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ABSTRACT

Wide-area data analytics has gained much attention in recent years
due to the increasing need for analyzing data that are geographically
distributed. Many of such queries often require real-time analysis
on data streams that are continuously being generated across multi-
ple locations. Yet, analyzing these geo-distributed data streams in a
timely manner is very challenging due to the highly heterogeneous
and limited bandwidth availability of the wide-area network (WAN).
This paper examines the opportunity of applying multi-query opti-
mization in the context of wide-area streaming analytics, with the
goal of utilizing WAN bandwidth efficiently while achieving high
throughput and low latency execution. Our approach is based on
the insight that many streaming analytics queries often exhibit com-
mon executions, whether in consuming a common set of input data
or performing the same data processing. In this work, we study dif-
ferent types of sharing opportunities and propose a practical online
algorithm that allows streaming analytics queries to share their com-
mon executions incrementally. We further address the importance
of WAN awareness in applying multi-query optimization. Without
WAN awareness, sharing executions in a wide-area environment
may lead to performance degradation. We have implemented our
WAN-aware multi-query optimization in a prototype implementa-
tion based on Apache Flink. Experimental evaluation using Twitter
traces on a real wide-area system deployment across geo-distributed
EC2 data centers shows that our technique is able to achieve 21%
higher throughput while saving WAN bandwidth consumption by
33% compared to a WAN-aware, sharing-agnostic system.
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1 INTRODUCTION

Recent years have seen a growing interest in geo-distributed data
analytics, where analysts need to extract meaningful information
from large amounts of data that are distributed across multiple lo-
cations. Examples of these data include not only traditional log
updates from content distribution networks (CDN) but also user-
generated microblogs, sensor data from distributed IoT devices, and
video streams from distributed surveillance and traffic control cam-
eras. Such data are naturally produced in a geo-distributed manner
near the edge. The main challenge in analyzing these data is in ex-
tracting information in a timely manner [25, 53].

The interest in real-time analysis over continuous data streams
has resulted in the recent development of various scalable stream
processing systems [5, 13, 40, 59, 66]. However, these systems
have been designed primarily for a centralized, tightly-connected
cluster environment where compute nodes are inter-connected with
high-speed network. Using these centralized systems for analyzing
geo-distributed data streams is impractical since it requires transmit-
ting large amounts of data continuously over the wide-area network
(WAN) that has limited bandwidth, slow, and expensive. This cen-
tralization approach typically leads to wasteful WAN bandwidth
utilization and is often unable to satisfy the timeliness requirements
of most data analytics applications, as has been shown by recent
work in geo-distributed data analytics [29, 53, 61, 62].

Most of the work in geo-distributed data analytics has instead fo-
cused on batch-oriented processing, where finite input data sets are
available prior to a query execution [29-31, 53, 61, 62]. In this case,
the main challenge is to schedule each query that minimizes either
the overall execution time or WAN bandwidth consumption. Others
have also looked at the problem of geo-distributed data analytics
in the context of stream-oriented processing where long-running
queries are deployed to extract information from continuous data
streams [26, 32, 52, 54]. However, most of them focused on opti-
mizing an individual query execution. In contrast, we consider opti-
mizing multiple queries by applying multi-query optimization in a
WAN-aware manner.

In practice, the multitenancy nature of a Cloud environment leads
to multiple queries running concurrently and competing for limited,
shared resources. Recent work has indicated that it is common in
a production environment for multiple queries to exhibit common
executions, whether in reading the same set of inputs or perform-
ing the same data processing, especially for queries from the same
application domain or those that rely on popular data [16, 20, 28,
42, 43, 49, 56, 63]. Furthermore, as more and more data are in-
creasingly geo-dependent and made available to the public, it is in-
creasingly likely that more geo-distributed data analytics queries
will share common executions. As a concrete example, Twitter data
streams are commonly analyzed for different purposes including
sentiment analysis [3], finding relevant audiences for an advertise-
ment/campaign [2], and detecting trending topics in a certain area
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or globally [37, 41]. Another example includes CDN logs that are
continuously monitored for different goals such as high quality ser-
vice delivery, network monitoring, and user behavior analysis.

Based on this insight, we examine the opportunity of applying
multi-query optimization in the context of wide-area streaming ana-
Iytics. Our goal is to efficiently and effectively utilize limited WAN
bandwidth while providing low latency and high throughput execu-
tion of multiple concurrent queries. We first study different types
of cross-query sharing opportunities: (1) input-sharing: where mul-
tiple queries share a common subset of input data, (2) operator-
sharing: where multiple queries perform the same data processing
on the same inputs, and (3) output-sharing: where multiple queries
additionally share partial output (or intermediate) results. Further-
more, we demonstrate the importance of WAN awareness in apply-
ing multi-query optimization in a wide-area environment: both for
query planning and for operator scheduling.

