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Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter
presents a statistical combination of searches for H → invisible decays where H is produced according to
the standard model via vector boson fusion, ZðllÞH, and W=ZðhadÞH, all performed with the ATLAS
detector using 36.1 fb−1 of pp collisions at a center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV at the LHC. In
combination with the results at

ffiffiffi
s

p ¼ 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio
of 0.26ð0.17þ0.07

−0.05 Þ at 95% confidence level is observed (expected).

DOI: 10.1103/PhysRevLett.122.231801

One of the central open questions in physics today is the
nature of dark matter (DM) that is found to comprise most
of the matter in the Universe [1–4]. A compelling candidate
for DM is a stable electrically neutral particle χ whose
nongravitational interactions with Standard Model (SM)
particles are weak. Such a particle with a mass comparable
to the mass scale of the electroweak sector particles could
be detectable [5–7] and accommodate the observed DM
relic density [8,9]. Numerous models predict detectable
production rates of such DM particles at the Large Hadron
Collider (LHC) [10–12]. In a wide class of those models,
the 125 GeV Higgs boson H [13,14] acts as a portal
between a dark sector and the SM sector, either through
Yukawa-type couplings to fermionic dark matter, or
other mechanisms [15–28]. If kinematically allowed,
decays of the Higgs boson to DM particles represent a
distinct signature in such models. Higgs boson decays to
DM particles can only be indirectly inferred through
missing transverse momentum [29] Emiss

T due to DM
particles escaping detection, and are therefore termed
“invisible” (inv).
Direct searches for invisible Higgs boson decays have

been carried out with the ATLAS detector [30–32] in Run 1
of the LHC, using up to 4.7 fb−1 of pp collision data at a
center-of-mass energy of

ffiffiffi
s

p ¼ 7 TeV and up to 20.3 fb−1

at 8 TeV. Different event topologies were considered,
assuming SM production rates: vector boson fusion
(VBF) [33], Higgsstrahlung from a Z boson decaying into
a pair of electrons or muons (ZðlepÞH) [34], and
Higgsstrahlung from aW or Z boson decaying into hadrons

(VðhadÞH) [35]. These searches for invisible Higgs boson
decays have been statistically combined, and an upper
limit at 95% confidence level (C.L.) on the invisible Higgs
boson branching ratio of BH→inv < 0.25ð0.27þ0.10

−0.08Þ [36]
was observed (expected). In combination with visible
decay modes of the Higgs boson, the upper observed
(expected) limit improved to 0.23 (0.24) [36]. Direct
searches for invisible Higgs decays were performed using
up to 36.1 fb−1 of pp collision data at

ffiffiffi
s

p ¼ 13 TeV
recorded in 2015 and 2016 in the VBF [37], ZðlepÞH [38],
and VðhadÞH [39] topologies at ATLAS. The aforemen-
tioned results at

ffiffiffi
s

p ¼ 13 TeV will be referred to as “Run 2
results” in the following. Similar searches were performed
by the CMS Collaboration [40–44].
This Letter presents the statistical combination of the

Run 2 searches with 36.1 fb−1 of data for invisible
decays of the Higgs boson using the ATLAS detector.
Subsequently, a statistical combination with the combined
Run 1 result [36] from ATLAS is performed. An overview
of all results used as inputs in this combination is given in
Table I. The analysis is performed under the assumption of
SM Higgs boson production. Visible decay modes of the
Higgs boson are not considered.
A brief overview of the Run 2 searches for H → inv is

given below.
VBF topology [37].—The analysis of the VBF produc-

tion mode employs an Emiss
T trigger that is 98% efficient or

better in the considered region of phase space. The event
selection requires Emiss

