual to a gapless Weyl fermion continuum, while in
[52], a gapped supersymmetic continuum arose from a chiral superfield in AdS5 with a bulk
dependent mass. We will use a setup similar to the latter, albeit in a non-supersymmetric
setting.

To correctly model the continuum dynamics, we consider Weyl fermions in a dilaton back-
ground2. In this background the 5D Lagrangian in the string frame is then

LS = e−2Φ(z)a5
S(z)

[
a−1
S (z)Lkin +

1

R
(c+ yΦ(z))

(
ψχ+ χ̄ψ̄

)]
, (3.1)

where z ∈ [0,∞) is the coordinate of the fifth dimension, aS(z) = R
z is the AdS scale factor,

Φ(z) is the dilaton profile, and y is a bulk Yukawa coupling between the dilaton and the bulk
fermion. Later we will introduce a UV brane and cut off the space at z = R. The kinetic
term is the standard kinetic term for a 5D Dirac fermion:

Lkin = − iχ̄σ̄µpµχ − iψσµpµψ̄ +
1

2

(
ψ
←→
∂ 5χ− χ̄

←→
∂ 5ψ̄

)
. (3.2)

To conveniently extract the fermion EOM, we first move to the Einstein frame through the
rescaling of the coordinates leading to a(z) = aS(z) e−

2
3

Φ(z), followed by a canonical renor-
malization of the fermions. The resulting Einstein frame Lagrangian is then

LE = a4(z)Lkin + a5(z)
ĉ(z)

R

(
ψχ+ χ̄ψ̄

)
, (3.3)

2For the stabilization of linear dilaton backgrounds, see [53] and references therein. As we will elaborate
below, our realistic model involves an IR brane stabilized by the usual Goldberger-Wise[54] mechanism, which
in turn can set the boundary conditions for the linear dilaton, generating the IR scale µ.
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where ĉ(z) ≡ (c + yΦ(z))e
2
3

Φ(z). The fermion bulk EOM’s are conveniently presented in a
Schrödinger form [24]:

−χ̂′′(z) + Veff(z) χ̂(z) = p2χ̂(z) , (3.4)

where χ̂(z) =
(
R
z

)2
χ(z) and the effective Schrödinger potential is

Veff(z) =
c(c+ 1) + yΦ(z)(2c+ yΦ(z) + 1)− yzΦ′(z)

z2
. (3.5)

This equation has gapped continuum solutions (similar to scattering solutions in standard
QM) when Veff(z → ∞) = const > 0. That clearly indicates that Φ(z) has to be linear in z
in the deep IR—a linear dilaton. For the linear dilaton Φ(z) = µ(z − R) with µ ∼ 1 TeV,
Veff(z →∞) = y2µ2, and we expect a continuum beyond the gap yµ. Indeed, the IR regular3

bulk solutions are

χ(z) = Aa−2(z) W

(
−cµy

∆
, c+

1

2
, 2∆z

)
,

ψ(z) = Aa−2(z) W

(
−cµy

∆
, c− 1

2
, 2∆z

)
µy −∆

p
,

(3.6)

where ∆ =
√
y2µ2 − p2 and W (a, b, z) is a Whittaker function. From these bulk solutions we

can extract the left-handed (LH) source Green’s function as

〈OROR〉 = − (2π)−2c−1 (µy −∆)

2
(
c+ 1

2

)
p2

Γ(1− 2c)

Γ(1 + 2c)

Γ
(

1 + c µy+∆
∆

)
Γ
(

1 + cµy−∆
∆

) (2∆)2c , (3.7)

while the Green’s function for χ is its (almost) inverse

G(p2) = − (2π)2c−1

2
(
c− 1

2

)
(µy −∆)

Γ(1 + 2c)

Γ(1− 2c)

Γ
(

1 + c µy−∆
∆

)
Γ
(

1 + cµy+∆
∆

) (2∆)−2c . (3.8)

The notation lim indicates a regulated limit, i.e., the leading term regulated by powers of z.
For a right-handed (RH) source, we send χ(z) ↔ ψ(z) and y → −y. The Green’s function,
extracted from 5D, now serves as the momentum-dependent form factor of Eq. 2.3. It has a
pole at p2 = 0, indicating a massless zero mode. For p ≥ yµ, ∆ goes imaginary and G(p2)

has a branch cut corresponding to the continuum. The exact form of the spectral density
depends on the bulk mass c, which we take in the range 0 ≤ c < 1

2 to avoid poles from the
gamma functions. The resulting spectral densities for select values in this range are shown in
Fig. 3. Note also that following the case of pure AdS5 [22], we can assign the LH source an

3As in standard AdS/CFT, we define the "IR regular" solution for Lorentzian AdS as the analytic contin-
uation of the corresponding IR regular solution for Euclidean AdS. This is equivalent to choosing an outgoing
wave boundary condition in Lorentzian AdS.
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Figure 3: The spectral density for a continuum left-handed Weyl fermion χ modeled in a
linear dilaton background. The quasi-anomalous dimension dχ is linked to the bulk mass by
the relation dχ = c+ 2.

anomalous dimension dOR = 2 + c in the range 2 ≤ dOR ≤ 5
2

4. This anomalous dimension
governs the UV behavior of our spectral function, where it goes over to the fermionic unparticle
spectral function. The corresponding anomalous dimension for the LH fermion is given by
dχ = 4− dOR = 2− c.

