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Using recent work by Erman-Sam-Snowden, we show that finitely gener- Received 26 February 2018
ated ideals in the ring of bounded-degree formal power series in infinitely Revised 7 January 2019
many variables have finitely generated Grobner bases relative to the ~ Communicated by U. Walther
graded reverse lexicographic order. We then combine this result with the
first author's work on topological Noetherianity of polynomial functors to
give an algorithmic proof of the following statement: ideals in polynomial
rings generated by a fixed number of homogeneous polynomials of fixed MATHEMATICS SUBJECT
degrees only have a finite number of possible generic initial ideals, inde- CLASSIFICATION
pendently of the number of variables that they involve and independently 13A02; 13E99; 13P10

of the characteristic of the ground field. Our algorithm outputs not only a

finite list of possible generic initial ideals, but also finite descriptions of the

corresponding strata in the space of coefficients.
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1. Introduction
1.1. Grevlex series and Grobner bases

Let A be a ring and let R, be the A-algebra of formal power series over A of bounded degree in
the infinitely many variables x;,x,,.... In other words, each element of R, is a formal infinite

sum
E Cux”

weNZ20 |o|<d

where d is some nonnegative integer and ¢, € A for each sequence o = (uy, oz, ...) of nonnegative
integers whose sum || is (finite and) at most d. Addition and multiplication are as usual.

We equip the polynomial ring R, with the graded reverse lexicographic order grevlex, in
which x* > xP if either |« >|B| or |x| = |B| and the last non-zero entry of « — 8 is negative. So,
for instance, the monomials of degree 3 are ordered as follows:

X0 > XX > XX >0 > XX > XXX > X0X3 > XX > XoXa > X > XKy > ..

To remind the reader that this is the only monomial order considered in this paper, we call
the elements of R, greviex series over A. If f is a nonzero element of R;, then Im(f) denotes the
largest monomial that has a nonzero coefficient in f, lc(f) denotes that coefficient, and lt(f) =
le(f)Im(f) is the leading term. The ring R4 carries a unique topology in which a basis of open
neighborhoods of f € Ry is given by all sets {g € Ru|lm(f — g) <x*} as a varies.

CONTACT Anton Leykin @ leykin@math.gatech.edu e School of Mathematics, Georgia Institute of Technology, Atlanta, GA
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Let L be a field. A Grobner basis of an ideal I C R; is a subset B C I such that for each h € L
there exists an f € B with Im(f)|lm(h). We do not require that B be finite. As in the classical set-
ting, a Grobner basis B of I generates I as an ideal (Lemma 7). Our first main result is
the following.

Theorem 1. For every field L, every finitely generated homogeneous ideal in the ring Ry has a finite
Grobner basis with respect to grevlex.

The analogous statement certainly does not hold for all monomial orders: in [9, Appendix
A.2] it is shown that the ideal generated by a generic quadric and a generic cubic has a non-
finitely generated initial ideal relative to the lexicographic order. Theorem 1 implies a positive
answer to [10, Question 7.1]; in that paper a positive answer is given in the case where the ideal
is generated by series Z‘a‘:di Ciox*,i=1,...,k whose coefficients (Ci#)ie[k],\z\:di are algebraically
independent over the prime field of L.

The natural question arises whether a Grobner basis as in the theorem can be computed in
finite time. A straightforward variant SERIESBUCHBERGER (see below) of Buchberger’s algorithm
shows that this would, indeed, be the case—if only we could work effectively with infinite series.

Next we focus on the following setting where we can indeed work with such series. Let S, =
Un S» be the union of all symmetric groups, and let S-, be the subgroup of all permutations fix-
ing 1,...,n elementwise. Suppose that we are given an action of S.,, on A by means of ring
automorphisms, and let S, act on the variables x;,x, ... via mx; = x,(;). This action extends to
an action of S- ,, by (continuous) ring automorphisms on R4 via

b (Z c“x“> =1 <Z Cy fo) = Z (cy) Hxi"(i) = Z n(ca)x“"fl.
o o 1 o 1 o

We call an f € Ry eventually invariant if there exists an n > ny such that n(f) =f for all
7 € S~ ,. To specify an eventually invariant grevlex series we need only a finite number of coeffi-
cients: if f is invariant under S-, and has degree d, then S, has only finitely many orbits on
monomials in xj,x,, ... of degree at most d—the grevlex-largest element in each orbit is of the
form x* where o(n+1) > a(n+2) > ... Then f is uniquely determined by its coefficients
on these grevlex-largest representatives x™, ..., x*. We call f := >} | ¢,,x™ the n-representation of
f=>",cux" Often we will suppress n from this notation.

