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1. Introduction

The polyhedral homotopy continuation method of Huber and Sturmfels (1995), which is imple-
mented in PHCpack (Verschelde, 1999), HOMA4PS (Lee et al., 2008-2018; Chen et al., 2014), and
PHoM (Gunji et al,, 2004), is used for computing numerical approximations of all the roots of n
polynomial equations in n variables, where it is assumed that each equation has generic coefficients
with respect to its monomial support. We generalize this to

Setting A: Instead of solving the polynomial system for all solutions in (C*)", we would like to find
solutions lying on a variety X C C" defined by the set of polynomials G, away from the base
locus, where the number of additional given polynomials (other than G) is equal to dim(X)
and each of the additional polynomials is generic with respect to its monomial support.

This can be further generalized to

Setting B: Instead of monomial supports, we can consider arbitrary supports, i.e. we would like to
find roots on X of polynomials that are generic linear combinations of arbitrary sets of
polynomials.
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We propose a 3-stage framework to solve this problem in the general setting.

Initialization: Reformulate the problem in Setting B into Setting A as explained in §2. Then pick—
in practice, randomly—a one-parameter system f(t) on dim(X) many polynomials with the
specified monomial supports and coefficients that are generic rational powers of the param-
eter t multiplied by a generic complex number.

Stage 1 (mostly symbolic): Compute the tropical variety trop(X). This usually involves both polyhe-
dral computations and Grébner basis computations.

Stage 2 (polyhedral): Compute the (transverse) intersection of trop(X) with tropical hypersurfaces of
polynomials in f(t).

Stage 3 (mostly numerical): Find the initial terms—in general, distinct truncations—of Puiseux series
solutions of the system G = f(t) =0 corresponding to the tropical points found in Stage 2.
Track the homotopy paths for t € [0, 1], which are approximated by these truncated Puiseux
series in the beginning (t close to 0) and lead to solutions of a system with generic complex
coefficients at the end (t =1).

When X = C" in Setting A, the Stage 1 is not needed, and the framework specializes to the polyhedral
homotopy approach. The precise statements are in the pseudocode of Algorithm 7, which is followed
by remarks on currently available tools for implementation.

2. The problem setup

The more general setup (Setting B) is as follows. Let X = V(G) € C". Let Ly, Ly,..., L; be vector
subspaces of C[x] spanned by finite sets Fy, Fa, ..., F; respectively. Let L :=Ly x --- x L. Let Z, :=
V(F;) be the base locus of the linear spaces L;. Let Z :=Ji_; Zy,.

Our main goal is to compute all the points in (X\ Zy) NV(f) for some generic element f =
(f1,..., fr) € L. Our enumerative goal is to compute the number d(X, L) of such points, which we
assume to be finite.

A discussion of subtleties surrounding the base locus and genericity appears in the Appendix. We
can deal with rational functions in F;'s by clearing the denominators and removing the zero locus of
the denominators from X\Zj.

We will now reformulate the Setting B into Setting A. Let P = {hy, hy, ..., hy} be the set of non-
monomials in F; U---U F,. Consider

G =GU{zi—hix|1<i<{}, 1
F} = (Fj with h; replaced by z;), j=1,...,r, (1)

which are sets of polynomials in Cl[x, z] := C[xq,...,Xn, 21,...,2¢]. Solving the system f; =.--=
fr=0 on X =V(G) is equivalent to solving fj =---= f/ =0 on the variety V(G') where fjf is
obtained from f; by replacing each h; with z;. The new polynomials fi,..., f] are generic with
respect to their monomial support. For the rest of the paper we assume Setting A, that is, F; forms a
monomial basis of L; for each i=1,...,r. We drop the primes ’ for simpler notation.

Example 1. Two generic circles
a; (x? +y2) +ax+as3y+as=0
as(x® + y?) + agx +azy +ag =0

intersect in two points in C2 although the mixed volume of their Newton polytopes is 4. We rewrite
the system as:

z— (X +y*>=0
a1z+ax+azy+as=0

aszZ+agx+azy +ag=0
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The original equations are transformed into polynomials that are generic with respect to their mono-
mial supports, but we acquire a new equation whose coefficients may be special. O

To achieve the main goal, we will construct a homotopy with exactly d(X, L) paths to track. The
number d(X, L) is called the intersection index [L1,...,L,] and is related to the volume and mixed
volume of Newton-Okounkov bodies (Kaveh and Khovanskii, 2012, §4).

3. Algorithmic framework

Let C{{t}} be the field of Puiseux series that are convergent on a punctured neighborhood of 0
in C. (See Ghys, 2016 for a proof of the fact that C{{t}} is an algebraically closed field and a historical
excursion.) There is a valuation from C{{t}} — {0} to Q given by the leading (lowest) degree.