There are a few challenges in applying multi-query optimization
(MQO) in the context of wide-area streaming analytics. First, mul-
tiple queries may be submitted to the system independently at dif-
ferent times by different users and hence, it may not be possible to
optimize these queries together prior to their deployment using the
MQO techniques proposed for batch-oriented workloads [49, 50,
63]. Second, most streaming analytics queries are long-running and
latency sensitive [15, 40, 60]. Thus, it is very inefficient and imprac-
tical to interrupt existing query executions whenever a new query
arrives to optimize them together. Instead, our techniques optimize
multiple query executions in an online manner by allowing queries
to share their common executions incrementally without disrupting
existing executions. The wide-area settings further impose unique
challenges in applying multi-query optimization due to the highly
heterogeneous and limited bandwidth availability of the wide-area
network. We show that applying MQO designed for a local envi-
ronment in a wide-area environment without network awareness is
sub-optimal and may lead to performance degradation due to the
assumptions of homogeneous and high-bandwidth network that are
invalid in real wide-area deployment.

We have implemented our WAN-aware multi-query optimiza-
tion into a system prototype called sana: an Apache Flink [13]-
based stream processing system that we have adapted for wide-
area deployments. We quantitatively evaluate Sana using 14 geo-
distributed EC2 ! data centers. Our experimental evaluation using
multiple streaming analytics queries [1, 17] on a Twitter trace shows
that sana is able to achieve 21% higher throughput while saving
WAN bandwidth consumption by 33% compared to the state-of-the-
art WAN-aware, sharing-agnostic system.

We summarize our contributions as follow:

o We propose a multi-query optimization approach that allows mul-
tiple streaming analytics queries to incrementally share their com-
mon executions in an online manner in wide-area settings (§4).

o We address the importance of WAN awareness in applying multi-
query optimization in a wide-area environment, both in planning
and scheduling multiple query executions (§5).

o We have implemented our WAN-aware multi-query optimization
techniques in a system prototype based on Apache Flink (§6).

Uhttps://aws.amazon.com/ec2/
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e We experimentally demonstrate the effectiveness of our WAN-
aware multi-query optimization through a real system deployment
across geo-distributed EC2 data centers using Twitter trace-driven
queries (§7).

2 BACKGROUND AND MOTIVATION

In this section, we discuss the background of wide-area streaming
analytics and illustrate through an example the benefits of applying
multi-query optimization to this context.

2.1 Wide-Area Streaming Analytics

Stream Processing Model. Stream processing systems can be gen-
erally classified into two different classes based on their computa-
tional model: (1) the dataflow model [6, 13, 44, 47], and (2) the
bulk-synchronous parallel (BSP) model [14, 33, 66]. Here, we fo-
cus on the dataflow model where data streams flow continuously
from one or more data sources into the system and are transformed
by a set of stream operators. We consider this model over the BSP
model for two reasons. First, it allows data streams to be processed
with lower latency and higher throughput [17, 38]. Second, the BSP
model incurs higher communication overhead due to the frequent
synchronization at every micro-batch boundary [60], which will be
inefficient in a wide-area environment. However, our proposed tech-
niques are not limited to the dataflow processing model, and can be
adapted to the BSP model.
Stream Query Model. A streaming analytics query is typically
written using a high-level, SQL-like language [8, 58]. The query
is (1) translated and optimized by a query optimizer into its corre-
sponding execution plan, represented using a directed acyclic graph
(DAG), and (2) deployed by a job scheduler. A query execution
graph, denoted as g = (V, E), consists of vertices V and edges E.
Each vertex v € V corresponds to a stream operator f that con-
sumes input streams I from its predecessor (upstream) vertices and
produces output streams O to its successor (downstream) vertices
(O = fu(I)). Each edge e € E represents a data flow between two
vertices. Example of stream operators include source, map, reduce,
Jjoin, filter, sink, etc. The source and the sink operators are special-
ized operators that receive input streams from external sources and
output the results to final destinations respectively.
Geo-Distributed Stream Processing. We consider a stream pro-
cessing system consisting of multiple compute nodes that are geo-
graphically distributed across multiple sites, and a master node lo-
cated in one of the sites. A streaming analytics query is submitted to
the master node running a query optimizer and a job scheduler. The
query optimizer will optimize the execution plan of the query (e.g.,
parallelize and chain multiple operators) and the scheduler will de-
ploy each parallel execution instance (task) on a compute node.
The inputs of wide-area streaming analytics queries are produced
by multiple sources that are geo-distributed, and they are continu-
ously ingested into nearby edge clusters or data centers. Examples
of such data streams include sensor readings, microblogs from so-
cial network applications, and log updates from distributed CDN
servers. Each query continuously reads these geo-distributed input
streams, processes them, and outputs its results to one or more fi-
nal locations, e.g., stored in databases, displayed on a monitoring
dashboard, or streamed back as new inputs for iterative analysis.
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Figure 1: Example: Execution sharing between two streaming analytics queries in a wide-area environment.

