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We study methods for finding the solution set of a generic system in a family of polynomial systems with
parametric coefficients. We present a framework for describing monodromy-based solvers in terms of
decorated graphs. Under the theoretical . that monodromy actions are generated uniformly, we show that
the expected number of homotopy paths tracked by an algorithm following this framework is linear in the
number of solutions. We demonstrate that our software implementation is competitive with the existing
state-of-the-art methods implemented in other software packages.
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1. Introduction

Homotopy continuation has become a standard technique to find approximations of solutions of
polynomial systems. There is an early popular text on the subject and its applications in the study
by Morgan (1987). This technique is the backbone of Numerical Algebraic Geometry, the area that
classically addresses the questions of complex algebraic geometry through algorithms that employ
numerical approximate computation. The chapter in the study by Sommese et al. (2005, Section 8) is the
earliest introduction and the book by Sommese & Wampler (2005) is the primary reference in the area.

Families of polynomial systems with parametric coefficients play one of the central roles. Most
homotopy continuation techniques could be viewed as going from a generic system in the family
to a particular one. This process is commonly referred to as degeneration. Going in the reverse
direction it may be called deformation, undegeneration or regeneration depending on the literature.
Knowing the solutions of a generic system, one can use coefficient-parameter homotopy (Sommese &
Wampler, 2005, Section 7) to get to the solution of a particular one.
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2 T. DUFF ET AL.

The main problem that we address here is how to solve a generic system in a family of systems,

F, = (f;]),...,flfm) =0, O eCpllal,i=1....N,

with finitely many parameters p and n variables x. In the main body of the paper we restrict our attention
to linear parametric families of systems, defined as systems with affine linear parametric coefficients,
such that for a generic p we have a nonempty finite set of solutions x to F),(x) = 0. This implies N > n.
The number of parameters is arbitrary, but we require that for a generic x there exists p with F,(x) = 0.
These restrictions are made for the sake of simplicity. We explain what modifications are needed to
apply our approach in more general settings in Section 7.

Linear parametric systems form a large class that includes sparse polynomial systems. These are
square (n = N) systems with a fixed monomial support for each equation and a distinct parameter for
the coefficient of each monomial. Polyhedral homotopy methods for solving sparse systems stem from
the BKK (Bernstein, Khovanskii, Kouchnirenko) bound on the number of solutions (Bernstein, 1975);
the early work on algorithm development was done in the studies by Verschelde et al. (1994) and Huber
& Sturmfels (1995). Polyhedral homotopies provide an optimal solution to sparse systems in the sense
that they are designed to follow exactly as many paths as the number of solutions of a generic system
(the BKK bound).

The method that we propose is clearly not optimal in the above sense. The expected number of
homotopy paths followed can be larger than the number of solutions, though not significantly larger.
We also use linear segment homotopies that are significantly simpler and less expensive to follow in
practice. Our current implementation shows it is competitive with the state-of-the-art implementations
of polyhedral homotopies in PHCpack (Verschelde, 1999) and HOM4PS2 (Lee et al., 2008) for solving
sparse systems. In a setting more general than sparse, we demonstrate examples of linear parametric
systems for which our implementation exceeds the capabilities of the existing sparse system solvers and
blackbox solvers based on other ideas.

The idea of using the monodromy action induced by the fundamental group of the regular locus
of the parameter space has been successfully employed throughout Numerical Algebraic Geometry.
One of the main tools in the area, numerical irreducible decomposition, can be efficiently implemented
using the monodromy breakup algorithm, which first appeared in the study by Sommese e al. (2001).
One parallel incarnation of the monodromy breakup algorithm is described in the study by Leykin &
Verschelde (2009). In fact, the main idea in that work is close in spirit to what we propose in this article.
The idea to use monodromy to find solutions drives numerical implicitization (Chen & Kileel, 2016)
and appears in other works such as del Campo & Rodriguez (2017). Computing monodromy groups
numerically, as in the studies by Leykin & Sottile (2009) and Hauenstein ef al. (2017), requires more
computation than just finding solutions. One can approach this computation with the same methodology
as we propose; see 5 of Section 7.

Our main contribution is a new framework to describe algorithms for solving polynomial systems
using monodromy; we call it the Monodromy Solver (MS) framework. We analyze the complexity of our
main algorithm both theoretically assuming a certain statistical model and experimentally on families of
examples. The analysis gives us grounds to say that the expected number of paths tracked by our method
is linear, with a small coefficient, as the number of solutions grows. Our method and its implementation
not only provide a new general tool for solving polynomial systems, but also can solve some problems
out of reach for other existing software.

The structure of the paper is as follows. We give a brief overview of the MS method intermingled
with some necessary preliminaries in Section 2. An algorithm following the MS framework depends on
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 3

a choice of strategy with several possibilities outlined in Section 3. Statistical analysis of the method
is the topic of Section 4. The implementation is discussed in Section 5 together with the side topic of
certification of the solution set. The results of our experiments on selected example families highlighting
various practical computational aspects are in Section 6. The reader may also want look at examples of
systems in Sections 6.1 and 6.2 before reading some earlier sections. Possible generalizations of the MS
technique and the future directions to explore are presented in Section 7.

2. Background and framework overview

Let m,n € N. We consider the complex linear space of square systems F,, p € C", where the monomial
support of p(l) e p(") in the variables x = (xp,...,x,) is fixed and the coefficients vary. By a base
space B we mean a parametrized linear variety of systems. We think of it as the image of an affine linear
map ¢ : p = F), from a parameter space C" with coordinates p = (py, ..., pw) to the space of systems.

We assume the structure of our family is such that the projection 7 from the solution variety
V={(Fp.x) € Bx C" | Fy(x) = 0}

to B gives us a branched covering, i.e., the fibre 7~ (F p) is finite of the same cardinality for a generic p.
The discriminant variety D in this context is the subset of the systems in the base space with nongeneric
fibres; it is also known as the branch locus of .

The fundamental group 71 (B \ D)—note that my is a usual topological notation that is not related
to the map m above—as a set consists of loops, i.e., paths in B \ D starting and finishing at a fixed
p € B\ D considered up to homotopy equivalence. The definition, more details to which one can find in
Section 2.1, does not depend on the point p, since B \ D is connected. Each loop induces a permutation
of the fibre 7 ! (F p), which is referred to as a monodromy action.

Our goal is to find the fibre of one generic system in our family. Our method is to find one pair
(P0,x0) € V and use the monodromy action on the fibre 77 ! (F PO) to find its points. We assume that this
action is transitive, which is the case if and only if the solution variety V is irreducible. If V happens to
be reducible we replace V with its unique dominant irreducible component as explained in Remark 2.2.

