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114 A. Leykin et al.

Introduction

Numerical algebraic geometry (Sommese andWampler 2005) uses numerical analysis
to study algebraic varieties, which are sets defined by polynomial equations. It is
becoming a core tool in applications of algebraic geometry outside of mathematics.
Its fundamental concept is awitness set,which is a general linear section of an algebraic
variety (Sommese andVerschelde 2000). This gives a representation of a variety which
may be manipulated on a computer and forms the basis for many algorithms. The trace
test is used to verify that a witness set is complete.

We illustrate this with the folium of Descartes, defined by x3+ y3 = 3xy. A general
line � meets the folium in three points W and the pair (W, �) forms a witness set for
the folium. Tracking the points ofW as � moves computes witness sets on other lines.
Figure 1 shows these witness sets on four parallel lines. It also shows the average
of each witness set, which is one-third of their sum, the trace. The four traces are
collinear.

Any subset W ′ of W may be tracked to get a corresponding subset on any other
line, and we may consider the traces of the subsets as � moves in a pencil. The traces
are collinear if and only if W ′ is complete in that W ′ = W . This may also be seen in
Fig. 1. This trace test (Sommese et al. 2002) is used to verify the completeness of a
subset of a witness set.

Methods to check linearity of a univariate function—e.g., the trace—in the context
of algorithms for numerical algebraic geometry were recently discussed in Brake et al.
(2016).

An algebraic variety V may be the union of other varieties, called its components.
Given a witness set W = V ∩ L for V (L is a linear space), numerical irreducible
decomposition (Sommese et al. 2001) partitions W into subsets corresponding to the
components of V . For example, suppose that V = E ∪ F is the union of the ellipse
8(x + 1)2 + 3(2y + x + 1)2 = 8 and the folium, as in Fig. 2.

A witness set for V consists of the five pointsW = V ∩ �. Tracking points ofW as
� varies in a loop in the space of lines, a point w ∈ W may move to a different point
which lies in the same component of V . Doing this for several loops partitionsW into
two sets, of cardinalities two and three, respectively. Applying the trace test to each
subset verifies that each is a witness set of a component of V .

Amultiprojective variety is subvariety of a product of projective spaces. Since there
are different types of general linear sections in a product of projective spaces, a witness
set for a multiprojective variety is necessarily a collection of such sections, called a

Fig. 1 Witness sets and the
trace test for the folium of
Descartes

x3 + y3 = 3xy

collinear traces
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Fig. 2 Numerical irreducible
decomposition for the ellipse
and folium
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Fig. 3 The curve C in P
1 × P

1 is defined by xy2 = 1 and x = z2 = (1/y)2 in two distinct affine charts
C × C. Its witness collection is ((W1, �

(1)), (W2, �
(2))), where Wi = C ∩ �(i)

witness collection. We see this in Fig. 3, where vertical and horizontal lines are the
two types of hyperplanes in the product P

1 × P
1.

Witness sets for multihomogeneous varieties were introduced in Hauenstein and
Rodriguez (2015). Figure 3 shows that the trace obtained by varying �(2) is nonlinear in
either affine chart. One may instead apply the trace test to a witness set in the ambient
projective space of the Segre embedding. By Remark 10, this may involve very large
witness sets. We propose an alternative method to verify irreducible components,
using a dimension reduction that sidesteps this potential bottleneck followed by the
ordinary trace test in an affine patch on the product of projective spaces. In Fig. 3
this is represented by the linear section of the plane cubic xy2 = 1 by the line �.
Both xy2 = 1 and x = z2 = ( 1y )

2 bihomogenize to the same cubic, but line � in
the first affine chart becomes a quadric in the second. Moreover, a general line in the
second chart intersects the curve at two points. Taking a generic chart preserves the
total degree, so we first choose a chart, and then take a general linear section in that
chart. This will have the same number of points as the the total number of points in
the witness collection.

In Sect. 1 we present a simple derivation of the usual trace test in affine space.
While containing the same essential ideas as in Sommese et al. (2002), our derivation
is shorter, and we believe significantly clearer. In Sect. 2 we introduce witness col-
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Fig. 4 Projecting the folium to
the y-axis

0

22 3
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lections, collections of multihomogeneous witness sets representing multiprojective
varieties. In Sect. 3 we present a trace test for multihomogeneous varieties that exploits
a reduction in dimension. Proofs are placed in Sect. 4 to streamline the exposition.