To minimize data transfer overhead between operators, the sched-
uler will try to deploy connecting operators on the same site. How-
ever, common operators such as union, shuffle, and join may require
data to be transmitted across sites since their inputs may be gener-
ated at different locations. Thus, the query optimizer and the job
scheduler should be aware of the underlying WAN topology to gen-
erate an optimized execution plan and a deployment decision that
can effectively utilize WAN bandwidth respectively [30, 53, 61].

2.2 Benefits of Multi-Query Optimization in A
Wide-Area Environment

Multi-Query Optimization in Data Analytics World. Multi-
query optimization (MQO) is a well-studied topic in the database
community to improve the performance of multiple query execu-
tions, especially in relational databases [9, 16, 21, 22, 24, 55, 67].
Since many data analytics queries often rely on common popular
data sets and may perform common executions, recent work has
argued that it is imperative to apply MQO in the context of data
analytics to improve the performance of multiple data analytics
queries [16, 49, 50, 57, 63]. Here, the query optimizer needs to
identify the commonality between queries and potentially combine
their executions to mitigate redundant executions. The combined
execution must produce the same outputs as those produced by
executing the queries independently.

In this paper, we argue that applying multi-query optimization in
a wide-area environment can reduce WAN bandwidth consumption
by eliminating the redundancy in transmitting duplicate data over
the WAN. In the face of bandwidth constraints, this can improve
the overall performance of concurrent query executions. Although
there have been attempts that look at the opportunity of optimiz-
ing multiple queries in the context data analytics, their focus have
been largely on batch-oriented workloads [49, 50, 63]. These ap-
proaches are not applicable for stream-oriented workloads because
most streaming analytics queries are deployed once and run indefi-
nitely [13, 44]. Thus, applying MQO in streaming analytics should
be done in an online manner as new queries arrive by sharing any
common execution incrementally.

Previous attempts have also looked at the opportunity of apply-
ing multi-query optimization for stream-oriented workload over
continuous data streams, but focused on memory limitations be-
cause they were designed for a single-server deployment [20, 28,
45]. On the other hand, we consider a wide-area environment where
the limited WAN bandwidth is typically the main constraint.

Illustrative Example. To make the problem concrete, consider the
following illustration. Suppose there are 2 analytics queries that are
submitted to the system:

Query 1: A marketing group is monitoring the trending topics in
Twitter across the US, Europe, and Asia to support their operational
decisions:

SELECT Time, Topic, COUNT (*)

FROM Host.US, Host.EU, Host.Asia
GROUP BY WINDOW (Time.Minutes (1)), Topic
HAVING COUNT (%) > 100

Query 2:Another group of analysts is monitoring the impressions
from Twitter users in the US and Europe that are related to a specific
type of campaign:

SELECT Time, AdInfo.Campaign
FROM (SELECT Time, Topic
FROM Host.US, Host.EU
GROUP BY WINDOW (Time.Seconds (30)), Topic
HAVING COUNT (x) > 100) AS Tweet, AdInfo
WHERE AdInfo.Topic = Tweet.Topic

Figure 1(a) shows the logical execution plans of both queries. In
this example, both queries subscribe to common input sources (US
and EU), deserialize, filter, reduce the data (o and ) to remove irrel-
evant information (e.g., discard user profile), aggregate the results
(V), and send only the relevant information to their corresponding
final locations. In the case of Query 2, the intermediate results
are further joined (><) with static data that are stored in AdInfo.

Figure 1(b) shows the independent deployment of the two
queries. For clarity reasons, suppose the input stream rate from
each source is 10MB/s and the selectivity of each selection and pro-
jection operator is 0.5. We also consider the data transfer overhead
within a site to be negligible since intra-data center bandwidth is
typically 1-2 orders of magnitude higher than inter-data center band-
width [61]. In this case, deploying the two queries independently
will consume WAN bandwidth with a rate of 75MB/s (40MB/s for
Query 1 and 35MB/s for Query 2).

However, we can see that both queries partially share common in-
put streams (US and EU) and perform similar data processing (e.g.,
filtering user info). If the query optimizer is able to identify these
commonalities, it may combine their common executions, which
will significantly reduce the WAN bandwidth consumption rate to
50MB/s = 40MB/s + 10MB/s (Figure 1(c)), which saves ~33% of
the original bandwidth consumption. This illustration shows that op-
timizing multiple query executions in wide-area streaming analytics
can significantly save WAN bandwidth consumption.
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Figure 2: sana system architecture.

In addition to saving WAN bandwidth consumption, sharing
common executions between multiple queries can also improve the
overall performance in the face of bandwidth constraints. In the
previous example, if the available bandwidth from the Virginia data
center to the London data center is less than 10MB/s, deploying
the two queries independently will result in bandwidth contention.
One possible solution is to reduce the data transmission rate over
the bottleneck link through approximation, aggregation, or data
reduction, which trades the output’s quality for higher overall per-
formance [18, 20, 28, 54]. Alternatively, the query optimizer may
choose a less optimal query plan that avoids the congested link [61].
However, we argue that making this trade-off is unnecessary if the
system is able to detect that the problem arises due to redundant
data transmission. Furthermore, these techniques still result in a
wasteful bandwidth consumption that could be reduced.

