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We present a new algorithmic framework which utilizes tropical 
geometry and homotopy continuation for solving systems of 
polynomial equations where some of the polynomials are generic 
elements in linear subspaces of the polynomial ring. This approach 
generalizes the polyhedral homotopies by Huber and Sturmfels.
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1. Introduction

The polyhedral homotopy continuation method of Huber and Sturmfels (1995), which is imple-
mented in PHCpack (Verschelde, 1999), HOM4PS (Lee et al., 2008–2018; Chen et al., 2014), and 
PHoM (Gunji et al., 2004), is used for computing numerical approximations of all the roots of n
polynomial equations in n variables, where it is assumed that each equation has generic coefficients 
with respect to its monomial support. We generalize this to

Setting A: Instead of solving the polynomial system for all solutions in (C∗)n , we would like to find 
solutions lying on a variety X ⊂ Cn defined by the set of polynomials G , away from the base 
locus, where the number of additional given polynomials (other than G) is equal to dim(X)

and each of the additional polynomials is generic with respect to its monomial support.

This can be further generalized to

Setting B: Instead of monomial supports, we can consider arbitrary supports, i.e. we would like to 
find roots on X of polynomials that are generic linear combinations of arbitrary sets of 
polynomials.
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We propose a 3-stage framework to solve this problem in the general setting.

Initialization: Reformulate the problem in Setting B into Setting A as explained in §2. Then pick—
in practice, randomly—a one-parameter system f (t) on dim(X) many polynomials with the 
specified monomial supports and coefficients that are generic rational powers of the param-
eter t multiplied by a generic complex number.

Stage 1 (mostly symbolic): Compute the tropical variety trop(X). This usually involves both polyhe-
dral computations and Gröbner basis computations.

Stage 2 (polyhedral): Compute the (transverse) intersection of trop(X) with tropical hypersurfaces of 
polynomials in f (t).

Stage 3 (mostly numerical): Find the initial terms—in general, distinct truncations—of Puiseux series 
solutions of the system G = f (t) = 0 corresponding to the tropical points found in Stage 2. 
Track the homotopy paths for t ∈ [0, 1], which are approximated by these truncated Puiseux 
series in the beginning (t close to 0) and lead to solutions of a system with generic complex 
coefficients at the end (t = 1).

When X = Cn in Setting A, the Stage 1 is not needed, and the framework specializes to the polyhedral 
homotopy approach. The precise statements are in the pseudocode of Algorithm 7, which is followed 
by remarks on currently available tools for implementation.

2. The problem setup

The more general setup (Setting B) is as follows. Let X = V(G) ⊆ Cn . Let L1, L2, . . . , Lr be vector 
subspaces of C[x] spanned by finite sets F1, F2, . . . , Fr respectively. Let L := L1 × · · · × Lr . Let Z Li :=
V(Fi) be the base locus of the linear spaces Li . Let Z L := ⋃r

i=1 Z Li .

Our main goal is to compute all the points in (X \ Z L) ∩V( f ) for some generic element f =
( f1, . . . , fr) ∈ L. Our enumerative goal is to compute the number d(X, L) of such points, which we 
assume to be finite.

A discussion of subtleties surrounding the base locus and genericity appears in the Appendix. We 
can deal with rational functions in Fi ’s by clearing the denominators and removing the zero locus of 
the denominators from X\Z L .

We will now reformulate the Setting B into Setting A. Let P = {h1, h2, . . . , h�} be the set of non-
monomials in F1 ∪ · · · ∪ Fr . Consider

G ′ = G ∪ {zi − hi(x) | 1 ≤ i ≤ �},
F ′

j = (F j with hi replaced by zi), j = 1, . . . , r, (1)

which are sets of polynomials in C[x, z] := C[x1, . . . , xn, z1, . . . , z�]. Solving the system f1 = · · · =
fr = 0 on X = V(G) is equivalent to solving f ′

1 = · · · = f ′
r = 0 on the variety V(G ′) where f ′

j is 
obtained from f j by replacing each hi with zi . The new polynomials f ′

1, . . . , f
′
r are generic with 

respect to their monomial support. For the rest of the paper we assume Setting A, that is, Fi forms a
monomial basis of Li for each i = 1, . . . , r. We drop the primes ′ for simpler notation.