We model the gauge continuum in a similar way to the fermion continuum, by considering
gauge modes in the bulk of a linear dilaton geometry with Φ(z) = µ(z − R). The Einstein
frame Lagrangian is

LE = a(z) e−
4
3
µ(z−R)

[
1

4
FMNFMN

]
, (3.9)

while the effective Schrödinger equation is

−Â′′(z) + Veff(z)Â(z) = p2Â(z) , (3.10)

where Â(z) =
√

R
z e
−µ(z−R)A(z) and the effective Schrödinger potential is

Veff(z) = µ2 +
µ

z
+

3

4z2
. (3.11)

As in the fermion case, the potential in the deep IR goes to a constant, Veff(z → ∞) = µ2.
Hence we expect a gauge continuum with a gap of µ. Indeed, the IR regular bulk solutions

4For a RH source, the identification becomes dOL = 2− c and 3/2 ≤ dOR ≤ 2.
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Figure 4: The spectral density for a continuum gauge boson in a linear dilaton background.

are

A(z) = A

√
z

R
eµ(z−R)W

(
− µ

2∆
, 1; 2∆z

)
, (3.12)

with ∆ =
√
µ2 − p2, and the Neumann Green’s function has a pole at p2 = 0 and a branch

cut for p2 > µ2 with the spectral density

ρ(s) =
1

π
lim
z→0

Im
A(z)

A′(z)
=

1

2πs

[
1 + iψ

(
1

2
+

µ

2∆

)
− iψ

(
1

2
− µ

2∆

)]
, (3.13)

where ψ(x) is the digamma function. The gauge spectral density is depicted in Fig. 4.

4 A Realistic Continuum Composite Higgs Model

In the two previous sections, we have shown how to model the fermion and gauge continua in
a linear dilaton geometry. Here, we use them as building blocks in a full CH model, in which
the continuum fermion and gauge modes play the role of top and gauge partners. In fact, our
construction mirrors the existing CH models in its group theory, choice of representations,
etc. The only modification is in the introduction of a linear dilaton geometry instead of the
standard RS one.

Our extra dimensional geometry is depicted in Fig. 5. We consider AdS5 regulated by a UV
brane at z = R. In addition we introduce an IR brane at z = R′ ∼ 1/TeV, which is stabilized
as usual by the Goldberger-Wise mechanism. The fifth dimension continues beyond the IR
brane to z →∞. The IR brane has a double role in our model:
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IR

z = R′

Φ(z) = µ(z −R)

aS(z) = R
z

Figure 5: A sketch of our geometry in the string frame. The IR brane carries local fields
that result in jump conditions for the bulk fields.

1) It provides the location for the breaking of the bulk gauge symmetry.

2) It is responsible for the generation of the IR scale µ ∼ TeV, which is the slope of the
linear dilaton. The dilaton profile is basically negligible up to distances close to the IR
brane, where it has a boundary condition involving the IR scale µ. After the IR brane,
the dilaton grows linearly with a slope µ. We are agnostic about the exact mechanism
stabilizing the dilaton beyond the IR brane (see [53] and references therein for possibili-
ties), but note that there is no tuning involved because the slope of the dilaton is related
to its boundary condition on the IR brane. In other words, the solution to the hierarchy
problem in our case is the usual Goldberger-Wise mechanism, or dimensional transmu-
tation. The linear dilaton is merely a way to model a different confining dynamics which
gives rise to composite continua.

The remaining details of our model are very similar to standard CH models [3, 28, 55, 56].
We consider a G = SO(5) × U(1)X gauge symmetry in the bulk of our geometry. This
gauge symmetry is reduced to SO(4)×U(1)X on the IR brane, by giving Dirichlet boundary
conditions (B.C.) to the gauge fields corresponding to broken generators. On the UV brane,
we break SO(5)×U(1)X to the SM electroweak gauge symmetry SU(2)L×U(1)Y , such that
Y = T 3

R +X. This choice of boundary conditions leads to a zero mode in the fifth component
of the bulk gauge field, Aâ5, with â denoting the generators in the coset G/H. The role
of the pNGB Higgs boson is then played by the Wilson line from the UV to the IR brane,
ig5

∫ R′
R A5 dz. It is interesting to note that this Wilson line between the two branes is the only

gauge invariant Wilson line we can write, so there is no physical meaning to the A5 profile
beyond the IR brane. We can always account for the effect of the A5 vacuum expectation
value (VEV) by rotating it into the matching conditions on the IR brane.

In addition to the bulk gauge symmetry, we embed the SM fermions qL, tR, bR in the bulk
multiplets QL, TR, BR, transforming in the 5 2

3
, 5 2

3
, 10 2

3
representations of SO(5) × U(1)X ,

respectively. This is the same choice of bulk representations as [55, 56]. Under the subgroup
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SU(2)L × U(1)Y , the bulk multiplets decompose as:

QL(5) 2
3
→ qL(2) 1

6
+ q̃L(2) 7

6
+ yL(1) 2

3
,

TR(5) 2
3
→ qR(2) 1

6
+ q̃R(2) 7

6
+ tR(1) 2

3
, (4.1)

BR(10) 2
3
→ q′R(2) 1

6
+ q̃′R(2) 7

6
+ xR(3) 2

3
+ yR(1) 7

6
+ ỹR(1) 1

6
+ bR(1)− 1

3
.

Let χ and ψ be the LH and RH components of the bulk Dirac fermion appearing in Eq. (3.2).
On the UV brane, the states χqL , ψtR and ψbR get Neumann B.C., while all other states in
χQL

, ψTR and ψBR
get Dirichlet B.C. On the IR brane, all of the states in χQL

, ψTR and ψBR

get Neumann B.C. Consequently, we have zero modes only for the SM states qL, tR and bR.
On the IR brane with induced metric gind, we can write the SO(4) × U(1)X invariant mass
terms:

SIR =

∫
d4x
√
gind

[
M1 ȳLtR + M4 (q̄LqR + ¯̃qLq̃R) + Mb

(
q̄Lq
′
R + ¯̃qLq̃

′
R

) ]
. (4.2)

These terms give rise to the SM Yukawa coupling in the 4D effective action. From the 5D
point of view, these IR brane-localized terms provide the discontinuity (jump B.C.) resulting
in quasi-IR brane-localized wave function profiles for the fermionic fields (albeit with support
in the deep IR), but with large enough wave function overlap with the physical A5 below the
IR brane to obtain the correct top mass.

5 Summary of Results

In this section we present a concise summary of the results in our model. The details are
fleshed out in the next sections and the appendices.

• Overview : We constructed a realistic CH model with continuum top partners. There
are no fermionic KK resonances in the model. The continuum generically does contain
broad peaks (of width ∼ TeV) that could be probed with non-resonant high pT dilepton
searches at a future 100 TeV collider. The only gauge particle resonances occur at
energies well outside the reach of the LHC.