3 SANA:SYSTEM ARCHITECTURE

We propose a geo-distributed stream proccessing system called
Sana which implements multi-query optimization in a WAN-aware
manner. Figure 2 shows the system architecture of Sana. When
a new (possibly a recovery) query is submitted to the system, the
Query Optimizer will optimize its execution plan while consider-
ing the inter-site bandwidth information that is monitored by the
WAN Monitor. This network information is particularly important
in wide-area settings since the optimal execution plan of a wide-
area data analytics query highly depends on the WAN bandwidth
availability between sites [61].

When applying multi-query optimization, the Query Optimizer
will also consider the deployment of the existing queries that is pro-
vided by the Shared Job Manager to identify any commonalities
between the newly submitted queries and the existing ones (§4).
After the optimized query execution plan has been generated, the
Job Scheduler will schedule and deploy each operator instance on
a compute node in a WAN-aware manner to minimize the overall
query execution latency and/or WAN bandwidth consumption (§5).
Once a query has been deployed, it may periodically checkpoint its
execution state and send the state metadata to the Recovery Man-
ager. This mechanism allows the system to replay a query from its
last checkpointed execution state in the case of failures. The imple-
mentation details will be discussed in §6.
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4 MULTI-QUERY OPTIMIZATION

In this section, we look at how the query optimizer optimizes mul-
tiple query executions by sharing any commonality between them.
We first study different types of sharing opportunities that can be
exploited between two queries (§4.1), and show how to apply them
across multiple queries (§4.2). We will discuss the WAN awareness
in optimizing multiple query executions in §5.

4.1 Sharing Opportunities

4.1.1 Input-Operator Sharing. A natural way to determine
whether two queries share common executions is to compare their
vertices. Two vertices v; and vy are considered equivalent iff they
share the same input streams I, = I,, perform the same trans-
formation function f;,, = f,, and thus produce the same output
streams Oy, = Oy,. We refer to this type of sharing as IN-OP. In
this case, deploying the two vertices independently will result in a
full redundancy in both transmitting and processing duplicate data.
This redundancy can be eliminated by deploying only one of the
vertices. In this case, the query optimizer can merge the two ver-
tices together, i.e., let the job scheduler know that v, does not need
to be scheduled if v; has already been deployed.

In practice, two vertices may share common inputs and opera-
tors, but output the results to a different set of downstream vertices
(possibly with some overlap). We denote the set of v’s downstream
vertices as Dy, = {d%, ... ,dg_l}. These conditions are especially
common in the early stages of executions where multiple queries
may read the same input streams from the same data sources al-
though their downstream vertices tend to be more specific to each
individual query. In this case, the output streams to any of the down-
stream vertices that are not shared by the two vertices need to be
replicated, while the common outputs can be transmitted only once
(Figure 3).

4.1.2 Input-Only Sharing. Since in practice multiple vertices
with different operators/transformation functions may rely on a
common set of input streams, we relax the sharing requirement
of the IN-OP type of sharing by removing the operator-equality
condition, i.e., fu, # fu,, therefore Oy, # Oy,. This allows two
vertices to share their common input streams even though they have
different operators. We refer to this input-only sharing as IN. In
this case, independently deploying the two vertices will result in re-
dundancy in transmitting duplicate input data. Unlike IN-OP, this
type of sharing requires both vertices to be deployed since they rely
on different transformation functions. However, applying this type
of sharing will eliminate the redundancy in transmitting duplicate
input streams from their common upstream vertices, which can be
highly beneficial in the case where the inputs are transmitted over
slow and limited bandwidth links, as in a wide-area environment.

In wide area settings, the IN type of sharing can be exploited
by deploying the two vertices on the same site (or the same node).
However, the physical deployment of a stream operator is typically
determined by the job scheduler after the query execution plan has
been generated by the query optimizer. Thus, the query optimizer
needs to provide a hint to the job scheduler in exploiting this type
of sharing. The co-location deployment of two vertices does not
necessarily eliminate the redundancy in transmitting duplicate data
because they are still considered as two independent stream edges
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Figure 3: IN-OP: Input-Operator Sharing. Here, v; and v,
share common input streams and operators, but only partially
share the output streams.

to their respective downstream vertices. To exploit this type of shar-
ing, we introduce a lightweight router operator R which (1) keeps
track of the input edges of each input stream originated from re-
mote vertices, and (2) forwards each record to every downstream
vertex without performing any data transformation. Note that the
router operator does not buffer nor batch the records, instead it only
routes the records to multiple operators, similar to the task of router
in networks. Thus, the overhead of the router operator is negligible
as shown in §7.

Partial Input Sharing. In the case of IN-OP, two vertices that
share common operators must rely on the same exact input streams
since in general applying the same transformation to different input
sets does not guarantee the same resulting outputs. This strict input-
stream-equality can further be relaxed in the case of IN since the
two vertices do not rely on the same transformation results. Thus,
the IN type of sharing allows two vertices with different operators
to partially share their input streams (Figure 4).

