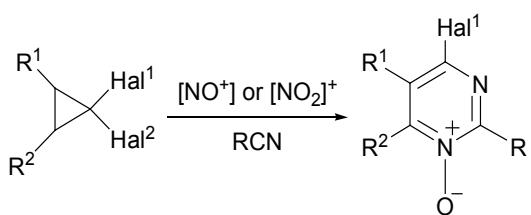


27 **Keywords:** Pyrimidines, π -Conjugated systems, Knoevenagel condensation, Fluorescence, Metal


28 cations, Anticancer activity

29 **1. Introduction**

30 Pyrimidine is an ubiquitous heterocyclic scaffold, particularly important in living
31 organisms as a core of pyrimidine bases in nucleic acids, and also present in a number of drugs,
32 including those with anticancer, antiviral, antibacterial and antihypertensive activities.^{1,2}
33 Another important application of aromatic strongly electron-withdrawing pyrimidine moiety is
34 the construction of push-pull molecules and the synthesis of functionalized π -conjugated
35 materials such as liquid crystals, light-emitting, and nonlinear optical materials.³ The
36 pyrimidine-based structures, containing simultaneously pharmacophore and fluorophore, are
37 justifiably appealing for the development of bioimaging probes.⁴

38 On contrary, pyrimidine *N*-oxides have been less investigated and found very few
39 applications in pharmaceuticals or material sciences. The only clinical drug containing this
40 scaffold is Minoxidil, an antihypertensive vasodilator medication used to treat hair loss.⁵
41 Nevertheless, heterocyclic *N*-oxides possess their specific modes of action and represent highly
42 challenging structures for drug-development.⁶ The use of pyrimidine *N*-oxides for construction
43 of extended π -conjugated systems is not described either, despite having large electron-
44 withdrawing effect and dipole moment, which is significantly higher than that of pyrimidines'.⁷
45 The most evident cause of such oversight is the lack of straightforward and selective synthetic
46 approaches to pyrimidine *N*-oxides and their functional derivatives.

47 **Scheme 1**

49 Previously, we have discovered a three-component heterocyclization of 1,1-
50 dihalogenocyclopropanes upon the treatment with nitrating or nitrosating reagents in the
51 presence of an organic nitrile affording 4-halogenopyrimidine oxides (Scheme 1). Additionally,
52 we elaborated approaches to a number of pyrimidine derivatives based on this reaction.⁸

53 Here we present the synthetic approach to novel π -conjugated molecules based on
54 pyrimidine *N*-oxide moiety and the investigation of their photophysical properties and
55 anticancer activity.

56 2. Materials and methods

57 2.1. Experimental

58 **General.** Heterocycles **1a,b**,^{8a,c} **2a-c**,^{8d} **5**^{8d} were obtained via described methods, synthesis and
59 characterisation of novel intermediate compounds **1c**, **2d-f** are available in SI. All starting materials
60 were commercially available. All reagents except commercial products of satisfactory quality were
61 purified according to literature procedures prior to use. Analytical thin layer chromatography was
62 carried out with silica gel plates (supported on aluminum); the detection was done by UV lamp (254
63 and 365 nm). Column chromatography was performed on silica gel (Merck, 230–400 mesh). ¹H, ¹³C
64 and ¹⁹F NMR spectra were recorded on a 400 MHz spectrometer (400.0, 100.6 and 376.3 MHz for ¹H,
65 ¹³C and ¹⁹F, respectively) at room temperature; chemical shifts were measured with reference to the
66 solvent for ¹H (CDCl₃, δ = 7.24 ppm) and ¹³C (CDCl₃, δ = 77.13 ppm) and to CFCl₃ as external
67 standard for ¹⁹F. When necessary, assignments of signals in NMR spectra were made using 2D
68 techniques. Accurate mass measurements (HRMS) were obtained with electrospray ionization (ESI)
69 and a time-of-flight (TOF) detector. Ultraviolet/Visible spectra were obtained on Agilent Cary 60
70 spectrophotometer. Fluorescence spectra in solutions were recorded on Hitachi F2700 fluorescence
71 spectrophotometer. Fluorescence spectrum of **3a** in thin film was recorded on Fluoromax4 fluorescence
72 spectrophotometer. Fluorescence quantum yield ($\pm 10\%$) determined relative to quinine sulfate in 0.05
73 M H₂SO₄ (ψ = 53%) and rodamine-G in ethanol for **3o** (ψ = 94%) as standards.⁹ Fluorescence intensity
74 decays were obtained by time-correlated single photon-counting measurements in CH₂Cl₂ at 25 °C at c

75 $\approx 10^{-5}$ M. Excitation wavelength – 370 nm. Typical fluorescence intensity decay data were analyzed by
76 the Marquardt–Levenberg method of nonlinear fitting of one-, two- or three-exponential function (as a
77 sum of discrete exponential terms); in the cases of **3a,o,q** not monoexponential intensity decay was
78 observed.

79 **2.2. Synthesis**

80 **Condensation of 4-aminopyrimidine oxides with aldehydes in basic conditions**
81 (**general method**). A mixture of 4-aminopyrimidine *N*-oxide **2** (0.5 mmol), corresponding
82 aldehyde (1.0 mmol), 50% aqueous NaOH (2 g, 0.05 mol) and TEBAC (5 mg, 0.02 mmol) was
83 stirred for 1–6 h under argon at 90–100°C. After this time, the reaction mixture was allowed to
84 cool down, diluted with water (5 mL) and extracted with CH₂Cl₂ (4 × 5 mL). The combined
85 organic extracts were washed with water (3 × 5 mL) and dried over MgSO₄. The solvent was
86 evaporated in vacuo and the product was isolated via the column chromatography (SiO₂).

87 **Compound 3a** was synthesized according to the general procedure (reaction time 1 h)
88 from **2a** and benzaldehyde in 20% isolated yield. Yellow crystals, mp 185–188 °C (from
89 CH₂Cl₂), R_f 0.3 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃) δ _H:
90 1.65–1.75 (2H, m, C⁶H₂), 1.85–1.95 (2H, m, C⁷H₂), 2.59 (2H, m, C⁵H₂), 2.97 (m, 2H, C⁸H₂),
91 3.31–3.38 (4H, m, 2 CH₂N), 3.81–3.90 (4H, m, 2CH₂O), 7.29–7.39 (3H, m, 3CH, Ph), 7.62–
92 7.68 (2H, m, 2CH, Ph), 7.90 (1H, br.d, *J* = 16.2 Hz, CH=), 7.99 (1 H, d, *J* = 16.2 Hz, CH=); ¹³C
93 NMR (100.6 MHz, CDCl₃) δ _C: 21.4 (C⁷H₂), 21.7 (C⁶H₂), 25.5 (CH₂), 26.3 (CH₂), 49.0
94 (2CH₂N), 66.7 (2CH₂O), 117.9 (CH=), 119.8 (C^{4a}), 127.9 (2CH, Ph), 128.7 (2CH, Ph), 129.3
95 (CH, Ph), 136.2 (C, Ph), 139.2 (CH=), 151.2 (C²), 154.5 (C⁴), 155.9 (C^{8a}). Found: [M+H]⁺
96 338.1860; molecular formula C₂₀H₂₃N₃O₂ requires [M+H]⁺ 338.1863.

97 **Compound 3b** was synthesized according to the general procedure (reaction time 3 h)
98 from **2a** and 2,6-dimethylbenzaldehyde in 32% isolated yield. Yellow crystals, mp 162–164 °C
99 (from CH₂Cl₂), R_f 0.3 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃)
100 δ _H: 1.66–1.74 (2H, m, CH₂), 1.86–1.95 (2H, m, CH₂), 2.42 (6H, s, 2CH₃), 2.58 (2H, m, CH₂),

101 2.95 (2H, m, CH₂), 3.30–3.38 (4H, m, 2CH₂N), 3.80–3.88 (4H, m, 2CH₂O), 7.03–7.12 (3H, m,
102 3CH, Ar), 7.59 (1H, d, *J* = 16.5 Hz, CH=), 8.08 (1H, d, *J* = 16.5 Hz, CH=); ¹³C NMR (100.6
103 MHz, CDCl₃) δ_C: 21.3 (2CH₃), 21.4 (CH₂), 21.7 (CH₂), 25.4 (CH₂), 26.3 (CH₂), 49.0 (2CH₂N),
104 66.7 (2CH₂O), 119.8 (C^{4a}), 123.0 (CH=), 127.7 (CH, Ar), 128.2 (2CH, Ar), 135.3 (C, Ar),
105 136.8 (2C, Ar), 137.6 (CH=), 151.2 (C²), 154.4 (C⁴), 155.9 (C^{8a}). Found: [M+H]⁺ 366.2170;
106 molecular formula C₂₂H₂₇N₃O₂ requires [M+H]⁺ 366.2176.

107 **Compound 3c** was synthesized according to the general procedure (reaction time 5 h)
108 from **2a** and 4-methylbenzaldehyde in 25% isolated yield. Yellow crystals, mp 203–206 °C
109 (from CH₂Cl₂), R_f 0.3 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃)
110 δ_H: 1.65–1.75 (2H, m, C⁶H₂), 1.86–1.96 (2H, m, C⁷H₂), 2.58 (2H, m, C⁵H₂), 2.95 (2H, m,
111 C⁸H₂), 3.02 (6H, s, 2CH₃, NMe₂), 3.30–3.36 (4H, m, 2CH₂N), 3.83–3.89 (4H, m, 2CH₂O),
112 6.66–6.72 (2H, m, 2CH, Ar), 7.53–7.60 (2H, m, 2CH, Ar), 7.79 (1H, d, *J* = 16.1 Hz, CH=), 7.87
113 (d, 1H, *J* = 16.1 Hz, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 21.5 (C⁷H₂), 21.7 (C⁶H₂), 25.6
114 (C⁸H₂), 26.1 (C⁵H₂), 40.2 (2CH₃), 49.0 (2CH₂N), 66.8 (2CH₂O), 111.9 (2CH), 112.7 (=CH),
115 118.5 (C^{4a}), 124.3 (C, Ar) 129.5 (2CH), 139.7 (=CH), 151.1 (C, Ar), 152.0 (C²), 154.5 (C⁴),
116 155.5 (C^{8a}). Found: [M+H]⁺ 381.2285; molecular formula C₂₂H₂₈N₄O₂ requires [M+H]⁺
117 381.2285.

118 **Compound 3d** was synthesized according to the general procedure (reaction time 6 h)
119 from **2a** and 4-methoxybenzaldehyde in 27% isolated yield. Yellow crystals, mp 171–172 °C
120 (from CH₂Cl₂), R_f 0.3 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃)
121 δ_H: 1.63–1.76 (2H, m, C⁶H₂), 1.84–1.94 (2H, m, C⁷H₂), 2.57 (2H, m, C⁵H₂), 2.96 (2H, m,
122 C⁸H₂), 3.31–3.39 (4H, m, 2CH₂N), 3.80–3.87 (4H, m, 2CH₂O), 3.83 (3H, s, CH₃), 6.87–6.93
123 (m, 2H, 2CH, Ar), 7.57–7.63 (2H, m, 2CH, Ar), 7.84 (1H, d, *J* = 16.2 Hz, CH), 7.87 (1H, d, *J* =
124 16.2 Hz, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 21.4 (C⁷H₂), 21.7 (C⁶H₂), 25.5 (C⁸H₂), 26.3
125 (C⁵H₂), 49.0 (2CH₂N), 55.3 (CH₃), 66.7 (2CH₂O), 114.2 (2CH), 115.4 (=CH), 119.2 (C^{4a}),

126 128.9 (C, Ar) 129.5 (2CH), 139.2 (=CH), 151.6 (C²), 154.8 (C⁴), 155.8 (C^{8a}), 160.7 (C, Ar).
127 Found: [M+H]⁺ 368.1962; molecular formula C₂₁H₂₅N₃O₃ requires [M+H]⁺ 368.1969.