Example 1. Two generic circles

a1(x2 + y2) + a2x + a3 y + a4 = 0

a5(x2 + y2) + a6x + a7 y + a8 = 0

intersect in two points in C2 although the mixed volume of their Newton polytopes is 4. We rewrite 
the system as:

z − (x2 + y2) = 0

a1z + a2x + a3 y + a4 = 0

a5z + a6x + a7 y + a8 = 0
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The original equations are transformed into polynomials that are generic with respect to their mono-
mial supports, but we acquire a new equation whose coefficients may be special. �

To achieve the main goal, we will construct a homotopy with exactly d(X, L) paths to track. The 
number d(X, L) is called the intersection index [L1, . . . , Lr] and is related to the volume and mixed 
volume of Newton–Okounkov bodies (Kaveh and Khovanskii, 2012, §4).

3. Algorithmic framework

Let C{ {t} } be the field of Puiseux series that are convergent on a punctured neighborhood of 0
in C. (See Ghys, 2016 for a proof of the fact that C{ {t} } is an algebraically closed field and a historical 
excursion.) There is a valuation from C{ {t} } − {0} to Q given by the leading (lowest) degree.

For an ideal I in C{ {t} }[x1, . . . , xn] and a weight vector ω ∈ Qn , the t-initial ideal t-inω(I) is obtained 
by first taking the usual initial ideal with the min-convention (leading terms are lightest), where the 
weight of t is 1 and the weights of x’s are given by ω, and then setting t = 1. The t-initial ideal is 
an ideal in C[x]; it does not involve t . For example, t-in(1,2)〈(t + t2)x + 2y + 3tx2 + (5t2 + 7t3)〉 =
〈x + 2y + 5〉.

The tropical variety of I is defined as

trop(I) = {ω ∈Qn : t-inω(I) does not contain a monomial}.
We often write trop(X) to denote trop(I) when X = V(I), and we write trop( f ) to denote trop(〈 f 〉). 
The tropical variety is a polyhedral complex, and we can define multiplicities on its maximal faces. 
See Maclagan and Sturmfels (2015), Chapter 3, and Jensen et al. (2008) for details.

Theorem 2 (Fundamental theorem of tropical algebraic geometry). (Maclagan and Sturmfels, 2015, Theo-
rem 3.2.3) The points in trop(I) are exactly the coordinatewise valuations of the Puiseux series points in the 
variety of I . The multiplicity of each tropical point ω ∈ trop(I) is equal to the number of Puiseux series point 
with valuation ω, counted with multiplicities.

We will now formulate the polyhedral homotopy continuation method of Huber and Sturmfels 
using tropical geometry. Given a polynomial system f = ( f1, . . . , fn) ∈ (C[x1, . . . , xn])n with generic 
coefficients with respect to their monomial supports, we perturb the coefficients by throwing in ex-
tra factors of the form tα where α are arbitrary rational numbers, to obtain a family of systems 
f (t) = ( f1(t), . . . , fn(t)) ∈ (C{ {t} }[x1, . . . , xn])n . See (2) with r = n. The homotopy continuation ap-
proach looks to “connect” solutions of the original system f = f (1) to the Puiseux series solutions of 
f (t) convergent in some neighborhood of t = 0.

If the exponents of t ’s are sufficiently generic, then the intersection of tropical hypersurfaces 
trop( f1(t)) ∩ · · · ∩ trop( fn(t)) is finite and transverse, i.e. locally at each intersection point it is a 
transverse intersection of affine spaces. In this case we have

trop(〈 f1(t), . . . , fn(t)〉) = trop( f1(t)) ∩ · · · ∩ trop( fn(t)).

The points of trop( f1(t)) ∩ · · · ∩ trop( fn(t)) are most commonly computed by enumerating mixed 
cells of the mixed subdivision, which is the projection of lower convex hull the Newton polyhedron of 
the product f1(t) · · · fn(t) onto the x-coordinates.