Theorem 2. Suppose that A=1L is a field. There exist a finite algorithm that on input a finite list
f1s-f of representations of eventually invariant grevlex series fi,...,fx outputs a finite list
81» -+ 8 representing an eventually invariant Grobner basis g1, ..., 81 of (fi, ..., fi)g, -

1.2. Stillman’s conjecture

The condition of eventual invariance seems rather restrictive, but it is tailored to a proof of the
following theorem.

Theorem 3. There exists a finite algorithm that on input k € Z and d,, ..., dx € Z>¢ outputs a
finite sequence Sy, ...,S;, each S; a finite set of monomials in the x;, such that the following holds:
For every infinite field K, all n € N, and all homogeneous polynomials fi, ..., fr € K[x1, ..., x,] of
degrees di,...,dy, respectively, the generic grevlex initial ideal of (fi,...f)kx, . v €quals
(Si)k[x,,..x,] Jor some i.

In short: ideals in polynomial rings generated by homogeneous polynomials of degrees
dy, ..., di have only finitely many possible generic grevlex initial ideals, independently of the num-
ber of variables. Via [4, Corollary 19.11], which is based on [2], this implies that the projective
dimension of an ideal generated by homogeneous forms of fixed degrees but in an arbitrary
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number of variables and in arbitrary characteristic is uniformly bounded. This is Stillman’s con-
jecture from the title; see [8].

This is the fourth proof of Stillman’s conjecture, after the first proof by Ananyan-Hochster [1]
and two recent proofs by Erman-Sam-Snowden [6]. Our proof is the same in spirit as the second
proof in the latter paper in that it uses Draisma’s theorem on topological Noetherianity of poly-
nomial functors [7]. However, unlike the second proof in [6] (but like the first proof there, and
like Ananyan-Hochster’s proof), our theorem yields Sy, ..., S; that are valid in all characteristics.
Also, our theorem is constructive in the sense that we give an algorithm for computing the pos-
sible initial ideals and the corresponding strata given by equations and disequations for field char-
acteristics and coefficients of the input series. All these are represented finitely.

In [6] the authors raise the question whether a version over Z of Draisma’s theorem holds, as
this would also make their second proof characteristic-independent. We do not settle this ques-
tion. Instead, the algorithm of Theorem 3 simulates a generic ideal computation in all characteris-
tics, branching along constructible subsets of Spec Z whenever necessary. We argue that, if there
were an infinite branch in this computation, then this branch would also be infinite over some
field; and that this would contradict Draisma’s theorem over that field.

In [5] (see also [3, Theorem 1.9]), using Stillman’s conjecture and Draisma’s theorem, the
same authors establish a generalization of Stillman’s conjecture to ideal invariants that are upper
semicontinuous in flat families and preserved under adding a variable to the polynomial ring. We
have not pursued the question to what extent (an algorithmic version of) this generalization also
follows from our Theorem 3.

1.3. Organization

This paper is organized as follows. In Section 2, we prove Theorem 1 using work from [6]. In
Section 3, we use this existence result to prove that a version of Buchberger’s algorithm for even-
tually invariant series terminates; this yields Theorem 2. In Section 4, we review topological
Noetherianity of a specific polynomial functor, which follows from [7]. Finally, in Section 5 we
derive Theorem 3 from Theorem 2 and Draisma’s theorem.

2. The existence of finite Grobner bases
We will use two results from [6], the first of which is the following.

Theorem 4 (Theorem 1.2 from [6]). If L is perfect, then Ry contains an (uncountable) set of homo-
geneous elements {g; : j € J} such that the unique L-algebra homomorphism L[(x;);.;] — Ry sending
xj to g is an L-algebra isomorphism.