128 **Compound 3e** was synthesized according to the general procedure (reaction time 6 h)
129 from **2a** and 4-ethoxybenzaldehyde in 25% isolated yield. Yellow crystals, mp 166–169°C
130 (from CH₂Cl₂), R_f 0.2 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃)
131 δ_H: 1.41 (3H, t, *J* = 7.0 Hz, CH₃), 1.61–1.76 (2H, m, C⁶H₂), 1.83–1.94 (2H, m, C⁷H₂), 2.57 (2H,
132 m, C⁵H₂), 2.95 (2H, m, C⁸H₂), 3.26–3.38 (4H, m, 2CH₂N), 3.79–3.88 (4H, m, 2CH₂O), 4.05
133 (2H, q, *J* = 7.0 Hz, CH₂, Et), 6.88 (2H, d, *J* = 8.6 Hz, 2CH), 7.58 (2H, d, *J* = 8.6 Hz, 2CH), 7.85
134 (2H, d, *J* = 16.2 Hz, 2CH=). ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 14.8 (CH₃), 21.4 (C⁶H₂), 21.7
135 (C⁷H₂), 25.5 (C⁸H₂), 26.2 (C⁵H₂), 49.0 (2CH₂N), 63.5 (CH₂, Et), 66.7 (2CH₂O), 114.7 (2CH,
136 Ar), 115.4 (CH=), 119.3 (C^{4a}), 128.8 (C), 129.5 (2CH, Ar), 139.0 (CH=), 151.5 (C²), 154.6
137 (C⁴), 155.8 (C^{8a}), 160.1 (C, Ar). Found: [M+H]⁺ 382.2116; molecular formula C₂₂H₂₇N₃O₃
138 requires [M+H]⁺ 382.2125.

139 **Compound 3f** was synthesized according to the general procedure (reaction time 6 h)
140 from **2a** and 3,4,5-trimethoxybenzaldehyde in 15% isolated yield. Yellow crystals, mp 162–165
141 °C (from CH₂Cl₂), R_f 0.16 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz,
142 CDCl₃) δ_H: 1.67–1.73 (2H, m, C⁶H₂), 1.85–1.96 (2H, m, C⁷H₂), 2.58 (2H, m, C⁵H₂), 2.95 (2H,
143 m, C⁸H₂), 3.29–3.38 (4H, m, 2CH₂N), 3.82–3.87 (4H, m, 2CH₂O), 3.87 (3H, s, CH₃), 3.89 (6H,
144 s, 2CH₃), 6.87 (2H, s, 2CH), 7.80 (1H, d, *J* = 16.0 Hz, CH=), 7.91 (1H, d, *J* = 16.0 Hz, CH=);
145 ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 21.4 (C⁶H₂), 21.7 (C⁷H₂), 25.5 (C⁸H₂), 26.3 (C⁵H₂), 49.0
146 (2CH₂N), 56.2 (2CH₃), 60.9 (CH₃), 66.7 (2CH₂O), 105.0 (2CH), 117.2 (CH=), 119.8 (C^{4a}),
147 131.8 (C, Ar), 139.1 (CH=), 139.3 (C, Ar), 151.1 (C²), 153.4 (2C, Ar), 154.6 (C⁴), 155.9 (C^{8a}).
148 Found: [M+H]⁺ 428.2169; molecular formula C₂₃H₂₉N₃O₅ requires [M+H]⁺ 428.2180.

149 **Compound 3g** was synthesized according to the general procedure (reaction time 6 h)
150 from **2a** and 4-(diethoxymethyl)benzaldehyde. Was not isolated because of transformation into
151 **3h** on silica gel. ¹H NMR (400.0 MHz, CDCl₃) δ_H: 1.25 (6H, t, *J* = 6.8 Hz, 2CH₃), 1.69–1.77

152 (2H, m, C⁶H₂), 1.88–1.97 (2H, m, C⁷H₂), 2.60 (2H, m, C⁵H₂), 3.00 (2H, m, C⁸H₂), 3.33–3.44
153 (4H, m, 2CH₂N), 3.51–3.69 (4H, m, 2CH₂, Et), 3.83–3.91 (4H, m, CH₂O), 5.52 (1H, s, CH),
154 7.50 (2H, d, *J* = 8.2 Hz, 2CH, Ar), 7.66 (2H, d, *J* = 8.2 Hz, 2CH), 7.92 (1H, d, *J* = 15.9 Hz,
155 CH), 7.98 (1H, d, *J* = 15.9 Hz, CH).

156 **Compound 3h** was obtained from compound **3g** after the column chromatography in 12%
157 isolated yield (per starting compound **2a**). Orange crystals, mp 186–188 °C (from CH₂Cl₂), *Rf*
158 0.5 (petroleum ether:EtOAc:MeOH 1:1:0.4). ¹H NMR (400.0 MHz, CDCl₃) δ _H: 1.66–1.74 (2H,
159 m, C⁶H₂), 1.88–1.95 (2H, m, C⁷H₂), 2.59 (2H, m, C⁵H₂), 2.95 (2H, m, C⁸H₂), 3.29–3.38 (4H, m,
160 2CH₂N), 3.79–3.89 (4H, m, 2CH₂O), 7.78 (2H, d, *J* = 8.1 Hz, 2CH), 7.88 (2H, d, *J* = 8.1 Hz,
161 2CH), 7.92 (1H, d, *J* = 16.1 Hz, CH=), 8.10 (1H, d, *J* = 16.1 Hz, CH=), 10.0 (1H, s, CHO); ¹³C
162 NMR (100.6 MHz, CDCl₃) δ _C: 21.3 (C⁷H₂), 21.6 (C⁶H₂), 25.5 (C⁸H₂), 26.3 (C⁵H₂), 49.0
163 (2CH₂N), 66.7 (2CH₂O), 120.7 (C^{4a}), 121.2 (=CH), 128.3 (2CH, Ar), 130.1 (2CH, Ar), 136.3
164 (C, Ar), 137.3 (=CH), 142.0 (C, Ar), 150.5 (C²), 154.5 (C⁴), 156.1 (C^{8a}), 191.6 (CHO). Found:
165 [M+H]⁺ 366.1811; molecular formula C₂₁H₂₃N₃O₃ requires [M+H]⁺ 366.1812.

166 **Compound 3i** was synthesized according to the general procedure (reaction time 2 h)
167 from **2a** and *trans*-4-stilbenecarboxaldehyde in 25% isolated yield. Yellow crystals, mp 188–
168 191 °C (from CH₂Cl₂), *Rf* 0.2 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz,
169 CDCl₃) δ _H: 1.65–1.74 (2H, m, C⁶H₂), 1.85–1.95 (2H, m, C⁷H₂), 2.59 (2H, m, C⁵H₂), 2.98 (2H,
170 m, C⁸H₂), 3.32–3.40 (4H, m, 2CH₂N), 3.81–3.89 (4H, m, 2CH₂O), 7.09 (1H, d, *J* = 16.3 Hz,
171 =CH), 7.16 (1H, d, *J* = 16.3 Hz, CH), 7.23–7.28 (1H, m, CH), 7.32–7.38 (2H, m, 2CH), 7.48–
172 7.55 (4H, m, 4CH), 7.65 (2H, d, *J* = 8.3 Hz, 2CH), 7.90 (1H, d, *J* = 16.1 Hz, =CH), 8.01 (1H,
173 d, *J* = 16.1 Hz, =CH); ¹³C NMR (100.6 MHz, CDCl₃) δ _C: 21.4 (C⁷H₂), 21.7 (C⁶H₂), 25.6
174 (C⁸H₂), 26.4 (C⁵H₂), 49.0 (2CH₂N), 66.7 (2CH₂O), 117.5 (CH=), 119.6 (C^{4a}), 126.6 (2CH),
175 126.9 (2CH), 127.8 (CH, Ph), 128.0 (CH=), 128.4 (2CH), 128.7 (2CH), 129.5 (CH=), 135.4
176 (C), 137.1 (C), 138.4 (C), 138.9 (CH=), 151.4 (C²), 154.9 (C⁴), 156.0 (C^{8a}). Found: [M+H]⁺
177 440.2324; molecular formula C₂₈H₂₉N₃O₂ requires [M+H]⁺ 440.2333.

178 **Compound 3j** was synthesized according to the general procedure (reaction time 2 h)
179 from **2b** and benzaldehyde in 17% isolated yield. Yellow oil, R_f 0.24 (petroleum ether:
180 CH₂Cl₂:MeOH 3:1:0.1). ¹H NMR (400.0 MHz, CDCl₃) δ _H: 1.01 (3H, t, J = 7.3 Hz, CH₃), 1.46
181 (2H, m, CH₂, Bu), 1.67 (2H, m, CH₂, Bu), 1.73-1.86 (4H, m, C⁶H₂, C⁷H₂), 2.35 (2H, m, C⁵H₂),
182 2.95 (2H, m, C⁸H₂), 3.58 (2H, td, J = 7.0 Hz, J = 5.7 Hz, CH₂NH), 4.54 (1H, br.s, NH), 7.30-
183 7.34 (1H, m, CH, Ph), 7.36-7.40 (2H, m, 2CH, Ph), 7.67 (2H, m, 2CH, Ph), 7.92 (1H, d, J =
184 16.1 Hz, CH=), 8.04 (d, 1H, J = 16.1 Hz, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ _C: 13.9 (CH₃),
185 20.2 (CH₂, Bu), 20.9 (C⁷H₂), 21.1 (C⁶H₂), 22.4 (C⁵H₂), 24.6 (C⁸H₂), 31.6 (CH₂, Bu), 41.0
186 (CH₂N), 112.8 (C^{4a}), 118.3 (CH=), 127.9 (2CH, Ph), 128.3 (CH, Ph), 128.7 (2CH, Ph), 136.4
187 (C, Ph), 138.8 (CH=), 151.3 (C⁴), 151.4 (C²), 153.4 (C^{8a}). Found: [M+H]⁺ 324.2068; molecular
188 formula C₂₀H₂₅N₃O requires [M+H]⁺ 324.2070.

189 **Compound 3k** was synthesized according to the general procedure (reaction time 3 h)
190 from **2c** and benzaldehyde in 21% isolated yield. Brown oil, R_f 0.2 (petroleum
191 ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃) δ _H: 1.85-1.90 (4H, m, C⁶H₂,
192 C⁷H₂), 2.56 (2H, m, C⁵H₂), 3.00 (2H, m, C⁸H₂), 7.12-7.18 (2H, m, 2CH), 7.21-7.27 (1H, m,
193 1CH), 7.32-7.42 (4H, m, 4CH), 7.59-7.66 (3H, m, 3CH), 7.88 (1H, d, J = 16.0 Hz, CH=), 7.94
194 (1H, d, J = 16.0, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ _C: 20.8 (C⁶H₂, C⁷H₂), 22.8 (C⁵H₂),
195 24.9 (C⁸H₂), 114.1 (C^{4a}), 117.4 (CH=), 120.9 (2CH), 124.0 (CH), 128.1 (2CH), 128.8 (2CH),
196 128.9 (2CH), 129.6 (CH), 135.9 (C, Ph), 138.4 (CH), 140.6 (C, Ph), 151.9 (C), 152.1 (C), 154.9
197 (C^{8a}). Found: [M+H]⁺ 344.1751; molecular formula C₂₂H₂₁N₃O requires [M+H]⁺ 344.1757.