2.1  Monodromy

We briefly review the basic facts concerning monodromy groups of branched coverings. With notation
as before fix a system F,, € B\ D and consider a loop t without branch points based at F),; that is, a
continuous path

t:[0,11 - B\ D

such that 7(0) = (1) = F),. Suppose we are also given a point x; in the fibre a7l (F p) with d points
X1,X2,...,Xg. Since 7 is a covering map the pair (t, x;) corresponds to a unique lifting T;, a path

7:[0,1]—>V

such that 7;(0) = x; and 7;(1) = x; for some 1 < j < d. Note that the reversal of  and x; lifts to a reversal
of 7;. Thus, the loop t induces a permutation of the set 77 ! (F p) . We have a group homomorphism

(5] (B\D,F,,) — S4
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4 T. DUFF ET AL.

whose domain is the usual fundamental group of B \ D based at F},. The image of ¢ is the monodrony
group associated to 7! (F ,,). The monodromy group acts on the fibre 7! (F ,,) by permuting the
solutions of F),.

REMARK 2.1 A reader familiar with the notion of a monodromy loop in the discussion of Sommese &
Wampler (2005, Section 15.4) may think of this keyword referring to a representative of an element of
the fundamental group together with its liftings to the solution variety and the induced action on the
fibre. For the purposes of this article we need to be clear about the ingredients bundled in this term.

We have not used any algebraic properties so far. The construction of the monodromy group above
holds for an arbitrary covering with finitely many sheets. The monodromy group is a transitive subgroup
of S; whenever the total space is connected. In our setting since we are working over C, this occurs
precisely when the solution variety is irreducible.

REMARK 2.2 For a linear family we can show that there is at most one irreducible component of the
solution variety V for which the restriction of the projection (F > x) > x is dominant (that is, its image is
dense). We call such component the dominant component. Indeed, let U be the locus of points (F P> x) €
771 (B\ D) such that

e the restriction of the x-projection map is locally surjective, and

o the solution to the linear system of equations F},(x) = 0 in p has the generic dimension.

Being locally surjective could be interpreted either in the sense of Zariski topology or as inducing
surjection on the tangent spaces. Then either U is empty or U is the dominant component we need, since
it is a vector bundle over an irreducible variety, and is hence irreducible.

In the rest of the paper when we say solution variety, we mean the dominant component of the
solution variety. In particular, for sparse systems restricting the attention to the dominant component
translates into looking for solutions only in the torus (C*)".

2.2 Homotopy continuation

Given two points F,, and F), in the base space B, we may form the family of systems
H({t) =1 —=0F, +tF,,, tel0,1],

known as the linear segment homotopy between the two systems. If p; and p; are sufficiently generic for
each r € [0, 1], we have H(¢) outside the real codimension 2 set D. Consequently, each system H(¢) has
a finite and equal number of solutions. This homotopy is a path in B; a lifting of this path in the solution
variety V is called a homotopy path. The homotopy paths of H(#) establish a one-to-one correspondence
between the fibres 7! (Fp,) and 7! (F),).

REMARK 2.3 Note that y F, for y € C\ {0} has the same solutions as F,. Let us scale both ends of the
homotopy by taking a homotopy between yF), and y»2F), for generic y; and y». If the coefficients of
F, are homogeneous in p then

H/(t) = (1 - f)J/lel + tyZsz = F(l—t)y1p1+ty2p2 , L€ [Oa l]a

is a homotopy matching solutions 7 ! (F pu) and 7! (F [72)’ where the matching is potentially different
from that given by H(¢). Similarly, for an affine linear family, F), = F’ ]/, + C, where F ,/) is homogeneous
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 5

in p and C is a constant system, we have

H'(t) = (1 =1 Fp, +12Fp, = F(y ) iopy, T (L= Dy1 +112) C.

We ignore the fact that H'(f) may go outside B for ¢ € (0, 1), since its rescaling,

1
H// — —H/
® A=y +1 ®

/
= F(lft)ylpﬁ»t)/zpz + C = F(l—’)J’1P1+’V2172 ) te [07 1]9
(I=Dyy+typ (I=Dy1+tyy

does not leave B and clearly has the same homotopy paths. Note that H”(¢) is well defined as (1 — )y +
tys # Oforall ¢ € [0, 1] for generic y; and y».

One may use methods of numerical homotopy continuation, described, for instance in the book by
Sommese & Wampler (2005, Section 2.3), to track the solutions as 7 changes from O to 1. In some
situations the path in B may pass close to the branch locus D and numerical issues must be considered.

REMARK 2.4 If the family F), is nonlinear in the parameters p one has to take the parameter linear
segment homotopy in the parameter space, i.e., H(t) = Fq_pp, 4, t € [0, 1]. This does not change
the overall construction; however, the freedom to replace the systems F),, and F), at the ends of the
homotopy with their scalar multiples as in Remark 2.3 is lost.

2.3 Graph of homotopies: main ideas

Some readers may find it helpful to use the examples of Section 2.4 for graphical intuition as we
introduce notation and definitions below.

To organize the discovery of new solutions we represent the set of homotopies by a finite undirected
graph G. Let E(G) and V(G) denote the edge and vertex set of G, respectively. Any vertex v in V(G) is
associated to a point F), in the base space. An edge e in E(G) connecting vy and v2 in V(G) is decorated
with two complex numbers, y; and y», and represents the linear homotopy connecting y1Fp, and y»F),
along a line segment (Remark 2.3). We assume that both p; and y; are chosen so that the segments
do not intersect the branch locus. Choosing these at random (see Section 5.1 for a possible choice
of distribution) satisfies the assumption, since the exceptional set of choices where such intersections
happen is contained in a real Zariski closed set, see Sommese & Wampler (2005, Lemma 7.1.3).

We allow multiple edges between two distinct vertices but no loops, since the latter induce trivial
homotopies. For a graph G to be potentially useful in a monodromy computation it must contain a cycle.
Some of the general ideas behind the structure of a graph G are listed below.

e For each vertex v; we maintain a subset of known points Q; C w1 (Fp,).

o For each edge e between v; and v; we record the two complex numbers y; and y», and we store
the known partial correspondences C, C 7 ™! (F ,,,.) x g (F pj) between known points Q; and Q;.

e Ateach iteration we pick an edge and direction, track the corresponding homotopy starting with
yet unmatched points, and update known points and correspondences between them.

e We may obtain the initial ‘knowledge’ as a seed pair (po,xp) by picking xo € C" at random
and choosing py to be a generic solution of the linear system F,(xo) = 0.
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6 T. DUFF ET AL.

We list basic operations that result in transition between one state of our algorithm captured by G,
Q; for v; € V(G) and C, for e € E(G) to another.

1. For an edge e = viij consider the homotopy

HO = (1 = Dy1Fp, + t12F),

where (y1,y2) € C? is the label of e.
e Take start points S; to be a subset of the set of known points Q; that do not have an
established correspondence with points in Q;.
Track S; along H® fort e [0, 1]to getS; C A (ij).
Extend the known points for v;, that is, Q; := Q; U S; and record the newly established
correspondences.

2. Add a new vertex corresponding to F), for a generic p € B\ D.

1,72) . . . .
3. Addanewedgee = v,«ﬂ)vj between two existing vertices decorated with generic y1, y» € C.

