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ABSTRACT
Using recent work by Erman–Sam–Snowden, we show that finitely gener-
ated ideals in the ring of bounded-degree formal power series in infinitely
many variables have finitely generated Gr€obner bases relative to the
graded reverse lexicographic order. We then combine this result with the
first author’s work on topological Noetherianity of polynomial functors to
give an algorithmic proof of the following statement: ideals in polynomial
rings generated by a fixed number of homogeneous polynomials of fixed
degrees only have a finite number of possible generic initial ideals, inde-
pendently of the number of variables that they involve and independently
of the characteristic of the ground field. Our algorithm outputs not only a
finite list of possible generic initial ideals, but also finite descriptions of the
corresponding strata in the space of coefficients.

ARTICLE HISTORY
Received 26 February 2018
Revised 7 January 2019
Communicated by U. Walther

KEYWORDS
Stillman’s conjecture

MATHEMATICS SUBJECT
CLASSIFICATION
13A02; 13E99; 13P10

1. Introduction

1.1. Grevlex series and Gr€obner bases

Let A be a ring and let RA be the A-algebra of formal power series over A of bounded degree in
the infinitely many variables x1; x2; :::. In other words, each element of RA is a formal infinite
sum X

a2NZ�0 ;jaj�d
cax

a

where d is some nonnegative integer and ca 2 A for each sequence a ¼ ða1; a2; :::Þ of nonnegative
integers whose sum jaj is (finite and) at most d. Addition and multiplication are as usual.

We equip the polynomial ring RA with the graded reverse lexicographic order grevlex, in
which xa > xb if either jaj> jbj or jaj ¼ jbj and the last non-zero entry of a� b is negative. So,
for instance, the monomials of degree 3 are ordered as follows:

x31 > x21x2 > x1x
2
2 > x32 > x21x3 > x1x2x3 > x22x3 > x1x

2
3 > x2x

2
3 > x33 > x21x4 > :::

To remind the reader that this is the only monomial order considered in this paper, we call
the elements of RA grevlex series over A. If f is a nonzero element of RL, then lmðf Þ denotes the
largest monomial that has a nonzero coefficient in f, lcðf Þ denotes that coefficient, and ltðf Þ ¼
lcðf Þlmðf Þ is the leading term. The ring RA carries a unique topology in which a basis of open
neighborhoods of f 2 RA is given by all sets fg 2 RAjlmðf � gÞ< xag as a varies.
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Let L be a field. A Gr€obner basis of an ideal I � RL is a subset B � I such that for each h 2 L
there exists an f 2 B with lmðf ÞjlmðhÞ. We do not require that B be finite. As in the classical set-
ting, a Gr€obner basis B of I generates I as an ideal (Lemma 7). Our first main result is
the following.

Theorem 1. For every field L, every finitely generated homogeneous ideal in the ring RL has a finite
Gr€obner basis with respect to grevlex.

The analogous statement certainly does not hold for all monomial orders: in [9, Appendix
A.2] it is shown that the ideal generated by a generic quadric and a generic cubic has a non-
finitely generated initial ideal relative to the lexicographic order. Theorem 1 implies a positive
answer to [10, Question 7.1]; in that paper a positive answer is given in the case where the ideal
is generated by series

P
jaj¼di ci;ax

a; i ¼ 1; :::; k whose coefficients ðci;aÞi2½k�;jaj¼di are algebraically
independent over the prime field of L.

The natural question arises whether a Gr€obner basis as in the theorem can be computed in
finite time. A straightforward variant SERIESBUCHBERGER (see below) of Buchberger’s algorithm
shows that this would, indeed, be the case—if only we could work effectively with infinite series.

Next we focus on the following setting where we can indeed work with such series. Let S1 ¼
[n Sn be the union of all symmetric groups, and let S> n be the subgroup of all permutations fix-
ing 1; :::; n elementwise. Suppose that we are given an action of S> n0 on A by means of ring
automorphisms, and let S> n0 act on the variables x1; x2; ::: via pxi ¼ xpðiÞ. This action extends to
an action of S> n0 by (continuous) ring automorphisms on RA via

p
X
a

cax
a

� �
¼ p

X
a

ca
Y
i

xaii
� �

¼
X
a

p cað Þ
Y
i

xaip ið Þ ¼
X
a

p cað Þxa �p�1 :