For an ideal I in C{{t}}[x1, ..., X] and a weight vector w € Q", the t-initial ideal t-in,(I) is obtained
by first taking the usual initial ideal with the min-convention (leading terms are lightest), where the
weight of t is 1 and the weights of x’s are given by w, and then setting t = 1. The t-initial ideal is
an ideal in C[x]; it does not involve t. For example, t-ing 2){(t + t2)x + 2y + 3tx® + (5t2 + 7t3)) =
(x+2y +5).

The tropical variety of I is defined as

trop(I) = {w € Q" : t-in,, (I) does not contain a monomial}.

We often write trop(X) to denote trop(I) when X = V(I), and we write trop(f) to denote trop({f)).
The tropical variety is a polyhedral complex, and we can define multiplicities on its maximal faces.
See Maclagan and Sturmfels (2015), Chapter 3, and Jensen et al. (2008) for details.

Theorem 2 (Fundamental theorem of tropical algebraic geometry). (Maclagan and Sturmfels, 2015, Theo-
rem 3.2.3) The points in trop(I) are exactly the coordinatewise valuations of the Puiseux series points in the
variety of I. The multiplicity of each tropical point w € trop(I) is equal to the number of Puiseux series point
with valuation w, counted with multiplicities.

We will now formulate the polyhedral homotopy continuation method of Huber and Sturmfels
using tropical geometry. Given a polynomial system f = (f1,..., fu) € (C[x1, ..., x,])" with generic
coefficients with respect to their monomial supports, we perturb the coefficients by throwing in ex-
tra factors of the form t% where « are arbitrary rational numbers, to obtain a family of systems
FO = (f10),..., fn®) € (C{tY[x1,...,%]". See (2) with r =n. The homotopy continuation ap-
proach looks to “connect” solutions of the original system f = f(1) to the Puiseux series solutions of
f(t) convergent in some neighborhood of t = 0.

If the exponents of t’s are sufficiently generic, then the intersection of tropical hypersurfaces
trop(f1(t)) N --- N trop(fx(t)) is finite and transverse, i.e. locally at each intersection point it is a
transverse intersection of affine spaces. In this case we have

trop({f1(t), ..., fa(®))) = trop(f1(t)) N --- N trop(f(t)).

The points of trop(fi(t)) N--- N trop(fy(t)) are most commonly computed by enumerating mixed
cells of the mixed subdivision, which is the projection of lower convex hull the Newton polyhedron of
the product fq(t)--- fn(t) onto the x-coordinates.

The solutions ¢ of the binomial initial system t-in,, f1(t) = --- = t-in,, fr(t) = 0 give us the lead-
ing terms ct® of the convergent Puiseux series with valuation w satisfying f(t) =0. Take ce® as a
numerical approximation of a point satisfying f(¢) =0 for a small & > 0. We can numerically track a
segment of a real curve f(t), t € [, 1] starting at that point and finishing with an approximation of
a solution of to the original system f = f(1). This is called the polyhedral homotopy because mixed
subdivisions of Newton polyhedra play a crucial role.
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Getting back to our Setting A, polynomials in the set G, e.g. z— (x* + y?) in Example 1 above, can
have special coefficients, while the others have generic coefficients with respect to fixed monomial
supports. As above, we wish to compute the tropical variety of the system, which should consist of
finitely many points.

Foreachi=1,...,r, let fi= queﬂ a; «X* be complex polynomials with generic coefficients. Let
fio =) aat”ox” 2)
x¥eF;
for some generic w. o € Q. We refer to the system f(t) = (f1(t),..., fr(t)) as a homotopy. We recover

the original system f € L simply by specializing t = 1.
We can look at f(t) from two different angles:

(1) Consider f(t) as a family of systems in L, parameterized by t € C\{0}. Given a path y : [0, 1] —
C\{0}, we get a path f oy :[0,1] — L. Suppose the path in L does not go through the branch
locus of the projection 7 : Ix | — L where

Ixt={(f1,.... fr,2)|ze X\ Zy and all f;vanishatz} C L x X

is the incidence variety. Then the homotopy f(t) induces smooth homotopy paths =~ (f (v (1))),
7 € [0, 1], that give a one-to-one correspondence between starting roots 7 ~!(f(tg)) and target
roots 71 ~1(f(t1)), where to =y (0) and t; = y (1).
Once we find an appropriate path y from some to, where 7~ (f(to)) is known, to t; =1, we
achieve our main goal by homotopy continuation along y.

(2) Consider f(t) as a polynomial system over the Puiseux series C{{t}} with d(X, L) many roots over

Cen.