At this point a reader who is ready to see an algorithm based on these ideas may skip to
Algorithm 3.1.

2.4 Graph of homotopies: examples

We demonstrate the idea of graphs of homotopies, the core idea of the MS framework, by giving
two examples.

ExampLE 2.5 Figure 1 shows a graph G with two vertices and three edges embedded in the base space
B with paths partially lifted to the solution variety, which is a covering space with three sheets. The two
fibres {x1,x7,x3} and {y1,y2,y3} are connected by three partial correspondences induced by the liftings
of three egde paths.

Note that several aspects in this illustration are fictional. There is only one branch point in
the actual complex base space B that we would like the reader to imagine. The visible self-
intersections of the solution variety V are an artifact of drawing the picture in the real space.
Also, in practice we use homotopy paths as simple as possible, however, here the paths are more involved
for the purpose of distinguishing them in print.

An algorithm that we envision may hypothetically take the following steps:

(1) seed the first fibre with x| ;

(2) use alifting of edge ¢, to get y; from x;
(3) use alifting of edge e, to get xp from y;
(4) use alifting of edge e, to get y» from x7;
(5) use a lifting of edge e, to get x3 from y,.

Note that it is not necessary to complete the correspondences (a), (b) and (c). Doing so would require
tracking nine continuation paths, while the hypothetical run above uses only four paths to find a fibre.

ExaMPLE 2.6 Figure 2 illustrates two partial correspondences associated to two edges e, and ep, both
connecting two vertices v| and v, in V(G). Each vertex v; stores the array of known points Q;, which are
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FiG. 2. Two partial correspondences induced by edges e, and e for the fibres of the covering map of degree d = 5 in
Example 2.6.

depicted in solid. Both correspondences in the picture are subsets of a perfect matching, a one-to-one
correspondence established by a homotopy associated to the edge.

Note that taking the set of start points §; = {x3} and following the homotopy H'“«) from left to right
is guaranteed to discover a new point in the second fibre. On the other hand, it is impossible to obtain
new knowledge by tracking H“«) from right to left. Homotopy H'¢*) has a potential to discover new
points if tracked in either direction. We can choose S; = {x1,x3} as the start points for one direction
and S = {y3} for the other. In this scenario, following the homotopy from left to right is guaranteed
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8 T. DUFF ET AL.

Fi1G. 3. Graphs for the f1ower (4, 2) strategy and completeGraph(5,1).

to produce at least one new point, while going the other way may either deliver a new point or just
augment the correspondences between the already known points. If the correspondences in (a) and (b)
are completed to one-to-one correspondences of the fibres taking the homotopy induced by the edge
e, from left to right followed by the homotopy induced by edge e from right to left would produce a
permutation. However, the group generated by this permutation has to stabilize {x;}, therefore, it would
not act transitively on the fibre of v{. One could also imagine a completion such that the given edges
would not be sufficient to discover x5 and y.

In our algorithm we record and use correspondences; however, they are viewed as a secondary kind
of knowledge. In particular, in Section 3.2.4 we develop heuristics driven by edge potential functions
which look to maximize the number of newly discovered solutions, in other words, to extend the primary
knowledge in some greedy way.

3. Algorithms and strategies

The operations listed in Section 2.3 give a great deal of freedom in the discovery of solutions. However,
not all strategies for applying these operations are equally efficient. We distinguish between static
strategies, where the graph is fixed throughout the discovery process (only basic operation 1 of
Section 2.3 is used) and dynamic strategies, where vertices and edges may be added (operations 2 and 3).

3.1 A naive dynamic strategy

To visualize this strategy in our framework jump ahead and to the £1ower graph in Fig. 3. Start with
the seed solution at the vertex vy and proceed creating loops as petals in this graph: e.g., use basic
operations 2 and 3 to create v| and two edges between v and vy, track the known solutions at vy along
the new petal to potentially find new solutions at vy, then ‘forget’ the petal and create an entirely new
one in the next iteration.

This strategy populates the fibre 7~ (F po), but how fast? Assume the permutation induced by a petal
permutation on 77! (F p1) is uniformly distributed. Then for the first petal the probability of finding a
new solution equals (d — 1)/d where d = |7r_1 (F Pl) , which is large. However, for the other petals the
probability of arriving at anything new at the end of one tracked path decreases as the known solution
set grows.
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 9

Finding the expected number of iterations (petals) to discover the entire fibre is equivalent to solving
the coupon collector’s problem. The number of iterations is d £(d) where ¢(d) := % + % 4+ -+ 5
The values of £(d) can be regarded as lower and upper sums for two integrals of the function x — x~!,
leading to the bounds In(d + 1) < £(d) < In(d) + 1. Simultaneously tracking all known points along a
petal gives a better complexity, since different paths cannot lead to the same solution.

We remark that the existing implementations of numerical irreducible decomposition in Bertini
(Bates et al., 2013), PHCpack (Verschelde, 1999) and NumericalAlgebraicGeometry for
Macaulay2 (Leykin, 2011) that use monodromy are driven by a version of the naive dynamic

strategy.

3.2 Static graph strategies

It turns out to be an advantage to reuse the edges of the graph. In a static strategy the graph is fixed and
we discover solutions according to the following algorithm.

Algorithm 3.1 [Static graph strategy] Let the base space be given by amap ¢ : p > F),.

(i, Qj) = monodromySolve (G, Q, stop)
Input:

e A graph G with vertices decorated with p;s and edges decorated with pairs (y1, y2) € C2.
e Subsets Q) C 7 Y e(p)) forie1,...,|V(G)|, not all empty.
e A stopping criterion stop.
Output: A vertex j in G and a subset Q; of the fibre 7 ! (F, pj) with the property that Q; cannot be
extended by tracking homotopy paths represented by G.
Q;:=Qforiel,....|V(G).
while there exists an edge e = (j, k) in G such that Q; has points not yet tracked with H © do
Choose such an edge e = (j, k).
Let S C Qj be a nonempty subset of the set of points not yet tracked with H @,
Track the points S with H to obtain elements 7 C 7! (¢(pr)) \ Ok.
Let Oy :=Qr UT.
if the criterion stop is satisfied (e.g., |Ox| equals a known solution count)
then
return (k, Q)
end if
end while
Choose some vertex j and return (j, Q;).

The algorithm can be specialized in several ways. We may

e choose the graph G,
e specify a stopping criterion stop,
e choose a strategy for picking the edge e = (j, k).
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10 T. DUFF ET AL.

We address the first choice in Section 3.2.1 by listing several graph layouts that can be used. Stopping
criteria are discussed in Section 3.2.2 and Section 3.2.3, while strategies for selecting an edge are
discussed in Section 3.2.4.

REMARK 3.2 We notice that if the stopping criterion is never satisfied the number of paths being tracked
by Algorithm 3.1 is at most dIE(G)I|, where d is the number of solutions of a generic system.