• Model parameters: We have only two additional parameters to the standard parameters
of CH models: the dilaton slope µ and the fermion-dilaton Yukawa y. The other standard
CH parameters are R and R′, as well as the gauge parameters θ, r (see Sec. 6) and the
fermion bulk and IR brane mass parameters cQ, cT , cB,M1,M4 andMb. We demonstrate
a realistic SM spectrum and Higgs potential for the following benchmark point (BP) in
parameter space:

R/R′ = 10−16, 1/R′ = 2.81 TeV, µ = 1 TeV, y = 1.75,

r = 0.975, sin θ = 0.39,

cQ = 0.2, cT =− 0.22, cB = −0.03,

M1 = 1.2, M4 = 0, Mb = 0.017 .

(5.1)
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Figure 6: Top, bottom and b′ spectral densities for v/f = 0.3 and parameter values from the
BP in Eq. 5.1. The spectral function features broad peaks that could be probed at a future
100 TeV collider.

For this particular point in parameter space, all of the SM variables are correctly repro-
duced, except for the mass of the top quark, which is a bit too light (125 GeV instead
of 140 GeV at 2 TeV). This is an artifact of our particular bulk fermion representations
that also exists in standard CH models [55, 56], and can be overcome by either changing
to different bulk representations or choosing a slightly more tuned point in parameter
space.

• Continua: In our specific point in parameter space, the gauge continuum starts at
µ = 1 TeV, while the fermion continuum starts at yµ = 1.75 TeV. It is of course
possible to find other points with larger gaps for the continua, at the cost of more
tuning in the Higgs potential. The existence of the relatively low gauge continuum is
phenomenologically viable due to the lack of s-channel resonances in our model, but the
fermion continuum taken to be higher to avoid tension with LHC bounds. The spectral
densities of the top and bottom are depicted in Fig. 6 and those of the W and Z in
Fig. 7. The broad peaks in the fermion spectral densities at 5 TeV and 9 TeV originate
in their IR brane masses (see Sec. 6.2). These broad peaks, of width ∼ 1 TeV, could be
probed at a future 100 TeV collider.

• Higgs Potential: As in standard CH models, the potential for the pNGB Higgs is ra-
diatively generated. The radiative contributions of the top, W and Z in our model
are balanced by the contribution of the fermion and gauge continua, which also couple
to the pNGB Higgs. We get the correct Higgs potential at the cost of a standard 1%
tuning, with v/f = 0.3, consistent with electroweak precision bounds [57]. This is to be
compared with per mille level tuning in a corresponding composite Higgs model with the
same IR scale R′ and the same choice of bulk representations [48]. The Higgs potential
in our model is depicted in Fig. 8.
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Figure 7: Gauge spectral density for v/f = 0.3 and parameter values from the BP in Eq. 5.1.

Figure 8: The Coleman-Weinberg potential in our model. The minimum is at v/f =

sin (〈h〉 /f) = 0.3 and the Higgs mass is reproduced.

• Phenomenology: Since there are practically no s-channel resonances in our model, the
regular bounds on KK gauge bosons do not apply. This is the main feature of the
continuum naturalness, which is illustrated in Fig. 9, where the partonic cross-section
for σ (qq̄ → G∗ → tRt̄R) in our model is compared to models with gauge KK resonances.
We use G∗ to denote the overall sum of the SM gluon, the tower of KK gluons in the RS
case, and the gluon spectral density in the continuum case. Compared to the KK case,
in the continuum case the spectral density tends to push the effect of new physics to the
higher invariant mass regions where there is a larger PDF suppression, resulting in an
overall suppression of the total cross section. To simplify the calculation we assume an
IR brane localized tR, which is in general a very good approximation in CH models.

A lower bound on the gap of the gauge continuum is obtained from the running of αs
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Figure 9: The partonic cross section σ (qq̄ → G∗ → tRt̄R) in three simplified models: only
SM gluon, with KK gluons, and with continuum gluons. While the presence of KK gluons
leads to resonances in the partonic cross section, the continuum only leads to a smooth rise
above the SM background.

in Sec. 8: the bound is µ & 600 GeV. To correctly infer the LHC bounds on continuum
top partners, we have to calculate their pair production cross-section, which we do in
an upcoming work [49].

6 Calculating Spectral Densities

In the following sections we give an overview of the calculations that lead to the results in
Sec. 5. Some of the details are presented in the appendices. This section explains the basic
ingredients used for obtaining the various spectral densities for the gauge and fermion states
in our model, using methods similar to Sec. 3. The 4D Green’s function is extracted as the
UV limit of the 5D Green’s function as

G(p2) = lim
z,z′→R

G(z, z′; p2) , (6.1)

where G(z, z′; p2) is the IR regular solution to the inhomogeneous EOM, which is schematically

Dg/fG(z, z′; p2) = δ(z − z′) , (6.2)

subject to the UV B.C. and IR matching conditions. In the above equation, Dg/f is the relevant
differential operator for the gauge bosons/fermions. The spectral densities are obtained from
the Green’s functions via ρ(s) = 1

π ImG(s).
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6.1 Gauge Boson Spectral Densities

The homogeneous EOM for gauge fields is

aeff(z) p2G + ∂z [aeff(z) ∂zG] = 0 . (6.3)

where aeff(z) ≡
(
R
z

)
e−2µ(z−R). The general solution to this equation is

G(z) =
( z
R

)
eµ(z−R)

[
AM

(
− µ

2∆
, 1; 2∆z

)
+ BW

(
− µ

2∆
, 1; 2∆z

) ]
, (6.4)

where W and M are Whittaker functions, and A and B are coefficients. To find the gauge
Green’s functions, we have to solve the inhomogeneous version of Eq. 6.3, with δ(z − z′)

inserted on the right hand side, subject to the boundary conditions presented below.