198 **Compound 3l** was synthesized according to the general procedure (reaction time 3 h)
199 from **2d** and benzaldehyde in 21% isolated yield. Brown crystals, mp 108-109 °C (from
200 CH₂Cl₂), R_f 0.2 (petroleum ether: EtOAc:MeOH 1:1:0.3). ¹H NMR (400.0 MHz, CDCl₃) δ _H:
201 1.75-1.89 (4H, m, C⁶H₂, C⁷H₂), 2.50 (2H, m, C⁵H₂), 2.93 (2H, m, C⁸H₂), 3.81 (3H, s, CH₃),
202 6.53 (1H, s, NH), 6.88-6.93 (2H, m, 2CH, Ar), 7.26-7.37 (3H, m, 3CH, Ph), 7.47-7.52 (2H, m,
203 2CH, Ar), 7.55-7.59 (2H, m, 2CH, Ph), 7.81 (1H, d, J = 16.0 Hz, =CH), 7.97 (1H, d, J = 16.0

204 Hz, =CH); ^{13}C NMR (100.6 MHz, CDCl_3) δ_{C} : 20.9 (C^6H_2), 21.0 (C^7H_2), 22.7 (C^5H_2), 24.9
205 (C^8H_2), 55.5 (CH_3), 113.7 ($\text{C}^{4\text{a}}$), 114.0 (2CH, Ar), 117.9 (CH=), 122.8 (2CH, Ar), 127.9 (2CH,
206 Ph), 128.7 (2CH, Ph), 129.2 (CH, Ph), 131.8 (C, Ar), 136.2 (C, Ph), 139.4 (CH=), 148.4 (C^4),
207 151.3 (C^2), 154.5 ($\text{C}^{8\text{a}}$), 156.1 (C, Ar). Found: $[\text{M}+\text{H}]^+$ 374.1852; molecular formula
208 $\text{C}_{23}\text{H}_{23}\text{N}_3\text{O}_2$ requires $[\text{M}+\text{H}]^+$ 374.1863.

209 **Compound 3m** was synthesized according to the general procedure (reaction time 3 h)
210 from **2a** and cinnamic aldehyde in 17% isolated yield. Yellow oil, R_f 0.4 (petroleum
211 ether:EtOAc:MeOH 1:1:0.1). ^1H NMR (400.0 MHz, CDCl_3) δ_{H} : 1.62–1.76 (2H, m, C^6H_2),
212 1.80–1.93 (2H, m, C^7H_2), 2.58 (2H, m, C^5H_2), 2.95 (2H, m, C^8H_2), 3.29–3.37 (4H, m, 2 CH_2N),
213 3.80–3.89 (4H, m, 2 CH_2O), 7.31–7.40 (4H, m, 3CH, Ph, CH=), 7.44–7.50 (1H, m, CH=), 7.62–
214 7.67 (2H, m, 2CH, Ph), 7.89 (1H, ps.d, J = 16.3 Hz, CH=), 7.98 (1H, ps.d, J = 16.0 Hz, CH=);
215 ^{13}C NMR (100.6 MHz, CDCl_3) δ_{C} : 21.4 (CH_2), 21.6 (CH_2), 25.5 (CH_2), 26.3 (CH_2), 49.0
216 (2 CH_2N), 66.7 (2 CH_2O), 117.8 (CH=), 119.7 ($\text{C}^{4\text{a}}$), 127.0 (CH=), 128.0 (2CH, Ph), 128.5
217 (CH=), 128.7 (2CH, Ph), 129.3 (CH, Ph), 136.1 (C, Ph), 139.3 (=CH), 151.2 (C^2), 154.7 (C^4),
218 156.0 ($\text{C}^{8\text{a}}$). Found: $[\text{M}+\text{H}]^+$ 364.2017; molecular formula $\text{C}_{22}\text{H}_{25}\text{N}_3\text{O}_2$ requires $[\text{M}+\text{H}]^+$
219 364.2020.

220 **Compound 3n** was synthesized according to the general procedure (reaction time 2 h)
221 from **2a** and 2-naphthaldehyde in 15% isolated yield. Orange crystals, mp 155–156 °C (from
222 CH_2Cl_2), R_f 0.4 (petroleum ether:EtOAc:MeOH 1:1:0.2). ^1H NMR (400.0 MHz, CDCl_3) δ_{H} :
223 1.63–1.75 (2H, m, C^6H_2), 1.83–1.94 (2H, m, C^7H_2), 2.58 (2H, m, C^5H_2), 2.97 (2H, m, C^8H_2),
224 3.30–3.42 (4H, m, 2 CH_2N), 3.80–3.90 (4H, m, 2 CH_2O), 7.46–7.51 (2H, m, 2CH, Ar), 7.53–
225 7.57 (1H, m, 1CH, Ar), 7.82–7.86 (2H, m, 2CH, Ar), 7.96 (1H, d, J = 7.1 Hz, CH, Ar), 8.05
226 (1H, d, J = 15.8 Hz, CH=), 8.23 (1H, d, J = 8.4 Hz, CH, Ar), 8.78 (1H, d, J = 15.8 Hz, CH=);
227 ^{13}C NMR (100.6 MHz, CDCl_3) δ_{C} : 21.4 (C^7H_2), 21.7 (C^6H_2), 25.5 (C^8H_2), 26.3 (C^5H_2), 49.0
228 (2 CH_2N), 66.7 (2 CH_2O), 120.0 ($\text{C}^{4\text{a}}$), 120.2 (CH=), 123.4 (CH, Ar), 124.9 (CH, Ar), 125.7 (CH,
229 Ar), 125.9 (CH, Ar), 126.5 (CH, Ar), 128.7 (CH, Ar), 129.6 (CH, Ar), 131.5 (C, Ar), 133.3 (C,

230 Ar), 133.7 (C, Ar), 135.8 (CH=), 151.2 (C²), 154.6 (C⁴), 156.0 (C^{8a}). Found: [M+H]⁺ 388.2010;
231 molecular formula C₂₄H₂₅N₃O₂ requires [M+H]⁺ 388.2020.

232 **Compound 3o** was synthesized according to the general procedure (reaction time 5 h; 0.7
233 eq. of aldehyde were taken instead of 2 eq.) from **2a** and perylene-3-carboxaldehyde in 10%
234 isolated yield. Dark-red crystals, mp 155–156 °C (from CH₂Cl₂), R_f 0.4 (petroleum
235 ether:EtOAc:MeOH 1:1:0.4). ¹H NMR (400.0 MHz, CDCl₃) δ_H: 1.68–1.78 (2H, m, C⁶H₂),
236 1.88–1.97 (2H, m, C⁷H₂), 2.61 (2H, m, C⁵H₂), 2.99 (2H, m, C⁸H₂), 3.36–3.43 (4H, m, 2CH₂N),
237 3.85–3.92 (4H, m, 2CH₂O), 7.45–7.49 (2H, m, 2CH), 7.56 (1H, dd, J = 7.8, 8.4 Hz, CH), 7.65–
238 7.69 (2H, m, 2CH), 7.98 (1H, d, J = 8.1 Hz, CH), 8.08 (1H, d, J = 15.7 Hz, =CH), 8.09 (1H, d,
239 J = 8.4 Hz, CH), 8.22 (1H, d, J = 7.8 Hz, CH) 8.17–8.21 (3H, m, 3CH), 8.73 (1H, d, J = 15.7
240 Hz, =CH); ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 21.4 (C⁷H₂), 21.7 (C⁶H₂), 25.5 (C⁸H₂), 26.3
241 (C⁵H₂), 49.1 (2CH₂N), 66.8 (2CH₂O), 119.7 (=CH), 119.9 (C^{4a}), 120.3 (CH), 120.4 (CH), 120.6
242 (CH), 120.8 (CH), 123.1 (CH), 125.7 (CH), 126.6 (CH), 126.7 (CH), 126.9 (CH), 128.0 (CH),
243 128.2 (CH), 128.4 (C), 129.0 (C), 130.9 (C), 131.2 (C), 131.7 (C), 132.5 (C), 132.7 (C), 132.9
244 (C), 134.6 (C), 135.4 (=CH), 151.3 (C²), 154.6 (C⁴), 156.0 (C^{8a}). Found: [M+H]⁺ 512.2326;
245 molecular formula C₃₄H₂₉N₃O₂ requires [M+H]⁺ 512.2333.

246 **Compound 3p** was synthesized according to the general procedure (reaction time 6 h)
247 from **2a** and thiophene-2-carboxaldehyde in 12% isolated yield. Yellow crystals, mp 130–131
248 °C (from CH₂Cl₂), R_f 0.2 (petroleum ether:EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz,
249 CDCl₃) δ_H: 1.64–1.75 (2H, m, C⁶H₂), 1.86–1.94 (2H, m, C⁷H₂), 2.57 (2H, m, C⁵H₂), 2.94 (2H,
250 m, C⁸H₂), 3.29–3.36 (4H, m, 2CH₂N), 3.81–3.86 (4H, m, 2CH₂O), 7.03 (1H, dd, J = 3.7 Hz, J =
251 5.1 Hz, CH, Thio), 7.27 (1H, d, J = 3.7 Hz, CH, Thio), 7.32 (1H, d, J = 5.1 Hz, CH, Thio), 7.76
252 (1H, d, J = 15.8 Hz, CH=), 8.03 (1H, d, J = 15.8, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ_C:
253 21.4 (C⁷H₂), 21.7 (C⁶H₂), 25.5 (C⁸H₂), 26.2 (C⁵H₂), 49.0 (2CH₂N), 66.7 (2CH₂O), 117.1 (CH=),
254 119.6 (C^{4a}), 127.4 (CH, Thio), 127.9 (CH, Thio), 129.2 (CH, Thio), 131.7 (CH=), 141.9 (C,

255 Thio), 150.9 (C²), 154.5 (C⁴), 155.8 (C^{8a}). Found: [M+H]⁺ 344.1426; molecular formula
256 C₁₈H₂₁N₃O₂S requires [M+H]⁺ 344.1427.

257 **Compound 3q** was synthesized according to the general procedure (reaction time 1 h;
258 10% aqueous NaOH (0.7 g, 17.5 mmol) was taken instead of 50%) from **2e** and benzaldehyde
259 in 19% isolated yield. Yellow crystals, mp 195-198 °C (from CH₂Cl₂), R_f 0.6 (petroleum ether:
260 EtOAc:MeOH 1:1:0.3). ¹H NMR (400.0 MHz, CDCl₃) δ_H: 3.66–3.73 (4H, m, 2CH₂N), 3.79–
261 3.89 (4H, m, 2CH₂O), 6.50 (1H, s, C⁵H), 7.31–7.41 (3H, m, 3CH, Ph), 7.42–7.49 (3H, m, 3CH,
262 Ph), 7.63–7.68 (2H, m, 2CH, Ph), 7.74–7.78 (2H, m, 2CH, Ph), 7.93 (1H, d, J = 16.1 Hz, CH=),
263 8.03 (1H, d, J = 16.1 Hz, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 44.6 (2CH₂N), 66.4
264 (2CH₂O), 102.1 (C⁵H), 117.68 (CH=), 128.1 (2CH, Ph), 128.2 (2CH, Ph), 128.8 (2CH, Ph),
265 129.3 (2CH, Ph), 129.7 (CH, Ph), 130.2 (CH, Ph), 132.1 (C, Ph), 135.8 (C, Ph), 141.3 (CH=),
266 153.5 (C⁴), 155.3 (C²), 156.0 (C⁶). Found: [M+H]⁺ 360.1697; molecular formula C₂₂H₂₁N₃O₂
267 requires [M+H]⁺ 360.1707.

268 **Compound 3r** was synthesized according to the general procedure (reaction time 1 h;
269 10% aqueous NaOH (0.7 g, 17.5 mmol) was taken instead of 50%) from **2e** and benzaldehyde
270 in 18% isolated yield. Yellow crystals, mp 210-212 °C (from CH₂Cl₂), R_f 0.7 (petroleum ether:
271 EtOAc:MeOH 1:1:0.2). ¹H NMR (400.0 MHz, CDCl₃) δ_H: 3.64–3.69 (4H, m, 2CH₂N), 3.81–
272 3.87 (4H, m, 2CH₂O), 6.49 (1H, s, C⁵H), 7.33–7.41 (3H, m, 3CH, Ph), 7.56–7.60 (2H, m, 2CH,
273 C₆H₄Br), 7.63–7.67 (2H, m, 2CH, Ph), 7.69–7.73 (2H, m, 2CH, C₆H₄Br), 7.92 (1H, d, J = 16.1
274 Hz, CH=), 8.04 (1H, d, J = 16.1 Hz, CH=); ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 44.6 (2CH₂N),
275 66.4 (2CH₂O), 101.9 (C⁵H), 117.7 (CH=), 124.7 (CBr), 128.1 (2CH, Ph), 128.8 (2CH, Ph),
276 129.6 (CH, Ph), 130.9 (2CH, C₆H₄Br), 131.1 (C, C₆H₄Br), 131.4 (2CH, C₆H₄Br), 135.8 (C, Ph),
277 140.8 (CH=), 152.5 (C⁴), 154.2 (C⁶), 154.9 (C²). Found: [M+H]⁺ 438.0821 and 440.0795;
278 molecular formula C₂₂H₂₀BrN₃O₂ requires [M+H]⁺ 438.0812 and 440.0792.