The solutions c of the binomial initial system t-inω f1(t) = · · · = t-inω fn(t) = 0 give us the lead-
ing terms ctω of the convergent Puiseux series with valuation ω satisfying f (t) = 0. Take cεω as a 
numerical approximation of a point satisfying f (ε) = 0 for a small ε > 0. We can numerically track a 
segment of a real curve f (t), t ∈ [ε, 1] starting at that point and finishing with an approximation of 
a solution of to the original system f = f (1). This is called the polyhedral homotopy because mixed 
subdivisions of Newton polyhedra play a crucial role.
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Getting back to our Setting A, polynomials in the set G , e.g. z − (x2 + y2) in Example 1 above, can 
have special coefficients, while the others have generic coefficients with respect to fixed monomial
supports. As above, we wish to compute the tropical variety of the system, which should consist of 
finitely many points.

For each i = 1, . . . , r, let f i = ∑
xα∈Fi

ai,αxα be complex polynomials with generic coefficients. Let

f i(t) =
∑

xα∈Fi

ai,αtωi,α xα (2)

for some generic ω•,• ∈ Q. We refer to the system f (t) = ( f1(t), . . . , fr(t)) as a homotopy. We recover 
the original system f ∈ L simply by specializing t = 1.

We can look at f (t) from two different angles:

(1) Consider f (t) as a family of systems in L , parameterized by t ∈ C\{0}. Given a path γ : [0, 1] →
C\{0}, we get a path f ◦ γ : [0, 1] → L. Suppose the path in L does not go through the branch 
locus of the projection π : I X,L → L where

I X,L = {( f1, . . . , fr, z) | z ∈ X \ Z L and all f i vanish at z} ⊂ L × X

is the incidence variety. Then the homotopy f (t) induces smooth homotopy paths π−1( f (γ (τ ))), 
τ ∈ [0, 1], that give a one-to-one correspondence between starting roots π−1( f (t0)) and target 
roots π−1( f (t1)), where t0 = γ (0) and t1 = γ (1).
Once we find an appropriate path γ from some t0, where π−1( f (t0)) is known, to t1 = 1, we 
achieve our main goal by homotopy continuation along γ .

(2) Consider f (t) as a polynomial system over the Puiseux series C{ {t} } with d(X, L) many roots over 
C{ {t} }.

The second point of view relates to the first as follows. The Puiseux series roots in (2) converge in 
some punctured neighborhood of t = 0 in C. Thus, if one can approximate these roots close to t = 0, 
one can find a starting point t0 for (1) along with approximations of the starting roots. This requires 
approximating the Puiseux series roots, which is explained in Remark 6.

Remark 3. One can show that the (really) “unlucky” vectors of coefficients a•,• in the construction 
of f (t) — when f (t) for some t ∈ (0, 1] intersects the ramification locus of π — is contained in a 
Zariski closed set of real codimension 1 in the ambient (real) coefficient space (with each a•,• ∈ C

contributing two coordinates Re(a•,•) and Im(a•,•)). This implies that with generic choices of a•,• , the 
real line segment path running over t ∈ [ε, 1] for a small ε > 0 is “lucky”. �
Lemma 4. With the notation as above, if the coefficients f1(t), . . . , fr(t) have sufficiently generic valuations, 
then

trop〈G ∪ { f1(t), . . . , fr(t)}〉 = trop〈G〉 ∩ trop〈 f1(t)〉 ∩ · · · ∩ trop〈 fr(t)〉.
The intersection on the right hand side is transverse.

Proof. The inclusion trop〈G ∪ { f1(t), . . . , fr(t)}〉 ⊆ trop〈G〉 ∩ trop〈 f1(t)〉 ∩ · · · ∩ trop〈 fr(t)〉 is always 
true by the definition of tropical varieties, but the containment may be strict. However, when the 
coefficients of f1(t), . . . , fn(t) have sufficiently generic valuations, the intersections are transverse, so 
the result follows from Bogart et al. (2007), Lemma 3.2. �

The multiplicities of the transverse intersection points can be computed using integer linear alge-
bra (Jensen and Yu, 2016, formula (3)).
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Fig. 1. Left: Tropicalizations of the equations for two circles in Example 1 always intersect non-transversely, even when the 
coefficients a1, . . . , a8 are generic Puiseux series. Right: The hypersurface trop(x2 + y2 − z) and a general tropical line, defined 
by two generic linear equations, intersect transversely at two points.