3.2.1 Two static graph layouts. We present two graph layouts to be used for the static strategy
(Fig. 3).

flower (s, t) The graph consists of a central node vy and s additional vertices (number of
petals), each connected to vy by r edges.

completeGraph (s, t) The graph has s vertices. Every pair of vertices is connected by ¢
edges.

3.2.2  Stopping criterion if a solution count is known. ~Suppose the cardinality of the fibre 77! (F p)
for a generic value of p is known. Then a natural stopping criterion for our algorithm is to terminate
when the set of known solutions Q; at any node i reaches that cardinality. In particular, for a generic
sparse system with fixed monomial support, we can rely on this stopping criterion due to the BKK
bound (Bernstein, 1975) that can be obtained by a mixed volume computation.

3.2.3 Stopping criterion if no solution count is known. For a static strategy one natural stopping
criterion is saturation of the known solution correspondences along all edges. In this case the algorithm
simply can’t derive any additional information. It also makes sense to consider a heuristic stopping
criterion based on stabilization. The algorithm terminates when no new points are discovered in a fixed
number of iterations. This avoids saturating correspondences unnecessarily. In particular, this could be
useful if a static strategy algorithm is a part of the dynamic strategy of Section 3.3.

REMARK 3.3 In certain cases it is possible to provide a stopping criterion using the trace test
(Sommese et al., 2002; Leykin et al., 2016). This is particularly useful when there is an equation in
the family F,(x) = O that describes a generic hypersurface in the parameter space, e.g., an affine linear
equation with indeterminate coefficients. In full generality, one could restrict the parameter space to a
generic line and, hence, restrict the solution variety to a curve. Now, thinking of F,(x) = 0 as a system
of equations bihomogeneous in p and x, one can use the multihomogeneous trace test (Hauenstein &
Rodriguez, 2015; Leykin et al., 2016).

We note that the multihomogeneous trace test complexity depends on the degree of the solution
variety, which may be significantly higher than the degree d of the covering map, where the latter is the
measure of complexity for the main problem in our paper. For instance, the system (7) corresponding
to the reaction network in Fig. 4 has four solutions, but an additional set of 11 points is necessary to
execute the trace test. See example-traceCRN.m2 at (Duff et al.).

3.2.4 Edge-selection strategy. We propose two methods for selecting the edge e in Algorithm 3.1.
The default is to select an edge and direction at random. A more sophisticated method is to select an edge
and a direction based on the potential of that selection to deliver new information: see the discussion in

Example 2.6. Let e = V,'(M)Vj be an edge considered in the direction from v; to v;.
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 11

potentialLowerBound equals the minimal number of new points guaranteed to be
discovered by following a chosen homotopy using the maximal batch of starting points S;. That
is, it equals the difference between the numbers of known unmatched points (|Q;| — |Ce|) —
(|Qj| = ICel) = 1Qil — | Q)] if this difference is positive and 0 otherwise.

potentialk equals the expected number of new points obtained by tracking one unmatched
d—19/|
d—[Ce|

point along e. This is the ratio
|Qi] — |C,| > 0 and O otherwise.

of undiscovered points among all unmatched points if

Note that potentialE assumes we know the cardinality of the fibre, while potentialLower
Bound does not depend on that piece of information.

There is a lot of freedom in choosing potentials in our algorithmic framework. The two above
potentials are natural ‘greedy’ choices that are easy to describe and implement. It is evident from our
experiments (Section 6.1.1) that they may order edges differently resulting in varying performance.

3.3 Anincremental dynamic graph strategy

Consider a dynamic strategy that amounts to augmenting the graph once one of the above ‘static’
criteria terminates Algorithm 3.1 for the current graph. One simple way to design a dynamic stopping
criterion, we call it dynamic stabilization, is to decide how augmentation is done and fix the number
of augmentation steps that the algorithm is allowed to make without increasing the solution count.
A dynamic strategy, which is simple to implement, is one that starts with a small graph G and augments
it if necessary.

Algorithm 3.4 [Dynamic graph strategy] Let us make the same assumptions as in Algorithm 3.1.

(j, Qj) = dynamicMonodromySolve (G, x1, stop, augment)
Input:

A graph G as in Algorithm 3.1.
One seed solution x; € 71 (p(p1)).

A stopping criterion stop.
e An augmenting procedure augment.

Output: A vertex j in G and a subset Q; of the fibre a7l (F ,,j).
Or:={xi}and Q; =0 forie2,...,|V(G)|.
loop

(j. Qj) = monodromySolve(G, Q, stop) {here Q; is modified in-place and passed to the next
iteration}

if stop (i.e., stopping criterion is satisfied) then
return (j, Q;)
end if
G := augment(G)
end loop
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12 T. DUFF ET AL.

We emphasize that the criteria described in this subsection and parts of Section 3.2.3 are heuristic
and there is a lot of freedom in designing such. In Section 6.2 we successfully experiment using a static
stabilization criterion with some examples, for which the solution count is generally not known.

4. Statistical analysis

The directed cycles in the graph G starting and ending at a vertex v; give elements of the fundamental
group 71 (B\D), which correspond to the elements of the monodromy subgroup M(G) of the monodromy
group M(m1(B \ D)). The latter is a subgroup of S,;, where d = |7'r_1 (Fp1 ) | For example, if
G = completeGraph(2,j + 1) then the j cycles produced by edges e and e, e2 and e3,...,¢;
and ej;1 suffice to generate M(G). The minimal number j of cycles necessary to generate M(G) in the
general case is B1(G), the first Betti number of G as a topological space.

For the purpose of simplifying statistical analysis, we assume that picking a random decorated graph
G with j = B1(G) induces uniformly and independently distributed permutations o1,...,0; € Sy,
where Sy is the symmetric group acting on the fibre 7~ (F »l ) It would be hard in practice to achieve
uniformity even when the monodromy group is a full symmetric group: see Section 5.1.

4.1 The probability of a transitive action

Suppose the number of solutions d is known and st op(d) denotes the corresponding stopping criterion.
Our aim is to analyze the probability of producing the full solution set via Algorithm 3.1 or, equivalently,
the probability of

dynamicMonodromySolve(G,xi, stop(d), augment)

terminating after at most j iterations, assuming that 81(G) = j at the jth iteration. This equals the
probability of (o1,...,0;) acting transitively, i.e., Pr[Xy < j], where X, is the random variable

Xy =inf{i € N| (0y,...,0;) is transitive}.

When d > 1 we have Pr[X; = 0] = 0, while Pr[X; = 1] is proportional to the number of d-cycles
in the monodromy group. When the monodromy group is full symmetric, we can compute and give
asymptotic estimates for the distribution of X;. The following theorem is a generalization of a result by
Dixon, regarding the case j = 2. The proof we give in Section 4.2 follows the strategy of the study by
Dixon (1969).

THEOREM 4.1 Forj > 2, Pr(X; <j]l =1 — a7+ R;j(d), where the error term R; satisfies |Rj(d)| =
(0] (d_f).