We call an f 2 RA eventually invariant if there exists an n � n0 such that pðf Þ ¼ f for all
p 2 S> n. To specify an eventually invariant grevlex series we need only a finite number of coeffi-
cients: if f is invariant under S> n and has degree d, then S> n has only finitely many orbits on
monomials in x1; x2; ::: of degree at most d—the grevlex-largest element in each orbit is of the
form xa where aðnþ 1Þ � aðnþ 2Þ � :::. Then f is uniquely determined by its coefficients
on these grevlex-largest representatives xa1 ; :::; xas . We call bf :¼Ps

i¼1 cai x
ai the n-representation of

f ¼P
a cax

a. Often we will suppress n from this notation.

Theorem 2. Suppose that A¼ L is a field. There exist a finite algorithm that on input a finite listbf 1; :::;bf k of representations of eventually invariant grevlex series f1; :::; fk outputs a finite listbg 1; :::;bg l representing an eventually invariant Gr€obner basis g1; :::; gl of hf1; :::; fkiRL
.

1.2. Stillman’s conjecture

The condition of eventual invariance seems rather restrictive, but it is tailored to a proof of the
following theorem.

Theorem 3. There exists a finite algorithm that on input k 2 Z and d1; :::; dk 2 Z�0 outputs a
finite sequence S1; :::; St, each Si a finite set of monomials in the xj, such that the following holds:
For every infinite field K, all n 2 N, and all homogeneous polynomials f1; :::; fk 2 K½x1; :::; xn� of
degrees d1; :::; dk, respectively, the generic grevlex initial ideal of hf1; :::; fkiK½x1;:::;xn� equals
hSiiK½x1;:::;xn� for some i.

In short: ideals in polynomial rings generated by homogeneous polynomials of degrees
d1; :::; dk have only finitely many possible generic grevlex initial ideals, independently of the num-
ber of variables. Via [4, Corollary 19.11], which is based on [2], this implies that the projective
dimension of an ideal generated by homogeneous forms of fixed degrees but in an arbitrary
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number of variables and in arbitrary characteristic is uniformly bounded. This is Stillman’s con-
jecture from the title; see [8].

This is the fourth proof of Stillman’s conjecture, after the first proof by Ananyan-Hochster [1]
and two recent proofs by Erman-Sam-Snowden [6]. Our proof is the same in spirit as the second
proof in the latter paper in that it uses Draisma’s theorem on topological Noetherianity of poly-
nomial functors [7]. However, unlike the second proof in [6] (but like the first proof there, and
like Ananyan–Hochster’s proof), our theorem yields S1; :::; St that are valid in all characteristics.
Also, our theorem is constructive in the sense that we give an algorithm for computing the pos-
sible initial ideals and the corresponding strata given by equations and disequations for field char-
acteristics and coefficients of the input series. All these are represented finitely.

In [6] the authors raise the question whether a version over Z of Draisma’s theorem holds, as
this would also make their second proof characteristic-independent. We do not settle this ques-
tion. Instead, the algorithm of Theorem 3 simulates a generic ideal computation in all characteris-
tics, branching along constructible subsets of SpecZ whenever necessary. We argue that, if there
were an infinite branch in this computation, then this branch would also be infinite over some
field; and that this would contradict Draisma’s theorem over that field.

In [5] (see also [3, Theorem 1.9]), using Stillman’s conjecture and Draisma’s theorem, the
same authors establish a generalization of Stillman’s conjecture to ideal invariants that are upper
semicontinuous in flat families and preserved under adding a variable to the polynomial ring. We
have not pursued the question to what extent (an algorithmic version of) this generalization also
follows from our Theorem 3.

1.3. Organization

This paper is organized as follows. In Section 2, we prove Theorem 1 using work from [6]. In
Section 3, we use this existence result to prove that a version of Buchberger’s algorithm for even-
tually invariant series terminates; this yields Theorem 2. In Section 4, we review topological
Noetherianity of a specific polynomial functor, which follows from [7]. Finally, in Section 5 we
derive Theorem 3 from Theorem 2 and Draisma’s theorem.

2. The existence of finite Gr€obner bases

We will use two results from [6], the first of which is the following.