For Fi ’s that are not monomial, that is, for polynomials that are generic with respect to non-
monomial supports, the intersection of tropicalizations is not necessarily transverse. They become 
transverse to trop(G ′) after the reformulation (1). See Fig. 1.

The valuations of the Puiseux series roots are provided by tropical computations (see Theorem 2), 
while the leading coefficients at a tropical point ω ∈ trop〈G〉 ∩ trop〈 f1(t)〉 ∩ · · · ∩ trop〈 fr(t)〉 are given 
by the root(s) of the t-initial ideal

Jω = t-inω〈G ∪ { f1(t), . . . , fr(t)}〉.
The next statement follows from Jensen and Yu (2016), Lemma 3.1.

Lemma 5. Let Jω = t-inω〈G ∪ { f1(t), . . . , fr(t)}〉, then

Jω = inω〈G〉 + t-inω〈 f1(t)〉 + · · · + t-inω〈 fr(t)〉.

The roots c ∈ V( Jω) give us the leading coefficients of Puiseux series roots. The lemma shows 
that the Jω may be generated by simpler polynomials than the original polynomials in G ∪
{ f1(t), . . . , fr(t)}. In the original polyhedral homotopies the ideal Jω is binomial and all roots are 
regular and easy to obtain.

Remark 6. In general, distinct Puiseux series roots may share the same leading terms. This happens 
exactly when a root c ∈V( Jω) is multiple.

For a multiple root c, one needs to find more terms in the truncated Puiseux series

s(t) = ctω + (higher order terms),

so that these are distinct for distinct Puiseux series roots. Note that all s(t) and f i(t)’s are polynomials 
in C[x, t1/N ] for some positive integer N .

The most comprehensive algorithmic treatment of this is can be found in Jensen et al. (2008). �
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Algorithm 7 (Main algorithm).
Input: G , a collection of polynomials;

Fi , i = 1, . . . , r, sets of monomials.
Output: generic f i ∈ Li = span Fi for i = 1, . . . , r;

approximations S to the points of V(G, f1, . . . , fr).

1: Compute trop(X) = trop〈G〉.
2: Construct f (t), of the form f i(t) := ∑

xα∈Fi
ai,αtωi,α xα , i = 1, . . . , r.

3: Compute W = trop(X) ∩ trop〈 f1(t)〉 ∩ · · · ∩ trop〈 fr(t)〉.
4: S := ∅
5: for every point ω ∈ W do
6: Construct truncations Sω of Puiseux series roots of G = f (t) = 0.
7: for s(t) ∈ Sω do
8: Pick ε = ε(ω, s(t)) > 0 close to 0, let x̃ε = s(ε).
9: S := S ∪ {x̃1}, where x̃1 is the output of a homotopy continuation algorithm tracking roots of 

G = f (t) = 0, t ∈ [ε, 1], starting with x̃ε .
10: end for
11: return f i := f i(1), i = 1, . . . , r, and S .
12: end for

The following points remained unsaid in the pseudocode:

• The software Gfan (Jensen, 2005–2018) can compute trop(X) in Line 1 when G has rational coef-
ficients.

• The computation of trop(X) may involve Gröbner bases, while the transverse intersection in 
Line 3 does not.

• Jensen’s tropical homotopy continuation (Jensen, 2016) may be useful for Line 3.
• Solutions to Jω = inω〈G〉 + t-inω〈 f1(t)〉 + · · · + t-inω〈 fr(t)〉 provide the leading coefficients of Sω . 

They give distinct s(t) in Line 6, unless some solutions are multiple. See Remark 6.
• The ideal inω〈G〉 is a byproduct of the computation of trop(X) in Line 1.
• A practical way to pin down ε = ε(ω, s(t)) in Line 8 is out of the scope of this article; we envision 

obtaining ε with heuristics that depend on ω and s(t). Such ε exists according to Remark 3 and 
the discussion preceding it.

• We also purposefully omit the discussion of how one tracks a homotopy path in practice. The 
machinery of numerical homotopy continuation is well established with several books, e.g. Morgan
(1987); Allgower and Georg (2003), devoted to its details.

Algorithm 7 achieves our main goal. The enumerative goal is achieved by executing it until Line 3 
and then computing the degrees of Jω . The sum of these degrees is d(X, L).

