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1 Introduction

Searches for resonant enhancements of the dijet invariant mass distribution (m;;) are an essential part of the
LHC physics programme. New particles with sizeable couplings to quarks and gluons are predicted by
many models, such as those including resonances with additional couplings to dark-matter particles [1,
2].

Searches for dijet resonances with masses of several hundreds of GeV to just above 1 TeV have been carried
out at lower-energy colliders [3—7] and at the LHC, which has also extended search sensitivities into the
multi-TeV mass range [8—22]. Despite using higher integrated luminosities than earlier colliders, these
LHC searches have been limited at lower masses by a large multi-jet background. Multi-jet events are
produced at such high rates that fully recording every event would saturate the online data selection (called
trigger) and data acquisition systems. To avoid this, minimum transverse momentum (p?i“) thresholds are
imposed on triggers collecting events with at least one jet (called single-jet triggers). These thresholds
create a lower bound on the sensitivity of searches at a mass of approximately m;; ~ 2p$i“, where p?in is
typically several hundred GeV. Consequently, searches for dijet resonances at the LHC have poor sensitivity
for masses below 1 TeV, and set limits on the couplings of the resonance to quarks in this light-resonance
region which are weaker than limits in heavy-resonance regions [23]. Nevertheless, despite the difficulty of
recording events containing light resonances, they remain a viable search target at the LHC, both from a
model-agnostic point of view [24] and, for example, in models of spin-dependent interactions of quarks
with dark matter [1, 2].

Recently, ATLAS and CMS have published searches for low-mass dijet resonances using several comple-
mentary strategies to avoid trigger limitations. For m;; > 450 GeV, the most stringent limits are set by
searches recording only partial event information [20, 21].

Another search avenue is opened by data in which a light resonance is boosted in the transverse direction
via recoil against a high-pt photon [25, 26]. Requiring a high-pt photon in the final state reduces signal
acceptance but allows efficient recording of events with lower dijet masses. At even lower resonance
masses, the decay products of the resonance will merge into a single large-radius jet. Searches for this
event signature have been used to set limits on resonant dijet production at both ATLAS [27] and CMS [28,
29]. However, these searches become less sensitive above 200 GeV-350 GeV, when the decay products fall
outside the large-radius jet cone.

This Letter presents a new search for resonances in events containing a dijet and a high-pt photon in
the final state, using proton—proton (pp) collisions recorded at a centre-of-mass energy /s = 13 TeV
and corresponding to an integrated luminosity up to 79.8 fb~!. The search targets a dijet mass range
of 225 GeV-1.1 TeV. This range covers masses below the range accessible using single-jet triggers or
partial-event data and above the mass range where the resonance decay products merge. The search
is performed using samples of events selected either with or without criteria designed to identify jets
originating from bottom quarks (b-jets). Searching in a subset of the data selected with b-jet identification
criteria enhances sensitivity to resonances which preferentially decay into bottom quarks. This search
probes masses above 225 GeV, obtaining results complementary to the reach of previous dijet searches at a
centre-of-mass energy of \/s = 13 TeV: below approximately 600 GeV, previous ATLAS di-b-jet searches
lose sensitivity [30], while the range of the CMS boosted di-b-jet search [29] is limited to a mass region up
to 350 GeV. Another complementary CMS search for resonances with masses above 325 GeV decaying to
b-jets at a centre-of-mass energy of \/s = 8 TeV is described in Ref. [31].



2 ATLAS detector

The ATLAS experiment [32—35] at the LHC is a multipurpose particle detector with a forward—backward
symmetric cylindrical geometry! with layers of tracking, calorimeter, and muon detectors over nearly the
entire solid angle around the pp collision point. The directions and energies of high transverse momentum
particles are measured using tracking detectors, finely segmented hadronic and electromagnetic calorimeters,
and a muon spectrometer, within axial and toroidal magnetic fields. The inner tracker consists of silicon
pixel, silicon microstrip, and transition radiation tracking detectors, and reconstructs charged-particle
tracks in || < 2.5. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy
measurements with high granularity. A steel/scintillator-tile hadronic calorimeter covers the central
pseudorapidity range (|| < 1.7). The endcap and forward regions are instrumented with LAr calorimeters
for EM and hadronic energy measurements up to || = 4.9. The trigger system [36] consists of a first-level
trigger implemented in hardware, using a subset of the detector information to reduce the accepted rate to
100 kHz, followed by a software-based trigger that reduces the rate of recorded events to about 1 kHz.