The second point of view relates to the first as follows. The Puiseux series roots in (2) converge in
some punctured neighborhood of t =0 in C. Thus, if one can approximate these roots close to t =0,
one can find a starting point tg for (1) along with approximations of the starting roots. This requires
approximating the Puiseux series roots, which is explained in Remark 6.

Remark 3. One can show that the (really) “unlucky” vectors of coefficients a, , in the construction
of f(t) — when f(t) for some t € (0, 1] intersects the ramification locus of w — is contained in a
Zariski closed set of real codimension 1 in the ambient (real) coefficient space (with each a,, € C
contributing two coordinates Re(a, ) and Im(a, .)). This implies that with generic choices of a, ., the
real line segment path running over ¢ € [¢, 1] for a small ¢ > 0 is “lucky”. O

Lemma 4. With the notation as above, if the coefficients f1(t), ..., fr(t) have sufficiently generic valuations,
then

trop(G U {f1(D), ..., fr(D}) = trop(G) N trop(f1()) N --- N trop{f;(t)).

The intersection on the right hand side is transverse.

Proof. The inclusion trop(G U {f1(t), ..., fr(t)}) € trop(G) N trop{f1(t)) N --- N trop{f-(t)) is always
true by the definition of tropical varieties, but the containment may be strict. However, when the
coefficients of f1(t), ..., fn(t) have sufficiently generic valuations, the intersections are transverse, so
the result follows from Bogart et al. (2007), Lemma 3.2. O

The multiplicities of the transverse intersection points can be computed using integer linear alge-
bra (Jensen and Yu, 2016, formula (3)).
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Fig. 1. Left: Tropicalizations of the equations for two circles in Example 1 always intersect non-transversely, even when the
coefficients aj, ..., ag are generic Puiseux series. Right: The hypersurface trop(x? + y?> — z) and a general tropical line, defined
by two generic linear equations, intersect transversely at two points.

For F;’s that are not monomial, that is, for polynomials that are generic with respect to non-
monomial supports, the intersection of tropicalizations is not necessarily transverse. They become
transverse to trop(G’) after the reformulation (1). See Fig. 1.

The valuations of the Puiseux series roots are provided by tropical computations (see Theorem 2),
while the leading coefficients at a tropical point w € trop(G) N trop( f1(t)) N --- N trop(f-(t)) are given
by the root(s) of the t-initial ideal

Jo =t-ingy(GCU{f1(0), ..., frO}).

The next statement follows from Jensen and Yu (2016), Lemma 3.1.
Lemma 5. Let ], = t-in, (G U {f1(t),..., fr(t)}), then
Jo =1ny(G) + t-ing (f1(6)) + -+ - + t-ing, ( fr ().

The roots ¢ € V(J,,) give us the leading coefficients of Puiseux series roots. The lemma shows
that the J, may be generated by simpler polynomials than the original polynomials in G U
{f1®),..., fr®}. In the original polyhedral homotopies the ideal J, is binomial and all roots are
regular and easy to obtain.

Remark 6. In general, distinct Puiseux series roots may share the same leading terms. This happens
exactly when a root c € V(J,,) is multiple.
For a multiple root ¢, one needs to find more terms in the truncated Puiseux series

s(t) = ct® + (higher order terms),

so that these are distinct for distinct Puiseux series roots. Note that all s(t) and fj(t)’s are polynomials
in C[x, t!/N] for some positive integer N.
The most comprehensive algorithmic treatment of this is can be found in Jensen et al. (2008). O
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Algorithm 7 (Main algorithm).
Input: G, a collection of polynomials;
Fi,i=1,...,r, sets of monomials.
Output: generic f; € Ly =spanF; fori=1,...,r;
approximations S to the points of V(G, f1,..., f;).
: Compute trop(X) = trop(G).
: Construct f(t), of the form fj(t) := ZWEF', A tPex®, i=1,...,r1.
: Compute W = trop(X) Ntrop{f1(t)) N---Ntrop{fr-(t)).
S:=0
: for every point w € W do
Construct truncations S,, of Puiseux series roots of G = f(t) =0.
for s(t) € Sy, do
Pick &€ = g(w, s(t)) > 0 close to 0, let X, = s(&).
S :=S U {x1}, where X; is the output of a homotopy continuation algorithm tracking roots of
G=f(t)=0, tele,1], starting with x.
10: end for
11: return f;:= fi(1),i=1,...,r, and S.
12: end for

© XN Uk wN 2

The following points remained unsaid in the pseudocode:

o The software Gfan (Jensen, 2005-2018) can compute trop(X) in Line 1 when G has rational coef-
ficients.

e The computation of trop(X) may involve Grobner bases, while the transverse intersection in
Line 3 does not.

e Jensen’s tropical homotopy continuation (Jensen, 2016) may be useful for Line 3.