For each n € Z>, we write Ré") := L[x,...,x,). There is a natural L-algebra homomorphism
R, — Ré”), fr—f" that retains only the terms involving only the variables xi, ..., x,. We may think
of a degree-at-most-d element of R; as a sequence (f(),f(!) ...} in which each f is a polyno-
mial in Ré”) of degree at most d such that f is the image of f("*!) under discarding all terms
divisible by x,;;. Conversely, Ri”) is an L-subalgebra of R;. Observe that, for any f € R, and
n € Zso, the image (lm(f))w is either zero or equal to Im(f) in the grevlex order

on Llxi, ..., x,].

Theorem 5 (Theorem 5.4 from [6]). A sequence gi,...,¢1 € Ry of homogeneous elements is a
regular sequence in Ry if and only ifgfn), g is a regular sequence in RL'1> for all n>> 0.

The following lemma is straightforward from [6, Section 5], but we include its proof using the
two results above.
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Lemma 6. Let fi, ..., fx € R. Then the natural map between first syzygies

Syt (£ F) Sy (5 )

is surjective for all n > 0.

Proof. This surjectivity is not affected by enlarging the field, so we may assume that L is perfect.
By Theorem 4, there exist homogeneous g1, ...,g € Ry such that fi,....fx € L[gi,...,g] and such
that g1, ..., g are part of a system of variables for the polynomial ring R;. In particular, they are a

regular sequence in Ry, and hence by Theorem 5 the polynomials g",...,g" are a re ular
sequence in R( for n > 0. We draw two conclusmns from this. First, for n > 0,8,", ..., g;” are
algebralcall?l 1nde endent over L, f1 ooy fk are elements of the polynomial ring

= L[g . ,gl ], and
SYZ 4 s1) (fl(““)7 ...,fk("“)) — Syz,m) ( 1("), ..-afk(n))

is a bljecuon Second, still for n > 0,R™ is a free module over A(. Therefore,
SYZ 4 (fl , ) C (AM)*  generates Syzy ,,)(fl , ..,fk(")) C(RM)* as an R™-module.
Combining these two statements we find the surjectivity claimed in the lemma.

Proof of Theorem 1. Let fi,....fx € R be nonzero, homogeneous, and let n € Zs,. Set
I:={(fi,....fs) C R;. Consider a monomial u € lm(I) "R"*V divisible by x,.;. There exist
homogeneous ay, ..., a; € R" with deg(a;) = deg(u)—deg(f;) and homogeneous by, ..., b, € R"**1)
with deg(b;) = deg(u)—deg(f;)—1 such that

u= lm((al + blxn-H) 1(n+1) + -+ (ak + bkan) k(n+1))'

Now (al, ey Gg) € Sysz(fl" , (”)) otherwise, the right-hand side would equal
Im(>"; ,f ) which is not d1v151ble by xn+5 By Lemma 6, if n > 0, the syzygy (ay, ..., ax) can be
lifted to a syzygy (c1, ..., ck) € Syz, o) (fl”+1 - ,fk”H)) Write ¢; = a; + x,41b] for each i. Then

u= lm((b1 4 )xn+1f(n+1 + oot (b — b;{)xn+lf(n+l))’

but then we see that u/x,,1 € Im(I). Hence for n > 0,Im(I) does not contain minimal genera-
tors divisible by x,,41. It follows that for such an #, Im(I) is generated by any finite generating list
mi, ..., m; of lm(I(”)). Now hy, ..., h; € I such that Im(h;) = m; form a Grobner basis of 1. O

2.1. Buchberger’s algorithm for grevlex series
To turn Theorem 1 into an algorithm, we derive a version of Buchberger’s algorithm.

Lemma 7 (Division with remainder). Let fi,...,fx € Ry be monic and h € R;. Then there exist
qus - qk € Ry such that lm(qif;) <lm(h) for all i and such that no term of the remainder
h—3", qif: is divisible by any Im(f;).

In particular, if fi, ..., fx is @ Grobner basis of the ideal that they generate, then the remainder
must be zero.