Theorem 4 (Theorem 1.2 from [6]). If L is perfect, then RL contains an (uncountable) set of homo-
geneous elements fgj : j 2 Jg such that the unique L-algebra homomorphism L½ðxjÞj2J � ! RL sending
xj to gj is an L-algebra isomorphism.

For each n 2 Z�0 we write RðnÞL :¼ L½x1; :::; xn�. There is a natural L-algebra homomorphism
RL ! RðnÞL ; f 7!f ðnÞ that retains only the terms involving only the variables x1; :::; xn. We may think
of a degree-at-most-d element of RL as a sequence ðf ð0Þ; f ð1Þ; :::Þ in which each f ðnÞ is a polyno-
mial in RðnÞL of degree at most d such that f ðnÞ is the image of f ðnþ1Þ under discarding all terms
divisible by xnþ1. Conversely, R

ðnÞ
L is an L-subalgebra of RL. Observe that, for any f 2 RL and

n 2 Z�0, the image ðlmðf ÞÞðnÞ is either zero or equal to lmðf ðnÞÞ in the grevlex order
on L½x1; :::; xn�.
Theorem 5 (Theorem 5.4 from [6]). A sequence g1; :::; gl 2 RL of homogeneous elements is a
regular sequence in RL if and only if gðnÞ1 ; :::; gðnÞl is a regular sequence in RðnÞL for all n� 0.

The following lemma is straightforward from [6, Section 5], but we include its proof using the
two results above.

2386 J. DRAISMA ET AL.



Lemma 6. Let f1; :::; fk 2 RL. Then the natural map between first syzygies

Syz
R nþ1ð Þ
L

f nþ1ð Þ
1 ; :::; f nþ1ð Þ

k

� �
! Syz

R nð Þ
L

f nð Þ
1 ; :::; f nð Þ

k

� �
is surjective for all n� 0:

Proof. This surjectivity is not affected by enlarging the field, so we may assume that L is perfect.
By Theorem 4, there exist homogeneous g1; :::; gl 2 RL such that f1; :::; fk 2 L½g1; :::; gl� and such
that g1; :::; gl are part of a system of variables for the polynomial ring RL. In particular, they are a
regular sequence in RL, and hence by Theorem 5 the polynomials gðnÞ1 ; :::; gðnÞl are a regular
sequence in RðnÞL for n� 0. We draw two conclusions from this. First, for n� 0; gðnÞ1 ; :::; gðnÞl are
algebraically independent over L, f ðnÞ1 ; :::; f ðnÞk are elements of the polynomial ring
AðnÞ :¼ L½gðnÞ1 ; :::; gðnÞl �, and

SyzA nþ1ð Þ f nþ1ð Þ
1 ; :::; f nþ1ð Þ

k

� �
! SyzA nð Þ f nð Þ

1 ; :::; f nð Þ
k

� �
is a bijection. Second, still for n� 0;RðnÞ is a free module over AðnÞ. Therefore,
SyzAðnÞ ðf ðnÞ1 ; :::; f ðnÞk Þ � ðAðnÞÞk generates SyzRðnÞ ðf ðnÞ1 ; :::; f ðnÞk Þ � ðRðnÞÞk as an RðnÞ-module.
Combining these two statements we find the surjectivity claimed in the lemma.

Proof of Theorem 1. Let f1; :::; fk 2 RL be nonzero, homogeneous, and let n 2 Z�0. Set
I :¼ hf1; :::; fki � RL. Consider a monomial u 2 lmðIÞ \ Rðnþ1Þ divisible by xnþ1. There exist
homogeneous a1; :::; ak 2 RðnÞ with degðaiÞ ¼ degðuÞ�degðfiÞ and homogeneous b1; :::; bk 2 Rðnþ1Þ

with degðbiÞ ¼ degðuÞ�degðfiÞ�1 such that

u ¼ lm a1 þ b1xnþ1ð Þf nþ1ð Þ
1 þ 	 	 	 þ ak þ bkxnþ1ð Þf nþ1ð Þ

k

� �
:

Now ða1; :::; akÞ 2 SyzRðnÞ ðf ðnÞ1 ; :::; f ðnÞk Þ—otherwise, the right-hand side would equal
lmðPi aif