3 Data samples and event selection

The result presented in this Letter is based on data collected in pp collisions at /s = 13 TeV during
2015-2017. The signal consists of events with two jets from the decay of a new particle, and an additional
photon, radiated off one of the colliding partons.

Data were collected via either a single-photon trigger or a combined trigger requiring additional jets, to
allow a lower pt requirement on the photon. The data collected with the single-photon trigger are used to
search for resonances with masses from 225 GeV to 450 GeV, while the data collected with the combined
trigger are used to search for resonances with masses from 450 GeV to 1.1 TeV.

The single-photon trigger requires at least one photon candidate with E% wig > 140 GeV, where E% trig
is the photon transverse energy as reconstructed by the software-based trigger. The combined trigger
requires a photon and two additional jet candidates, each with pt > 50 GeV. The combined trigger requires
E%’ wig > 75 GeV for the 2016 data, increasing to E% wig > 85 GeV for the 2017 data. This trigger was
not active during the 2015 data-taking period. As a consequence, the single-photon trigger recorded
79.8 fb~! of data and the combined trigger recorded 76.6fb~! of data. Both triggers are fully efficient

within uncertainties in the kinematic regimes used for this analysis.

After recording the data, a subset of collision events consistent with the signal are selected to populate m;j;
distributions for subsequent analysis. A brief description of the reconstruction methods is given below
together with the event selection.

In all of the events selected for analysis, all components of the detector are required to be operating correctly.
In addition, all events are required to have a reconstructed primary vertex [37], defined as a vertex with at
least two reconstructed tracks, each with pr > 500 MeV.

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, with ¢ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle 6 as 5 = —Intan(6/2). It is equivalent to the rapidity for massless
particles. Transverse momentum and energy are defined as pt = psinf and E1 = E sin 6, respectively. Angular distance is
measured in units of AR = +/(An)? + (A¢)2.



Photon candidates are reconstructed from clusters of energy deposits in the electromagnetic calorimeter [38].
The energy of the candidate is corrected by applying energy scale factors measured with Z — e*e”
decays [39].

The trajectory of the photon is reconstructed using the longitudinal segmentation of the calorimeters along
the shower axis (shower depth) and a constraint from the average collision point of the proton beams.
Candidates are restricted to the region || < 2.37, excluding the transition region 1.37 < |p| < 1.52
between the barrel and endcap calorimeters to ensure that they arise from well-calibrated regions of the
calorimeter. An additional requirement is applied on the transverse energy of the photon candidate after
reconstruction, which is required to have E% > 95 GeV, where E% is the transverse energy of the photon
candidate after reconstruction.

Quality requirements are applied to the photon candidates to reject events containing misreconstructed
photons arising from instrumental problems or from non-collision backgrounds. Further tight identification
requirements are applied to reduce contamination from 7% or other neutral hadrons decaying into two
photons [38]. The photon identification is based on the profile of the energy deposits in the first and
second layers of the electromagnetic calorimeter. In addition to the tight identification requirement,
candidates must meet tight isolation criteria using calorimeter and tracking information, requiring that
they be separated from nearby event activity [40, 41]. Converted photon candidates matched to one track
or a pair of tracks passing inner-detector quality requirements [38] and satisfying tight identification and
isolation criteria are also considered. Any pair of matching tracks must form a vertex that is consistent
with originating from a massless particle.

Jets are reconstructed using the anti-k, algorithm [42, 43] with radius parameter R = 0.4 from clusters of
energy deposits in the calorimeters [44]. Quality requirements are applied to remove events containing
spurious jets from detector noise and out-of-time energy deposits in the calorimeter from cosmic rays or
other non-collision sources [45]. Jet energies are calibrated to the scale of the constituent particles of the
jet and corrected for the presence of multiple simultaneous (pile-up) interactions [46, 47].

After reconstruction, jets with transverse momentum pJTet > 25GeV and rapidity |7®!| < 2.8 are considered.

To suppress pile-up contributions, jets with p’Te ' < 60GeV and || < 2.4 are required to originate from the
primary interaction vertex with the highest summed p% of associated tracks. If a jet and a photon candidate
are within AR = 0.4, the jet candidate is removed.

These requirements retain approximately 30% of a typical signal sample.