Proof. Initialize r := h and g; := 0 for all i. While some term of r is divisible by some Im(f;), pick
the grevlex-largest such term cx* in r, subtract ¢(x*/Im(f;))f; from r and add cx*/lm(f;) to g
This does not change terms in g; larger than the term just added, and hence in the product top-
ology on Rf the vector g converges a solution vector g as desired. O
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function SERIESBUCHBERGER(f}, ..., fi)
assume fi, ..., fx € Ry homogeneous grevlex series.
m:=1; B := () (the basis); Q := {fi, ..., fx} (the queue);
while Q # () do
while Q contains an f with f") 0 do
Q:=Q\{f}
f = f1c(f):
B:=BU{f};
for h € B\ {f} do
y = lcm(lm(h),lm(f));
= (/im(h))h— (7/Im(1)):
compute a remainder r of s after division by B;
if r # 0 then
Q:=QuU{r}
end if;
end for;
end while;
m:=m-+1;
end while;
return B;
end function

Proposition 8. Assuming an implementation for addition, multiplication, and division with
remainder of grevlex series, SeriesBuchberger on page § terminates after a finite number of steps
and outputs a Grobner basis of the ideal generated by the series in the input.

Proof. Fix any natural number n. The loops with m ranging from 1 to n really compute a
Grobner basis for I:= (fl<">, . fk(”)> while dragging the tails of the series along. In particular,
these n loops terminate. If an element is added to the queue Q in the (n+ 1)st run of the loop,
then this implies that Im(I) ﬂR(L") does not generate Im(I). By Theorem 1, this cannot happen
infinitely often, so the algorithm terminates. That the output is, indeed, a Grobner basis, follows
from the ordinary Buchberger criterion. O

3. Buchberger’s algorithm for eventually invariant series

Recall that S~ ,, acts on L, on variables, and on R;. Given representations ?1, ...,/f\k of eventually
invariant fi,...,fx € Ry, we want to compute the representation of an eventually invariant
Grobner basis of I := (f1, ..., fx).

The first ingredient in our variant of Buchberger’s algorithm is an analog of Lemma 7.

Lemma 9 (Division with remainder on representations.). Let fi,...,fx € R, be monic and h € R;.
Assume that h,fi, ... fi,Im(f1), ..., lm(fy) are invariant under S-,. Then qi,...,qx and r from
Lemma 7 can _be chosen S ,-invariant, and the representations q,, ..., qy,7 can be effectively com-

puted from h,f,....f..

Proof. Set r := h. While some term of r is divisible by some Im(f;), pick the grevlex-largest such
term cx* in 7, let x*, x*, ... be the (countably infinite) orbit of x* under S~ , and for each i let ¢; be
the coefficient of x* in r. Since r is S ,-invariant, so is a := ), ¢;x%. Moreover, as lm(f;) is
S p-invariant, a is divisible by Im(f;). Replace r by r — (a/lm(f;))f; and gq; by q; + (a/Im(f;)); each of
these are S ,-invariant. This does not effect the terms of r larger than x* and gets rid of this particu-
lar term. In this process, r and the g; remain S ,-invariant and converge to series as in Lemma 7.



COMMUNICATIONS IN ALGEBRA® . 2389

For effectiveness, we need to be able to compute the representation of r—(a/lm(f;))f; from
7,a = cx*, and f,. The representation depends linearly on the series, so it suffices to have a pro-
cedure for computing the representation of a product. The function Product does just that—it
uses that no monomial of degree e that is grevlex-maximal in its S ,-orbit contains any of the
variables X, o11, Xpiet2, - O

function Probucr(n,f,h)
input: n-representations f,h of S~ ,-invariant series f, h.

output: n-representation fh of fh.
e = deg f + deg h; R
compute the truncations f"*¢) h("*¢) from f, h;
u ::f(n+e)h(n+e)
remove all terms in u not grevlex-maximal in their S ,-orbit;
return u;

end function

)

The next ingredient is S-series: if f, ¢ are monic S ,-invariant series whose leading monomials
are also S ,-invariant, and x’ =lem(Im(f),Im(g)), then we set S(f,g) := (x"/Im(f))f—
(x"/Im(g))g. We note that S(f, ) is also S ,-invariant, and the n-representation of S(f, g) can be
computed from the n-representations f,g, as follows.

From the n-representation f = ), | ¢, x™ of an S ,-invariant grevlex series one can compute
the m-representation f with m>n as follows. For each i=1,...;s, the group S., has only
finitely many orbits on S ,x%. Let x1, ... xPs be the grevlex-maximal representatives of these
orbits, and let 7;1, ..., i, € S~ be such that m;x* = xPi. Then define

f= Z Z i, )X

i=1 j=1

function REMAINDER(#, ﬁ, {?1, ...,fAk})

input: n-representations ﬁ,fl, ....f of S+ ,-invariant series, with fi monic and
Im(f;) S~ ,-invariant;

output: the n-representation of a remainder of h after division by f, ..., fi.

assume Im(f,), ...,Im(f,) are S ,-invariant.