ðnÞ
i Þ, which is not divisible by xnþ1. By Lemma 6, if n� 0, the syzygy ða1; :::; akÞ can be

lifted to a syzygy ðc1; :::; ckÞ 2 Syz
Rðnþ1ÞL
ðf ðnþ1Þ1 ; :::; f ðnþ1Þk Þ. Write ci ¼ ai þ xnþ1b0i for each i. Then

u ¼ lm b1� b01
� �

xnþ1f
nþ1ð Þ

1 þ 	 	 	 þ bk� b0k
� �

xnþ1f nþ1ð Þ
� �

;

but then we see that u=xnþ1 2 lmðIÞ. Hence for n� 0; lmðIÞ does not contain minimal genera-
tors divisible by xnþ1. It follows that for such an n, lmðIÞ is generated by any finite generating list
m1; :::;mt of lmðIðnÞÞ. Now h1; :::; ht 2 I such that lmðhiÞ ¼ mi form a Gr€obner basis of I. w

2.1. Buchberger’s algorithm for grevlex series

To turn Theorem 1 into an algorithm, we derive a version of Buchberger’s algorithm.

Lemma 7 (Division with remainder). Let f1; :::; fk 2 RL be monic and h 2 RL. Then there exist
q1; :::; qk 2 RL such that lmðqifiÞ � lmðhÞ for all i and such that no term of the remainder
h�P

i qifi is divisible by any lmðfiÞ.
In particular, if f1; :::; fk is a Gr€obner basis of the ideal that they generate, then the remainder

must be zero.

Proof. Initialize r :¼ h and qi :¼ 0 for all i. While some term of r is divisible by some lmðfiÞ, pick
the grevlex-largest such term cxa in r, subtract cðxa=lmðfiÞÞfi from r and add cxa=lmðfiÞ to qi.
This does not change terms in qi larger than the term just added, and hence in the product top-
ology on Rk

L the vector q converges a solution vector q as desired. w

COMMUNICATIONS IN ALGEBRAVR 2387



function SERIESBUCHBERGER(f1; :::; fk)
assume f1; :::; fk 2 RL homogeneous grevlex series.
m :¼ 1; B :¼ ; (the basis); Q :¼ ff1; :::; fkg (the queue);
while Q 6¼ ; do

while Q contains an f with f ðmÞ 6¼ 0 do
Q :¼ Q n ff g;
f :¼ f =lc fð Þ;
B :¼ B [ ff g;
for h 2 B n ff g do

c :¼ lcm lm hð Þ; lm fð Þ
� �

;
s :¼ c=lm hð Þ

� �
h� c=lm fð Þ� �

f ;
compute a remainder r of s after division by B;
if r 6¼ 0 then
Q :¼ Q [ rf g;

end if;
end for;

end while;
m :¼ mþ 1;

end while;
return B;

end function

Proposition 8. Assuming an implementation for addition, multiplication, and division with
remainder of grevlex series, SeriesBuchberger on page § terminates after a finite number of steps
and outputs a Gr€obner basis of the ideal generated by the series in the input.

Proof. Fix any natural number n. The loops with m ranging from 1 to n really compute a
Gr€obner basis for I :¼ hf ðnÞ1 ; :::; f ðnÞk i while dragging the tails of the series along. In particular,
these n loops terminate. If an element is added to the queue Q in the ðnþ 1Þst run of the loop,
then this implies that lmðIÞ \ RðnÞL does not generate lmðIÞ. By Theorem 1, this cannot happen
infinitely often, so the algorithm terminates. That the output is, indeed, a Gr€obner basis, follows
from the ordinary Buchberger criterion. w

3. Buchberger’s algorithm for eventually invariant series

Recall that S> n0 acts on L, on variables, and on RL. Given representations bf 1; :::;bf k of eventually
invariant f1; :::; fk 2 RL, we want to compute the representation of an eventually invariant
Gr€obner basis of I :¼ hf1; :::; fki.

The first ingredient in our variant of Buchberger’s algorithm is an analog of Lemma 7.