REMARK 4.2 As a corollary one can deduce that the expected value of X is asymptotically finite and
E[Xs] — 2 as d — oo. The numerical approximations in Table 1 show that E [X;] < 2.1033 for all d.

Moreover, the proof in Section 4.2 implies that |Rj(d)} <C (%)_J with the constant C not depending on
Jj. Therefore, Pr [X; > j] decays exponentially with j.

Under the idealistic assumption that new cycles in the graph lead to independently and uniformly
distributed permutations of the fibre Q| the expected Betti number needed for completion in Algorithm
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 13

3.4 is at most 2.1033. If we assume that augment increases the Betti number by one by adding at most
a fixed number of edges then the expected number of tracked paths is linear in d.

REMARK 4.3 We point out that Babai (1989) proved Dixon’s conjecture stating that the subgroup of S,
generated by two random permutations is Sy or Ay with probability 1 —d~! + 0O (d_z). This shows that
other subgroups are rare. However, it is easy to construct families with a transitive monodromy group
that is neither full symmetric nor alternating. For example, take x% —c = x% — ¢ = 0 with irreducible
solution variety, and four solutions for generic choices of c¢; and c;. Tracking two solutions with the
same x] coordinate, as c¢; and ¢ vary, the moving points on the tracked paths will continue to have

equal projections to x1. The monodromy group is Z, x Zs.

We reiterate that generators for the monodromy group are seldomly known a priori. Computing
them is likely to be prohibitively expensive, and the probability distribution with which our algorithm
picks elements of the monodromy group is unknown, as it is prohibitively hard to analyze.

4.2 Proof of a generalization of Dixon’s theorem

Fix any integer j > 2. We wish to prove Theorem 4.1 by estimating the quantity
ta =Pr[(o1,02,...,0)) is transitive],

where o1, ..., 0; are independent and uniformly distributed on S;. Suppose we partition the set {1, 2,
, d} in such a way that there are k; classes of size i for each 1 <i < d. All such partitioning schemes
are indexed by the set

Kd={%eNd‘Zik,»=d].

The number of partitions corresponding to eagh k e Ky is d! /(]_[f-l=1 @nki . ki!). For each k € Ky, the
partition given by the orbits of {o1,...,0j) is k-indexed precisely when this group acts transitively on
all classes of some partition associated to k. The number of tuples in S{ with coordinates generating a
group acting transitively on {1, ..., i} is # (i!)/. Thus, we may count the set Sy x - - - x Sq as

—— —

d
@y =% ——— H (1 D7)

ki
X 1]
IS | L
kEKdl 1

Let F denote the generating function of the sequence F(d) = (d !)j —1 Note the formal identity

exp (gy,-xi) >N ZH

d=0 keky =1
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which follows by letting g(x) denote the right-hand side as a formal power series in x, f(x) = 3 y;x/,
and noting the equivalent form f'g = g’ with f(0) = yo. We have

(o] ) d
dd- @y 'x = —F
= dx

d 0 o
== exp (Z; t (i!)]]x’>
i=

- (Z(d!)j_lxd) : Zi-ti @)/t
d=0 i=1

o0
1’
SIS

d'=1

d/
St (@ -y
i=1

where the first equation follows by formal differentiation of the power series F, the second from the
two identities above with properly substituted values for y;, the third by applying the chain rule and the
definition of F and the fourth by rearranging terms by index substitution &’ = i 4+ d. Upon equating
coefficients of x4~ ! ford =1, . ..

TABLE 1

we obtain

d= Z (?)l_jit,-.

i=1

Numerical approximations of tg—the probability of the j random

permutations acting transitively on a fibre of size d for j = 2, 3, 4. After
computing these values for larger j, a numerical approximation of E[Xy] is

extracted

d j=2 j=3 j=4 E[X4]

1 1 1 1 0

2 0.75 0.875 0.9375 2

3 0.72222222 0.89814815 0.96450617 2.10000000
4 0.73958333 0.93012153 0.98262080 2.10329381
5 0.76833333 0.95334722 0.99115752 2.08926525
10 0.88180398 0.98954768 0.99898972 2.02976996
20 0.94674288 0.99747856 0.99987487 2.00591026
30 0.96536852 0.99888488 0.99996295 2.00245160

REMARK 4.4 Equation (1) gives a list of linear equations in the probabilities #1,12,. ..
to successively determine these values by backward substitution. In Table 1 we list some solutions

forj =2, 3, 4.

“.1)

allowing us
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 15

To complete the proof of Theorem 4.1, we introduce, as in Dixon’s proof, the auxiliary quantities

d—1 1—j

ra=d (1 —1t;7) and cd=Z<fZ> i.
l

i=1

1

d—1 1—i 1—j d-3 1—j
i AT [y 1S ay
7=22() “”*[(z) +2(7) }
1 dA\'"7 1 d\'7
< i+ (2> +§<d—5>(3) - (42)

From j > 2 it follows that the bracketed expression in (2) is O (d_j ) .Using (1), t; = 1 — % <1- %
and the definition of ¢; we may bound ry:

Noting that (‘f)]iji + (di.)]ij(d —i) = % ((‘?)17j + (d‘il.)lij), we have

N =

d d 1—j .
ra=d( —tg) = —dtg+d = —dtg + ) )i 4.3)
i=1

d—1 dl_j_ d—1 dl_j_ )
"5 ()R ()09

i=1

d-1 1—j d-1 1—j d-1 1—j
d\ ™ 1 d\ ™ 1 d\'
P (l) ar 1rl(i> “"a rl<i> = @4

i=1

To bound the error term R;(d) :=tg — (1 — dl’j), we consider first the case where its sign is positive.
Expanding 7y = 1 — 4 using (3) above and it; = i — r;,

d—1

' 1—j .. ' . d—1 1—j .,
td—(l—dl_-’)=1—2<[il) %—1+d1_-’=d1_f—z<(:> %

i=1
d—1

, AN Ti S a\" T
—d'V - - -t
Z(,.) d+,§<i> d

i=1

d-2 - . d-1 1—i
. (1 d—1 d 7 d T
—d'"v gL ) = Z _y
<d+ d) i_2<i) it <z> d

=0
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16 T. DUFF ET AL.

and we may focus on the last summation to get, for d > 2,

d—2 d _jr'
tg — (1 —d') <d1—f +Z< ) v (note 1 = 0)
=2
d—2 1
d\'7¢;
<l ( ) G (by (4)
d—l P 2 d
PR
<d]_j Cd—1 a Gi
a—1" 4) i

O(d2 2])+0(d(2—2j)+(2—j))

= 0(d7). (since j > 2)

The case where R;j(d) < 0 may be handled similarly, using t; = 1 — 7‘1 rqg < cq and what we know
about the content of the bracket in (2).

—zd+(1—d1*f)=—(1—%’) (1—d') = d d11<g"—d1*f

[(;l)lj + %(d -5) (i)lj] = 0(d).