1 Trace in an Affine Space

We derive the trace test for curves in affine space, which verifies the completeness of
a witness set. We also show how to reduce to a curve when the variety has greater
dimension. Let V ⊂ C

n be an irreducible algebraic variety of dimension m > 0. We
restrict to m > 0, for if m = 0, then V is a single point. Let (x, y) be coordinates for
C
n with x ∈ C

n−m and y ∈ C
m . Polynomials defining V generate a prime ideal I in

the polynomial ring C[x, y]. We assume that V is in general position with respect to
these coordinates. In particular, the projection π of V to C

m is a branched cover with
a fiber of d = deg V points outside the ramification locus � ⊂ C

m .

Example 1 If we project the folium ofDescartes to the y-axis, all fibers consist of three
points, except those above zeroes of the discriminant −27y3(y3 − 4). These zeroes

form the ramification locus � = {0, 22/3, (− 1
2 ±

√−3
2 )22/3}. Figure 4 shows the real

points, where the fiber consists of one or three points, with this number changing at
the real points of �.

Let � ⊂ C
m be a general line parameterized by t ∈ C, so that L := C

n−m × � is a
general affine subspace of dimension n−m+1with coordinates (x, t). The intersection
C := V ∩L is an irreducible curve of degree d by Bertini’s Theorem (see Theorem 12)
and the projection π : C → � is a degree d cover over � � �.

Proposition 2 Let C ⊂ P
n, n ≥ 2, be a curve. Let α : P

n ��� P
2 be a generic

projection. Then C is irreducible if and only if α(C) is irreducible.

Note that one can state Proposition 2 for a generic linear map of affine spaces
C
n → C

2, since taking affine charts preserves (ir)reducibility.
Since V and L are in general position, Proposition 2 implies that the projection of

C to the (xi , t)-coordinate plane is an irreducible curve given by a single polynomial
f (xi , t) of degree d with all monomials up to degree d having nonzero coefficients.
Normalize f so that the coefficient of xdi is 1, and extend scalars from C to C(t).

Then f ∈ C(t)[xi ] is a monic irreducible polynomial in xi . The negative sum of its
roots is the coefficient of xd−1

i in f , which is an affine function of t . Equivalently,
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Trace Test 117

trK/C(t)(xi ) = c0t + c1 , (for some c0, c1 ∈ C) ,

where K is a finite extension of C(t) containing the roots of f . A function of t of the
form c0t+c1 where c0, c1 are constants is an affine function. We deduce the following.

Proposition 3 The sum in C
n−m of the points in a fiber of C over t ∈ � � � is an

affine function of t .

The converse to this holds.

Proposition 4 No proper subset of the points in a fiber of C over t ∈ � � � has sum
that is an affine function of t .

Example 5 Consider this for the folium of Descartes. As the folium is a plane curve,
a general projection α of Proposition 2 is a general change of coordinates. In the
coordinates ξ = x + 1 and t = 2y − x , the folium has equation

9ξ3 + (3t − 39)ξ2 + (3t2 − 18t + 51)ξ + t3 − 3t2 + 15t − 21 = 0 .

The trace is − t
3 + 13

3 . Figure 5 shows Fig. 1 under this change of coordinates. The
lines become vertical, and the average of the trace is the line ξ = − t

9 + 13
9 .

Remark 6 We generalize the situation of Proposition 4. A pencil of linear spaces is a
family Mt for t ∈ C of linear spaces that depends affinely on the parameter t . Each
Mt is the span of a linear space L and a point t on a line � that is disjoint from L .

Suppose that V ⊂ P
n is a subvariety of dimension m and that Mt for t ∈ C is

a general pencil of linear subspaces of codimension m with V ∩ M0 transverse. Let
� ⊂ C be the finite set of points t such that the intersection V ∩ Mt is not transverse.
Given any path γ : [0, 1] → C � � with γ (0) = 0 and any v ∈ V ∩ M0, we
may analytically continue v along γ to obtain a path v(γ (s)) for s ∈ [0, 1] with
v(γ (s)) ∈ V ∩ Mγ (s).