Lemma 9 (Division with remainder on representations.). Let f1; :::; fk 2 RL be monic and h 2 RL.
Assume that h; f1; :::; fk; lmðf1Þ; :::; lmðfkÞ are invariant under S> n. Then q1; :::; qk and r from
Lemma 7 can be chosen S> n-invariant, and the representations bq1; :::;bqk;br can be effectively com-
puted from bh;bf 1; :::;bf r.
Proof. Set r :¼ h. While some term of r is divisible by some lmðfiÞ, pick the grevlex-largest such
term cxa in r, let xa1 ; xa2 ; ::: be the (countably infinite) orbit of xa under S> n and for each i let ci be
the coefficient of xai in r. Since r is S> n-invariant, so is a :¼P

i cix
ai . Moreover, as lmðfiÞ is

S> n-invariant, a is divisible by lmðfiÞ. Replace r by r�ða=lmðfiÞÞfi and qi by qi þ ða=lmðfiÞÞ; each of
these are S> n-invariant. This does not effect the terms of r larger than xa and gets rid of this particu-
lar term. In this process, r and the qi remain S> n-invariant and converge to series as in Lemma 7.
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For effectiveness, we need to be able to compute the representation of r�ða=lmðfiÞÞfi frombr;ba ¼ cxa; and bf i. The representation depends linearly on the series, so it suffices to have a pro-
cedure for computing the representation of a product. The function Product does just that—it
uses that no monomial of degree e that is grevlex-maximal in its S> n-orbit contains any of the
variables xnþeþ1; xnþeþ2; :::. w

function PRODUCT(n;bf ;bh)
input: n-representations bf ;bh of S> n-invariant series f, h.

output: n-representation bfh of fh.
e :¼ deg f þ deg h;
compute the truncations f ðnþeÞ; hðnþeÞ from bf ;bh;
u :¼ f nþeð Þh nþeð Þ;
remove all terms in u not grevlex-maximal in their S> n-orbit;
return u;

end function

The next ingredient is S-series: if f, g are monic S> n-invariant series whose leading monomials
are also S> n-invariant, and xc ¼ lcmðlmðf Þ; lmðgÞÞ, then we set Sðf ; gÞ :¼ ðxc=lmðf ÞÞf�
ðxc=lmðgÞÞg. We note that S(f, g) is also S> n-invariant, and the n-representation of S(f, g) can be
computed from the n-representations bf ;bg , as follows.

From the n-representation bf ¼Ps
i¼1 cai x

ai of an S> n-invariant grevlex series one can compute
the m-representation ~f with m> n as follows. For each i ¼ 1; :::; s, the group S>m has only
finitely many orbits on S> nxai . Let xbi1 ; :::; xbisi be the grevlex-maximal representatives of these
orbits, and let pi1; :::; pisi 2 S>m be such that pijxai ¼ xbij . Then define

~f :¼
Xs

i¼1

Xsi
j¼1

pij caið Þxbij :

function REMAINDER(n;bh; fbf 1; :::; bfkg)
input: n-representations bh;bf 1; :::;bf k of S> n-invariant series, with bf i monic and
lmðbf iÞ S> n-invariant;

output: the n-representation of a remainder of h after division by f1; :::; fk.
assume lmðbf 1Þ; :::; lmðbf kÞ are S> n-invariant.br :¼ bh;
while br contains a term cxa divisible by some lmðbfiÞ dobr :¼ br�Productðcxa=lmðbf iÞ; xbf iÞ;
end while;
return br ;

end function

function S(n;bf ;bg)
input: n-representations bf ;bg of monic S> n-invariant series with lmðbf Þ; lmðbgÞ
S> n-invariant.

output: n-representation of S(f, g).
xc :¼ lcmðlmðbf Þ; lmðbgÞÞ;bs :¼ ðxc=lmðbf ÞÞbf�ðxc=lmðbgÞÞbg ;
return bs;

end function
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We call ~f the m- expansion of bf . So we may freely increase n when desirable; we will use this
to ensure that the leading monomial of f is S> n-invariant.

Proof of Theorem 2. The algorithm SymmetricBuchberger below called with arguments
ðn; bf1 ; :::; bfkÞ performs the same operations as the algorithm SeriesBuchberger on page § on input
ðf1; :::; fkÞ, except that it works with finite data structures capturing the series fi. Hence
Proposition 8 implies both the termination and the fact that the output of SymmetricBuchberger
is the representation of a Gr€obner basis of hf1; :::; fki. w

Remark 10. Should one consider implementing SymmetricBuchberger, it may be practical to
allow series to have m-representations with varying values of m, as opposed to the uniform m for
every iteration of the outer loop above.