6.1.1. UV Boundary Conditions

The UV B.C. are Neumann for SU(2)L × U(1)Y and Dirichlet for the other generators. In
particular, we give Neumann B.C. for the hypercharge gauge boson Bµ defined as:

Bµ = sin θ W 3R
µ + cos θ Xµ . (6.5)

where W 3R
µ is the gauge boson corresponding to the T 3

R generator of SO(5) and the Xµ gauge
boson of the U(1)X . The angle θ is set to reproduce the correct Weinberg angle θW . Similarly
to [56], we also include a UV brane localized kinetic term for the SU(2)L gauge bosons, which
changes their UV B.C. to

∂zGSU(2)L + CBKT GSU(2)L |z=R = 0 (6.6)

where CBKT = r2 p2R logR′/R and r is an O(1) parameter adjusted to reproduce the correct
right W mass for any value of g5.

6.1.2. IR Matching Conditions

On the IR brane we have matching conditions, which are either

∆G|z=R′ = ∆∂zG|z=R′ = 0 (6.7)

for the generators of SO(4)× U(1)X or

G|z=R′− = G|z=R′+ = 0 (6.8)

for the generators of SO(5)/SO(4). Here and below, we use G|z=R′+ , G|z=R′− to denote
the Green’s function evaluated at z → R′ from the right and left, respectively, and ∆G ≡
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Figure 10: Inverse Green’s function for the gauge bosons for v/f = 0.3. The zero modes are
at mW and mZ .

G|z=R′+ − G|z=R′− . We only select Green’s functions that are regular in the deep IR, as
described in Sec. 3.

6.1.3. Accounting for the VEV of the Higgs–A5

As a final complication, note that we are generically looking for the Green’s functions in
the presence of a VEV for the Higgs–A5. To account for the VEV, we use the well known
technique of rotating the 〈A5〉 into the IR boundary conditions. We do this by the bulk
gauge transformation Aµ → eig

∫ z
R 〈A5〉dz′Aµe

−ig
∫ z
R 〈A5〉dz′ to the left of the IR brane and Aµ →

eig5
∫ z
R′ 〈A5〉dz′Aµe

−ig5
∫ z
R′ 〈A5〉dz′ to the right of the IR brane. This eliminates the bulk 〈A5〉, but

changes the IR matching conditions for the SO(4)× U(1)X fields to

G|z=R′+ = U(h)G|z=R′− U(h)−1 , ∂zG|z=R′+ = U(h) ∂zG|z=R′− U(h)−1 . (6.9)

where U(h) ≡ eig5
∫R′
R 〈A5〉dz′ ≡ e

ig5
h
f . Note that the rotation to the right of the IR does not

have any impact on the boundary conditions because the A5 is pure gauge in this region.

6.1.4. Results

In Fig. 7 we present the gauge spectral density, for a Higgs VEV ratio v/f = 0.3. The spectral
density is nonzero above the gap µ. Note the poles on top of the continuum at 11 TeV: these
are the result of the IR brane Dirichlet B.C. for the generators of SO(5)/SO(4), and are the
only BSM poles that appear in our model. Since these are well beyond the reach of the LHC,
we will not study them further in this paper. In addition to the gauge boson continuum, our
gauge boson Green’s functions reproduce the SM W and Z masses and a massless photon: in
Fig. 10, we show the inverse of the gauge boson Green’s functions, which intersect zero exactly
at the SM values.
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6.2 Fermion Spectral Densities

The quadratic fermion Lagrangian is the one from Eq. 3.3, where each one of the bulk mul-
tiplets QL, TR and BR has a different bulk mass cQ, cT or cB. The three multiplets have
dilaton Yukawa couplings y,−y,−y. Note the flip in the sign of the dilaton Yukawa, required
to get a zero mode in the ψ component of TR, BR. The homogeneous EOM for QL are

−DfχQL
−
ĉQ(z)a(z)

R
χQL

+ pψQL
= 0 ,

DfψQL
−
ĉQ(z)a(z)

R
ψQL

+ pχQL
= 0 ,

(6.10)

where Dff = ∂zf + 2∂za(z)
a(z) f , a(z) = R

z e
− 2

3
µ(z−R) and ĉQ(z) = (cQ +µ(z−R))e

2
3
µ(z−R). The

general solutions for QL are:

χQL
(z) = a(z)−2

[
AM̂(cQ, z) + B Ŵ (cQ, z)

]
,

ψQL
(z) = a(z)−2

[
A α(cQ, p) M̂(cQ, z) + B β(p) Ŵ (cQ, z)

]
,

(6.11)

with α(cQ, p) ≡
4( 1

2
+cQ−Rµy)∆

p , β(p) ≡ µy−∆
p and ∆ ≡

√
µ2y2 − p2. The functions Ŵ (cL, z), M̂(cL, z)

are defined as:

M̂(cQ, z) = M

(
−µy (cQ − µyR)

∆
,

1

2
+ cQ −Rµy, 2∆z

)
,

Ŵ (cQ, z) = W

(
−µy (cQ − µyR)

∆
,

1

2
+ cQ −Rµy, 2∆z

)
,

(6.12)

where M(a, b, z),W (a, b, z) are Whittaker functions. The homogeneous solution for TR (BR)

is the same as the one for QL under cQ → −cT (B) and χQL
, ψQL

→ ψTR(BR), χTR(BR).

To find the Green’s functions, we have to solve the inhomogeneous version of Eq. 6.10, inserting
δ(z − z′) on the right side of the first or second of these equation, depending on the Green’s
function. The full details of the calculation are presented in Appendix B.

The fermionic Green’s functions are subject to the boundary conditions given below.

6.2.1. UV Boundary Conditions

We assign UV brane Dirichlet B.C. to the following states:

QL : ψqL , χq̃L , χyL ,

TR : ψqR , ψq̃R , χtR , (6.13)

BR : ψq′R , ψq̃
′
R
, ψxR , ψyR , ψỹR , χbR .
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These boundary conditions reflect the fact that only qL, qR and bR are partially composite
and should have the SM fermions as zero modes.

6.2.2. IR Matching Conditions

Due to the masses M1,4,b on the IR brane (Eq. 4.2), we have the jump conditions relating
G± = G|z=R′+ ±G|z=R′− for the different multiplets.