The sum of the points in a subset W of V ∩ M0 is an affine function of t if for a
nonconstant path γ : [0, 1] → C � � with γ (0) = 0, the sum of the points w(γ (s))
is an affine function of γ (s). This is independent of choice of path and of a general
pencil.

Fig. 5 Folium of Descartes in
new coordinates
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Remark 7 This leads to the trace test. Let V ⊂ P
n (or C

n) be a possibly reducible
variety of dimension m and M a general linear space of codimension m so that W =
V ∩ M is a witness set for V . Suppose we have a subset ∅ �= W ′ ⊂ W whose points
lie in a single component V ′ of V so that W ′ ⊂ V ′ ∩ M . Such a set W ′ is a partial
witness set for V ′. To test if W ′ = V ′ ∩ M , let Mt for t ∈ C be a general pencil of
codimension m planes in P

n with M = M0 and test if the sum of the points of W ′ is
an affine function of t . By Proposition 4, W ′ = V ′ ∩ M if and only if it passes this
trace test.

Remark 8 Let U be a variety and φ : U ��� P
n be a rational map with image V =

φ(U ). As obtaining defining equations for V may not be practical, working with a
witness set V ∩ M may not be feasible. Instead one may work with the preimage
φ−1(V ∩ M) producing a proxy for the witness set V ∩ M . A partial proxy witness
set is a finite subset of φ−1(V ∩ M). It is complete if its image is a complete witness
set.

We can, in particular, employ the trace test for the imageworkingwith proxywitness
sets for V ∩ Mt in Remark 7.

Hauenstein and Sommese Hauenstein and Sommese Hauenstein and Sommese
(2010) use this general observation to provide a detailed description of how proxy
witness sets can be computed and used to get witness sets of images of subvarieties
under a linear map P

m → P
n .

2 Witness Collections for Multiprojective Varieties

Suppose that V ⊂ C
n1 × C

n2 is an irreducible variety of dimension m > 0. Let-
ting z(i) be coordinates for C

ni for i = 1, 2, the variety V is defined by polynomials
F(z(1), z(2)) which generate a prime ideal. Separately homogenizing these polyno-
mials in each set z(i) of variables gives bihomogeneous polynomials that define the
closure V of V in the product P

n1 × P
n2 of projective spaces. Let us also write V for

this closure.
Then V has amultidegree [Harris (1992), Ch. 19]. This is a set of nonnegative inte-

gers dm1,m2 wherem1 +m2 = m with 0 ≤ mi ≤ ni for i = 1, 2 that has the following
geometric meaning. Given general linear subspaces Mi ⊂ P

ni of codimension mi for
i = 1, 2 withm1+m2 = m, the number of points in the intersection V ∩(M(1)×M(2))

is dm1,m2 . Multidegrees are log-concave in that for every 1 ≤ m1 ≤ m−1, we have

d2m1,m2
≥ dm1−1,m2+1 · dm1+1,m2−1 . (1)

These inequalities of Khovanskii and Tessier are explained in [Lazarsfeld (2004),
Ex. 1.6.4].

Following Hauenstein and Rodriguez (2015), a multihomogeneous witness set of
dimension (m1,m2) with m1 + m2 = dim V for an irreducible variety V is a set
Wm1,m2 := V ∩ (M(1) × M(2)), where for i = 1, 2, M(i) ⊂ P

ni is a general linear
subspace of codimension mi . More formally, the witness set is a triple consisting of
the points Wm1,m2 , equations for a variety that has V as a component, and equations
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for M(1) and for M(2). A witness collection is the list of witness sets Wm1,m2 for all
m1 + m2 = m.

Remark 9 If m2 = dim π2(V ), then the multihomogeneous witness set V ∩ (M(1) ×
M(2)) is a (proxy) witness set for the image π2(V ) of V in the sense of Hauenstein
and Sommese (2010) and Remark 8.