In order to perform binary operations, i.e., additions and multiplications, representations
would then need to be expanded to a matching value of m. Furthermore, to ensure termination,
the order of S-pairs needs to ensure that each leading monomial is eventually encountered. In
SYMMETRICBUCHBERGER, this is done by increasing m only after all the leading monomials in
x1; :::; xm have been collected.

4. A polynomial functor

Let K be an infinite field. Let GLnðKÞ act on the space Kn with basis x1; :::; xn by left multiplica-
tion, and for each d 2 Z�0 on the d-th symmetric power SdKn in the natural manner. Fix
d1; :::; dk 2 Z�0 and set

P nð Þ Kð Þ :¼ Sd1Kn � 	 	 	� SdkKn;

function SYMMETRICBUCHBERGER(n;bf 1; :::;bf k)
input: n-representations bf 1; :::;bf k S> n-invariant series.
output: the m-representation of a Gr€obner basis of hf1; :::; fki for some m � n.
m :¼ n; bB :¼ ; (the basis); Q :¼ fbf 1; :::;bf kg (the queue);
while Q 6¼ ; do
while Q contains an bf with bf ðmÞ 6¼ 0 do

Q :¼ Q n bfn o
;bf :¼ bf =lc bf� �
;bB :¼ bB [ bfn o
;

for bh 2 bB n fbf g dobr :¼Remainderðm;Sðm;bh;bf Þ; bBÞ;
end for;
if br 6¼ 0 then
Q :¼ Q [ brf g;

end if;
end while;
Replace bB and bQ by their ðmþ 1Þ-expansions;
m :¼ mþ 1;

end while;
return bB;

end function
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the space of tuples of forms of degrees d1; :::; dk in n variables. Now define
PðKÞ :¼ lim n PðnÞðKÞ, the projective limit along the maps Pðnþ1ÞðKÞ ! PðnÞðKÞ coming from the
projection Knþ1 ! Kn forgetting the last coordinate. The map Pðnþ1ÞðKÞ ! PðnÞðKÞ is
GLnðKÞ-equivariant if we think of GLnðKÞ as embedded in GLnþ1ðKÞ via the map g 7!diagðg; 1Þ,
and hence P(K) is a module for the group GL1ðKÞ :¼ [n GLnðKÞ. The space P(K) is the subspace
of ðRKÞk consisting of all tuples where the i-th element is homogeneous of degree di for
each i 2 ½k�.

Dually, let V :¼ limn! ðPðnÞðKÞÞ
. Then V is a countable-dimensional space, P(K) is canonic-
ally isomorphic to V
, and hence K½P� :¼ SV , the symmetric algebra on V, serves as a coordinate
ring of P(K) in that the set of K-algebra homomorphisms K½P� ! K is canonically identified with
P(K). We equip P(K) with the Zariski topology in which closed subsets are characterized by poly-
nomial equations from K½P�. Also V and K½P� are modules for GL1ðKÞ. The following is an
instance of a general result on polynomial functors from [7].

Theorem 11. Let K be an infinite field, and fix integers d1; :::; dN. Then any chain PðKÞ � X1 �
	 	 	 of GL1ðKÞ-stable Zariski-closed subsets stabilizes eventually. Equivalently, any sequence
a1; a2; a3; ::: in K½P� has the property that for t � 0 we have

at 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
[t�1
i¼1

GL1 Kð Þai

s
:

Remark 12. Two comments are in order. First, the implication ) between the two statements in
the theorem follows from the Nullstellensatz, since the first sentence also holds for any algebraic
closure of K. Second, each ai is an element of K½PðniÞ� for some finite ni. If n � maxi2½t�ni, then
the property of at above is equivalent to

at 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
[t�1
i¼1

GLn Kð Þai

s
;

where we have replaced 1 by n.

5. Finitely many generic initial ideals

We now prepare for the proof of Theorem 3. For i ¼ 1; :::; k let fi be the homogeneous degree-di
series

fi ¼
X
jaj¼di

ci;ax
a

whose coefficients live in the polynomial ring

A ¼ Z ci;aji 2 k½ �; a 2 Z
N

�0; jaj ¼ di
h i

in which the ci;a are variables. We note that if K is a field, then K � A is the coordinate ring K½P�
of the space P(K) introduced in Section 4.