G−tR = κM1G
+
sL
, G−yL = κM1G

+
tR
,

G−aR = κM4G
+
aL
, G−aL = κM4G

+
aR

+ κMbG
+
a′R
, (6.14)

G−
a′R

= κMbG
+
aL
,

where a = q, q̃ and κ = ∓1 for the χ/ψ Green’s function. We only select Green’s functions
that are regular in the deep IR, as described in Sec. 3.

6.2.3. Accounting for the VEV of the Higgs–A5

Similarly to the gauge case, we can account for the VEV of the Higgs–A5 by acting on the
fermion with the Wilson line U(h). The IR matching conditions remain the same as long as
we modify the definition of G± to be

G± = Gh|z=R′+ ± Gh|z=R′− , (6.15)

where Gh = U(h)G for QL, TR in the 5 of SO(5) and Gh = U(h)GU(h)−1 for BR in the
10 of SO(5).

6.2.4. Results

Here we show the final results for the fermionic spectral densities for the parameter choices
in Eq. 5.1. Since the bulk matter content of the full model is given by the representations
5+ 5+ 10, we will end up with a 20× 20 matrix for the Green’s functions. Each entry of the
matrix is a two-point function between a pair of fermions, and diagonalizing this yields the 20
fermionic spectral densities of our model. In Fig. 6 we can see the spectral densities for t, b and
an exotic b′. All other spectral densities corresponding to states with other quantum numbers
in the decomposition Eq. 4.1 are shown in Figs. 6, 11, and 12. Note that the difference in
normalization between the different spectral densities stems from the difference in bulk mass
between the three bulk multiplets, which leads to factors of

(
R
R′

)∆c between the spectral
densities depicted in the figures.

As stated before, some of the spectral functions feature broad peaks that can be probed at
future colliders. The width of these peaks is a model dependent parameter which depends on
the magnitude of the IR mass M1. By choosing a slightly different point in parameter space
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Figure 11: Spectral densities for additional exotic top partners.
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Figure 12: Spectral densities for the remaining top partner quantum numbers. The figure
contains ten overlapping spectral densities corresponding to components that are continuous
across the IR brane.

with M1 = 2, we can make these peaks as wide as 2 TeV. This effect is depicted in Fig 14 in
a toy model with a single bulk fermion.

Without a Higgs VEV, four of the 20 fermions, tL,R and bL,R, would have zero modes. The
Higgs VEV lifts these to mt and mb, as shown in the inverse Green’s functions for t, b and b′

in Fig. 13.
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Figure 14: The effect of the IR mass on the width of a fermionic peak in a toy model with
a single bulk fermion. By varying the IR mass, the peak could be made as wide as 2 TeV.

7 The Higgs Potential

Given all of the gauge and fermion Green’s functions that we have calculated, it is straight-
forward to compute the Coleman-Weinberg potential for the Higgs using the formula [56]:

V (h) =
3

16π2

∫
dp p3

−4

20∑
j=1

logGfj (ip) +

4∑
k=1

logGgk(ip)

 , (7.1)

where Gfj (p) and Gfk(p) are the eigenvalues of the fermion and gauge Green’s function matri-
ces, respectively. Note that these Green’s functions are Higgs-dependent, hence their contri-
bution to the Coleman-Weinberg potential. In Fig. 8 we plot the Coleman-Weinberg potential
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as a function of sin 〈h〉 /f ≡ v/f . There is a minimum at v/f = 0.3, and so the right Higgs
VEV is obtained for f = 820 GeV, which is consistent with electroweak precision bounds. By
differentiating this twice, one can show that indeed mh = 125 GeV.

By varying the parameters of our model, we can estimate the tuning for the BP. We use the
Barbieri-Giudice measure to quantify the tuning:

tuning =

[
maxi

d log v

d log pi

]−1

, (7.2)

where pi ∈ {R,R′, µ, r, θ, y, cQ, cT , cB,M1,m4,Mb} are the fundamental parameters of the
model. We obtain a tuning of 1% for the BP, with the strongest dependence being on cQ and
cT as expected.

8 Comments on Phenomenology

The detailed study of continuum partner phenomenology will appear in a separate work [49].
Here, we will merely point out some the main points regarding the phenomenology of contin-
uum partners.

1) No s-channel resonances at the LHC: The unique feature of our continuum CH model is
the lack of particle resonances within the reach of the LHC. This leads to vastly different
phenomenology, in which the traditional searches for KK gauge bosons no longer apply,
as well as all of the resonance-based top partner searches. To demonstrate this point,
we present the partonic cross-section σ (qq̄ → G∗ → tRt̄R), in three simplified models:
only SM gluon, KK gluons, and continuum gluons. This cross section is given by

σ(ŝ) = σ(ŝ)SM × ŝ2
∣∣G(R,R′; ŝ)

∣∣2 , (8.1)

where G(R,R′; ŝ) is the UV to IR Green’s function, calculated in a similar manner to
Sec. 6. The results are depicted in Fig. 9.

2) Bounds from the running of αS: The running of αs in the presence of a colored gauge
boson continuum provides an interesting bound on µ, the starting point of the gapped
continuum. The running of the 4D gauge coupling is given by [56, 58, 59]

1

g2(Q)
=

1

g2
5

∫ 1/Q

R
dz a(z) +

1

g2
UV

− bUV

8π2
log

(
1

RQ

)
, (8.2)

where g2
5 = g2

∗R, gUV is the UV brane coupling, and bUV is the one-loop beta function
including effects for the zero modes on the UV brane. In our case, we localize all fields
except for tR on the UV brane, so bUV = 22/3.

There are determinations of αs up to Q ∼ 1.42 TeV from measurements of jets by
CMS using

√
s = 7 TeV LHC data [60–63]. For a given value of µg, we choose the SM
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value for αs(µg). Evaluating Eq. (8.2) at two different scales Q = µg, 1.42 TeV and
taking the difference, we can determine the effect of the continuum on the running of
αs. Results with different UV-brane localized values of αUV are shown in Fig. 15: gluon
continuum scales above µ = 600–700 GeV are generically safe from the 1σ-high value
of αs(1.42 TeV). The value of αUV = 0.025 corresponds to the limit g2

∗ < (4π)2 from
requiring perturbativity in the bulk.