4.2 Sharing Across Multiple Queries

Having discussed different sharing opportunities that can exist be-
tween two queries, we will now look at how the query optimizer
exploits these opportunities across multiple queries. Since most
streaming analytics queries are long-running, it is possible that a
newly submitted query exhibits common executions with multiple
existing queries that may have already been deployed. Thus, the
query optimizer needs to determine with which of the queries it
should share the new query.

One possible approach to determine which query to share is by
finding a query that exhibits the highest similarity score using a
subgraph-matching algorithm [19, 39]. However, we argue this ap-
proach is sub-optimal since it limits the sharing opportunities to
only 1 query. Instead of finding the similarity in a query-centric
manner, we adopt a vertex-centric philosophy where a query may
share its vertices with multiple queries. This will result in a higher
overall degree of sharing. We compare a new query with each of
the existing queries topologically from the source vertices. Travers-
ing the vertices in topological order gives the benefit of early ter-
mination in traversing a graph. If two vertices are not equivalent
(v1 # v2), by definition, none of their downstream vertices are
equivalent, and hence they do not need to be compared.
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Figure 5: Exploiting common executions across multiple
queries: Here, C shares its execution with both A and B.

Although finding common vertices among multiple queries can
be computationally expensive, this step is only perfomed during the
query planning stage. Since most streaming analytics queries are
long-running, this overhead is justified for higher overall execution
performance and better resource utilization. To reduce the analysis
cost, the query optimizer may limit the number of queries to be
analyzed or adopt a group-based analysis, as proposed by existing
work in Internet Databases [16], which reduces the number of ver-
tices that need to be analyzed.

Figure 5 shows an example where a query (C) shares its exe-
cution with multiple existing queries (A and B). When C arrives,
the query optimizer finds that C shares (1) common input-operators
with A and B at vertex vg, as well as (2) input streams with B
(Ips N Iyg # 0). In this case, the query optimizer may exploit these
sharing opportunities by merging the common executions of these
queries. Thus, the job scheduler only needs to deploy two additional
vertices for query C: vg that exploits IN type of sharing with vs, and
vy that does not exhibit any sharing opportunity with the rest of the
vertices, while s3, s4, s5, S¢, U2, and v3 are shared with IN—-OP type
of sharing.

S WAN-AWARE OPTIMIZATION

Our discussion so far has focused on the sharing opportunities
between multiple queries without considering the wide-area con-
straints. In this section, we focus on addressing the challenges
of applying these sharing opportunities in a wide-area environ-
ment. Specifically, we propose a WAN-aware optimization to the
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Figure 6: Multiple sharing opportunities: Here, v exhibits
IN-OP with vy, and IN with both v; and vs.

query optimizer in generating and optimizing query execution plans
while considering the sharing opportunities with existing query ex-
ecutions (§5.1) and WAN-aware operator placement to the job
scheduler in deploying stream operators (§5.2).

5.1 WAN-Aware Query Planning

In the context of wide-area data analytics, the query optimizer needs
to be aware of the inter-site bandwidth availability to generate an op-
timized query execution plan for each individual query [61]. Simi-
larly, the query optimizer must also optimize multiple query execu-
tions in a WAN-aware manner. The WAN awareness in this context
is used to determine whether a query should share its execution
with other queries (when possible) based on the current WAN band-
width availability between sites. Without WAN awareness, sharing
executions across multiple queries may result in WAN bandwidth
contention that will degrade the performance of either or both the
new and the existing queries.

Since our query optimizer analyzes the commonality between
queries in a vertex-centric manner, a vertex may exhibit more than
one sharing opportunities with multiple vertices from different
queries. Figure 6 shows a situation where vertex v can share both
its inputs and operator with vy, or partially share its inputs with
either v; or v3. In this case, the query optimizer needs to determine
which of these sharing opportunities should be exploited, or decide
not to share the execution at all.

One possible approach is to choose a vertex that maximizes the
degree of sharing since intuitively it will maximize the duplicate
elimination. However, this naive approach may result in a perfor-
mance degradation. Consider the scenario shown in Figure 6. If the
query optimizer always tries to maximize the sharing regardless of
the network conditions, it will exploit the IN-OP type of sharing
with vy since the input streams of vertex v are fully covered by
v2. However, we can see that Site-2 does not have sufficient band-
width capacity for transmitting its output streams. Thus, exploiting
IN-OP with v may result in bandwidth contention between v, va,
and v3. On the other hand, if the query optimizer is aware of the
bandwidth constraints, it may exploit the IN type of sharing with
vy by partially sharing their input streams at Site-1. This decision
is preferable because it does not cause any bandwidth contention
that may degrade the overall performance. Thus, there is a trade-off
between minimizing bandwidth consumption (maximizing sharing)
and maximizing the performance of concurrent executions.
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Algorithm 1 WAN-aware execution sharing

1: procedure FIND-COMMON-VERTICES(v, V)