Jets which likely contain b-hadrons are identified (b-tagged) with the DL1 flavour tagger [48]. Tracks
are selected in a cone around the jet axis, using a radius which shrinks with increasing pJTet The selected
tracks are used as input to algorithms which attempt to reconstruct a b-hadron decay chain. The resulting
information is passed to a neural network which assigns a b-jet probability to each jet. To account for
mismodelling in simulated b-hadron decays, a comparison of the discrimination power of this network in
data and Monte Carlo simulation is performed and correction factors are applied to simulation to reproduce
the data [49]. Jets are considered b-tagged when the DL1 score exceeds a threshold consistent with a 77%
b-hadron identification efficiency on a benchmark #¢ sample. At this threshold, only 0.7% light-flavour jets
and 25% charm-jets are retained.

Events which contain at least one photon candidate and two jets are selected using the above criteria
and separated into four categories for further analysis. Two of the categories are constructed with
flavour-inclusive criteria, for which b-tagging results are ignored. One of these two categories contains
events recorded via the single-photon trigger, and the other category contains events recorded via the



combined trigger. To ensure the trigger is fully efficient, events in the single-photon-trigger category are
required to have a photon with E% > 150 GeV and events in the combined-trigger category are required to

have a photon with E% > 95 GeV and two jets with pJTe[ > 65 GeV. The remaining two categories consist

of events selected as in the flavour-inclusive categories, except that the two highest—pjTet jets must satisfy
the b-tagging criteria and have |1®!| < 2.5 to ensure that they fall within the acceptance of the tracking
detectors.

Dijet production at the LHC occurs largely via r-channel processes, leading to jet pairs with high absolute
values of y* = (y; — y2)/2, where y; and y, are the rapidities of the highest-pt (leading) and second-highest-
pt (subleading) jet, respectively. On the other hand, heavy particles tend to decay more isotropically,
with the two jets having lower |y*| values. Therefore, |y*| < 0.75 is required for all four categories.
This selection rejects up to 80% of the multi-jet background events while accepting up to 80% of the
signal events discussed below. A further selection is applied to select events above a given invariant mass
depending on the trigger, mj; > 169 GeV for the single-photon trigger and mj; > 335 GeV for the combined
trigger. This is so that the background can be described by a smoothly falling analytic function satisfying
the goodness-of-fit criteria described in 4.

Table 1: Event selections used to construct each of the four event categories, as described in the text.

Criterion Single-photon trigger Combined trigger
Number of jets Mjets = 2

Number of photons ny > 1

Leading photon E% > 150 GeV E}y > 95 GeV
Leading, subleading jet p'Tet > 25 GeV plTet > 65 GeV
Centrality v = |y1 — y21/2 < 0.75
Invariant mass m;j > 169 GeV mjj > 335 GeV
Criterion (applied to each trigger selection) Inclusive b-tagged

Jet |n| e < 2.8 e < 2.5
b-tagging - Np-tag = 2

The above selections, summarised in Table 1, yield 2,522,549 and 15,557 events acquired by the single-
photon trigger for the flavour-inclusive and b-tagged categories, respectively. They yield 1,520,114 and
9,015 events acquired by the combined trigger in the corresponding categories.

The distributions of m;; for events in each of the four categories are shown in Fig. 1. Hypothetical signals
with mz = 250 GeV and mz = 550 GeV, as further discussed in Section 6, are overlaid.

At the largest dijet masses considered, the combined-trigger categories provide greater sensitivity to signals
than the single-photon-trigger categories due to their greater signal acceptance. The sensitivity is defined as
S/VB, where S and B are the number of signal and background events in the simulation samples described
in Section 6. At the smallest dijet masses considered, the jet pr thresholds of the combined trigger cause
those categories to lose efficiency for signals and bias the m;; distributions of the background processes.
Therefore, to optimise the search across a wide range of signal masses, the invariant mass spectra selected
using the combined-trigger categories are used in the search for signal masses above 450 GeV, while the
spectra obtained with the single-photon trigger are used for lower masses.



4 Background estimation

To estimate the Standard Model contributions to the distributions in Fig. 1, smooth functions are fit to the
data. The dijet searches of the CDF, CMS, and ATLAS experiments [6-8, 11, 15, 17, 20] have successfully
modelled dijet mass distributions in hadron colliders using a single function over the entire mass range
considered in those searches. This approach is not suitable when data constrain the fit too tightly for a single
function to reliably model both ends of the distribution simultaneously. Here, a more flexible technique is
adopted, similar to that used in recent ATLAS dijet resonance searches [21, 22]. In this technique, a single
fit using a given function over the entire mass distribution is replaced by many successive fits. For each
bin of the mass distribution, the same function is used to fit a broad mass range centred on the bin, and
the background prediction for that bin is taken to be the value of the fitted function in the centre of the
range. The process is repeated for each bin of the mass distribution and the results are combined to form
a background prediction covering the entire distribution. For invariant masses higher than the m;; range
used for the search (above 1.1 TeV), the window is allowed to extend beyond the range as long as data is
available.