0.4 0.6 0.8 1.0 1.2

0.086

0.087

0.088

0.089

0.090

0.091

0.092

0.093

Figure 15: Bound from running αs from the gluon continuum scale µg to Q = 1.42 TeV.

3) Pair production of continuum top partners: We expect the continuum top pair-production
cross section to be parametrically smaller than the one for particle top partners. This is
due to the smearing of the spectral density to higher energies, where PDF suppression
dominates. This is also the case in the result of [22] for colored fermionic unparticles.

The full calculation of the pair-production cross section for continuum top partners is
far from trivial, as it is unclear how to calculate the phase space factor for a pair of
final-state continuum fermions. Inspired by the work of [21, 22], we can use the optical
theorem to relate the pair-production cross section to the imaginary part of the diagram
of the vacuum polarization with a continuum fermion loop, which we can calculate using
dispersion relations. We leave the full calculation of the top partner pair production for
future work [49].

Since we are not calculating the full cross section in this paper, we chose a conservative
point in parameter space with a continuum fermion gap of 1.75 TeV, with 1% tuning.

9 Conclusions

We presented a novel type of composite Higgs model, where all top and gauge partners form
continua rather than being ordinary particles. Such top and gauge partners will evade all
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s-channel resonance searches and are expected to lead to unique experimental signatures.
We showed how to obtain a realistic model of this sort from a warped extra dimension,
where space continues beyond the IR brane. A linear dilaton dominates the deep IR region,
corresponding to critical IR dynamics that produces a gapped continuum. We have shown how
to calculate the full set of spectral densities for the fermion and gauge partners. Furthermore,
we established a phenomenologically viable benchmark point, tuned at the percent level, with
a realistic radiatively generated Higgs potential. The phenomenology of continuum partners,
as well as the existing collider bounds on this model, will appear in an upcoming publication.
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Appendix

A Gauge Boson Green’s Functions

In this appendix we present the details necessary for evaluating the gauge boson spectral den-
sities. We demonstrate our calculation in a simple toy model with a bulk U(1)×U(1) broken
to U(1) on the IR brane, where the role of the Higgs is played by the A5 of the broken U(1). In
the bulk we have two gauge bosons,Wµ andW ′µ. Wµ corresponds to an unbroken direction (be-
fore the Higgs VEV) with the boundary conditions (+,+) on the UV and IR branes, whileW ′µ
corresponds to a broken direction (−,−). The Higgs VEV will mix these two fields. There are
now four different Green’s functions to solve for: 〈W (z)W (z′)〉 , 〈W ′(z)W (z′)〉 , 〈W (z)W ′(z′)〉
and 〈W ′(z)W ′(z′)〉, which we denote collectively by G(z, z′; p2)ij , i, j ∈ {W,W ′}.

To get each spectral density we need to first specify whether the source (the delta function)
is in the W or the W ′ equation. This depends if we’re looking for W (z′) or W ′(z′) in the
correlation function. In a shorthand notation, we will write

Dg G(z, z′; p2)ij = δij δ(z − z′) . (A.1)
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The gauge EOM is Eq. 6.3, with a general solution of the form Eq. 6.4. To solve for the
Green’s function, we divide our space into the domains R ≤ z ≤ z′, z′ ≤ z ≤ R′ and R′ ≤ z,
where the coefficients are denoted

←−
A,
←−
B ,
−→
A,
−→
B and A∞, B∞, respectively. Our goal is then

to find these coefficients, subject to the following jump/boundary conditions:

• UV BC:

∂zGWj |z=R = GW ′j |z=R = 0 . (A.2)

• Jump conditions at z = z′:

∆GWj |z=z′ = ∆GW ′j |z=z′ = 0 ,

∆∂zGij |z=z′ = a(z)−1δij .
(A.3)

• Jump conditions at z = R′:

∆GWj |z=R′ = ∆∂zGWj |z=R′ = 0 ,

GW ′j |z=R′− = GW ′j |z=R′+ = 0 .
(A.4)

• Regularity of G(z, z, p2) at z →∞:

A∞Wj = A∞W ′j = 0 . (A.5)

From these linear conditions we arrive at the Green’s function matrix G(z, z′; p2)ij . We can
of course diagonalize this matrix and define two spectral densities:

ρ(s)1,2 ≡ lim
z,z′→R

1

π
Im G(z, z′; s)1,2 . (A.6)

corresponding to the two eigenvalues of Gij . Note, however, that in the present case GW ′W =

GW ′W ′ = 0 by virtue of the UV Dirichlet BC, and also that GWW ′ = 0 because the W and
W ′ IR BC are completely decoupled. The situation is different once we consider a bulk 〈A5〉
VEV rotating the two multiplets. In this case the IR BC is modified to:

∆ĜWj |z=R′ = ∆∂zĜWj |z=R′ = 0 ,

ĜW ′j |z=R′− = ĜW ′j |z=R′+ = 0 ,
(A.7)

with

ĜWj = chGWj + shGW ′j ,

ĜW ′j = − shGWj + chGW ′j ,
(A.8)

and ch = cos (〈h〉 /f) , sh = sin (〈h〉 /f) ≡ v/f . The resulting spectral density ρ1(p) is depicted
in Fig. 16 (ρ2(p) is still zero by virtue of the Dirichlet BC for W ′). Note that for v/f 6= 0,
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Figure 17: Inverse Green’s function for W/W ′ mix with µ = 1TeV, 1/R′ = 4 TeV.

ρ1(p) acquired a pole on top of the branch cut. This is as expected: the pole originates from
the W ′ component of the eigenstate 1, and W ′ has a Dirichlet BC at R′. We also note that
the zero mode of eigenstate 1 is no longer massless since it acquires a mass from the Higgs.
This is seen by determining where 1/G1(p) vanishes, as shown in Fig. 17.