T :=h; R

while 7 contains a term cx* divisible by some Im(f;) do
7 :=7—Product(cx”/Im(f,), xf,;);

end while;

return 7;

end function

function S(nj, 9) R R
input: n-representations f,g of monic S+ ,-invariant series with Im(f),lm(g)
S ,-invariant.
output: n-representation of S(f, g).
¥ := lem(Im(f ), Im(g));
$:= (& /Im(f))f —(x" /Im(g) )&
return s;
end function
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We call f the m- expansion of ]A( So we may freely increase n when desirable; we will use this
to ensure that the leading monomial of fis S ,-invariant.

Proof of Theorem 2. The algorithm SymmetricBuchberger below called with arguments
(n,f1,....fx) performs the same operations as the algorithm SeriesBuchberger on page § on input
(fi, - fk), except that it works with finite data structures capturing the series f. Hence
Proposition 8 implies both the termination and the fact that the output of SymmetricBuchberger
is the representation of a Grobner basis of (fi, ..., fi)- O

Remark 10. Should one consider implementing SymmetricBuchberger, it may be practical to
allow series to have m-representations with varying values of m, as opposed to the uniform m for
every iteration of the outer loop above.

In order to perform binary operations, i.e., additions and multiplications, representations
would then need to be expanded to a matching value of m. Furthermore, to ensure termination,
the order of S-pairs needs to ensure that each leading monomial is eventually encountered. In
SYMMETRICBUCHBERGER, this is done by increasing m only after all the leading monomials in
X1, ..., X, have been collected.

4. A polynomial functor

Let K be an infinite field. Let GL,(K) act on the space K" with basis xy, ..., x, by left multiplica-
tion, and for each d € Zsy on the d-th symmetric power S?K”" in the natural manner. Fix
dl, ...7dk S ZZO and set

PM(K) :=SU"K"® - - P S*K",

function SYMMETRICBUCHBERGER(#, f |, ..., f})

input: n-representations _?1, . ]A[k S n-invariant series.
output: the m-representation of a Grébner basis of (fi, ..., f) for some m > n.
m :=n; B := () (the basis); Q := {fl, . fk} (the queue);
while Q # () do
while Q contains an f with f 75 0 do

Q=o\{f
J?:Zf/k(f ;
B=Bu{f}:

forﬁeﬁ\{?}do o
7 :=Remainder(m,S(m, h,f), B);

end for;
if 7 £ 0 then
Q:=Qu{r}h;
end if;
end while;
Replace B and Q by their (m + 1)-expansions;
m:=m-+1;
end while;
return /B;

end function
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the space of tuples of forms of degrees d;,..,dy in n variables. Now define
P(K) := lim._, P"(K), the projective limit along the maps P("+!)(K) — P (K) coming from the
projection K"*! — K" forgetting the last coordinate. The map PU"+V(K)— P™(K) is
GL,(K)-equivariant if we think of GL,(K) as embedded in GL,;(K) via the map g—diag(g, 1),
and hence P(K) is a module for the group GL,(K) := U, GL,(K). The space P(K) is the subspace
of (Rg)* consisting of all tuples where the i-th element is homogeneous of degree d; for
each i € [k].

Dually, let V :=lim, ., (P®(K))*. Then V is a countable-dimensional space, P(K) is canonic-
ally isomorphic to V*, and hence K[P] := SV, the symmetric algebra on V, serves as a coordinate
ring of P(K) in that the set of K-algebra homomorphisms K[P] — K is canonically identified with
P(K). We equip P(K) with the Zariski topology in which closed subsets are characterized by poly-
nomial equations from K[P]. Also V and K[P] are modules for GL, (K). The following is an
instance of a general result on polynomial functors from [7].

Theorem 11. Let K be an infinite field, and fix integers di, ...,dy. Then any chain P(K) 2 X; 2
- of GLoo(K)-stable Zariski-closed subsets stabilizes eventually. Equivalently, any sequence
ay,ay,as, ... in K[P] has the property that for t > 0 we have

a; € \/<2_U1GLOC(K)a1>.