2 for v; € V topologically do

3 share « getShareType(v, v;)

4: (BWipn, BWyy;) « getBandwidth(v;)

5: if share :‘:DIIEBOPl then

6 AO « l‘bivi‘”' X Oy

7 if BWyy,: > AO then

8 add v; to the set of IN-OP vertices
9: end if
10: else if share == IN then
11: Al « I, - I,
12: if BWyy,: > O, and BW;,, > Al then
13: add o; to the set of IN vertices
14: end if
15: end if

16: end for
17: end procedure

Algorithm 1 shows how the query optimizer considers WAN
bandwidth availability to determine which sharing opportunities (if
any) to be exploited. In the case of IN-OP, the query optimizer
needs to ensure that the site where the shared vertex v; has been
deployed, has sufficient egress bandwidth capacity to transmit addi-
tional output streams (Line 7). This can be estimated proportionally
to the increase in the number of output stream consumers since both
vertices rely on the exact same output data streams (Oy = Oy;),
and only their downstream vertices are different. In the case of
IN where vertices only share partial input streams, the query op-
timizer needs to further ensure there is sufficient bandwidth in both
the ingress and egress links to transmit additional input and output
streams respectively. If the query optimizer predicts that exploiting
the opportunity can potentially result in bandwidth contention, it
will not exploit the opportunity, which trades off bandwidth utiliza-
tion for higher overall performance.

Note from Lines 8 and 13 that the query optimizer outputs a set
of vertices that can be shared by each vertex (if any) instead of
only a single vertex as long as they ensure sufficient bandwidth for
deployment. In this case, the job scheduler needs to choose which
vertex to be shared. We adopt this design to give the job scheduler
a flexibility to apply different optimization in scheduling different
queries. For example, some queries may tolerate higher delay for
lower bandwidth consumption while others may require real-time
results even though they consume more bandwidth.

5.2 WAN-Aware Operator Scheduling

While the previous section focuses on bringing WAN awareness
to the query optimizer in planning a query execution while consid-
ering any commonality with existing queries, this section focuses
on incorporating WAN awareness to the job scheduler in deploy-
ing the execution. Once the query optimizer has identified a set of
vertices that can be shared for each vertex in the query execution
plan, the job scheduler is responsible for the actual deployment of
the vertices themselves. Algorithm 2 shows how the job scheduler
schedules each operator while considering the sharing opportuni-
ties that have been identified by the query optimizer. The scheduler
will place and deploy each operator in the physical execution graph
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Algorithm 2 WAN-aware operator placement

1: procedure SCHEDULE(v)

2 if find v; € set IN-OP then

3 add edges from v; to AD < Dy \Dy;
4 else if find v; € set IN then

5: deploy v at the same site as v;

6 else if I, are local input streams then

7 site-locality deployment

8
9

else > neither share-able nor a local operator
WAN-aware deployment
10: end if

11: end procedure

topologically based on the deployment of its upstream vertices. Al-
though this approach may not result in the most optimal end-to-end
deployment of the entire graph, this has been shown to work reason-
ably well in practice with significantly lower complexity [30].

In exploiting the sharing opportunities, the job scheduler priori-
tizes exploiting IN—-OP over IN because the gain of IN-OP > IN
in terms of minimizing WAN bandwidth consumption since the for-
mer type of sharing covers the benefits of the latter. Note that ex-
ploiting any of these opportunities guarantees sufficient bandwidth
deployment since the query optimizer has already omitted those that
may result in bandwidth contention. If a vertex exploits the IN-OP
type of sharing with any of the existing vertices, the job scheduler
does not need to deploy the vertex. However, the job scheduler may
need to update the existing execution by creating additional edges
from the shared vertex to any of the additional downstream vertices
that are not shared by the two vertices (Line 3). On the other hand,
vertices that exhibit IN type of sharing will be deployed on the
same site as their corresponding shared vertices to mitigate redun-
dant data transmission over the WAN (Line 5).

If a vertex can be shared with multiple vertices of the same shar-
ing type (e.g., v exhibits IN with both v; and v3 in Figure 6), the
job scheduler needs to determine which of the vertices should be
shared (Lines 2 and 4). Since our goal is to minimize WAN band-
width consumption, our job scheduler will choose a vertex that max-
imize the sharing. Although maximizing sharing may not necessar-
ily minimize the execution latency, in practice this will result in an
improved execution performance [62]. If the goal is to minimize
delays, the scheduler may choose the vertex that minimizes latency.