We are now ready to present the spectral densities for the gauge bosons of the realistic model.
As previously explained, the bulk gauge symmetry SO(5)×U(1)X is broken on the IR brane
to SO(4)× U(1)X . We choose the following generators as a basis of SO(5):(

T aL,R
)
ij

= − i

2

[
εabcδbi δ

c
j ±

(
δai δ

4
j − δ4

i δ
a
j

) ]
,(

T âC

)
ij

= − i√
2

[ (
δâi δ

5
j − δ5

i δ
â
j

) ]
,

(A.9)

with a ∈ {1, 2, 3} and â ∈ {1, 2, 3, 4}. The gauge bosons corresponding to the generators T aL,R
are continuous across the IR brane, while the ones corresponding to T âC get a Dirichlet BC.

– 24 –



The Higgs emerges as the 4D component of ACâ5 . To solve for the bulk profiles in the presence
of a Higgs VEV, we use the trick of solving for v = 0 but with the IR BC rotated by the Higgs
matrix:

Uh = ei g5
∫R′
R A5(z)T â

C h
â(x) dz . (A.10)

The profile A5(z) is given by solving the bulk EOM:

∂z [a(z)A5(z)] = 0 . (A.11)

and so A5(z) = N5 a
−1(z), with N5 =

[∫ R′
R a−1(z)dz

]−1/2
. We only integrate A5 up to the

IR brane because it is pure gauge beyond it. In other words, the only gauge invariant Wilson
line for the A5 is between the UV and IR branes.

Due to the SM gauge freedom, we are allowed to choose the Higgs VEV 〈h〉 to be in the â = 4

direction. We then have:

Uh = ei T
4̂
C 〈h〉/f , (A.12)

where f = g−1
5

[∫ R′
R a−1(z)dz

]−1/2
. Substituting the expression for T 4̂

C , we get

Uh =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 cos (〈h〉 /f) sin (〈h〉 /f)

0 0 0 − sin (〈h〉 /f) cos (〈h〉 /f)

 . (A.13)

The components of the bulk SO(5) gauge field are:

Wµ = W±,3;L
µ T±,3L + W±,3;R

µ T±,3R + W±,±µ T±± , (A.14)

where

T±L,R =
1√
2

(
T 1
L,R ± iT 2

L,R

)
,

T±∓ =
1√
2

(
T 3
C ± iT 4

C

)
,

T±± =
1√
2

(
T 1
C ± iT 2

C

)
.

(A.15)

There is an additional bulk U(1)X field that we denote by Xµ. The extra U(1)X is required
to reproduce the correct hypercharge assignments for the SM fields [3].

The UV boundary conditions are then

W±;R
µ |z=R = W±,±µ |z=R = 0 ,

∂zW
±,3;L
µ + CkW

±,3;L
µ |z=R = 0 ,

cθW
3;R
µ − sθXµ |z=R = 0 ,

∂z
[
sθW

3;R
µ + cθXµ

]
|z=R = 0 .

(A.16)
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Note that the above boundary conditions mix the gauge fieldsW 3;R
µ and Xµ with an angle θ as

a result of a UV boundary kinetic term. A similar boundary kinetic term Ck ≡ Rp2r2 logR′/R

is responsible for the mixed boundary conditions for W±,3;L
µ . This term is necessary to get

the right SU(2)L gauge coupling for every value of the bulk coupling g5. To account for the
VEV of the Higgs–A5, we rotate its effect into the IR jump conditions, which are now given
are given in terms of the Higgs-rotated gauge fields:

Ŵµ = UhWµ U
−1
h . (A.17)

This multiplet is decomposed similarly to Eq. A.14:

Ŵµ = Ŵ±,3;L
µ T±,3L + Ŵ±,3;R

µ T±,3R + Ŵ±,±µ T±± . (A.18)

The IR BC are then

∆Ŵ±,3;L
µ |z=R′ = ∆Ŵ±,3;R

µ |z=R′ = 0 ,

Ŵ±,±µ |z=R′ = 0 .
(A.19)

The resulting gauge boson spectral densities and inverse Green’s functions are presented in
the main text in Figs. 7 and 10.

B Fermion Green’s Functions

Next we explain how an A5 (Higgs) VEV can give mass to two fermion zero modes. This
is a standard result in gauge-Higgs unification, and we demonstrate it here explicitly in the
context of continuum CH. As a starting point, we take two bulk fermions Q1,2

L with equal
bulk masses and dilaton Yukawas cL, y and opposite UV boundary conditions, and two bulk
fermions Q1,2

R with equal bulk masses and dilaton Yukawas cR,−y and opposite UV boundary
conditions. In the context of warped CH models, Q1,2

L will represent two different quantum
numbers within the same QL bulk multiplet that is in a large representation of the bulk gauge
group, and likewise for Q1,2

R . However, in this toy example we will not be concerned with the
group theory aspects of the model. The UV boundary conditions are:

ψ1
L|z=R = χ2

L|z=R = ψ1
R|z=R = χ2

R|z=R = 0 , (B.1)

where Q1,2
L =

(
χ1,2
L , ψ1,2

L

)
and Q1,2

R =
(
χ1,2
R , ψ1,2

R

)
. These boundary conditions, together with

the assignment of ±y dilaton Yukawas and the demand for a regular solution in the deep IR,
implies zero modes for χ1

L and ψ2
R. As IR mass terms only couple (Q1

L, Q
1
R), (Q2

L, Q
2
R), they

won’t be enough to lift the zero modes χ1
L and ψ2

R. As we will see below, only a non-zero VEV
for the A5-Higgs can rotate the multiplets and lift the two zero modes. To obtain the matrix
of Green’s functions we divide the problem into the same domains as in the gauge case, and
solve for

←−
A j ,
←−
B j ,
−→
A j ,
−→
B j , A

∞
j , B

∞
j , where this time i, j are joint indices in {1L, 2L, 1R, 2R}.