IA

5. Implementation

We implement the package MonodromySolver in Macaulay2 (Grayson & Stillman) using the
functionality of the package NumericalAlgebraicGeometry (Leykin, 2011). The source code
and examples used in the experiments in the next section are available at Duff et al.

The main function monodromySolve realizes Algorithms 3.1 and 3.4, see the documentation
for details and many options. The tracking of homotopy paths in our experiments is performed with the
native routines implemented in the kernel of Macaulay2, however, NumericalAlgebraicGeometry
provides an ability to outsource this core task to an alternative tracker (PHCpack or Bertini). Main
auxiliary functions—createSeedPair, sparseSystemFamily, sparseMonodromySolve
and solveSystemFamily—are there to streamline the user’s experience. The last two are blackbox
routines that don’t assume any knowledge of the framework described in this paper.

The overhead of managing the data structures is supposed to be negligible compared to the cost of
tracking paths. However, since our implementation uses the interpreted language of Macaulay2 for other
tasks, this overhead could be sizable (up to 10% for large examples in Section 6). Nevertheless, most
of our experiments are focused on measuring the number of tracked paths as a proxy for computational
complexity.

REMARK 5.1 This paper’s discussion focuses on linear parametric systems with a nonempty dominant

component. However, the implementation works for other cases where our framework can be applied.
For instance, if the system is linear in parameters, but has no dominant component, there may still

be a unique ‘component of interest” with a straightforward way to produce a seed pair. This is so, for
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SOLVING POLYNOMIAL SYSTEMS VIA HOMOTOPY CONTINUATION AND MONODROMY 17

instance, in the problem of finding the degree of the variety SO(n), which we use in Table 7. The point
x is restricted to SO(n), the special orthogonal group, which is irreducible as a variety. This results in a
unique ‘component of interest’ in the solution variety, the one that projects onto SO(n), see the study by
Brandt et al. (2017) for details.

In a yet more general case of a system that is nonlinear in parameters, it is still possible to use our
software. We outline the theoretical issues one would need to consider in 4 of Section 7.

5.1 Randomization

Throughout the paper we refer to random choices we make that we assume avoid various nongeneric
loci. For implementation purposes we make simple choices. For instance, the vertices of the graph
get distributed uniformly in a cube in the base space with the exception of the seeded vertex:
createSeedPair picks (pg,xp) € B x C" by choosing x uniformly in a cube, then choosing pg
uniformly in a box in the subspace {p | F,(x) = 0}.

A choice of probability distribution on B translates to some (discrete) distribution on the symmetric
group Sy. However, it is simply too hard to analyze—there are virtually no studies in this direction. We
make the simplest possible assumption of uniform distribution on S, in order to perform the theoretical
analysis in Section 4, and shed some light on why our framework works well. There is an interesting,
more involved, alternative to this assumption in the studies by Galligo & Poteaux (2011) and Galligo &
Miclo (2012), which relies on the intuition in the case n = 1.

5.2 Solution count

The BKK bound, computed via mixed volume, is used as a solution count in the examples of sparse
systems in Sections 6.1.1 and 6.1.2. In the latter we compute mixed volume via a closed formula that
involves permanents, while the former relies on general algorithms implemented in several software
packages. Our current implementation uses PHCpack (Verschelde, 1999), which incorporates the
routines of MixedVol further developed in Hom4PS-2 (Lee ef al., 2008). Other alternatives are pss5
(Malajovich, 2017) and Gfanlib (Jensen, 2016). While some implementations are randomized the latter
uses symbolic perturbations to achieve exactness. The computation of the mixed volume is not a
bottleneck in our algorithm. The time spent in that preprocessing stage is negligible compared to the
rest of the computation.

5.3 Certification

The reader should realize that the numerical homotopy continuation we use is driven partly by heuristics.
As a post-processing step we can certify (i.e., formally prove) the completeness and correctness of
the solution set to a polynomial system computed with our main method. This is possible in the
scenario when

e the parametric system is square,
e all solutions are regular (the Jacobian of the system is invertible), and
e the solution count is known.

We can use Smale’s a-theory (Blum er al., 1998, Section 8) to certify an approximation to a regular
solution of a square system. In a Macaulay2 package NumericalCertification, we implement
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18 T. DUFF ET AL.

a numerical version of an «-fest after finding an approximate solution to certify that our solution is an
approximate zero in a rigorous sense.

One of the main functions of NumericalCertification is certifySolutions, which
determines whether the given solution is an approximate zero of the given polynomial system. It also
produces an upper bound on the distance from the approximation to the exact solution to which it
is associated.

See paper-examples/example-NashCertify.m2 at (Duff ef al.), which is an example of
an a-test application to the solutions of a problem described in Section 6.1.2. In the implementation of
certification all arithmetic and linear algebra operations are done over the field of Gaussian rationals,
Qril/ (i2 + 1). To use this certification method we first convert the coefficients of the system to Gaussian
rationals, then perform certification numerically. See the study by Hauenstein & Sottile (2012) for a
stand-alone software package alphaCertified and detailed implementation notes.

6. Experiments

In this section we first report on experiments with our implementation and various examples in
Sections 6.1 and 6.2. We then investigate the completion rate of Algorithm 3.1 in Section 6.3. Finally,
we compare against other software in Section 6.4.

TABLE 2 Cyclic 7 experimental results for the £ Lower strategy

(#vertices-1, edge multiplicity)  (3,2) 4,2) 5,2) 3,3) 4,3)

IE(G)I 6 8 10 9 12
B1(G) 3 4 5 6 8
IE(G)I - 924 5544 7392 9240 8316 11088
completion rate 100% 100% 100% 100%  100%
Random Edge 5119 6341 7544 6100 7067
potentialLowerBound 5252 6738 8086 6242 7886
potentialE 4551 5626 6355 4698 5674

TaBLE 3 Cyclic 7 experimental results for the completeGraph strategy

(#vertices, edge multiplicity)  (2,3) (24  (2,5) (3,2) 4,1)

E(G)] 3 4 5 6 6

B1(G) 2 3 1 4 3

IE(G)! - 924 2772 3698 4620 5544 5544
completion rate 65% 80% 90% 100% 100%
Random Edge 2728 3296 3947 4805 5165
potentialLowerBound 2727 3394 3821 4688 5140
potentialE 2692 2964 2957 3886 4380
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6.1 Sparse polynomial systems

The example families in this subsection have the property that the support of the equations is fixed,
while the coefficients can vary freely, as long as they are generic. We run the static graph strategy
Algorithm 3.1 on these examples. Our timings do not include the a-test, which was only applied in
Section 6.1.2.

6.1.1 Cyclic roots. The cyclic n-roots polynomial system is

n—1 j+i—1

i=1,2,3,4,...,.n—1: X =0
Z 1_[ k mod n (6.1)
=0 k=j

XoX1x2 - -xp—1 —1=0.