Vertices that do not exhibit any sharing opportunities will be de-
ployed based on the locations of their input streams. Those that rely
only on local input streams will be deployed on the same site as
their upstream vertices to minimize the communication overhead,
especially the high latency of the wide area network. On the other
hand, vertices that rely on one or more input streams originated
from remote sites will be deployed using a WAN-aware operator
deployment. We adapt the cost model from Hourglass [52] which

optimizes stream operator placement that balances WAN bandwidth

. . DR/ (Lat;)?
consumption and latency, by minimizing oy —BW,
is a link between two sites, DRy is the data rate transmitted over the
link, Lat, is the latency overhead, and BW is the available band-
width of the link. Any updates on the workload of a link will be
reflected in the bandwidth availability that is continuously being

monitored by the WAN Monitor.

where €
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6 IMPLEMENTATION

We have implemented sana in a system prototype based on Apache
Flink [13] - a stream processing system with the dataflow compu-
tational model. We have modified and adapted the original Flink
system to a wide-area environment by implementing network moni-
toring and multi-query optimization modules, as well as incorporat-
ing WAN awareness to both the query optimizer and job scheduler.
WAN Bandwidth Monitoring. The bandwidth availability be-
tween sites is continuously monitored by the WAN Monitor. Con-
gested links are detected by the ratio of the current bandwidth uti-
lization over the maximum available bandwidth [54]. A ratio of <1
indicates that the network link has spare bandwidth capacity while
aratio >1 indicates that the bandwidth is contended. This available
bandwidth information is shared with both the query optimizer and
the job scheduler to implement the WAN-aware query planning
(8§5.1) and operator scheduling (§5.2) policies respectively.
Multi-Query Optimization. We have implemented our WAN-
aware multi-query optimization module in Flink to find any com-
mon executions between a newly submitted and existing queries in
a WAN-aware manner. To exploit the IN type of sharing, the query
optimizer will modify the original query’s execution plan by adding
a router operator for every vertex that rely on remote input streams.
The router operators are added proactively to prevent suspending
the execution of an existing vertex. Although the use of router oper-
ators would still incur duplicate data streams from the router to the
downstream operators, this data forwarding happens within a local
environment (within a site or even a node) and hence, its overhead
is negligible compared to the overhead from transmitting duplicate
data across sites. We show in §7 that the overhead of the router
operator is negligible even when it is not shared.

WAN:-aware Scheduling. The default Flink scheduler has already
implemented node-locality scheduling, which tries to schedule a
vertex on the same node with any of its upstream vertices. How-
ever, if an operator relies on input streams from different nodes, the
original scheduler will choose one of the nodes without considering
the network condition (bandwidth availability and latency) between
them. This simple policy works well in a centralized cluster environ-
ment, for which Flink has been designed. However, this scheduling
policy may result in a non-optimal operator placement in wide-area
settings. We have modified the default Flink’s scheduler by incor-
porating the WAN awareness discussed in §5.2.

Fault Tolerance. A query whose vertices are shared with other
queries may be terminated either intentionally (e.g., the analysis
is complete) or unintentionally (e.g., failure in one of the vertices
in the query plan). To handle these issues, the Shared Job Manager
keeps track of every vertex that is shared with other queries. When-
ever a query that shares a vertex is terminated, it removes the ref-
erence to the shared vertex. A vertex execution will only be termi-
nated if all queries that share the execution have been terminated.
This simple approach prevents cascading failures unless they hap-
pen directly on the stream operator logic.

Recovering from failures that involves shared vertices is chal-
lenging since a stream processing system needs to ensure the
exactly-once semantic processing guarantee. Sana uses a checkpoint-
and-replay fault recovery mechanism, where each query period-
ically checkpoints its processing state and thus the system can
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Table 1: Query Set

| Category | Query Examples | Num. Operators |
Tweet Statistics [rate, count] of [tweet, hashtag] on [location, language, topic] 10-18
Users Analysis [rate, count] of [tweet, hashtag, retweet] on [gender, age-group] per [location, language] 12-18
Top-k Analysis Top-k [popular, trending] [hashtag, topic, retweet] per [language, location] 10-15
Sentiment Analysis [aggregate, categorize] sentiment of each [hashtag, country, topic] 12-18
System Load [rate, count] of [bandwidth usage, request] per [node, region] 6-10

restore its execution from the last checkpointed state upon recover-
ing from failures [12]. We maintain an independent state for each
vertex that is shared by multiple queries. Thus, if a sharing query
fails, other queries can continue their executions and update their
states independently. When a failed query is restarted, it may not
be able to immediately share the vertex it was sharing earlier since
the shared vertex may have a different state. In this case, the query
needs to catch up its processing in order to re-share the vertex.
Query Reconfiguration. Since many streaming analytics queries
are long running, a query needs to gracefully adapt to runtime dy-
namics, such as changes in workload or network topology [27, 35].
In this case, the query optimizer and the scheduler may change
the execution plan and/or the deployment of the query respectively
whenever the environment changes significantly. We are currently
investigating different adaptability policies that can be used to dy-
namically adapt a query execution efficiently to handle runtime dy-
namics in a wide-area environment without sacrificing performance
nor the resulting output quality [36].