4. Conclusion

In Setting B we construct an optimal homotopy, optimal in the sense that the number of homotopy 
paths is equal to the number of solutions generically. Our method combines symbolic, polyhedral, and 
numerical parts. One potential strength is that, for a concrete polynomial system, one can distribute 
the load between these parts to avoid bottlenecks or to decrease the generic solution count.

Indeed, polynomials in any given set of equations can be divided into two groups, G and f , fixing 
the variety X = V(G), on which the roots of f are sought. For each polynomial f i one can decide on 
which ingredients Fi this polynomial is “made of”. The list of ingredients may be either inherent to 
the given problem or be a subject of experimentation. This gives a lot of flexibility.
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Appendix A. Base locus

When we say a statement is true “for generic y in Y ” or “for general y in Y ”, we mean that it is 
true for all elements y in some Zariski open dense subset of Y , not to be confused with the “generic 
point” of a scheme. We say that a polynomial f is generic or general with respect to support s1, . . . , sk
if f = c1s1 + · · · + cksk where the coefficients (c1, . . . , ck) avoid a Zariski closed proper subset of Ck

which depends on the context. One should assume that an explicit description of this exceptional set 
is hard to acquire algorithmically.

In Bernstein–Khovanskii–Kushnirenko theorems and in the original polyhedral homotopies, the 
goal is to compute (the number of) solutions in the algebraic torus (C∗)n , of polynomials that 
are generic with respect to their monomial supports. In other words, we choose a monomial basis 
{m1, m2, . . . , mki } for each linear system Li and remove the union of their hypersurfaces from X = Cn , 
obtaining Cn \⋃ki

j=1 V(m j) = (C∗)n if all variables appear in the monomial basis. Here we remove the 
base locus instead, which is the intersection of the hypersurfaces. The following argument shows that 
these two settings are equivalent. For generic polynomials the solution set does not depend on the 
choice of set removed as long as it has smaller dimension and contains the base locus.

Proposition 8. Suppose that V( f1, . . . , fr) ∩ X is finite for generic ( f1, . . . , fr) ∈ L. Let Z ⊂ X ⊂ Cn be a 
variety that contains the base locus Z L and dim Z < dim X = r. Then

V( f1, . . . , fr) ∩ (X \ Z L) = V( f1, . . . , fr) ∩ (X \ Z) (3)

for generic ( f1, . . . , fr) ∈ L.

Proof. The idea is that for generic choices of ( f1, . . . , fr) ∈ L, each f i cuts down the dimension of 
Z \ Z L by one, and we assumed that dim Z < r, so we should have

V( f1, . . . , fr) ∩ (Z \ Z L) = ∅,

which implies (3). We will make this precise.
If Z = Z L , then there is nothing to prove. Suppose Z � Z L . Let U be a Zariski open dense subset 

of L such that V( f1, . . . , fr) ∩ X is finite for each ( f1, . . . , fr) ∈ U . Let

W = {( f1, . . . , fr) ∈ U | V( f1, . . . , f i) ∩ (Z \ Z L) = ∅}.
We wish to show that W contains a Zariski open dense subset of L .

Note that W is constructible, since for the incidence variety

I Z = {( f1, . . . , fr, z) | z ∈ Z \ Z L and f1(z) = · · · = fr(z) = 0} ⊂ L × (Z \ Z L),

with the projection π onto L we have W = U \ π(I Z ).
For a point z ∈ Z \ Z L1 , the set of f1 ∈ L1 satisfying z /∈ V( f1) is the complement of a hyperplane 

in L1. Since the degrees of the f1’s in L1 are bounded, the condition that V( f1) does not contain any 
component of Z \ Z L can be translated as f1 not vanishing on a finite set of points; hence the set 
of such f1’s is a Zariski open dense subset of L1. By Krull’s Hauptidealsatz, if V( f1) does not contain 
any component of Z \ Z L , then V( f1) ∩ (Z \ Z L) is either empty or has dimension ≤ dim(Z) − 1.

For a fixed f1, by a similar argument, there is a Zariski open dense subset of f2 ∈ L2 such that 
V( f1, f2) ∩ (Z \ Z L) has dimension ≤ dim(Z) − 2, and so on. This shows that the set W is dense in L. 
Since it is constructible, it contains a Zariski open dense subset. �
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