Remark 12. Two comments are in order. First, the implication = between the two statements in
the theorem follows from the Nullstellensatz, since the first sentence also holds for any algebraic
closure of K. Second, each g; is an element of K [P<”f)] for some finite n;. If n > max;cjqn;, then
the property of a; above is equivalent to

ey (UoLa),

where we have replaced oo by n.

5. Finitely many generic initial ideals

We now prepare for the proof of Theorem 3. For i =1, ...,k let f; be the homogeneous degree-d;

series
ol
fi= E CiX

|oe|=d;
whose coefficients live in the polynomial ring
A= Z[cmﬁ e lkl,ae ZI;O, loe| = d,}

in which the ¢;, are variables. We note that if K is a field, then K ® A is the coordinate ring K[P]
of the space P(K) introduced in Section 4.

On A acts S, via ring automorphisms determined by 7c;, = ¢j,.z1, and each f; is So.-invari-
ant. In the 0-representation f, of f;, we have

fi = Z Ci,ocxa»

Jo=d; (1) >0(2)>...
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a polynomial with as many terms as there are partitions of d;. Write A" for the subring of A
generated by those ¢;, such that Vm >n : o(m) = 0.

Let g be an n x n-matrix of variables. Replacing, in f;, each x; with h < n by Zj gnixj and each xj,
with &> n by x;, yields a series gf; in the x;, whose coefficients are polynomials that are linear in the
¢io and homogeneous of degree d; in the g We use the formal notation g~'¢; , for the coefficient of
x* in gf.. This notation is chosen so that if we specialize g to be the matrix of a permutation 7 € S,,,
then g7 '¢;,, specializes to 7~ 'c;, in the S,-action above. For a polynomial r = r(c) € A (in the Ci
with varying i and «) write g~'r € Z[gyj|h,j € [n]]®zA for the polynomial obtained by replacing
each ¢;, with g7'¢;,. Regarding ¢~ 'r as a polynomial in the entries g,; whose coefﬁcients are in A,
we write E, ( ) C A for the set of all nonzero coefficients. It is easy to see that if r € A", then also

E,(r) € A", The following easy lemma explains the significance of this construction.

Lemma 13. If K is an infinite field, then the K-span of the orbit of 1 ® r € K®zA under GL,(K)
equals the K-span of 1 ® E,(r(c)).

Proof of Theorem 3. In the recursive variant Stillman of SymmetricBuchberger on page §, we
write I, where p is either zero or a prime, for the prime field of characteristic p. We prove that
Stillman terminates on input

(0.0.{7,. 71} Spec(z).0,0)

and that it prints out the sets S; as in the theorem.

First we clarify the role of the variables. The symbols m, B .Q carry the same meaning as in
SymmetricBuchberger. The meaning of Z and N, finite subsets of A, is that of vanishing and non-
vanishing elements, respectively, at the current run of the algorithm. While Z stays constant
throughout the run (Z is extended only when recursive calls are made), N is augmented as it
accumulates elements due to presumed nonvanishing of the leading coefficients.

procedure Stillman(#, ﬁ, a, Y,Z,N)
m:=n;

Q:=Q\ {0}
whlleY#(Z)andQ;é(Z)do
while Y # () and Q contains an f with f 7é 0 do

Q:=Q\{ };

b= 1c<f) e AN

a :=numerator(b) € A;

Y) = {(p) €Y:ac€ \/<Ur€ZEm(r)>FP®A(m)[N1]};
Stillman(m, B, Q U {?—h(f\)}’ Y1,Z,N); ()
Y:=Y\Yy;

Y, := {(p) €Y: 1¢ <Ur€ZU{a} Em(r»Fp@A(m)[N*l]};

Stillman(m, B,Q U {f —1t(f)}, Y2, ZU {a}, N); (II)

f=1/b
N :=NU{a};

B=Bu{f};
for h € B\ {f} do
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7 :=Remainder(m,S(m, ﬁ,f), B);
if 7 # 0 then
Q:=Quirh
end if;
end for;
end while;
Replace B and Q by their (m + 1)-expansions;
m:=m+ 1;
end while;
if Y # () then
print Im(B);
end if;
end procedure

The current run considers only primes in the set Y C Spec(Z). Furthermore, it deals with the
specializations of the truncations fl(m), s fk(m) with coefficients in

A = AN/ (U En(r).