279 **Compound 4** was obtained from *N*-oxide **3a** via described method^{8b} in 95% isolated yield
280 and required no purification. Yellowish crystals, mp 113–114 °C (from CH₂Cl₂). ¹H NMR

281 (400.0 MHz, CDCl₃) δ_H: 1.66–1.75 (2H, m, C⁶H₂), 1.80–1.89 (2H, m, C⁷H₂), 2.51 (2H, m,
282 C⁵H₂), 2.83 (2H, m, C⁸H₂), 3.35–3.47 (4H, m, 2CH₂N), 3.74–3.85 (4H, m, 2CH₂O), 7.09 (1H,
283 d, *J* = 16.0 Hz, =CH), 7.23–7.28 (1H, m, 1CH), 7.29–7.35 (2H, m, 2CH), 7.53–7.57 (2H, m,
284 2CH), 7.80 (1H, d, *J* = 16.0 Hz, CH); ¹³C NMR (100.6 MHz, CDCl₃) δ_C: 22.3 (C⁷H₂), 22.8
285 (C⁶H₂), 26.7 (C⁵H₂), 31.7 (C⁸H₂), 48.6 (2CH₂N), 66.8 (2CH₂O), 116.4 (C^{4a}), 127.4 (2CH),
286 127.6 (CH=), 128.61 (CH), 128.64 (2CH), 136.3 (C, Ph), 136.5 (CH=), 160.1 (C²), 164.2 (C^{8a}),
287 164.9 (C⁴). Found: [M+H]⁺ 322.1905; molecular formula C₂₀H₂₃N₃O requires [M+H]⁺
288 322.1914.

289 **2.3. X-ray analysis.** For X-ray diffraction analysis was chosen single crystal of compound
290 **3b.** Cell parameters for compound **3b** were determined from a set of 13467 reflections.
291 Structure was solved by direct methods (*SHELXS97*)^{10a} and refined with using anisotropic
292 approximation for all nonhydrogen atoms. All hydrogen atoms were found from the different
293 Fourier maps and refined with using riding model. Refinement procedure was made with using
294 *SHELXL-13* program.^{10b} The description and results of the single crystal experiment are given
295 in Table S1. Graphical representations (Figure S1) of solved molecular structure was made with
296 using *ORTEP-3* program.^{10c} The CIF-file was checked (on-line procedure) by *PLATON*^{10d}
297 program and deposited in Cambridge Structural Data Base (deposit number 1545819). In the
298 crystal structure classical hydrogen bonds are not found (Figure S2). By our opinion, crystal
299 structure is stabilized by non-classical hydrogen bonds (Table S3) and intermolecular contacts
300 (less than 4.00 Å) (Table S4).

301 **2.4. Computational details**

302 Molecular modelling, with Gaussian 09 and GaussView 5.0.8, was used to determine the
303 HOMO and LUMO energies at the B3LYP/6-31G(d) was performed. The theoretical
304 calculations for excitation and emission spectra were carried out using the Gaussian 09
305 implementations of B3LYP DFT. Using the optimized geometries in CH₂Cl₂ (PCM model),
306 vertical transitions in the UV-vis region were computed with time-dependent DFT (TDDFT) to

307 generate the simulated absorption spectra. For TDDFT single points, the first 6 (for **3o** NState =
308 20) singlet excitations were solved iteratively [TD(ROOT = X, NSTATES = 6) where X is the
309 root number, X = 1]. For TDDFT geometry optimizations, the first singlet excited states were
310 optimized using analytical gradients, and the first 6 singlet excitations were solved iteratively
311 [TD(ROOT = 1, NSTATES = 6)]. All Gaussian 09 computations used the 6-31G(d) basis sets
312 for all atoms. Spherical harmonic d functions were used throughout, i.e., there are five angular
313 basis functions per d function. All B3LYP/6-31G(d) structures were fully optimized, and
314 analytical frequency calculations were performed on all ground-state structures to ensure a local
315 minimum was achieved.

316 **2.5. Bioevaluation**

317 **MTT test.** The MTT test of compounds **3a-f,h,i,m-o** was performed according to the
318 described procedure¹¹ with small modifications. MCF7, HCT116 human cancer cell lines were
319 cultured in DMEM (PanEco, Russia) with Glutamin (PanEco, Russia) and antibiotics (PanEco,
320 Russia) in CO₂ (5%) at 37°C. The compounds were predissolved (20 mM) in DMSO and then
321 added to the cell-culture medium at the required concentration with a maximum DMSO content
322 of 0.5 v/v-%. At these concentrations, DMSO has no effect on cell viability, as it was shown in
323 control experiments. Cells were cultured in 96-well plates (7000 cells/well) and treated with
324 various concentrations of the title compounds (from 0.01 to 50 μM) as well as doxorubicin at 37
325 °C for 72 h. Cell viability was determined by using the MTT assay, which quantifies the
326 mitochondrial activity. Then, the cells were incubated at 37 °C for 50 min with a solution of
327 MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (10 μL, 5 mg×mL⁻¹)
328 (Sigma-Aldrich, St. Louis, USA). The supernatant was discarded, and cells were dissolved in
329 DMSO (100 μL). The optical density of the solution was measured at 570 nm with use of a
330 multiwall-plate reader (Anthos Zenyth 2000rt, Biochrom, Great Britain,), and the percentage of
331 surviving cells was calculated from the absorbance of untreated cells. Each experiment was
332 repeated at least three times, and each concentration was tested in at least three replicates. Data

333 were presented as (relative cell growth inhibition) a graph of the percentage of surviving cells
334 versus the concentration of the test substances (Figure S4). The meanings of 50% inhibition
335 concentration (IC_{50}) were performed with standard deviation.

336 **Cell toxicity assay.** The citotoxicity of compounds **3a,c,e,f,i,j,l,n,q,r** was evaluated
337 according to the described procedure.^{12a} The porcine embryo kidney (PEK) cell line were
338 seeded and incubated at 37°C for 72 h in 96-well plates. Stock solutions of the studied
339 compounds with a concentration of 5 mM were prepared in 100% DMSO and two-fold
340 dilutions were prepared in medium 199 in Earle solution to obtain final concentrations starting
341 from 50 μ M. Equal volumes of compound dilutions were added in four replicates to the cells.
342 Control cells were treated with the same sequential concentrations of DMSO, as in compound
343 dilutions in four replicates in the same medium. After incubation at 37°C on days 1 or 7, the
344 morphology of the cells was visualized with the microscope and CC_{50} values were calculated
345 according to the Kerber method.^{12b}

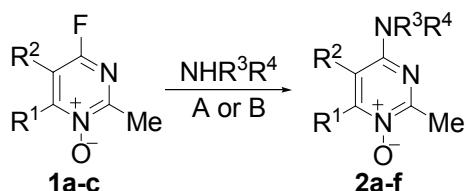
346 **Cell uptake behavior.** The cell uptake behavior of compounds **3a** and **3n** was examined
347 by a microscope Axioplan 2 imaging MOT (Carl Zeiss, Germany) with a digital camera
348 AxioCam Hrc (Carl Zeiss); photos were processed with AxioVision 4.5 soft (Carl Zeiss).
349 HCT116 and MCF7 cells cultures (5×10^4 cells per mL) were used. The fluorescence was
350 excited by a mercury lamp with FRET CFP filters (Filter set 48 FRET CFP/YFP shift free; EX
351 BP 436/20, BS FT 455, EM BP 535/30). The cells were cultivated in flasks 72, unhitched and
352 suspended in DMEM. Compounds **3a** or **3n** in concentrations 25 or 250 μ M were incubated
353 with cells for 1 h at 25 °C. Afterward, the cells were washed two times with DMEM and the
354 photos were obtained (Figures 6, S6,7).

355 Synthetic details, characterisation of novel starting and intermediate compounds **1c, 2d-f**,
356 details of X-ray data collection and structure refinement, details of bioevaluation, copies of
357 absorption and emission spectra, computational details, copies of NMR spectra are available in
358 SI.

3. Results and discussions

360 Two main synthetic transformations were used for the approach to previously unknown π -
361 conjugated systems: i) S_NAr reactions in electron-deficient pyrimidine oxide system and ii) the
362 Knoevenagel-type condensation, employing methyl group in the position 2 of heteroaromatic
363 ring.¹³ It should be noted that in contrast with pyrimidines, the reactivity of the oxidized
364 heterocycles had not been studied systematically. There is only one described example with the
365 use of 2-methylpyrimidine oxides' condensation with an aldehyde;^{14a} along with several
366 examples of the synthesis of 2-ethenyl derivatives of pyrimidine oxide *via* heterocyclization^{14b-d}
367 or oxidation.^{14e} Furthermore, a limited number of examples of S_NAr reactions involving these
368 compounds exists as well.^{8d,14} Nevertheless, they definitely present promising substrates for
369 such processes due to significant electron-withdrawing effect of the *N*-oxide moiety.^{7a,16}

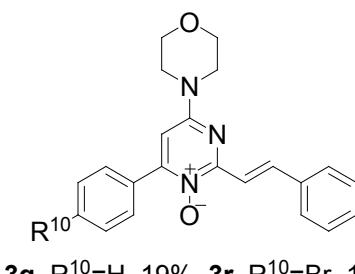
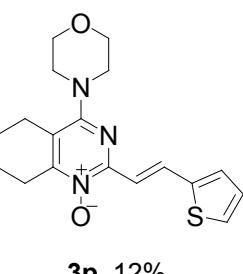
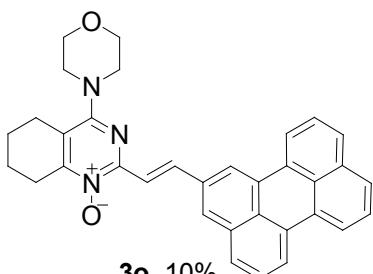
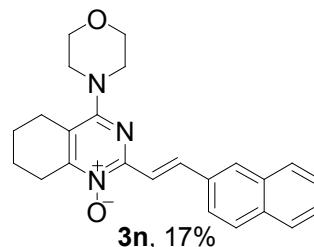
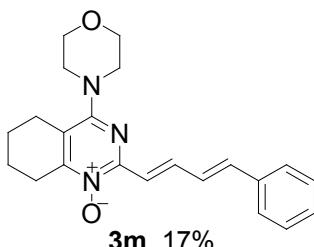
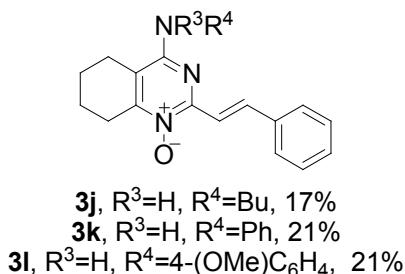
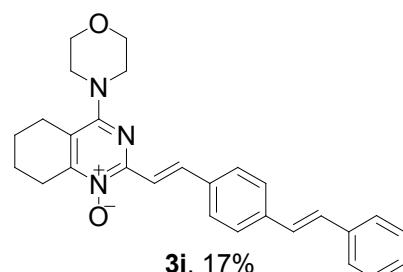
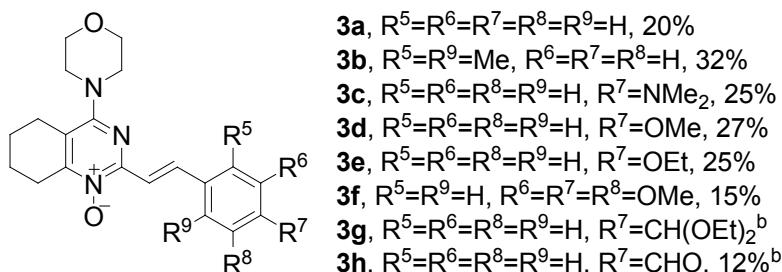
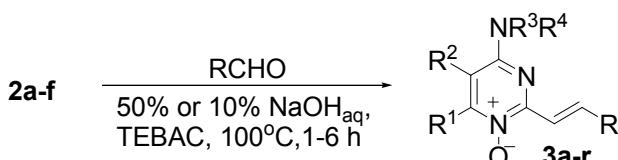
370 The series of pyrimidine *N*-oxides **2a-f** bearing alkyl- or arylamino group in position 4
371 were obtained from pyrimidine *N*-oxides **1a-c** under the treatment with corresponding
372 nucleophiles (Scheme 2). The reactions proceeded smoothly in mild conditions.