Suppose that V is reducible and Wm1,m2 = V ∩ (M(1) × M(2)) is a multihomoge-
neous witness set for V . This is a disjoint union of multihomogeneous witness sets for
the irreducible components of V that have nonzero (m1,m2)-multidegree. We sim-
ilarly have a witness collection for V . We consider the problem of decomposing a
witness collection into witness collections for the components of V . For every irre-
ducible component V ′ of V it is possible to obtain a partial witness collection W ′

m1,m2
for m1 +m2 = m and then—much like in the affine/projective setting—use the mon-
odromy action and the membership test to build up a (complete) witness collection.
We seek a practical trace test to verify that a partial witness collection is, in fact,
complete. That is, if we have equality W ′

m1,m2
= V ′ ∩ (

M(1) × M(2)
)
for each partial

witness set W ′
m1,m2

for V ′.
By Example 20 of Hauenstein and Rodriguez (2015), the trace of a multihomo-

geneous witness set as the linear subspaces M(1) and M(2) each vary in pencils
is not multilinear. The trace test for subvarieties of products of projective spaces
in Hauenstein and Rodriguez (2015) uses the Segre embedding σ : P

n1 × P
n2 →

P
(n1+1)(n2+1)−1 to construct the proxy witness sets as in Remark 8 (with φ = σ ).

Since σ gives an isomorphism from V to σ(V ), proxy witness sets are preimages
of witness sets (in contrast to Hauenstein and Sommese (2010) where extra work is
needed, since the preimage of a witness point may not be 0-dimensional).

Remark 10 Multihomogeneous witness sets for V are typically significantly smaller
than witness sets for σ(V ). Let V ⊂ P

n1 × P
n2 be a subvariety with multidegrees

dm1,m2 . By Exercise 19.2 in Harris (1992) the degree of its image under the Segre
embedding is

deg(V ) =
∑

m1+m2=m

dm1,m2

m!
m1!m2! .

This is significantly larger that the union of the multihomogeneous witness sets for
V . Thus a witness set for the image of V under the Segre embedding (a Segre witness
set in Hauenstein and Rodriguez (2015)) involves significantly more points than any
of its multihomogeneous witness sets.

Example 11 The graph V ⊂ P
m × P

m of a general linear map has multidegrees
(1, . . . , 1)with summ+1, but its image under the Segre embedding has degree 2m . If V
is the closure of the graph of the the standard Cremona transformation [x0, . . . , xm] �→
[1/x0, . . . , 1/xm], then its multidegrees are di,m−i = (m

i

)
with sum 2m and its degree

under the Segre embedding is
(2m
m

) = ∑
i

(m
i

)2, which is considerably larger.
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120 A. Leykin et al.

This suggests that one should seek algorithms that work directly with multiho-
mogeneous witness sets Wm1,m2 for m1 + m2 = m and—as the graph of Cremona
suggests—also involve as few of these as possible.

Algorithm 18 does exactly that while avoiding the Segre embedding.

3 Dimension Reduction and Multihomogeneous Trace Test

We give a useful version of Bertini’s theorem that follows from [Jouanolou (1983),
Thm. 6.3 (4)].

Theorem 12 (Bertini’s Theorem) Let V be a variety and φ : V ��� P
n be a rational

map such that dim φ(V ) ≥ 2. Then V is irreducible if and only if V ∩ φ−1(H) is
irreducible for a generic hypersurface H ⊂ P

n.

In Sect. 1 we sliced a projective variety V ⊂ P
n , dim V ≥ 2, with a general linear

subspace. This reduced the dimensions of the ambient space and of the variety, but
did not alter its degree or irreducible decomposition. A similar dimension reduction
procedure is more involved for subvarieties of a product of projective spaces.

Proposition 13 Let V ⊂ P
n1 × P

n2 be an irreducible variety and suppose that
dm1,m2(V ) �= 0 is a nonzero multidegree with 1 ≤ m1,m2. For i = 1, 2, let M ′

(i) be a
general linear subspace of P

ni of codimension mi−1. Then V ′ := V ∩ (M ′
(1) × M ′

(2))

is irreducible, has dimension two, and multidegrees

d0,2(V
′) = dm1−1,m2+1 , d1,1(V

′) = dm1,m2 , and d2,0(V
′) = dm1+1,m2−1 .

We have several overlapping cases.