This system is commonly used to benchmark polynomial system solvers. We will study the modified
system with randomized coefficients and seek solutions in (C \ {0})". Therefore, the solution count can
be computed as the mixed volume of the Newton polytopes of the left-hand sides, providing a natural
stopping criterion discussed in Section 3.2.2. This bound is 924 for cyclic 7.

Tables 2 and 3 contain averages of experimental data from running 20 trials of Algorithm 3.1 on
cyclic 7. The main measurement reported is the average number of paths tracked, as the unit of work
for our algorithm is tracking a single homotopy path. The experiments were performed with 10 different
graph layouts and three edge-selection strategies.

With respect to number of paths tracked, we see that it is an advantage to keep the Betti number high
and edge number low.

REMARK 6.1 Computing the expected success rates (> 99%) using Remark 4.4, we conclude that the
resulting permutations do not conform to the model of picking uniformly from S¢p4. The completion rate
depends on the choice of strategy (compare Table 2 to Table 3). Nevertheless, both in theory (assuming
uniform distribution as in Section 4) and in practice (with distribution unknown to us), the completion
rate does converge to 100% rapidly as the Betti number grows.

6.1.2  Nash equilibria. Semimixed multihomogeneous systems arise when one is looking for all
totally mixed Nash equilibria (TMNE) in game theory. A specialization of mixed volume using matrix
permanents gives a concise formula for a root count for systems arising from TMNE problems (Emiris
& Vidunas, 2014). We provide an overview of how such systems are constructed based on the study by

Emiris & Vidunas (2014). Suppose there are N players with m options each. For player i € {1, ..., N}
using option j € {1, ..., m} we have the equation P;’) = 0, where
(@) (@) 1, (2 (=1 _(i+1) V)
P = Z Uy ookicr kit veknPhy Py " Pliy Priyy " Phy - )
Ktk (6.2)
Kit 150+ kN
The parameters a,(jl) k... ey Are the pay-off rates for player i when players 1,...,i — L,i + 1,...,N
are using options ki, ..., ki—1,kit+1,...,kn, respectively. Here the unknowns are p,(;,), representing the
probability that player i will use option k; € {1,...,m}. There is one constraint on the probabilities for
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B+FE

FIG. 4. Chemical reaction network example.

each player i € {1, ..., N}, namely the condition that

P+ pY 4+l =1 (6.3)

The system (4) consists of N - m equations in N - m unknowns. Using condition (5) reduces the number
of unknowns to N(m — 1). Finally, we eliminate the P;’) by constructing

PO =pPY, PP =P, ... P =PD  foreachie(l,...,N). (6.4)

The final system is a square system of N(m — 1) equations in N(rm — 1) unknowns.

For one of our examples (paper-examples/example-Nash.m2 at (Duff er al.)), we chose
the generic system of this form for N = 3 players with m = 3 options for each. The result is a system
of six equations in six unknowns and 81 parameters with 10 solutions. We also use this example to
demonstrate that these solutions can be certified using NumericalCertification (Section 5.3).

6.2 Chemical reaction networks

A family of interesting examples arises from chemical reaction network theory. A chemical reaction
network considered under the laws of mass action kinetics leads to a dynamical polynomial system,
the solutions of which represent all the equilibria for the given reaction network (MacLean et al.,
2015; Gross et al., 2016). These polynomial systems are not generically sparse and we cannot easily
compute their root count. In our experiments we used the stabilization stopping criterion, terminating
the algorithm after a fixed number of iterations that do not deliver new points; the default is 10 fruitless
iterations.

Figure 4 gives an example of a small chemical reaction network.

Applying the laws of mass action kinetics to the reaction network above we obtain the polynomial
system (7) consisting of the corresponding steady-state and conservation equations. Here the k;s
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represent the reaction rates, x;s represent species concentrations and the c;s are parameters.

X4 = klx% — koxa — kaxaxc + kaxp + ksxpxg

Xp = 2kixa — 2koxy + kaxp — ksxpxg

xc = —k3xaxc + kaxp + ksxpxg
xp = k3xaxc — (k4 + ke)xp (6.5)
xXg = —ksxgxg + kexp

0=2x4+xp—xc+xp—ci

0= —2x4 — xg + 2xc + xg — 3.

Typically, systems resulting from chemical reaction networks will be overdetermined. With the
current implementation one needs to either square the system or use a homotopy tracker that supports
following a homotopy in a space of overdetermined systems.

Although we may obtain large systems they typically have very low root counts compared to the
sparse case. The polynomial system (7) has four solutions. A larger example is the wnt signaling
pathway from Systems Biology (Gross et al., 2016) consisting of 19 polynomial equations with nine
solutions. All nine solutions are obtained in less than a second with Algorithm 3.1.

6.3 Completion rate

We investigate the completion rate of Algorithm 3.1 for the Katsura family parametrized by n with fixed
support and generically chosen coefficients. Tables 4 and 5 contain the percentage of successes from 500
runs with distinct random seeds. In Table 6 we show the computed expected values using Remark 4.4.
For 81 > 3 the observed success rates approach the expected values of Table 6. We note that
the flower strategy is again closest to the estimates. We do not expect the numbers produced in
experiments to match the numbers in Table 1, since the assumptions made for that statistical analysisare
quite idealistic; however, both the analysis and experiments show that the probability of success
approaches 100% rapidly as the number of solutions grows and the first Betti number increases.

TaBLE 4  Katsura-(n — 1) for the £1lower strategy

(#vertices-1, edge multiplicity)

n  BKKBound  (32) (4,2) (5.2) (3,3) (4,3)
pr=3 pr=4 p=5 PpH1=6 p1=38
5 12 96.4% 99.4% 99.6% 100% 99.8%
6 30 98.6% 100% 99.8% 100% 99.6%
7 54 97.6% 98.8% 99.4% 99.4% 98.4%
8 126 99.2% 99.8% 99.6% 99.8% 99.8%
9 240 98.8% 99.6% 98.4% 98.4% 98.6%
10 504 98.6% 98.8% 99.2% 99.4% 98.8%
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TABLE S  Katsura-(n — 1) for the completeGraph strategy

(#vertices, edge multiplicity)

n  BKKBound  (2,3) 2.4) 2.,5) (3.2) (4,1)
=2 p=3 p1=4 pi=4 p1=3
5 12 65.6% 88.2% 95% 99.2% 98%
6 30 77.4% 95.2% 99% 99.8% 99.6%
7 54 74.4% 96.2% 99.2% 99.6% 99.8%
8 126 81.8% 97% 99.2% 100% 99.8%
9 240 85.2% 97.6% 99.4% 99% 98.2%
10 504 89.2% 98.2% 99.2% 99.4% 99%

TABLE 6 Rounded expected probability of suc-
cess assuming uniform distribuition of permuta-
tions and full monodromy group

d B1=2 B1=3 B1 >4
12 90.5% 99.3% 100.0%
30 96.5% 99.9% 100.0%
54 98.1% 100.0% 100.0%
126 99.2% 100.0% 100.0%
240 99.6% 100.0% 100.0%
504 99.8% 100.0% 100.0%

TABLE 7 Examples with solution count smaller than BKK bound (timings in

seconds)

problem wnt  SO(4) SO(5) SO(6) SO(7)
count 9 40 384 4768 111616
MonodromySolver  0.52 4 23 528 42791
Bertini 42 81 10605 out of memory

PHCpack 862 103 > one day

6.4 Timings and comparison with other solvers

All timings appearing in this section are done on one thread and on the same machine. Remarks 3.2
and 4.2 show that we should expect the number of tracked paths in Algorithms 3.1 and 3.4 to be linear
(with a small constant!) in the number of solutions of the system. In this section we highlight the
practicality of our approach in two ways.