T > 180 GeV. Jets (j) are recon-
structed up to jηðjÞj < 4.5 from energy clusters in the
calorimeter using the anti-kt algorithm [45] with a radius
parameter R ¼ 0.4. The two jets leading in pT are required
to be separated by jΔηjjj > 4.8. There should be no
additional jets with pT > 25 GeV and no isolated electron
or muon candidate with pT > 7 GeV. These requirements
serve to reduce the contribution from W=Z production in
association with jets (V þ jets). In the search signal region
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(SR) the mjj distribution of the background falls more
rapidly than the signal, where mjj represents the invariant
mass of the two selected leading jets. Thus the SR is
divided into three mjj regions (1 < mjj=TeV < 1.5,
1.5 < mjj=TeV < 2, and mjj=TeV > 2) to improve the
search sensitivity. The dominant background sources are
ZðννÞ þ jets and WðlνÞ þ jets production, where the
charged lepton l is not detected. Control regions (CR)
enriched in ZðllÞ þ jets and WðlνÞ þ jets processes with
l ¼ e, μ are defined to determine the respective normali-
zation factors in the SR. The main contributions to
uncertainties are from the finite number of simulated
Monte Carlo (MC) events, the modeling of V þ jets
production, and accuracy of the jet energy scale (JES).
The final discriminant is the number of events in the three
mjj regions.
ZðlepÞH topology [38].—This search is conducted in the

Higgsstrahlung channel where the Z boson decays into a
pair of electrons or muons. A selected candidate event must
pass at least one of the various single-lepton triggers, fulfill
Emiss
T > 90 GeV and Emiss

T =HT > 0.6, where HT is calcu-
lated as the scalar sum of the pT of the selected leptons and
jets, and have exactly one pair of isolated electrons or
muons with an invariant mass that is consistent with that of
the Z boson. The transverse momentum requirement on the
leading (subleading) charged lepton is pT > 30 ð20Þ GeV.
To reduce the Z þ jets background, the dilepton system
must be aligned back to back relative to the Emiss

T vector in
the transverse plane. Events with jets originating from b-
quarks (b-jets) are vetoed to suppress backgrounds from
top quark pair (tt̄) production and W boson production in
association with a single top quark (Wt). The irreducible
ZðννÞZðllÞ background is estimated fromMC simulations
and its production yield is normalized to the theoretical
prediction of Refs. [46,47]. The WðlνÞZðllÞ background
contribution is also predicted with MC simulations and is
normalized by a scale factor that is obtained from a CR
enriched in WZ events. The Z þ jets background is
estimated with a data-driven method that uses Z-enriched
CRs. The final discriminant is Emiss

T .
VðhadÞH topology [39].—This analysis considers the

Higgsstrahlung channel where the associatedW or Z boson

decays into hadrons. The final state signature of large Emiss
T

and jets also receives contributions from Higgs boson
production via gluon fusion with jets originating from
initial state radiation, and production via the VBF process.
Selected events must pass a Emiss

T trigger and must not
contain an isolated electron or muon with pT > 7 GeV.
As a V is boosted, the two jets from its decay become
increasingly collimated and are eventually merged into one
single reconstructed jet. Thus, this search is conducted in
two topological channels. In the “merged” topology, the SR
is defined with Emiss

T > 250 GeV and has at least one
trimmed [48,49] large-R jet (J) that is reconstructed using
the anti-kt algorithm with R ¼ 1.0. The signal large-R jet
is the one with the highest pT. For the “resolved” topology,
the selected event should have Emiss

T > 150 GeV and at
least two small-R jets (j) with R ¼ 0.4. Each event is first
passed through the merged topology selection and, if it
fails, it is passed through the resolved topology selection.
To improve the search sensitivity, the selected events are
further split into categories with zero, one, and two
identified b-jets, and into two mass regions of the invariant
mass of the signal large-R jet (two signal small-R jets) for
the merged (resolved) topology. The low mass region
(70≲mJ, mjj=GeV≲ 100) targets the hadronic W=Z
boson decays of the associated production, whereas the
high mass region (100≲mJ, mjj=GeV < 250) is sensitive
to gluon fusion and VBF production. The main background
contributions are from the V þ jets and tt̄ processes. The
predictions from MC simulations are constrained with CRs
that contained one or two leptons, and are kinematically
similar to the SR. The final discriminant is Emiss

T .
The SRs and CRs of the individual input analyses are

either orthogonal by construction, or were shown to have an
overlap below 1%, which is neglected in the following.
The statistical combination of the analyses is performed

by constructing the product of their likelihoods and
maximizing the resulting likelihood ratio ΛðBH→inv; θÞ
[50]. This is done following the implementation described
in Ref. [51,52], with BH→inv as the parameter of
interest. Systematic uncertainties are modeled in the like-
lihood function as nuisance parameters θ constrained by
Gaussian or log-normal probability density functions [36].