373 Amino substituted pyrimidine *N*-oxide **2a** was studied in condensation with benzaldehyde
374 (Scheme 2). The optimization of condensation conditions, including varying of basic or acidic
375 catalyst, solvent and temperature (Table S1), was carried out and in all cases the condensation
376 proceeded selectively at the methyl group. The best result was achieved when 50% aqueous
377 NaOH was used as a base in the presence of TEBAC without organic solvent.

378 Under the optimized conditions, the series of novel pyrimidine *N*-oxides derivatives **3a-r**
379 were obtained (Scheme 2). The aromatic aldehydes, containing electron donating substituents,
380 were readily involved in the reaction with **2a** to give 2-arylideneypyrimidine *N*-oxides **3a-f,i-l**.
381 Aldehydes containing the nitro-group or halogen atoms in the aryl moiety did not react with 2-
382 methylpyrimidine *N*-oxides, and neither did acetophenone. The only condensation product
383 containing an acceptor substituent in the styryl moiety that we obtained was compound **3h**. For
384 this purpose, *N*-oxide **3g** was prepared as the precursor. As a bonus no additional synthetic

385 procedure was necessary because the acetal protective group was removed in the course of
 386 column chromatography.

387










Scheme 2^a

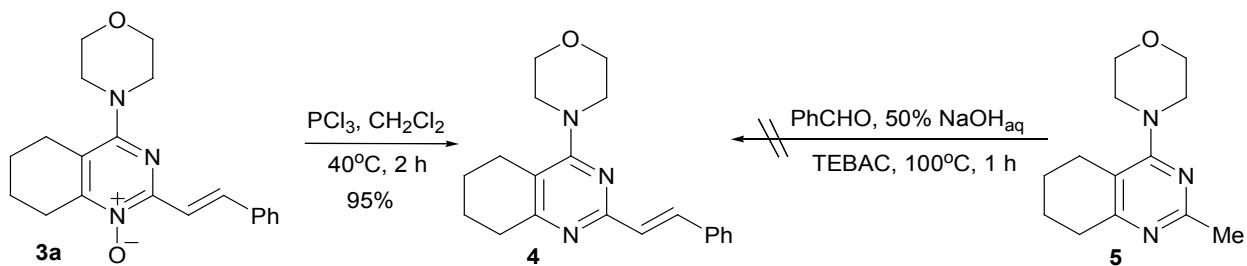
2a, $\text{R}^1\text{-R}^2=-(\text{CH}_2)_4-$, $\text{R}^3\text{-R}^4=-(\text{CH}_2)_2\text{O}(\text{CH}_2)_2-$, 85% (A)
2b, $\text{R}^1\text{-R}^2=-(\text{CH}_2)_4-$, $\text{R}^3=\text{H}$, $\text{R}^4=\text{Bu}$, 36% (A)
2c, $\text{R}^1\text{-R}^2=-(\text{CH}_2)_4-$, $\text{R}^3=\text{H}$, $\text{R}^4=\text{Ph}$, 48% (B)
2d, $\text{R}^1\text{-R}^2=-(\text{CH}_2)_4-$, $\text{R}^3=\text{H}$, $\text{R}^4=(4\text{-OMe-C}_6\text{H}_4)$, 65% (B)
2e, $\text{R}^1=\text{Ph}$, $\text{R}^2=\text{H}$, $\text{R}^3\text{-R}^4=-(\text{CH}_2)_2\text{O}(\text{CH}_2)_2-$, 62% (A)
2f, $\text{R}^1=4\text{-Br-C}_6\text{H}_4$, $\text{R}^2=\text{H}$, $\text{R}^3\text{-R}^4=-(\text{CH}_2)_2\text{O}(\text{CH}_2)_2-$, 56% (A)

1a, $\text{R}^1\text{-R}^2=-(\text{CH}_2)_4-$; **1b**, $\text{R}^1=\text{Ph}$, $\text{R}^2=\text{H}$; **1c**, $\text{R}^1=4\text{-Br-C}_6\text{H}_4$, $\text{R}^2=\text{H}$

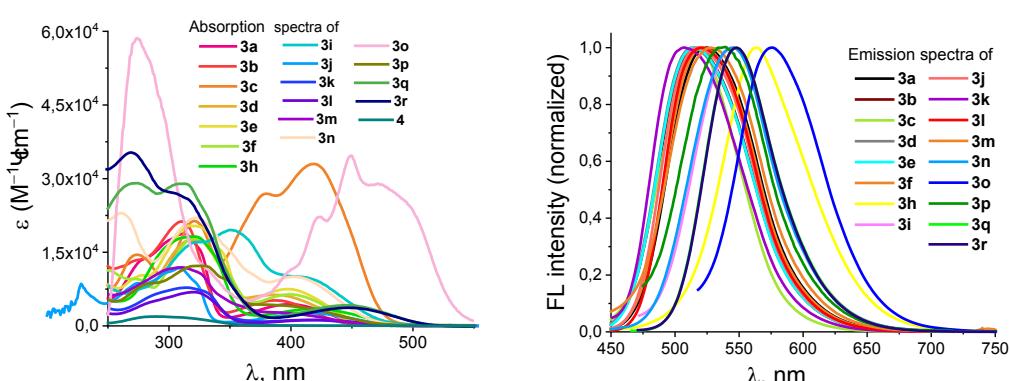
Conditions. **A**: morpholine or NH_2Bu as solvent, 24 h; **B**: NH_2Ph or $\text{NH}_2(4\text{-OMe-C}_6\text{H}_4)$, DIPEA, EtOH, 1-7 days

388

389 ^aisolated yields; ^bacetal protective group of 3g was removed on SiO_2 affording 3h


390

391 The cinnamic aldehyde and aldehydes, containing naphtyl, perylenyl or thiophenyl
 392 moieties, reacted with *N*-oxide **2a** affording compounds **3m-p** (Scheme 2). Pyrimidine *N*-oxides
 393 **2e,f** were also involved into the reaction with benzaldehyde to give the heterocycles **3q,r** with


394 an additional aryl moiety in the pyrimidine ring (Scheme 2). Diluted solution of NaOH was
 395 used because the starting compounds were both more reactive and more labile than
 396 tetrahydroquinazoline derivatives **2a-d**.

397 The product of *N*-oxide reduction in compound **2a**, pyrimidine **5**, was also studied in
 398 condensation with benzaldehyde, but proved to be inert under the reaction conditions (Scheme 3).
 399 Therefore, a better pathway to compound **4** is the reduction of condensation product **3a**. Such a
 400 difference in reactivity of pyrimidines and more electron-withdrawing pyrimidine *N*-oxides have been
 401 previously observed^{14a} and showed the significance of *N*-oxide electronic effects for the chemical
 402 behaviour of pyrimidine derivatives. Here, the comparison of **2a** and **5** in the condensation conditions
 403 demonstrates that the introduction of an *N*-oxide moiety into the molecule is sufficient to compensate
 404 for the deactivating effect of alkylamino group.

405 **Scheme 3**

406 The photophysical properties of the obtained compounds were studied by UV-vis and
 407 fluorescence spectroscopy in CH_2Cl_2 at RT. Spectra of electronic absorption and emission were
 408 recorded; the absorption coefficients and fluorescence quantum yields were measured for all the
 409 obtained compounds (Figure 1, Table 1).

411
 412 **Figure 1.** Electronic absorption (a) and fluorescence (b) spectra of **3a-r** in CH_2Cl_2 at RT.

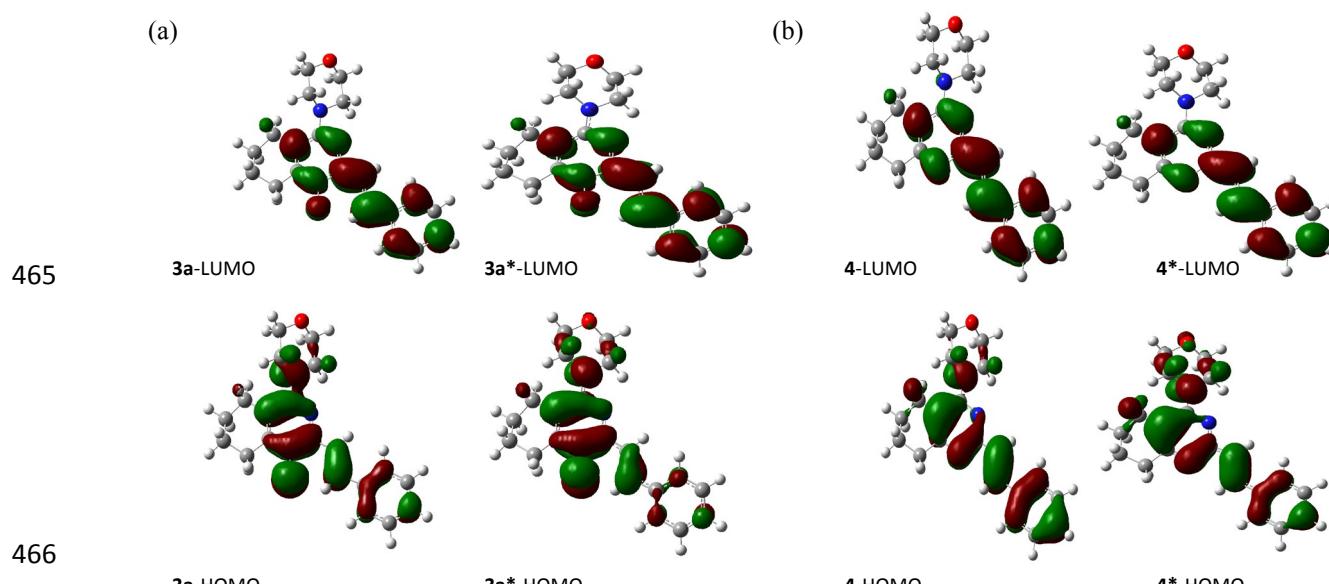
Table 1. Photophysical properties of compounds **3a-r, 4^a**

	$\lambda_{\text{abs}}^{\text{max}}$, nm ^b	$\lambda_{\text{em}}^{\text{max}}$, nm	$\Delta\lambda$, cm ⁻¹	ε , 10 ³ ·M ⁻¹ ·cm ⁻¹	ψ , %	τ , ns	μ , D ^c
3a	400	535 ^d	6308	4.4	21	9.2	4.00
3b	384	536	7385	5.2	29	9.1	4.53
3c	420	523	4689	33.0	1.0	-	1.95
3d	391	533	6814	6.3	12	8.3	2.02
3e	384	515	6624	7.5	21	8.2	1.73
3f	390	521	6447	6.4	23	8.5	6.14
3h	418	565	6224	3.5	2.5	-	8.62
3i	406	531	5798	10.0	4	-	3.67
3j	415	520	4866	2.6	20	8.9	6.70
3k	416	508	4353	1.2	16	1.7 (6%) 10.3 (94%)	5.53
3l	420	520	4579	4.3	13	8.2	7.39
3m	400	546	6685	2.7	6	-	3.51
3n	400	546	6685	10.0	5	-	3.79
3o	470	575	3885	29.0	4	3.2 (69%) 5.4 (31%)	3.92
3p	400	534	6273	4.0	0.6	-	3.30
3q	445	548	4224	4.2	20	0.7 (25%) 2.5 (42%) 10.7 (33%)	4.26
3r	445	548	4224	3.7	15	3.7	4.93
4	284	333	5181	1.9	2.3	-	2.52

^aAll spectra were recorded in CH₂Cl₂ solutions at RT at c = (1.0–6.0) × 10⁻⁵ M. ^bThe longest-wavelength absorption maxima. ^cCalculated dipole moments. ^dIn solid state $\lambda_{\text{em}}^{\text{max}} = 537$ nm.