First, the monodromy method dramatically extends our computational ability for systems where
the solution count turns out to be significantly smaller than the count corresponding to a more general
family, for example, BKK count for sparse systems. This means that the existing blackbox methods,
whose complexity relies on a larger count, are likely to spend significantly more time in computation
compared to our approach. In Table 7 we collect timings on several challenging examples mentioned
in recent literature where smaller solution counts are known, thus providing us with rigorous test cases
for our heuristic stopping criterion. The first system in the table is that of the wnt signaling pathway
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TABLE 8  Software timings on large examples (in seconds)

problem cyclic-10 cyclic-11 noon-10
BKK bound 35940 184756 59029
completeGraph(2,3) 610 7747 failed
(107820 paths) (540155 paths) (59001 solutions)
completeGraph(2,4) 740 8450 935
(129910 paths) (737432 paths) (236051 paths)
PHCpack 538 4256 751
HOM4PS2 62 410 120

reaction network mentioned in Section 6.2. The others come from the problem of computing the degree
of SO(n), the special orthogonal group, as a variety (Brandt ez al., 2017).
Below is a list of comments on the set-up:

e For our implementation we chose small graphs with 8; < 4 and the random edge-selection
strategy. The stopping criterion is ‘stabilization’ as discussed in Section 3.2.3.

e While the blackbox solver of PHCpack ultimately performs polyhedral homotopy continuation,
Bertini relies by default on an equation-by-equation technique dubbed regeneration (see Bates
et al., 2013). The latter may be faster than the former in certain cases, which this series of
examples shows.

Secondly, when the solution count is given by the BKK bound our method is a viable alternative to
polyhedral homotopy solvers, since the number of paths we track is linear in the number of solutions.
The timings on a few large benchmark problems of our current implementation and several other
software packages are in Table 8. Our goal in the rest of this section is to show that our running times
are in the same ballpark as polyhedral homotopies.

Below is a list of comments on the set-up:

e For our implementation we chose two small graphs and default (random) edge-selection
strategy.

e For PHCpack there is a way to launch a mixed volume computation, with the option of creating
a system with the same support and random coefficients together with its solutions. This is the
option we are using; the blackbox computation takes a little longer.

e HOMA4PS2 (Lee et al., 2008) is not open source, unlike all other software mentioned here. (We
use HOM4PS2 stock examples for all systems and call its blackbox polyhedral homotopies
solver.) HOM4PS2 may use just-in-time compilation of straight-line programs used for
evaluation, which speeds up computations considerably. (PHCpack does not use this technique;
neither does our software, but our preliminary experiments in Macaulay2 show a potential for
a 10- to 20-fold speed up over our currently reported timings.)

REMARK 6.2 For large examples assuming the probabilistic model leading to Theorem 4.1 and Remark
4.2, the probability of success should be extremely close to 100% even for a random graph with 8; = 2.
The run of noon-10, which is an example of neural network model from the study by Noonburg (1989),
demonstrates an unlikely, but possible failure for 8; = 2 followed by success at 81 = 3.
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On the examples in Table 8 we also ran the blackbox solvers of Bertini and Numerical Algebraic
Geometry (Leykin, 2011), which use the total-degree homotopy. Both were able to finish noon-10 with
timings similar to the table, but all other problems took longer than a day. This is expected, as the BKK
bound of noon-10 is only slightly sharper than the Bézout bound.

REMARK 6.3 In comparison with the naive dynamic strategy (Section 3.1) our framework loses slightly
only in one aspect: memory consumption. For a problem with d solutions the naive approach stores up
to (and typically close to) 2d points. The number of points our approach stores is up to (and typically
considerably fewer than) d times the number of vertices. For instance, it is up to 4d points in all runs in
Table 8.

The number of tracked paths is significantly lower in our framework: for example, the naive strategy
tracks about 7500 paths on average for cyclic 7. Even before looking at Table 2 it is clear that running
the f1lower strategy in combination with the incremental dynamic strategy of Section 3.3 guarantees
to dominate the naive strategy.

7. Generalizations

While we propose a more general algorithmic framework, a concurrent goal of this paper is to
demonstrate that significant practical advantages are already apparent when we apply a relatively simple
implementation and analysis to simple problems (linearly parametrized families). The following topics
thus lie outside the scope of this article, but seem deserving of further study:

1. One advantage of the MS approach is that it can tolerate numerical failures of the underlying
homotopy tracker. In fact, we already implemented a simple failure resistant mechanism, and it
successfully tolerates a few failures that arise in some runs for large test examples in Section 6.4.
A natural extension of this paper’s statistical analysis would be to model the algorithm’s
performance in the presence of failures.

2. Ideally, heuristics such as edge potentials should incorporate information such as the failures
discussed above. It is also of interest to adapt potentials to the parallel setting discussed below.

3. The parallelization of the MS approach is not as straightforward as that of other homotopy
continuation methods. The question of when speed-ups close to linear can be achieved should
be addressed.

4. Consider the generalized set-up in which the base space B is an irreducible variety and the family
is given by a rational map from P into a space of systems. To apply our general framework, a
major requirement is to find an effective way to parametrize a curve between two points of P.
This parametrization would conceivably depend on the nature of the problem being considered.
Certain other ingredients are also likely to be problem-specific—for instance, even in the case
of P = C™, the construction of the initial seed (po, xp) is complicated by the possibility that the
systems’ coefficients are nonlinear in the parameters. Nonetheless, this is one of the strengths of
the MS framework—once all required ‘oracles’ are supplied, the procedures become effective.

5. In the classical language of enumerative geometry, the monodromy groups we consider
are isomorphic to Galois groups of incidence varieties (essentially solution varieties in our
terminology). For a large class of Schubert problems and other interesting incidence varieties
the associated Galois group turns out to be the full symmetric group (Leykin & Sottile, 2009).
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A suitable modification of our dynamic strategy is one practical approach to verifying this in
conjectural cases.

6. Our paper demonstrates the strength of our method relative to other techniques such as
polyhedral homotopy and regeneration. Building on our framework one could use polyhedral
homotopy as a subroutine to quickly populate a partial solution set (quickly discarding any path
that becomes poorly conditioned). Further advantages may be achievable by using different
techniques in parallel. These and other hybrid approaches have the potential to produce even
faster and more robust blackbox solvers.
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