On A acts S1 via ring automorphisms determined by pci;a ¼ ci;a �p�1 , and each fi is S1-invari-
ant. In the 0-representation bf i of fi, we havebf i ¼ X

jaj¼di;a 1ð Þ�a 2ð Þ�:::
ci;ax

a;
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a polynomial with as many terms as there are partitions of di. Write AðnÞ for the subring of A
generated by those ci;a such that 8m> n : aðmÞ ¼ 0.

Let g be an n
 n-matrix of variables. Replacing, in fi, each xh with h � n by
P

j ghjxj and each xh
with h> n by xh yields a series gfi in the xh whose coefficients are polynomials that are linear in the
ci;a and homogeneous of degree di in the ghj. We use the formal notation g�1ci;a for the coefficient of
xa in gfi. This notation is chosen so that if we specialize g to be the matrix of a permutation p 2 Sn,
then g�1ci;a specializes to p�1ci;a in the Sn-action above. For a polynomial r ¼ rðcÞ 2 A (in the ci;a
with varying i and a) write g�1r 2 Z½ghjjh; j 2 ½n���ZA for the polynomial obtained by replacing
each ci;a with g�1ci;a. Regarding g�1r as a polynomial in the entries ghj whose coefficients are in A,
we write EnðrÞ � A for the set of all nonzero coefficients. It is easy to see that if r 2 AðnÞ, then also
EnðrÞ � AðnÞ. The following easy lemma explains the significance of this construction.

Lemma 13. If K is an infinite field, then the K-span of the orbit of 1� r 2 K�ZA under GLnðKÞ
equals the K-span of 1� EnðrðcÞÞ.

Proof of Theorem 3. In the recursive variant Stillman of SymmetricBuchberger on page §, we
write Fp, where p is either zero or a prime, for the prime field of characteristic p. We prove that
Stillman terminates on input

0; ;; bf 1; :::;bf dn o
; Spec Zð Þ; ;; ;

� �
and that it prints out the sets Si as in the theorem.

First we clarify the role of the variables. The symbols m; bB; bQ carry the same meaning as in
SymmetricBuchberger. The meaning of Z and N, finite subsets of A, is that of vanishing and non-
vanishing elements, respectively, at the current run of the algorithm. While Z stays constant
throughout the run (Z is extended only when recursive calls are made), N is augmented as it
accumulates elements due to presumed nonvanishing of the leading coefficients.

procedure Stillman(n; bB; bQ;Y;Z;N)
m :¼ n;
Q :¼ Q n 0f g;
while Y 6¼ ; and bQ 6¼ ; do
while Y 6¼ ; and bQ contains an bf with bf ðmÞ 6¼ 0 dobQ :¼ bQ n bfn o

;

b :¼ lc bf� �
2 A N�1½ �;

a :¼numeratorðbÞ 2 A;

Y1 :¼ pð Þ 2 Y : a 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h[r2Z Em rð ÞiFp�A mð Þ N�1½ �

q� �
;

Stillman(m; bB; bQ [ fbf � ltðbf Þg;Y1;Z;N); (I)
Y :¼ Y n Y1;
Y2 :¼ pð Þ 2 Y : 1 62 h[r2Z[ af g Em rð ÞiFp�A mð Þ N�1½ �

n o
;

Stillman(m; bB; bQ [ fbf � ltðbf Þg;Y2;Z [ fag;N); (II)bf :¼ bf =b;
N :¼ N [ af g;bB :¼ bB [ bfn o

;

for bh 2 bB n fbf g do
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br :¼Remainderðm;Sðm;bh;bf Þ;BÞ;
if br 6¼ 0 thenbQ :¼ bQ [ brf g;
end if;

end for;
end while;
Replace B and bQ by their ðmþ 1Þ-expansions;
m :¼ mþ 1;

end while;
if Y 6¼ ; then
print lmðbBÞ;

end if;
end procedure

The current run considers only primes in the set Y � SpecðZÞ. Furthermore, it deals with the
specializations of the truncations f ðmÞ1 ; :::; f ðmÞk with coefficients in

�A mð Þ
:¼ A mð Þ N�1½ �=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h [
r2Z

Em rð Þi
q

:

We discuss the computations of Y 1, Y 2.
For Y1, one starts running the ordinary Buchberger algorithm on the ideal in the localization

AðmÞ½N�1�½t� generated by [r2Z EmðrÞ and ta – 1 (Rabinowitsch’ trick), where t is an auxiliary
variable. Whenever an integer leading coefficient is divisible by a nonzero prime (p) in Y, the
algorithm branches into a branch where multiples of p are zero and a branch where p is invert-
ible. Assuming that Y is constructible to begin with, each leaf of this finite tree yields a construc-
tible set of primes leading to that leaf, and Y1 is the union of the primes corresponding to leaves
where the aforementioned ideal contains 1.