We discuss the computations of Y ;, Y ».

For Y;, one starts running the ordinary Buchberger algorithm on the ideal in the localization
AMIN-1[t] generated by U,cz E,(r) and ta - 1 (Rabinowitsch’ trick), where t is an auxiliary
variable. Whenever an integer leading coefficient is divisible by a nonzero prime (p) in Y, the
algorithm branches into a branch where multiples of p are zero and a branch where p is invert-
ible. Assuming that Y is constructible to begin with, each leaf of this finite tree yields a construc-
tible set of primes leading to that leaf, and Y; is the union of the primes corresponding to leaves
where the aforementioned ideal contains 1.

A similar algorithm is used to compute Y,. Since we start with Y = SpecZ, it follows that in
any of the further calls of Stillman the set Y is constructible. In other words, Y is either a finite
set of nonzero primes in Spec(Z) or a cofinite set in Spec(Z) containing (0).

Furthermore, in each run of Stillman, for each (p) € Y, the algebra I, ®A"™ has 0 # 1. This
is true at the initial call, it remains true in call (I) since m, Z, N do not change, and it remains
true in call (II) since we explicitly test for this condition. Furthermore, it remains true later in
the loop, since there we have already removed from Y the primes in Y;, which are those where
inverting a would cause the algebra to collapse.

Let T be the rooted tree whose vertices are the runs of Stillman and whose edges are labeled
(I) or (II) according to which call in the algorithm leads from one run to the other. We claim
that every path in T away from the root is finite. Indeed, consider an infinite path y in T. The
argument Y remains nonempty and weakly decreases along y and since it is locally closed in
Spec(Z), there exists a prime (py) € SpecZ that is in the intersection of all the arguments
Y along 7.

If infinitely many edges in y are labeled (II), then Z records a;,a,as, ... with a; € Alm) and
m; <my <..and

a; ¢ \/<Ent(a1) U+ U By (@i-1))g, oam for all i=1,2,3, .

By Lemma 13 and Remark 12 this contradicts the Noetherianity of K[P] over any infinite field
K of characteristic py (Theorem 11).

Hence only finitely many edges in y are labeled (II). We analyze the computation along y
beyond the last edge e labeled (II). Let m., € NU{oco} be the supremum of the values of m
along 7y, let Z, be the (fixed) value of Z along y from e onwards, and let Ny, the union of all N’s
seen along y. Define
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By construction, 1 # 0 in A, hence there exists an epimorphism from A to some field L of
characteristic py. Then the call of SeriesBuchberger with input the images of the f; in Ry performs
the same operations as the algorithm Stillman along 7. Since the former algorithm terminates by
Proposition 8, so does the latter.

We conclude that T is finite. Let K be an infinite field, # a natural number, and let f/, ..., fg( be
homogeneous polynomials in K[xi, ..., x,] of degrees di, ..., dy, respectively. We claim that, at the
leaf of some path y in T away from the root, generators for the generic initial ideal of (f/,...,f})
are printed. To see this, let ¢ be an #n x n-matrix of variables, set L := K((ghj)h’j), and consider
the ideal J in Llx,...,x,| generated by the polynomials gf',...,gf} obtained by replacing x, in
each f} by >, gx;. Then the generic initial ideal of (f},...,f}) C K[x1,...,x,] equals the initial
ideal of ], and the latter is computed by Buchberger (or SymmetricBuchberger) on input (n and)

e &) To find 7, proceed as follows: whenever a € A is defined as the numerator of a lead-
ing coefficient of f, check if under the specialization f;+— gf’ the element a specializes in K to
zero or to a nonzero element. If a specializes to zero, then follow call (I) or call (II) according as
(charK) € Y; or not. If a does not specialize to zero, then follow neither of these calls and con-
tinue with the loop. Along this y, Stillman performs the same operations as SeriesBuchberger,
and hence terminates with the generic initial ideal of (f}, ..., f}).

Remark 14. Apart from printing Im(B) at each leaf of T we may also print Y, Z, N, which
together describe a locally closed stratum of P(K), for any infinite K with (charK) € Y, consisting
of k-tuples with generic initial ideal generated by lm(B).
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