The boundary and jump conditions in this case are:
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• UV BC:

GψL1;j |z=R = GχL2;j |z=R = GψR1;j |z=R = GχR2;j |z=R = 0 . (B.2)

• Jump conditions at z = z′:

∆Gψij |z=z′ = −∆Gχij |z=z′ = Dij a(z′)−4 . (B.3)

• Jump conditions at z = R′: On the IR brane we turn on the masses M1 Q̄
1
LQ

1
R and

M2 Q̄
2
LQ

2
R, which give us the jump condition:

∆Gχak;j |z=R′ = −Mk

〈
Gχāk;j

〉
|z=R′

∆Gψak;j |z=R′ = Mk

〈
Gψāk;j

〉
|z=R′ ,

(B.4)

where j ∈ {1L, 2L, 1R, 2R}, a ∈ {L,R}, and k ∈ {1, 2}.

• Regularity of G(z, z; p2) at z →∞: as before, A∞ij = 0.

Note that we have yet to turn on a Higgs VEV mixing the 1 and 2 states. At this stage there
are zero modes in χ1

L and in ψ2
R. The IR masses M1,2 cannot change this fact, we can only

lift the two zero modes with a mass that connects them to each other. This is impossible as
long as the 1 and 2 BC are completely decoupled. This is not the case when a Higgs VEV is
turned on. As usual, this VEV appears as a rotation of the IR jump conditions:

Ĝa1;j |z=R′ = chGa1;j + shGa2;j ,

Ĝa2;j |z=R′ = − shGa1;j + chGa2;j .
(B.5)

The rotation is the same for Gχij and G
ψ
ij . We now write the IR BC in Eq. B.4 in terms of the

Higgs-rotated Green’s functions Ĝij .

Solving these conditions, we obtain the Green function Ghij with Ga1;j = Gχa1;j , Ga2;j = Gψa2;j .
This matrix now has four eigenvalues Gh(z, z′; p)1,2,3,4 with appropriate spectral densities
ρh(p)1,2,3,4. The label h is an explicit reminder that they depend on the Higgs VEV. In
Fig. 18 we plot the spectral densities for R′ = (4TeV)−1, M1 = 0.3, M2 = 0, cL = 0.3 and
cR = −0.1, and v/f = 0.3. In Fig. 19 we plot the inverse Green’s functions, and show that
there are non-trivial zeros for v/f = 0.3.

We are now ready to present the spectral densities for the top/bottom sector for the realistic
model. We will choose the fermions to be embedded in the bulk multiplets QL, TR and BR in
the 5 2

3
,5 2

3
and 10 2

3
of SO(5)×U(1)X . The SM gauge group SU(2)L is a subgroup of SO(5),

and the hypercharge is a combination of U(1)R ⊂ SO(5) and U(1)X defined by Y = T 3
R +X.
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Figure 18: Spectral density for cL = 0.3, cR = −0.1, M1 = 0.6, M2 = 0.
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Figure 19: Inverse Green’s function for cL = 0.3, cR = −0.1, M1 = 0.6, M2 = 0. The inverse
Green’s function gets a non-trivial zero for v/f = 0.3.

Under the subgroup SU(2)L × U(1)Y , the bulk multiplets decompose as:

QL(5) 2
3
→ qL(2) 1

6
+ q̃L(2) 7

6
+ yL(1) 2

3
,

TR(5) 2
3
→ qR(2) 1

6
+ q̃R(2) 7

6
+ tR(1) 2

3
,

BR(10) 2
3
→ q′R(2) 1

6
+ q̃′R(2) 7

6
+ xR(3) 2

3
+ yR(1) 7

6
+ ỹR(1) 1

6
+ bR(1)− 1

3
.

(B.6)

We choose the UV BC such that only qL, tR and bR have zero modes by assigning Neumann
BC for GχqL , G

ψ
qR and GψBR

, and Dirichlet BC for all the other GχQL
, GψTR and GψBR

. The
SO(4)× U(1)X symmetry on the IR brane allows for three mass terms:

SIR =

∫
dx4 √gind

[
M1 ȳLtR + M4 (q̄LqR + ¯̃qLq̃R) + Mb

(
q̄′LqR + ¯̃q′Lq̃R

) ]
. (B.7)
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These mass terms lead as usual to IR jump conditions which are for QL:

∆GχqL,q̃L;j |z=R′ = −M4

〈
GχqR,q̃R;j

〉
− Mb

〈
Gχ
q′R,q̃

′
R;j

〉
|z=R′ ,

∆GψqL,q̃L;j |z=R′ = M4

〈
GψqR,q̃R;j

〉
− Mb

〈
Gψ
q′R,q̃

′
R;j

〉
|z=R′ ,

∆GχyL;j |z=R′ = −M1

〈
GχtR;j

〉
|z=R′ ,

∆GψyL;j |z=R′ = M1

〈
GψtR;j

〉
|z=R′ .

(B.8)

For TR they are:

∆GχqR,q̃R;j |z=R′ = −M4

〈
GχqL,q̃L;j

〉
|z=R′ ,

∆GψqR,q̃R;j |z=R′ = M4

〈
GψqL,q̃L;j

〉
|z=R′ ,

∆GχtR;j |z=R′ = −M1

〈
GχsL;j

〉
|z=R′ ,

∆GψtR;j |z=R′ = M1

〈
GψsL;j

〉
|z=R′ ,

(B.9)

and for BR they are:

∆Gχ
q′R,q̃

′
R;j
|z=R′ = −Mb

〈
GχqL,q̃L;j

〉
|z=R′ ,

∆Gψ
q′R,q̃

′
R;j
|z=R′ = Mb

〈
GψqL,q̃L;j

〉
|z=R′ ,

∆GχxR,yR,ỹR,bR;j |z=R′ = 0 ,

∆GψxR,yR,ỹR,bR;j |z=R′ = 0 .

(B.10)

As usual, in the IR jump conditions, the fields to the left of the IR brane are really the
Higgs-rotated fields:

ĜQL
= UhGQL

, ĜTR = UhGTR , ĜBR
= UhGBR

U−1
h , (B.11)

decomposed into their different components. The jump discontinuity due to IR localized mass
terms results in quasi-IR brane-localized wave function profiles for the fermionic fields as noted
at the end of Sec. 4.
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