For most of the obtained compounds, the longest-wavelength absorption maxima are in the visible region, at 380–450 nm (Figure 1, Table 1). The most significant red-shift of maxima relative to compound **3a** ($\lambda_{\text{abs}}^{\text{max}} = 400$ nm) was achieved when the six-membered ring annelated to the pyrimidine moiety was substituted for aryl (**3q,r**, $\lambda_{\text{abs}}^{\text{max}} = 445$ nm), or when the perylenyl moiety was introduced into the molecule (**3o**, $\lambda_{\text{abs}}^{\text{max}} = 470$ nm). Strong absorption (ε over 10 10³·M⁻¹·cm⁻¹) in the long-wave region was demonstrated by compounds **3i,n,o**, containing the extended systems of conjugated bonds. The largest hyperchromic effect was observed when dimethylamino group was introduced in the structure (**3c**, $\varepsilon = 33$ 10³·M⁻¹·cm⁻¹).

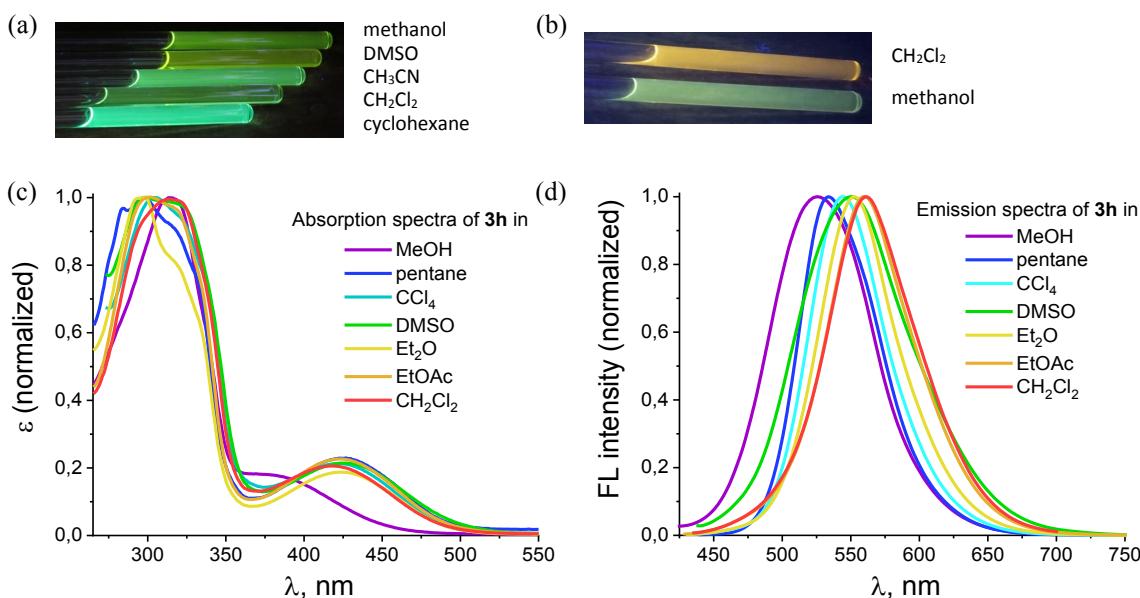
An interesting effect of structure on the absorption was observed for compound **3b**. Due to steric hindrance introduced by the *ortho*-methyl groups, the aryl ring is rotated out of the plane containing the pyrimidine moiety and double bond; whereas in **3a**, two phenyl rings lay in the


429 same plane, and more effective conjugation is achieved. As a result, $\lambda^{\max}_{\text{abs}}$ of dimethyl
430 substituted compound **3b** is blueshifted comparing to **3a**. The molecular structure and geometry
431 of **3b** were proved with DFT-calculations (for **3a,b**, Figure S3) and X-ray analysis (for **3b**,
432 Figure S3).

433 π -Conjugated compounds **3a-r**, containing *N*-oxide moiety, were found to possess
434 fluorescence properties in visible region. For compounds **3a-f**, either unsubstituted or bearing
435 electron-donating groups in the aromatic ring, the emission maxima lay in the range of 515 to
436 536 nm (Figure 1, Table 1). However, introduction of an aldehyde function in *p*-position of the
437 phenyl fragment (**3h**) redshifts the longest-wavelength emission maximum up to $\lambda^{\max}_{\text{em}} = 565$
438 nm. For 4-alkyl and 4-aryl amino *N*-oxides **3j-l** the emission maxima are blueshifted, and the
439 Stokes shift is smaller. Unlike with **3a**, this is caused by less electron-donative properties of the
440 substituents (i.e. as compared with the dialkylamino group). Extension of the π -system
441 (compounds **3i,m,n,q,r**) redshifts the emission maxima considerably, and this effect is the
442 strongest for perylenyl substituted compound **3o**, giving $\lambda^{\max}_{\text{em}} = 575$ nm. Replacement of
443 phenyl with thiophenyl in **3p** slightly increases emission maximum, but the quantum yield
444 becomes appreciably lower, possibly because of a more efficient intersystem crossing into the
445 triplet state due to the heavy atom effect. For the compound **3a** it was shown that in solid state
446 there was no shift of the emission maximum. Fluorescence lifetimes were measured for the
447 compounds with the highest quantum yields, being in most cases 8-9 ns. A mono-exponential
448 decrease in fluorescence was usually observed, but in some cases (especially if the molecule
449 contained several aromatic rings) the dependence had a more complex form. Significant
450 differences in fluorescence decay for **3q** and **3r** are apparently due to the presence of a bromine
451 atom in the molecule.

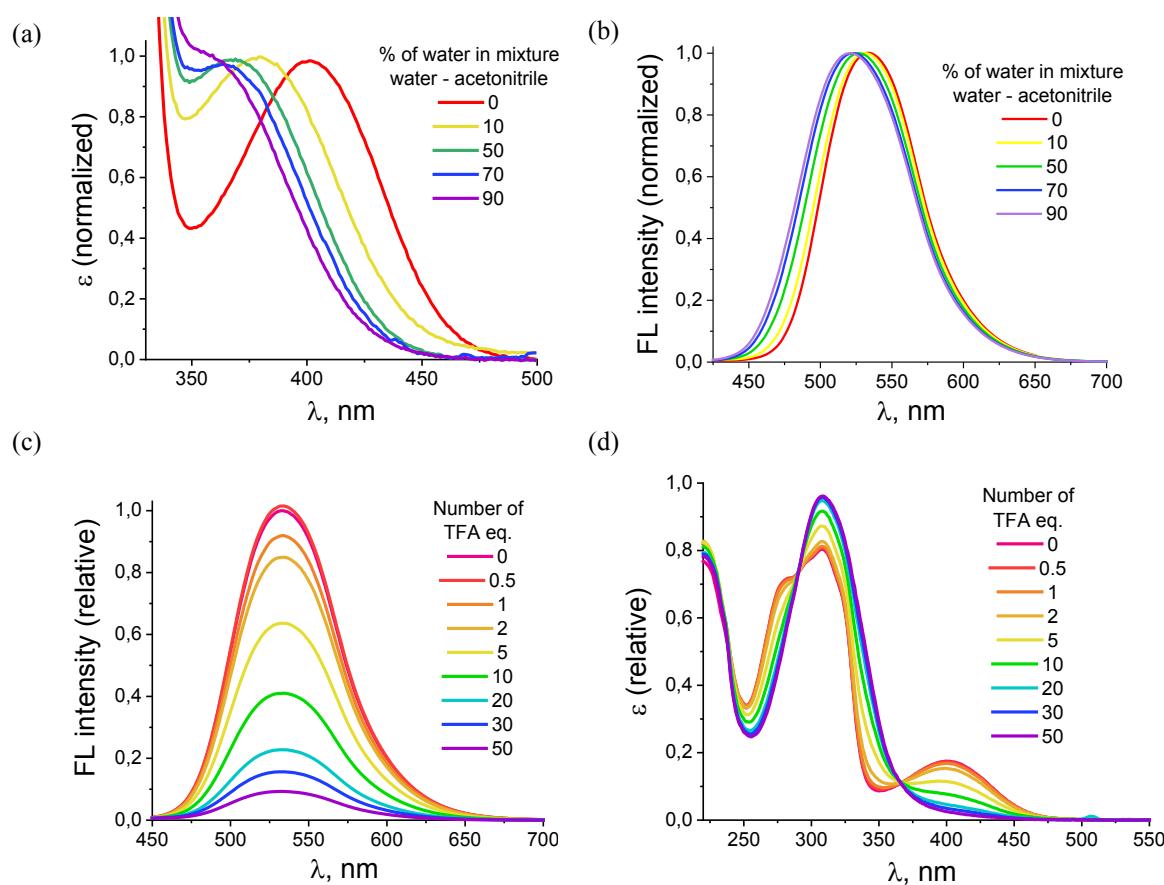
452 Both the absorption and emission maxima of compound **4** were observed in UV region,
453 being significantly blueshifted in comparison with its oxidized analogue **3a**. So, it can be

454 concluded that the presence of *N*-oxide group is essential for the absorption and fluorescence in
455 the visible part of the spectrum.

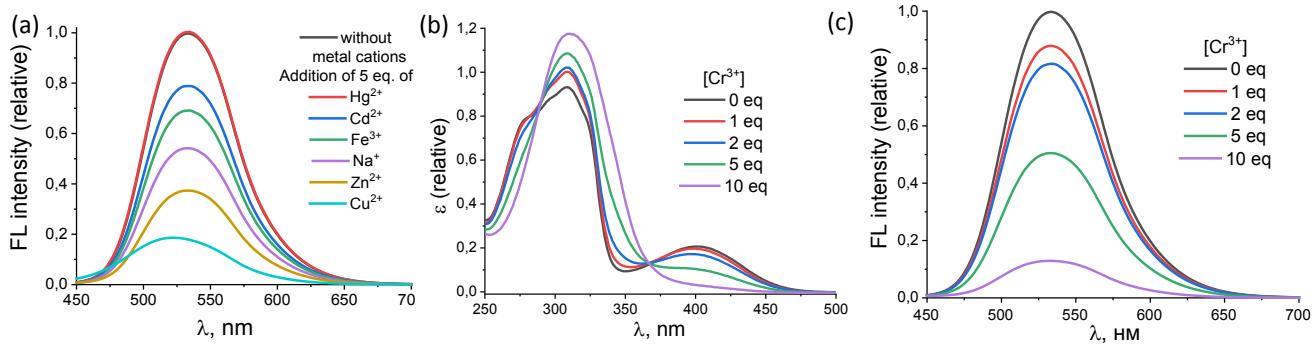

456 To gain a deeper understanding of the electronic and photophysical properties of the synthesized
457 compounds, we performed quantum-chemical simulations for **3a-r** and **4**. The FMO plots show that the
458 HOMOs of the *N*-oxide molecules are mainly localized in the aminopyrimidine moiety, while LUMOs
459 are localized through the whole conjugated system (Figure 2). Much less active charge-transfer is
460 observed for deoxygenated analogue **4**, possessing strongly blueshifted absorption and emission
461 maxima. The dipole moments of the molecules were also predicted, giving 1.6-8.7 D (Table 1), yet no
462 correlation was found between them and photophysical properties of pyrimidine *N*-oxides.
463 Computational details, FMO plots and energies, and comparison of experimental and calculated
464 absorption and emission maxima wavelengths are given in SI.

467 **Figure 2.** FMO plots (B3LYP/6-31G(d)) of (a) **3a** and (b) **4** in ground and excited states. FMO plots of
468 **3b-r** are shown in Figures S10-S27 in the SI.