TABLE I. Observed and expected upper limits on BH→inv at 95% C.L. from direct searches for invisible decays of the 125 GeV Higgs
boson and statistical combinations. Also given are the observed p values under the SM hypothesis.

Analysis
ffiffiffi
s

p
Int. luminosity Observed Expected pSM value Reference

Run 2 VBF 13 TeV 36.1 fb−1 0.37 0.28þ0.11
−0.08 0.19 [37]

Run 2 ZðlepÞH 13 TeV 36.1 fb−1 0.67 0.39þ0.17
−0.11 0.06 [38]

Run 2 VðhadÞH 13 TeV 36.1 fb−1 0.83 0.58þ0.23
−0.16 0.12 [39]

Run 2 Comb. 13 TeV 36.1 fb−1 0.38 0.21þ0.08
−0.06 0.03 this Letter

Run 1 Comb. 7,8 TeV 4.7, 20.3 fb−1 0.25 0.27þ0.10
−0.08 � � � [36]

Run 1þ 2 Comb. 7,8,13 TeV 4.7, 20.3, 36.1 fb−1 0.26 0.17þ0.07
−0.05 0.10 this Letter
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Expected results are obtained using the Asimov dataset
technique [50].
In the combination of Run 2 results, most experimental

systematic uncertainties as well as the uncertainty on the
integrated luminosity and the modeling of additional pp
collisions in the same and neighboring bunch crossings
(pileup) are correlated across all search channels. Some
experimental uncertainties related to flavor tagging and the
JES are represented through different parametrizations in
the input analyses and are therefore treated as uncorrelated.
The impact of this assumption on the combined result is
estimated using alternative correlation models where the
leading sources of systematic uncertainty in the respective
parametrizations are treated as correlated, and found to
have an absolute effect on the BH→inv limit of the order of
0.01. The systematic uncertainties on the total H → inv
signal cross section due to the choice of parton distribution
functions (PDF) are considered correlated among all
channels. By contrast, uncertainties due to missing higher
order corrections are estimated through variations of
factorization and renormalization scales and treated as
correlated between the ZðlepÞH and VðhadÞH processes.
This is not done for VBF, which represents a distinct
topology. The impact of the corresponding uncertainties
on the acceptance rather than the total cross section of
VðhadÞH production is evaluated and found negligible.
Few systematic uncertainties that are tightly constrained in
a given analysis are left uncorrelated in order not to
introduce any potential phase space specific biases.
The negative logarithmic profile likelihood ratios

−2Δ lnðΛÞðBH→inv; θÞ as a function of BH→inv of the
individual analyses and of the combined Run 2 result
are shown in Fig. 1, corresponding to a best-fit combined
value of BH→inv ¼ 0.20� 0.10. The dominant uncertainty
sources are finite event yields in data and MC simulations,
reconstruction of jets and leptons, and modeling of
diboson and W=Z þ jets production. In absence of a
significant excess, an upper limit at 95% C.L. of BH→inv <
0.38ð0.21þ0.08

−0.06 Þ is observed (expected) with the CLs for-
malism [53] using the profile likelihood ratio as a test
statistic. The excess in data corresponds to a pSM value of
3% under the SM hypothesis of BH→inv ≃ 10−3, and is a
direct consequence of the excesses that are present in each
of the three input analyses, see Table I. Each of the
individual analyses has been scrutinized and these excesses
have been found nonsignificant and independent.
Subsequently, the above Run 2 result is combined with

the Run 1 searches forH → inv decays [36]. Because of the
differences between the detector layouts and data-taking
conditions, reconstruction algorithms and their calibrations,
and treatment of systematic uncertainties, the correlations
between the runs are not clearly identifiable. Hence, no
correlations between Run 1 and 2 are assumed for most
instrumental uncertainties. The uncertainties related to the
modeling of the calorimeter response dependence on jet

flavor and pileup are taken as either correlated or uncorre-
lated between the runs, and the choice which results in a
weaker expected exclusion limit on BH→inv is adopted. The
uncertainty on the JES of b-quark jets was estimated using
MC simulations [54,55] and is therefore considered corre-
lated. For the signal modeling, the parton shower uncer-
tainty in the VðhadÞH channel, the uncertainty from
missing higher order corrections in the ZðlepÞH analysis,
and the uncertainty on the jet multiplicity in the VBF
channel [56] are each taken as correlated between the runs
since the estimated uncertainties stem from the same
source. For the same reason, the uncertainty from missing
higher order corrections on the Emiss