(1) If d0,2(V ′) = d2,0(V ′) = 0, then π1(V ′) and π2(V ′) are both curves, V ′ is their
product, and V is the product of its projections π1(V ) ⊂ P

n1 and π2(V ) ⊂ P
n2 .

(2a) If d0,2(V ′) = 0 then π1(V ′) is an irreducible curve and V ′ is fibered over π1(V ′)
by curves. Also, π1(V ) is irreducible of dimension m1 and the map V → π1(V )

is a fiber bundle. If d2,0(V ′) = 0, then the same holds mutatis mutandis.
(2b) One of d2,0(V ′) or d0,2(V ′) is non-zero. Suppose that d2,0(V ′) �= 0. Then π1(V ′)

is two-dimensional, and for a general hyperplane H ⊂ P
n1 , W ∩ (H × P

n2) is
an irreducible curve C with d1,0(C) = d2,0(V ′) and d0,1(C) = d1,1(V ′).

Case (1) is distinguished from cases (2a) and (2b) as follows. Consider the linear
maps induced by projections πi , i = 1, 2, on the tangent space of V ′ at a general point.
We are in case (1) if and only if both maps on tangent spaces are degenerate.

Case (1) reduces to the analysis of projections πi (V ′), otherwise it is possible to
use Bertini’s theorem to slice once more (preserving irreducibility and multidegrees)
to reduce a two-dimensional subvariety V ′ to a curve C .

Example 14 Consider the three-dimensional variety V in P
4 × P

4 defined by f :=∑4
i=1(x0 + xi )3 = 0 and the maximal minors of the 5 × 2 matrix [yi , ∂ f/∂xi ]. The

multidegree of V is (d3,0, d2,1, d1,2, d0,3) = (3, 6, 12, 0). Since d2,1(V ) �= 0, we
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intersect V with M ′
(1) × M ′

(2) where M ′
(1) is a hyperplane in P

4 and M ′
(2) = P

4;
the multidegree of V ′ is (d2,0, d1,1, d0,2) = (3, 6, 12). On the other hand, d1,2(V ) is
also non-zero. Intersecting V with M ′

(1) × M ′
(2) where now M ′

(1) = P
4 and M ′

(2) is a

hyperplane in P
4, the multidegree of V ′ is (d2,0, d1,1, d0,2) = (6, 12, 0). Each may be

sliced once more to reduce to a curve in either P
4 × P

2, P
3 × P

3, or P
2 × P

4.

The following multihomogeneous counterpart of Proposition 2 is not a part of our
multihomogeneous trace test. We include it to provide better intuition to the reader.

Proposition 15 Let C ⊂ P
n1 ×P

n2 be a curve. Let αi : P
ni ��� P

1 be a generic linear
projection for i = 1, 2. Then C is irreducible if and only if (α1 × α2)(C) ⊂ P

1 × P
1

is irreducible.

Having reduced to a curve C ⊂ P
1 × P

1, we could use a trace test via the Segre
embedding P

1 × P
1 → P

3 as in Remark 10. It is more direct to use the trace test in
C
2.

Example 16 Let us consider the trace test for a curve C in P
1 × P

1. Let x := (x0, x1)
and y := (y0, y1) be homogeneous coordinates on the two copies of P

1. Let C be a
curve given by the bihomogeneous polynomial f (x, y) := x0y20 − x1y21 of bidegree
(1, 2)

Linear forms �(1) := x1 − 7
2 x0 and �(2) := y1 + y0 cut out witness sets W1,0 and

W0,1 for C . Choose the (sufficiently general) linear forms

h(1) := x0 , h(2) := y0 , k(1) := 3
2 x1 − x0 , and k(2) := − 4

3 y1 − 10
3 y0 ,

and consider the bilinear form

g(x, y) := h(1)k(2) + k(1)h(2) + h(1)h(2) .