469 The investigated compounds possess solvatochromic effect, and for most of them, change in the
470 emission color can be seen by the naked eye. Thus, for compound **3h**, changing the solvent from
471 CH_2Cl_2 to methanol led to the change of fluorescence from yellow to green; that is presumably related
472 to the formation of hydrogen bonds between carbonyl group and solvent molecules in methanol (Figure
473 3).


474

475


476 **Figure 3.** Fluorescence of **3a** (a) and **3h** (b); absorption (c)
477 and emission (d) spectra of **3h** in different
solvents at RT, $\lambda_{\text{ex}} = 365$ nm

478

479

480 **Figure 4.** Electronic absorption and fluorescence spectral change of **3a** (2×10^{-5} mol L⁻¹) at RT (a,b)
481 in CH₃CN–water mixtures with varying volumetric fractions of water; (c,d) in CH₂Cl₂ upon addition of
482 TFA; $\lambda_{\text{ex}} = 400$ nm.

483

484 **Figure 5.** (a) Fluorescence spectra of **3a** (2×10^{-5} mol L $^{-1}$) upon addition of Hg $^{2+}$, Cd $^{2+}$, Fe $^{3+}$, Na $^{+}$,
485 Zn $^{2+}$ and Cu $^{2+}$ (5 equiv.); (b,c) electronic absorption and fluorescence spectral change of **3a** (2×10^{-5}
486 mol L $^{-1}$) upon addition of Cr(ClO $_{4}$) $_{3}$ in acetonitrile at RT; $\lambda_{\text{ex}} = 400$ nm.

487 Basing on their structure, the investigated compounds may be expected to exhibit aggregation-
488 induced emission (AIE) feature.¹⁷ In the search for the AIE effect, the emission spectra in
489 CH $_{3}$ CN–water with different volumetric ratios of water were recorded for the compound **3a**. It
490 was shown (Figure 4a,b) that the increase of solvent polarity leads to the hypsochromic shift of
491 absorption and emission maxima; yet neither AIE nor ACQ effects were observed.

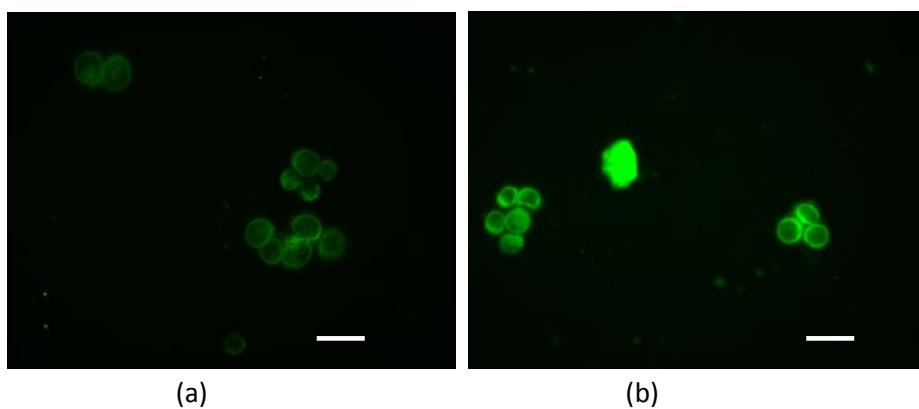
492 For compound **3a**, the effect of the presence of acid in the medium on the absorption and
493 fluorescence spectra was also studied. Upon addition of TFA, the absorption band at 400 nm
494 disappeared and the solution of heterocycle became colorless. Fluorescent properties of **3a** were
495 found to be sensitive to the medium pH: the protonation of the molecule led to fluorescence
496 quenching (Figure 4c,d).

497 To probe the chemosensor properties of compound **3a**, its absorption and emission spectra were
498 investigated in the presence of the metal cations in various concentrations (Figure 5). Analogous to the
499 addition of acids, the addition of salts led to discoloration of the solution and significant quenching of
500 fluorescence. There was no shift of wavelength maxima observed. The strongest changes were
501 observed for Pb $^{2+}$, Cu $^{2+}$, Zn $^{2+}$ ions, while Hg $^{2+}$, Ag $^{+}$, K $^{+}$ ions showed almost no effect on absorption and
502 emission (Figures 5, S9).

503 It should be mentioned that such behavior is not common for diazine fluorophores;^{3a-c} the more
504 common occurrence is the shift of emission bands upon protonation or complexation. Together with the

505 lack of fluorescence in deoxygenated compound **4** it probably indicates that the proton or metal ion
506 binding involves the N-oxide, not the heterocyclic moiety. To prove this suggestion DFT calculations
507 were performed for different protonated forms of **3a**, where a proton was either binded with a
508 heteroatom or underwent an electrophilic addition to the C-C double bond. According to the
509 calculations, the cationic form where the proton is binded with the oxygen atom lays 3.11 kcal/mol
510 lower than the next alternative form. During such a protonation the FMOs of **3a** have changed to those
511 revealing no charge-transfer and strongly resembling the corresponding FMOs in non-fluorescent
512 compound **4** (Figures 2, S28). Speaking in terms of the electrons redistribution, the electron lone pair
513 on oxygen of protonated **3a** is binded with a proton and cannot participate in charge-transfer on
514 contrast to the free **3a**. The same effect can be assumed in the case of metals ions complexation that is
515 to some extent confirmed by the pyrimidine *N*-oxides capability to bind with metals involving just
516 oxygen, shown by X-ray analysis for the complex of **1a** with Cu²⁺.^{8a}

517 To evaluate potential applications of the obtained pyrimidine *N*-oxides as leading
518 compounds for drug development and fluorescent dyes for biological imaging¹⁸ we investigated
519 their antiproliferative activity towards human cancer cells, toxicity and the cell uptake behavior.


520 The primary screening of biological activity of the series of morpholine-substituted π -
521 conjugated molecules was completed. Compounds **3a-f,h,i,m-o** were evaluated for their
522 antitumor potency against 2 types of human cancer cell lines: colon carcinoma HCT-116 and
523 breast adenocarcinoma MCF7 (Table 2).

524 **Table 2.** IC₅₀ values for cell viability found for compounds **3b,i,n** and doxorubicin (Dox) against
525 cancer cell lines

Compounds	IC ₅₀ , μ M	
	HCT-116	MCF7
3b	>50	28.7±8.4
3i	>50	11.7±4.3
3n	8.6±1.9	2.9±0.5
Dox	0.65±0.1	0.28±0.06

526

527 Three of these compounds showed moderate cytotoxic activity against the MCF7 cancer
528 cell line (IC_{50} values for **3b,i,n** are below 50 μ M), and the most active of them, compound **3n**,
529 also demonstrated cytotoxicity towards the line HCT116 in micromolar concentration. Thus, in
530 the studied series, the compound with the naphthalene moiety **3n** shows higher activity against
531 both cell lines, which makes it the most promising candidate. This evaluation, though
532 preliminary, reveals that introduction of hydrophobic sterically hindered substituents in position
533 2 is favorable for cytotoxicity.

534
535 **Figure 6.** Fluorescence of compound **3n** in MCF7 cells after incubation for 1 h. Concentration of **3n**
536 was 25 μ M (a) or 250 μ M (b).

538
539 The toxicity of a series of the pyrimidine oxides **3** was also investigated using the porcine
540 embryo kidney (PEK) cell line. It was shown that **3a**, displaying no antiproliferative activity,
541 also showed no acute (24 h) or chronic (7 d) toxicity in the concentrations up to of 50 μ M.
542 Compound **3n**, on contrary, was found to be quite toxic, possessing $CC_{50} < 6.25$ μ M. In the
543 terms of selectivity it was shown **3i** to be more promising, as it revealed no acute (24 h) toxicity
544 up to of 50 μ M, nevertheless it possessed $CC_{50} = 9.2 \pm 3.1$ μ M.

545 For compounds **3a**, which have shown no citotoxic activity, and **3n**, found to be the most
546 active species, the cell uptake behavior on MCF7 and HCT116 cell lines was investigated and
547 visualized. After incubation with 25 μ M or 250 μ M of a pyrimidine *N*-oxide for 1 hour the cells
548 were excited and the pictures were obtained (Figure 6). Both compounds **3a** and **3n** were shown
549 to be readily accumulated in cells. No difference was observed for active and inactive

550 compounds that testifies that the lack of cytotoxicity of **3a** is not connected with its ability to
551 enter the cell. Two investigated cancer cell lines showed no notable difference in the cell uptake
552 either. The growth of the **3a** or **3n** concentration in the medium led to the fluorescence
553 enhancement, probably, due to further accumulation of the substances inside the sells. Intensive
554 fluorescence of the cells contour may point to the predominant accumulation of the pyrimidine
555 oxides **3a,n** in cell membrane due to their hydrophobic properties.

556 Thus, depending on the substituents in the position 2 of the pyrimidine moiety the
557 compounds **3** may possess significantly varying biological activity. Pyrimidine *N*-oxide **3a**
558 possesses excellent biocompatibility and is capable to enter cells, that makes it a promising
559 structure for development of bioimaging fluorescent probes, while antiproliferative activity found
560 for **3b,i,n** and selectivity, shown by **3i**, allow to expect that further structural modification will
561 lead to the structures, combining fluorescent properties, anticancer activity and high therapeutic
562 index.

563 **4. Conclusions**

564 In summary, we have investigated a series of 2-methyl substituted pyrimidine *N*-oxides,
565 bearing the substituents of various electronic nature, in the reaction with aromatic aldehydes.
566 Basing on the studied reaction, the preparative approach to novel π -conjugated systems,
567 containing pyrimidine *N*-oxide core, was elaborated and a series of previously unknown push-
568 pull molecules were synthesized. Their photophysical properties were examined and it was
569 found that all compounds possess the emission maxima more than 500 nm (up to 575 nm for
570 compound **3o**, containing a perylenyl moiety). This redshift together with the either
571 biocompatibility or antitumor activity, found for some of the obtained conjugated molecules,
572 makes them promising compounds for various bioapplications.

573 **Acknowledgements**

574 We thank the Russian Foundation for Basic Research (project 18-03-00651-a) for financial
575 support of this work. This study was fulfilled using a STOE STADI VARI PILATUS-100K

576 diffractometer and NMR spectrometer Agilent 400-MR purchased by MSU Development
577 Program. The research is supported in part by the National Science Foundation, CHE-1665342.
578 MTT-test is made with the financial support of the Russian Science Foundation (grant No. 14-
579 03-00483).

580 **References**

581 1. For reviews see: (a) G. W. Rewcastle, in *Comprehensive Heterocyclic Chemistry III*, ed.
582 A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor, Elsevier Ltd., Oxford, 2008,
583 **8**, 120; (b) M. Baumann and I. R. Baxendale, *Beilstein J. Org. Chem.*, 2013, **9**, 2265; (c) S.
584 Prachayasittikul, R. Pingaew, A. Worachartcheewan, N. Sinthupoom, V. Prachayasittikul, S.
585 Ruchirawat and V. Prachayasittikul, *Mini-Rev. Med. Chem.*, 2017, **17**, 869.

586 2. For recent examples see: (a) M. Beesu, A. C. D. Salyer, M. J. H. Brush, K. L. Trautman,
587 J. K. Hill and S. A. David, *J. Med. Chem.*, 2017, **60**, 2084; (b) X. Liang, F. Lv, B. Wang, K. Yu,
588 H. Wu, Z. Qi, Z. Jiang, C. Chen, A. Wang, W. Miao, W. Wang, Z. Hu, J. Liu, X. Liu, Z. Zhao, L.
589 Wang, S. Zhang, Z. Ye, C. Wang, T. Ren, Y. Wang, Q. Liu and J. Liu, *J. Med. Chem.*, 2017, **60**,
590 1793, (c) L. R. Odell, M. K. Abdel-Hamid, T. A. Hill, N. Chau, K. A. Young, F. M. Deane, J. A.
591 Sakoff, S. Andersson, J. A. Daniel, P. J. Robinson and A. McCluskey, *J. Med. Chem.*, 2017, **60**,
592 349; (d) J. S. Debenham, C. Madsen-Duggan, M. J. Clements, T. F. Walsh, J. T. Kuethe, M.
593 Reibarkh, S. P. Salowe, L. M. Sonatore, R. Hajdu, J. A. Milligan, D. M. Visco, D. Zhou, R. B.
594 Lingham, D. Stickens, J. A. DeMartino, X. Tong, M. Wolff, J. Pang, R. R. Miller, E. C. Sherer
595 and J. J. Hale, *J. Med. Chem.*, 2016, **59**, 11039; (e) J. H. Ryu, J. A. Lee, S. Kim, Y. A. Shin, J.
596 Yang, H. Y. Han, H. J. Son, Y. H. Kim, J. H. Sa, J.-S. Kim, J. Lee, J. Lee and H.-g. Park, *J. Med.*
597 *Chem.*, 2016, **59**, 10176.