A set of parametric functions are considered for these fits:

F(x) = praPrepped (1)

or

f(x)=pi(1- x)P2 xP3*P IHX+P5(IHX)27 2)

where x = mjj/+/s and p; are free parameters determined by fitting the mj; distribution. In addition to the
five-parameter function in Eq. (2), a four-parameter variant with ps = 0 and a three-parameter variant
with ps = ps = 0 are also considered. The width of the mass range used for the individual fits was
optimised to retain the broadest possible range while maintaining a y> p-value above 0.05 in regions of
the distribution that do not contain narrow excesses, where excesses are identified using the BumpHunter
algorithm described in the next section. The sliding window procedure cannot be extended beyond the
lower edge of the mj; range used in each signal selection. Therefore, until the optimal number of bins
is reached on each side of a given bin center, the start of the window is fixed to the lower edge of the
spectrum and the fitted functional form is evaluated for each bin in turn. This procedure allows for a
stable background estimate while maintaining sensitivity to signals localised in the mj; distribution. Tests
performed by adding sample signals to smooth pseudo-data distributions confirmed that this approach can
find signals of width-to-mass ratios up to 15%, with sensitivity increasing for narrower signals. The ranges
of the individual fits vary from 750 GeV in the narrowest case to 1600 GeV in the widest case. A signal
with a 15% width-to-mass ratio constrained by the narrowest fit would have an absolute width of 163 GeV,
or less than one quarter of the fit range.

Monte Carlo samples of background containing a photon with associated jets were simulated using
Suerpa 2.1.1 [50], generated in several bins of photon transverse momentum at the particle level (termed
as E% for this paragraph), from 35 GeV up to energies where backgrounds become negligible in data, at
approximately 4 TeV. The matrix elements, calculated at next-to-leading order (NLO) with up to three
partons for E% < 70 GeV or four partons for higher EY., were merged with the SHERPA parton shower [51]
using the ME+PS @LO prescription [52]. The CT10 set of parton distribution functions (PDF) [53] was
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Figure 1: Dijet mass distributions for the (a) flavour-inclusive and (b) b-tagged categories. In both figures, the
distribution for the sample collected using the combined trigger with E% > 95 GeV and two p’Tet > 25 GeV jets (filled
circles) and the distribution for the sample collected using the single-photon trigger with E% > 150 GeV (open
squares) are shown separately. The solid lines indicate the background estimated from the fitting method described in
the text. Also shown are the p-values both by a y> comparison of data to background estimate and by BumpHunter
(BH). The solid and empty triangles represent a Z’ injected signal with g4 = 0.1, masses of 550 and 250 GeV,
respectively, where the theory-cross section is multiplied by the factor shown in the legend. The bottom panels
show the significances of bin-by-bin differences between the data and the fits for the combined trigger (middle) and
single-photon trigger (bottom). These Gaussian significances are calculated from the Poisson probability, considering
only statistical uncertainties on the data.

used in conjunction with the dedicated parton shower tuning developed by the SHErRPA authors. These
samples, alone and in combination with the signal samples discussed below, were used to validate the
background model obtained with the above mentioned method, and they were also used to verify that the
fitting procedure is robust against false positive signals. Additionally, the simulated samples were used to
calculate the fractional dijet mass resolution, which was found to be in the range 8%—3% for the masses of
225 GeV up to 1.1 TeV considered in this search.

5 Search results

Fig. 1 shows the results of fitting each of the observed distributions, as described in Section 4. For each
distribution, the function among those in Eqs. (1) and (2) and their variants which yields the highest x>
p-value (shown in the figure), in absence of localized excesses, is chosen as the primary function for the
fitting method. The function with the lowest y? p-value which still results in a p-value larger than 0.05
is chosen as an alternative function. The primary and alternative functions for each of the four search
categories are shown in Table 2. The alternative function is used to estimate the systematic uncertainty of
the background prediction due to the choice of function, as described below.