Following the points of W1,0 ∪ W0,1 along the homotopy

h(t) := (1 − t)�(1)�(2) + tg, (2)

from t = 0 to t = 1 gives the three (= 1 + 2) points of C ∩ V(g).
Then (x1, y1) provides coordinates in the affine chart where h(1) = 1 and

h(2) = 1, with multihomogeneous witness sets W1,0 = {(1, 1)} and W0,1 =
{(7/2,−√

2/7), (7/2,
√
2/7)}. The homotopy (2) from t = 0 to t = 1 takes the

three witness points W1,0 ∪ W0,1 for C ∩ V
(
�(1)�(2)

)
to the three witness points for

C ∩ V(g). In this chart, V(g) is a line in C
1 × C

1 = C
2, so that C ∩ V(g) is a witness

set for the curve C in C
2.

Using the witness points C ∩ V(g), we perform the trace test for C in this affine
chart, using the family of lines, V(g + τ) as τ varies. The values of the trace at three
points,
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122 A. Leykin et al.

τ 0 −1 −2

avg x1 1.48148 1.92592 2.37037
avg y1 −.83333 −1.08333 −1.33333

let us find the trace, ( 4027 − 4
9τ,− 5

6 + 1
4τ), by interpolation.

Remark 17 It is not essential to reduce to a curve in P
1 × P

1. The construction and
argument of Example 16 holds, mutatis mutandis, for an irreducible curve P

n1 × P
n2

with the trace test performed in an affine patch C
n1+n2 � C

n1 × C
n2 (Fig. 6).

We give a high-level description of an algorithm for the trace test for a collection
of partial multihomogeneous witness sets. Details and improvements of a numerical
irreducible decomposition algorithm that uses this trace test shall be given elsewhere.
For an overview of numerical irreducible decomposition see Section 6 of Hauenstein
and Rodriguez (2015).

Let us fix

dimension: an integer m, the dimension of a witnessed component;
affine charts: for i = 1, 2, linear forms h(i) defining affine charts h(i) = 1 in P

ni ;
slices: for i = 1, 2, for j = 1, . . . ,m, linear forms �

(i)
j defining hyperplanes in

P
ni ;

Write Lm1,m2 for the system {h(1) −1, �(1)
1 , . . . , �

(1)
m1 , h

(2) −1, �(2)
1 , . . . , �

(2)
m2}. Observe

that the system Lm1,m2 defines a product M(1) × M(2) in an affine chart of P
n1 × P

n2 .

Algorithm 18 (Multihomogeneous Trace Test) Input:

equations: a multihomogeneous polynomial system F ;
a partial witness collection: partial witness sets Wm1,m2 where m1 = 0, . . . ,m
and m2 = m − m1 representing an irreducible component V ⊂ V(F), i.e.,
Wm1,m2 ⊂ V ∩ V

(
Lm1,m2

)
.

−2

1

y1

1 2 x1

( 2)

h( 12 ) g ( 1)

C

C

−2

1

y1

1 2x1

g

τ = 0

τ =−1

τ =−2

Fig. 6 On the left: the red lines, green curve, and magenta curve correspond, respectively, to (2) at t =
0, 1

2 , 1. On the right: the parallel slices V(g + τ) are in green, and the average of the witness points ( 13 of
the trace) lies on the brown line. The blue curve is C (colour figure online)
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Output: a boolean value = the witness collection is complete.
1: if Wm1,m2 = ∅ for all m1 = 0, . . . ,m but one then
2: if both projections of V(F) to the factors P

ni are degenerate at an available
witness point then

3: return (both trace tests for the projections to P
ni for i = 1, 2 pass) and (the

unique nonempty set of witness points equals the product of its projections)
4: else
5: return false
6: else
7: for m1 = 0, . . . ,m − 1 do
8: if the trace test in C

n1+n2 described in Example 16 and Remark 17 (after
tracking Wm1,m2 and Wm1+1,m2−1 along the deformation from �

(1)
m1+1�

(2)
m2 to a

general affine linear function on C
n1+n2 ) does not pass then

9: return false
10: return true

We presented results for subvarieties of a product of two projective spaces for the
sake of clarity. These arguments generalize to a product of arbitrarily many factors
with a few subtleties.

4 Proofs

Wepresent a proof of Proposition 15 immediately following the proof of Proposition 2.
While the first is standard, it helps to better understand the second. Amap on a possibly
reducible variety is birational if it is an isomorphism on a dense open set.