T observable in the
dominant background from diboson production in the
ZðlepÞH search is treated as correlated. All other back-
ground modeling uncertainties are considered uncorrelated.
The impact of these correlation assumptions on the com-
bined BH→inv limit is found to be at most 0.005. In addition,
the impact on BH→inv in scenarios ranging from full anti-
correlation to full correlation is studied using the best linear
unbiased estimator (BLUE) [57] for the components of the
JES uncertainty, the V þ jets background, and diboson
production that are nominally not correlated due to differ-
ent parametrizations in Run 1 and 2. The resulting absolute
effect on the BH→inv limit is at most 0.01.
The observed −2Δ lnðΛÞðBH→inv; θÞ ratio of the com-

bined Run 1þ 2 result is represented in Fig. 1, alongside
the individual Run 1 and Run 2 combinations. A best-fit
value of BH→inv ¼ 0.13� 0.08 is obtained, corresponding
to an observed (expected) upper limit of BH→inv <
0.26ð0.17þ0.07

−0.05 Þ at 95% C.L. The pSM value under the
SM hypothesis is 10%, and the compatibility between the
Run 1 and Run 2 results is 1.5 standard deviations. The
final result, together with the results in the individual Run 2
analyses as well as the Run 2-only and the Run 1-only
combinations, are summarized in Table I, and the upper
limits on BH→inv are graphically represented in Fig. 2.
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The results are consistent with a similar statistical combi-
nation in Ref. [40].
The constraint from the combined observed Run 1þ 2

exclusion limit of BH→inv < 0.24 at 90% C.L. is compared
to the results from representative direct DM detection
experiments [58–62] in Fig. 3. This comparison is per-
formed in the context of Higgs portal models [63]. The
translation of the H → inv result into a weak interacting
massive particle–nucleon scattering cross section σWIMP-N
relies on an effective field theory approach [33] under the
assumption that invisible Higgs decays to a pair of WIMPs
are kinematically possible and that the WIMP is a scalar
or a fermion [23,64,65], using the nuclear form factor
fN ¼ 0.308� 0.018 [66]. The excluded σWIMP-N values
range down to 2 × 10−45 cm2 in the scalar WIMP scenario.
In the fermion WIMP case, the effective coupling is

reduced by m2
H [33], excluding σWIMP-N values down to

10−46 cm2. While the ATLAS exclusion limits extend to
mWIMP < 1 GeV, that region is subject to uncertainties in
modelling of the nuclear recoil and is therefore not included
in Fig. 3.
In summary, direct searches for invisible Higgs

boson decays using 36.1 fb−1 of pp collision data at
ffiffiffi
s

p ¼
13 TeV recorded in 2015 and 2016 in the VBF, ZðlepÞH,
and VðhadÞH topologies are statistically combined
assuming SM-like Higgs boson production. An upper
limit on the invisible Higgs branching ratio of BH→inv <
0.38ð0.21þ0.08

−0.06 Þ is observed (expected) at 95% C.L. A
statistical combination of this result with the combination
of direct H → inv searches using up to 4.7 fb−1 of pp
collision data at

ffiffiffi
s

p ¼ 7 TeV and up to 20.3 fb−1 at 8 TeV
collected in Run 1 of the LHC yields an observed
(expected) upper limit of BH→inv < 0.26ð0.17þ0.07

−0.05Þ at
95% C.L. The combined Run 1þ 2 result is translated
into upper limits on the WIMP-nucleon scattering cross
section for Higgs portal models. The derived limits range
down to 2 × 10−45 cm2 in the scalar and 10−46 cm2 in the
fermion WIMP scenarios, highlighting the complementar-
ity of DM searches at the LHC and direct detection
experiments.
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hhAlso at The City College of New York, New York, New York, USA.
iiAlso at Department of Physics, California State University, Sacramento, California, USA.
jjAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
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