The statistical significance of any localised excess in each myj; distribution is quantified using the
BumpHunter (BH) algorithm [54, 55]. The algorithm compares the binned mj; distribution of the
data with the fitted background estimate, considering mass intervals centered in each bin location and with



Table 2: Summary of functions used for background fits to each category. The five-parameter function (5 par.) is
given in Eq. (2). The four-parameter variant (4 par.) sets ps = 0, while the three-parameter variant (3 par) sets

ps =pa=0.

Fit Flavour-inclusive, Flavour-inclusive, b-tagged, b-tagged,

single y trigger combined trigger single y trigger combined trigger.
Primary fit Eq. (2), 5 par. Eq. (2), 4 par. Eq. (2), 4 par. Eq. (2), 3 par.
(x? p-value) (0.11) (0.23) (0.75) (0.53)
Alternative fit Eq. (2), 4 par. Eq. (1) Eq. (2), 3 par. Eq. (2), 5 par.
(x? p-value) (0.07) (0.20) (0.75) (0.44)

widths of variable size from two bins up to half the mass range used for the search (169 or 335 GeV to 1.1
TeV, for the single and combined trigger respectively).

The statistical significance of the outcome is evaluated using the ensemble of possible outcomes by applying
the algorithm to many pseudo-data samples drawn randomly from the background fit. Without including
systematic uncertainties, the BumpHunter p-value — the probability that fluctuations of the background
model would produce an excess at least as significant as the one observed in the data, anywhere in the
distribution — is p > 0.5 for all distributions. Thus, there is no evidence of a localised contribution to the
mass distribution from new phenomena.

6 Limit setting

Limits are set on the possible contributions to the mj; distributions from two kinds of resonant signal
processes. As a specific benchmark signal, a leptophobic Z’ resonance is simulated as in Refs. [2, 17]. The
Z’ resonance has axial-vector couplings to quarks and to a fermion dark-matter candidate. The coupling
of the Z’ to quarks, gy, is set to be universal in quark flavour. The mass of the dark-matter fermion
is set to a value much heavier than the Z’, such that the decay width to dark matter is zero. The total
width I'z/ is computed as the minimum width allowed given the coupling and mass my; this width is
3.6%—4.2% of the mass for mz = 0.25-0.95 TeV and g4 = 0.3. The interference between the Z’ in this
benchmark model and the Standard Model Z boson is assumed to be negligible. A set of event samples
were generated at leading order with mz  values in the range 0.25-1.5 TeV and with g4 = 0.3 using
MapGraruS_aMC@NLO 2.2.3 [56]; the NNPDF3.0 LO PDF set [57] was used in conjunction with
PytHia 8.186 [58] and the A14 set of tuned parameters [59]. For these samples, the acceptances of the
kinematic selections in the flavour-inclusive categories range from 1% to 2.5%, increasing with signal
mass, for the sample collected by the combined trigger and from 4% to 10% for the sample collected by
the single-photon trigger. For the b-tagged categories, the kinematic acceptance is defined relative to the
full flavour-inclusive generated samples, leading to acceptance values of 0.2%—0.4% and 0.7%—1.6% for
the combined and single-photon trigger, respectively. The reconstruction efficiencies range from 74% to
80% for the flavour-inclusive categories and from 40% to 48% for the b-tagged categories, decreasing with
increasing signal mass.

Limits are set on the considered new-physics contributions to the mj; distributions using a Bayesian
method. A constant prior is used for the signal cross-section and Gaussian priors for nuisance parameters
corresponding to systematic uncertainties. The expected limits are calculated using pseudo-experiments
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Figure 2: Excluded values of the coupling between a Z’ and quarks, at 95% CL, as a function of my/, from (a)
the flavour-inclusive and (b) the b-tagged categories. Below 450 GeV the distribution of events selected by the
single-photon trigger is used for hypothesis testing, while above 450 GeV the combined trigger is used.

generated from the background-only component of a signal-plus-background fit to the data, using the same
fitting ranges and functions selected as the best model in the search phase. Signal hypotheses at discrete
mass values are used to set 95% credibility-level (CL) upper limits on the cross-section times acceptance
[12]. The limits are obtained for a discrete set of points in the gq—mz’ plane, shown in Fig. 2.

A more generic set of limits is shown in Fig. 3. These limits apply to the visible cross-section from
a Gaussian-shape contribution to the mj; distribution, where the visible cross-section is defined as the
product of the production cross-section, the detector acceptance, the reconstruction efficiency, and the
branching ratio, o X A X € X 8. The Gaussian-shape contributions have mass mg and widths that span
from the detector mass resolution, denoted “Res.” in the figure, ranging from 8% to 3% for the mass
range considered, for an intrinsically narrow resonance, up to 15% of the mean of the Gaussian mass
distribution.