A similar algorithm is used to compute Y2. Since we start with Y ¼ SpecZ, it follows that in
any of the further calls of Stillman the set Y is constructible. In other words, Y is either a finite
set of nonzero primes in SpecðZÞ or a cofinite set in SpecðZÞ containing (0).

Furthermore, in each run of Stillman, for each ðpÞ 2 Y , the algebra Fp � �AðmÞ has 0 6¼ 1. This
is true at the initial call, it remains true in call (I) since m, Z, N do not change, and it remains
true in call (II) since we explicitly test for this condition. Furthermore, it remains true later in
the loop, since there we have already removed from Y the primes in Y1, which are those where
inverting a would cause the algebra to collapse.

Let T be the rooted tree whose vertices are the runs of Stillman and whose edges are labeled
(I) or (II) according to which call in the algorithm leads from one run to the other. We claim
that every path in T away from the root is finite. Indeed, consider an infinite path c in T. The
argument Y remains nonempty and weakly decreases along c and since it is locally closed in
SpecðZÞ, there exists a prime ðp0Þ 2 SpecZ that is in the intersection of all the arguments
Y along c.

If infinitely many edges in c are labeled (II), then Z records a1; a2; a3; ::: with ai 2 AðmiÞ and
m1 � m2 � ::: and

ai 62
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hEni a1ð Þ [ 	 	 	 [ Eni ai�1ð ÞiFp0�A mið Þ

q
for all i ¼ 1; 2; 3; :::

By Lemma 13 and Remark 12 this contradicts the Noetherianity of K½P� over any infinite field
K of characteristic p0 (Theorem 11).

Hence only finitely many edges in c are labeled (II). We analyze the computation along c
beyond the last edge e labeled (II). Let m1 2 N [ f1g be the supremum of the values of m
along c, let Z0 be the (fixed) value of Z along c from e onwards, and let N1 the union of all N’s
seen along c. Define
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~A :¼ Fp0 � A N�11

 �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
[

m�m1;r2Z
Em rð Þ


s
:

By construction, 1 6¼ 0 in ~A, hence there exists an epimorphism from ~A to some field L of
characteristic p0. Then the call of SeriesBuchberger with input the images of the fi in RL performs
the same operations as the algorithm Stillman along c. Since the former algorithm terminates by
Proposition 8, so does the latter.

We conclude that T is finite. Let K be an infinite field, n a natural number, and let f 01; :::; f
0
k be

homogeneous polynomials in K½x1; :::; xn� of degrees d1; :::; dk, respectively. We claim that, at the
leaf of some path c in T away from the root, generators for the generic initial ideal of hf 01; :::; f 0ki
are printed. To see this, let g be an n
 n-matrix of variables, set L :¼ KððghjÞh;jÞ, and consider
the ideal J in L½x1; :::; xn� generated by the polynomials gf 01; :::; gf

0
k obtained by replacing xh in

each f 0i by
P

h ghjxj. Then the generic initial ideal of hf 01; :::; f 0ki � K½x1; :::; xn� equals the initial
ideal of J, and the latter is computed by Buchberger (or SymmetricBuchberger) on input (n and)
gf 01; :::; gf

0
k. To find c, proceed as follows: whenever a 2 A is defined as the numerator of a lead-

ing coefficient of bf , check if under the specialization fi 7! gf 0i the element a specializes in K to
zero or to a nonzero element. If a specializes to zero, then follow call (I) or call (II) according as
ðcharKÞ 2 Y1 or not. If a does not specialize to zero, then follow neither of these calls and con-
tinue with the loop. Along this c, Stillman performs the same operations as SeriesBuchberger,
and hence terminates with the generic initial ideal of hf 01; :::; f 0ki.
Remark 14. Apart from printing lmðbBÞ at each leaf of T we may also print Y, Z, N, which
together describe a locally closed stratum of P(K), for any infinite K with ðcharKÞ 2 Y , consisting
of k-tuples with generic initial ideal generated by lmðbBÞ.
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