598 3. (a) S. Achelle and N. Plé, *Curr. Org. Synth.*, 2012, **9**, 163; (b) S. Achelle, J. Rodriguez-
599 Lopez and F. Robin-le Guen, *J. Org. Chem.*, 2014, **79**, 7564; (c) S.-i. Kato, Y. Yamada, H.
600 Hiyoshi, K. Umezawa and Y. Nakamura, *J. Org. Chem.*, 2015, **80**, 9076; (d) Z. Zhang, J. Xie, H.
601 Wang, B. Shen, J. Zhang, J. Hao, J. Cao and Z. Wang, *Dyes and Pigments*, 2016, **125**, 299; (e) S.

602 Achelle, J. Rodríguez-López, C. Katan and F. Robin-le Guen, *J. Phys. Chem. C*, 2016, **120**,
603 26986; (f) M. Mao, X. Zhang, B. Zhu, J. Wang, G. Wu, Y. Yin and Q. Song, *Dyes and Pigments*,
604 2016, **124**, 72; (g) M. Klikar, P. Poul, A. Růžička, O. Pytela, A. Barsella, K. D. Dorkenoo, F.
605 Robin-le Guen, F. Bureš and S. Achelle, *J. Org. Chem.*, 2017, **82**, 9435.

606 4. Y. Suzuki, J.-i. Sawada, P. Hibner, H. Ishii, K. Matsuno, M. Sato, B. Witulski and A.
607 Asai, *Dyes and Pigments*, 2017, **145**, 233.

608 5. (a) A. K. Gupta and A. Charrette, *Skinmed*, 2015, **13**, 185; (b) M. Barbareschi, *G. Ital.
609 Dermatol. Venereol.*, 2018, **153**, 102.

610 6. A. M. Mfuh and O. V. Larionov, *Curr. Med. Chem.*, 2015, **22**, 2819.

611 7. (a) A. R. Katritzky and J. M. Lagowski, *Chemistry of the Heterocyclic N-Oxides*,
612 Academic Press, New York, N.Y., 1971; (b) A. Angelo and S. Pietra, *Heterocyclic N-Oxides*,
613 CRC Press, Boca Raton, Florida, Inc., 1991; (c) D.W. Boykin, P. Balakrishnan and A. L.
614 Baumstark, *J. Heterocyclic Chem.*, 1985, **22**, 981.

615 8. (a) K. N. Sedenkova, E. B. Averina, Y. K. Grishin, A. G. Kutateladze, V. B. Rybakov, T.
616 S. Kuznetsova and N. S. Zefirov, *J. Org. Chem.*, 2012, **77**, 9893; (b) K. N. Sedenkova, E. B.
617 Averina, Y. K. Grishin, T. S. Kuznetsova and N. S. Zefirov, *Tetrahedron Lett.*, 2014, **55**, 483; (c)
618 K. N. Sedenkova, E. B. Averina, Y. K. Grishin, A. B. Bacunov, S. I. Troyanov, I. V. Morozov, E.
619 B. Deeva, A. V. Merkulova, T. S. Kuznetsova and N. S. Zefirov, *Tetrahedron Lett.*, 2015, **56**,
620 4927; (d) K. N. Sedenkova, E. V. Dueva, E. B. Averina, Y. K. Grishin, D. I. Osolodkin, L. I.
621 Kozlovskaia, V. A. Palyulin, E. N. Savylyev, B. S. Orlinson, I. A. Novakov, G. M. Butov, T. S.
622 Kuznetsova, G. G. Karganova and N. S. Zefirov, *Org. Biomol. Chem.*, 2015, **13**, 3406; (e) K. N.
623 Sedenkova, E. B. Averina, Yu. K. Grishin, T. S. Kuznetsova and N. S. Zefirov, *Russ. Chem. Bull.*,
624 2016, **65**, 1750; (f) K. N. Sedenkova, E. B. Averina, Y. K. Grishin, J. V. Kolodyazhnaya, V. B.
625 Rybakov, D. A. Vasilenko, D. V. Steglenko, V. I. Minkin, T. S. Kuznetsova and N. S. Zefirov,
626 *Tetrahedron Lett.*, 2017, **58**, 2955; (g) K. N. Sedenkova, E. B. Averina, Yu. K. Grishin, J. V.
627 Kolodjashnaja, V. B. Rybakov, T. S. Kuznetsova, A. Hughes, G. d. P. Gomes, I. Alabugin and N.

628 S. Zefirov, *Org. Biomol. Chem.*, 2017, **15**, 9433; (h) K. N. Sedenkova, E. B. Averina, A. A.
629 Nazarova, Yu. K. Grishin, D. S. Karlov, V. L. Zamoyski, V. V. Grigoriev, T. S. Kuznetsova and
630 V. A. Palyulin, *Mendeleev Commun.*, 2018, **28**, 423; (i) K. N. Sedenkova, A. A. Nazarova, E. V.
631 Khvatov, E. V. Dueva, A. A. Orlov, D. I. Osolodkin, Y. K. Grishin, T. S. Kuznetsova, V. A.
632 Palyulin and E. B. Averina, *Mendeleev Commun.*, 2018, **28**, 592.

633 9. A. M. Brouwer, *Pure Appl. Chem.*, 2011, **83**, 2213.

634 10. (a) G.M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112; (b) G.M. Sheldrick, *Acta Cryst.*, 2015,
635 **C71**, 3; (c) L.J. Farrugia, *J. Appl. Cryst.*, 1997, **30**, 568; (d) A.L. Spek, *J. Appl. Cryst.*, 2003, **36**, 7.

636 11. M. Niks and M. Otto, *J. Immunol. Meth.*, 1990, **130**, 149.

637 12. (a) A. A. Orlov, A. A. Chistov, L. I. Kozlovskaya, A. V. Ustinov, V. A. Korshun, G. G.
638 Karganova and D. I. Osolodkin, *Med. Chem. Commun.*, 2016, **7**, 495; (b) M. A. Hamilton, R. C.
639 Russo and R. V. Thurston, *Environ. Sci. Technol.*, 1977, **11**, 714.

640 13. For recent examples see: (a) G. M. Nepomuceno, K. M. Chan, V. Huynh, K. S. Martin, J.
641 T. Moore, T. E. O'Brien, L. A. E. Pollo, F. J. Sarabia, C. Tadeus and Z. Yao, *ACS Med. Chem.
642 Lett.*, 2015, **6**, 308; (b) B. S. Reddy, M. Rafeek, C. V. R. Reddy and P. K. Dubey, *Heterocycl.
643 Lett.*, 2015, **5**, 105; (c) E. N. Agbo, T. J. Makhafola, Y. S. Choong, M. J. Mphahlele and P.
644 Ramasami, *Molecules*, 2016, **21**, 28; (d) T. M. Aliyeu, D. V. Berdnikova, O. A. Fedorova, E. N.
645 Gulakova, C. Stremmel and H. Ihmels, *J. Org. Chem.*, 2016, **81**, 9075.

646 14. (a) H. Yamanaka, S. Ogawa and S. Konno, *Chem. Pharm. Bull.*, 1980, **28**, 1526; (b) A.
647 Kövendi and M. Kircz, *Chem. Ber.*, 1965, **98**, 1049; (c) F. Heaney and E. Lawless, *J. Heterocyclic
648 Chem.*, 2007, **44**, 569; (d) R. Zimmer, T. Lechel, G. Rancan, M. K. Bera and H.-U. Reissig,
649 *SYNLETT*, 2010, 1793; (e) E. Lewandowska and D. C. Chatfield, *Eur. J. Org. Chem.*, 2005, 3297.

650 15. For selected examples see: (a) G. E. Magoulas, S. E. Bariamis, C. M. Athanassopoulos
651 and D. Papaioannou, *Tetrahedron Lett.*, 2010, **51**, 1989; (b) J.-C. Muller and H. Ramuz, *Helv.
652 Chim. Act.*, 1982, **65**, 1445; (c) H. Yamanaka, S. Ogawa and S. Konno, *Chem. Pharm. Bull.*, 1981,
653 **29**, 98.

654 16. (a) H. Yamanaka, T. Sakamoto and S. Niitsuma, *Heterocycles*, 1990, **31**, 923; (b) M.
655 Maltese, *J. Org. Chem.*, 1995, **60**, 2436.

656 17. (a) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z. Tang, *Chem. Rev.*,
657 2015, **115**, 11718; (b) J. Chen, M. Liu, Q. Huang, L. Huang, H. Huang, F. Deng, Y. Wen, J. Tian,
658 X. Zhang and Y. Wei, *Chem. Engineer. J.*, 2018, **337**, 82; (c) X. Zhang, K. Wang, M. Liu, X.
659 Zhang, L. Tao, Y. Chen and Yen Wei, *Nanoscale*, 2015, **7**, 11486; (d) X. Zhang, X. Zhang, B.
660 Yang, M. Liu, W. Liu, Y. Chena and Yen Wei, *Polym. Chem.*, 2014, **5**, 356; (e) X. Zhang, X.
661 Zhang, B. Yang, M. Liu, W. Liu, Y. Chena and Yen Wei, *Polym. Chem.*, 2014, **5**, 399; (f) H.
662 Huang, M. Liu, Q. Wan, R. Jiang, D. Xu, Q. Huang, Y. Wen, F. Deng, X. Zhang and Y. Wei,
663 *Mater. Sci. Eng. C*, 2018, **91**, 201; (g) R. Jiang, M. Liu, C. Li, Q. Huang, H. Huang, Q. Wan, Y.
664 Wen, Q.-y. Cao, X. Zhang and Y. Wei, *Mater. Sci. Eng. C*, 2017, **80**, 708; (h) Z. Chen, J. Zhang,
665 M. Song, J. Yin, G.-A. Yu and Sheng Hua Liu, *Chem. Commun.*, 2015, **51**, 326; (i) Z. Chen, G.
666 Liu, S. Pu and S. H. Liu, *Dyes and Pigments*, 2017, **143**, 409.

667 18. (a) L. Yuan, W. Lin, K. Zheng, L. He and Weimin Huang, *Chem. Soc. Rev.*, 2013, **42**,
668 622; (b) R. Jiang, M. Liu, H. Huang, L. Mao, Q. Huang, Y. Wen, Q.-y. Cao, J. Tian, X. Zhang and
669 Y. Wei, *Dyes and Pigments*, 2018, **151**, 123; (c) J. Tian, R. Jiang, P. Gao, D. Xu, L. Mao, G.
670 Zeng, M. Liu, F. Deng, X. Zhang and Y. Wei, *Mater. Sci. Eng. C*, 2017, **79**, 563; (d) Y. Liu, L.
671 Mao, X. Liu, M. Liu, D. Xu, R. Jiang, F. Deng, Y. Li, X. Zhang and Y. Wei, *Mater. Sci. Eng. C*,
672 2017, **79**, 590; (e) R. Jiang, H. Liu, M. Liu, J. Tian, Q. Huang, H. Huang, Y. Wen, Q.-y. Cao, X.
673 Zhang and Y. Wei, *Mater. Sci. Eng. C*, 2017, **81**, 416; (f) R. Jiang, M. Liu, T. Chen, H. Huang,
674 Q. Huang, J. Tian, Y. Wen, Q.-y. Cao, X. Zhang and Y. Wei, *Dyes and Pigments*, 2018, **148**, 52.