Both the choice of fit function and statistical fluctuations in the mj; distribution can contribute to uncertainties
in the background model. To account for the fit function choice, the largest difference between fits among
the variants of Eq. (1) and Eq. (2) that obtain a p-value above 0.05, is taken as a systematic uncertainty. The
uncertainty related to statistical fluctuations in the background model is computed via Poisson fluctuations
around the values of the nominal background model. The uncertainty of the prediction in each m; bin is
taken to be the standard deviation of the predictions from all random samples.

The reconstructed signal mass distributions are affected by additional uncertainties related to the simulation
of detector effects. The jet energy scale uncertainty is applied to the Z’ mass distributions using a
four-principal-component method [47, 60, 61], leading to an average 2% shift of the peak value for each
mass distribution. For the Gaussian-shape signal models, this average 2% shift is taken as the uncertainty of
the mean of each Gaussian distribution. In the case of the b-tagged categories, uncertainties of the b-tagging
efficiency are the dominant uncertainties in each mass distribution. To account for these uncertainties, the
contribution of each simulated event to a given mass distribution is reweighted by 5%—15% for each jet,
depending on its pt [49].

The remaining uncertainties are modelled by scaling each simulated distribution by 3% to account for jet
energy resolution in all categories [47], 2% for photon identification uncertainties in the single-photon-
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Figure 3: Upper limits on Gaussian-shape contributions to the dijet mass distributions from (a) the flavour-inclusive
and (b) the b-tagged categories. The curve denoted “Res.” represents the limit on intrinsically narrow contributions
with Gaussian mass resolution ranging from 8% to 3% for the mass range considered. Below 450 GeV, the distribution
of events selected by the single-photon trigger is used for hypothesis testing, while above 450 GeV the combined
trigger category is used. While the vertical axis is shared between the two selections, the signal acceptance is not
the same below and above the line, and this results in different limits for the 450 GeV resonance mass point. Thus
the two sets of limit points correspond to two different interpretations of the product of cross-section, acceptance,
efficiency, and branching ratio, o X A X € X B.

trigger categories and 1.4% in the combined-trigger categories [38], 3% to account for efficiencies of
the combined trigger, and 1% for PDF-related uncertainties (only applied to the mass distributions of Z’
signals).

All these uncertainties are included in the reported limits; further uncertainties of the theoretical cross-section
for the Z” model are not considered.

The uncertainty of the combined 2015-2017 integrated luminosity is derived following a methodology
similar to that detailed in Ref. [62] and using the LUCID-2 detector for the baseline luminosity measurements
in 2017 [63]. The estimates for the individual datasets are combined and applied as a single scaling
parameter with a value of 2% for the single-photon-trigger categories and 2.3% for the combined-trigger
categories.

7 Conclusion

Dijet resonances with a width up to 15% of the mass, produced in association with a photon, were searched
for in up to 79.8 fb~! of LHC pp collisions recorded by the ATLAS experiment at vs = 13TeV. The
observed mj; distribution in the mass range 169 GeV < mj; < 1100 GeV can be described by a fit with
smooth functions without contributions from such resonances.
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In the absence of a statistically significant excess, limits are set on two models: Z’ axial-vector dark-matter
mediators and Gaussian-shape signal contributions. All mediator masses within the analysis range are
excluded for a coupling value of g4 = 0.25 and above, with the exclusion limit near a coupling of g = 0.15
for most of the mass range. The b-tagged categories yield Z’ limits comparable to the flavour-inclusive
categories, assuming that the Z’ decays equally into all quark flavours, and provide model-independent
limits that can be reinterpreted in terms of resonances decaying preferentially into b-quarks. For narrow
Gaussian-shape structures with a width-to-mass ratio of 7%, the flavour-inclusive categories exclude visible
cross-sections above 12 fb for a mass of 400 GeV and above 5.1 fb for a mass of 1050 GeV. When wider
signals with a width-to-mass ratio of 15% are considered, the exclusion limits are weaker at the lower mass
values, with visible cross-sections above 21 fb excluded for a mass of 400 GeV and those above 9.7 fb
excluded for a mass of 1050 GeV.

These results significantly extend the constraints by ATLAS and other experiments at lower centre-of-mass
energies on hadronically decaying resonances with masses as low as 225 GeV and up to 1100 GeV.
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