Every surjective linear map P
n ��� P

n−1, n > 1, is the projection from a point
p ∈ P

n � Proj(Cn+1). Namely, it is the projectivization αp : P
n ��� P

n−1 of the
quotient map C

n+1 → C
n+1/Cp � C

n . This rational map is not defined at Cp.

Proof of Proposition 2 We argue that a projection from a generic point is a birational
map from a curve C ⊂ P

n to its image in P
n−1 for n ≥ 3. Birational maps preserve

(ir)reducibility.
Consider the incidence variety of triples (p, c, c′) ⊂ P

n ×C×C , where p, c, c′ are
collinear. Projecting to C × C shows that this incidence variety is three-dimensional
because the image is two-dimensional and generic fiber is one-dimensional.Moreover,
the projection to P

n is dense in the secant variety of C .
When n = 3, observe that this secant variety is either (1) not dense, so projecting

fromapoint not in its closure is a birationalmap fromC onto a plane curve, or (2) dense.
In case (2), a general point p ∈ P

3 has finitelymany preimages (p, c, c′) ∈ P
n×C×C ,

so the projection αp : P
3 ��� P

2 gives a birational map from C to a plane curve C ′
with finitely many points of self-intersection.

Note that for n > 3 only case (1) is possible.
Thus, we are always able to reduce the ambient dimension by one until n = 2. ��

Proof of Proposition 15 Assume that n = n1 ≥ n2. Any inclusion P
n2 ↪→ P

n1 = P
n

gives an isomorphism fromC to a curve in P
n ×P

n . We may replace α2 with a generic
linear map P

n ��� P
1 that it factors through.
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For (p, q) ∈ P
n × P

n consider the product of projection-from-a-point maps

αp × αq : P
n × P

n ��� P
n−1 × P

n−1 .

Let 
 be the incidence variety of triples (s, c, c′) ∈ (Pn × P
n) × C × C , where

s = (s1, s2), c = (c1, c2), and c′ = (c′
1, c

′
2) such that si , ci , c′

i , are collinear for
i = 1, 2.

The projection of 
 to C × C has fibers P
1 × P

1, so it is four-dimensional. The
projection to P

n × P
n is dense in a generalized secant variety of dimension four.

When n = 2, either this secant variety is (1) dense, or it is (2) not dense, so that
αp × αq for a point (p, q) not in its closure is a birational map from C to its image. In
case (1), a general point (p, q) ∈ P

n × P
n has finitely many preimages. This implies

that the map αp × αq is one-to-one on C with the exception of finitely many points,
whose images are self-intersections of the curve (αp × αq)(C).

For n > 2, case (2) is the only possibility.
Thus we are always able to reduce n by one until n = 1. ��

Proof of Proposition 4 Let W be a subset of the fiber Ct of C over t ∈ � � � whose
sum s(t) is an affine linear function of t . Note that local linearity in a neighborhood of
some t implies global linearity: in particular, an analytic continuation along any loop
γ : [0, 1] → � � � with γ (0) = γ (1) = t does not change the value of s(t).

Following points of Ct along the loop above γ gives a permutation of Ct . By our
assumption of general position and [Arbarello et al. (1985), Lemma on page 111],
every permutation of Ct is obtained by some loop γ .

Suppose that W is a proper subset of Ct . Then there is a point u ∈ W and a point
v ∈ Ct � W , hence u �= v. Let γ be a loop in � � � based at t whose permutation
interchanges u and v and fixes the other points ofCt . In particular, u(γ (1)) = v. Since
s(t) = ∑

w∈W w(t) has the same value at the beginning and the end of the loop, we
have

∑

w∈W
w(γ (0)) =

∑

w∈W
w(γ (1)) .

Taking the difference gives 0 = u(γ (1)) − u(γ (0)) so that u = v, a contradiction. ��
Proof of Proposition 13 Note that projections πi : P

n1 × P
n2 → P

ni , for i = 1, 2,
satisfy the assumptions on the map φ in Theorem 12. Applying the theorem mi − 1
times for πi , for i = 1, 2, gives the proof of the first part of the conclusion.

The rest of the conclusion follows from the case analysis: in the case dim π1(V ′) ≥
2, one more application of Theorem 12 for the map π1 proves the statement. ��
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