e Solutions to J, = iny,(G) + t-ing, (f1(t)) + - - - + t-ingy { f;(t)) provide the leading coefficients of S,,.
They give distinct s(t) in Line 6, unless some solutions are multiple. See Remark 6.

e The ideal in,(G) is a byproduct of the computation of trop(X) in Line 1.

e A practical way to pin down € = ¢(w, s(t)) in Line 8 is out of the scope of this article; we envision
obtaining ¢ with heuristics that depend on w and s(t). Such ¢ exists according to Remark 3 and
the discussion preceding it.

e We also purposefully omit the discussion of how one tracks a homotopy path in practice. The
machinery of numerical homotopy continuation is well established with several books, e.g. Morgan
(1987); Allgower and Georg (2003), devoted to its details.

Algorithm 7 achieves our main goal. The enumerative goal is achieved by executing it until Line 3
and then computing the degrees of J,. The sum of these degrees is d(X, L).

4. Conclusion

In Setting B we construct an optimal homotopy, optimal in the sense that the number of homotopy
paths is equal to the number of solutions generically. Our method combines symbolic, polyhedral, and
numerical parts. One potential strength is that, for a concrete polynomial system, one can distribute
the load between these parts to avoid bottlenecks or to decrease the generic solution count.

Indeed, polynomials in any given set of equations can be divided into two groups, G and f, fixing
the variety X = V(G), on which the roots of f are sought. For each polynomial f; one can decide on
which ingredients F; this polynomial is “made of”. The list of ingredients may be either inherent to
the given problem or be a subject of experimentation. This gives a lot of flexibility.
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Appendix A. Base locus

When we say a statement is true “for generic y in Y” or “for general y in Y”, we mean that it is
true for all elements y in some Zariski open dense subset of Y, not to be confused with the “generic
point” of a scheme. We say that a polynomial f is generic or general with respect to support sq, ..., Sk
if f=cys1+---+ crs, where the coefficients (c1, ..., cx) avoid a Zariski closed proper subset of CK
which depends on the context. One should assume that an explicit description of this exceptional set
is hard to acquire algorithmically.

In Bernstein-Khovanskii-Kushnirenko theorems and in the original polyhedral homotopies, the
goal is to compute (the number of) solutions in the algebraic torus (C*)", of polynomials that
are generic with respect to their monomial supports. In other words, we choose a monomial basis
{mq,my, ..., my,} for each linear system L; and remove the union of their hypersurfaces from X = C",
obtaining C"\ U’;":] V(mj) = (C*)" if all variables appear in the monomial basis. Here we remove the
base locus instead, which is the intersection of the hypersurfaces. The following argument shows that
these two settings are equivalent. For generic polynomials the solution set does not depend on the
choice of set removed as long as it has smaller dimension and contains the base locus.

Proposition 8. Suppose that V(f1, ..., fr) N X is finite for generic (f1,...,fr) € L. Let ZC X Cc C" be a
variety that contains the base locus Zy and dim Z < dim X =r. Then

V(ft,.... f)NXN\NZ) =V(f1,..., )N X\ 2) (3)
for generic (f1,..., fr) € L.

Proof. The idea is that for generic choices of (f1,..., fr) € L, each f; cuts down the dimension of
Z\ Zi by one, and we assumed that dim Z < r, so we should have

Vifi,....foN@Z\Z) =2,

which implies (3). We will make this precise.
If Z = Zj, then there is nothing to prove. Suppose Z 2 Z;. Let U be a Zariski open dense subset
of L such that V(fi,..., fr) N X is finite for each (fy,..., fr) € U. Let

W=A{(fi..... D eUIV(fr,.... fd N(Z\ Zp) =0}

We wish to show that W contains a Zariski open dense subset of L.
Note that W is constructible, since for the incidence variety

Iz ={(f1,....fr,0lzeZ\Zrand f1(29)=---= fr(2) =0} CL x (Z\ Z),

with the projection 7 onto L we have W =U \ w (I2).

For a point ze Z \ Z;,, the set of f1 € Ly satisfying z ¢ V(f1) is the complement of a hyperplane
in Li. Since the degrees of the f1’s in L1 are bounded, the condition that V(f7) does not contain any
component of Z \ Z; can be translated as fi not vanishing on a finite set of points; hence the set
of such fy’s is a Zariski open dense subset of L. By Krull's Hauptidealsatz, if V(f1) does not contain
any component of Z \ Z, then V(f1) N (Z \ Zy) is either empty or has dimension < dim(Z) — 1.

For a fixed fq, by a similar argument, there is a Zariski open dense subset of f, € Ly such that
V(f1, f2)N(Z\ Zr) has dimension < dim(Z) — 2, and so on. This shows that the set W is dense in L.
Since it is constructible, it contains a Zariski open dense subset. O
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