7 EVALUATION

Experimental Setup. We experimentally evaluate the effective-
ness of sana using a wide-area system deployment across 14 geo-
distributed EC2 data centers. The compute nodes were deployed
on 8 of the sites (Virginia, California, Canada, London, Frankfurt,
Sydney, Tokyo, and Singapore) and the input streams are generated
by external sources that were located on the other 6 sites (Ohio,
Oregon, Ireland, Seoul, Mumbai, and Sao Paulo). To prevent an in-
accurate evaluation caused by the data exchange overhead between
the external sources and the system, we follow the design proposed
by recent work which uses distributed in-memory data generators
instead of message brokers as the external sources [38].

We also measured the bandwidth availability and the latency be-
tween the sites prior to running the experiments as initial network
information to the Network Monitor. Our measurements show that
WAN bandwidth between EC2 data centers ranged from 20Mbps to
280Mbps, confirming a similar trend from prior work [30, 61].
Dataset and Queries. All experiments are based on real Twitter
data that was collected from Twitter Streaming APIs 2 in Decem-
ber 2015. It consists of approximately 4 million tweets per day.
Since the trace only represents a sample of real Twitter workload,
we scaled the playback rate to 6000~8000 tweets per second to re-
flect the actual tweet rate [4]. The tweets were distributed across the
input sources based on their geographic information.

We implemented 12 analytical queries based on actual stream-
ing analytic queries on Twitter streams [1, 3]. Table 1 shows the

Zhttps://developer.twitter.com/en/docs

summary of the queries. Each query consisted of various combi-
nation of operators including map, reduce, filter, join, union, and
window. Each query subscribed to 4-6 input sources and outputs
its final result locally at the sink operator. Some of the queries also
rely on static data sources. For example, in the case of trend anal-
ysis, the query discards all the irrelevant words by consulting an
external database. Another example includes a sentiment dictionary
used in sentiment analysis. In all of the experiments, each query is
submitted independently with a time gap of 10 seconds to mimic
the independent deployment of most streaming analytics queries in
a practical scenario. Hence, batching multiple queries together prior
to their deployment is impractical.

Evaluation metrics. We use the following metrics to evaluate and
compare the performance of the systems:

o Throughput: The average rate of distinct records/second pro-
cessed by the system for each query. In the face of bandwidth
constraints, the system may trigger a backpressure to reduce
the rate of an input stream.

o WAN Bandwidth Utilization: The average rate of records (in-
cluding duplicates) transmitted over the WAN. This is partic-
ularly critical in a wide-area environment that typically has
limited bandwidth.

o Latency: The latency is measured as an event time latency,
which is the difference between the time when a record is
generated at the external data source and when its processed
output is written to the final location by the sink operator.

7.1 Baseline System Comparison

We evaluated the benefit of WAN-aware multi-query optimization
by comparing the following systems:

e Default: The default Flink system that does not allow shar-
ing executions nor does it implement WAN-aware schedul-
ing, but implements node-locality scheduling.

e NET: A modified Flink system that adopts the WAN-aware
task scheduling algorithm as proposed in Clarinet [61] which
minimizes the execution time by distributing tasks across
sites that provide sufficient bandwidth. However, it does
not allow queries to share common executions. The batch-
schedule optimization in Clarinet is not applicable to this
context due to the independent deployment of the queries.

e M0O: A modified Flink system that allows queries to share
common executions. But, it does not implement WAN-aware
scheduling (default Flink scheduler).

e Sana: Our modified Flink system that incorporates the WAN
awareness in both optimizing multiple query executions and
scheduling stream operators.
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Figure 7 compares the overall performance of different systems
for running the 12 queries concurrently. We can see from Fig-
ure 7(a) that sana resulted in 44%, 16%, and 26% higher through-
put compared to Default, NET, and MQO respectively. Figure 7(b)
also shows that Sana was able to achieve these performance gains
while consuming significantly lower bandwidth compared to both
Default and NET (~33% less bandwidth utilization). This indicates
that Sana can efficiently utilize WAN bandwidth by preventing
transmitting duplicate records over the constrained network links.
Although MQO consumed less bandwidth with respect to Sana,
the bandwidth utilized by Sana is effectively used to transmit a
higher number of records per second. Furthermore, MQO resulted
in a higher overall latency compared to sana and NET, as shown
in Figure 7(c). This highlights the importance of WAN-aware op-
erator scheduling to effectively utilize limited network bandwidth
in a wide-area environment. The latency and throughput gains
achieved by MQO with respect to Default is because MQO utilized
the available bandwidth more efficiently by preventing transmitting
redundant data over the WAN.

We further break down the overall performance and WAN band-
width consumption rate of the queries to observe the gain for each
individual query relative to Default (see Figure 8). We make a
few observations. First, we can see from Figure 8(a) that NET was
able to improve the overall throughput of each query by up to 48%
and resulted in 40% lower latency compared to Default (see Fig-
ure 8(c)). However, we can also see from Figure 8(b) that the WAN-
aware scheduling in NET that tries to minimize query execution
latency does not reduce the overall WAN bandwidth consumption
even though it resulted in higher throughput. This indicates that NET

was able to process a higher rate of data streams by avoiding over-
loaded network links.

Secondly, we can see from Figure 8(b) that MQO is able to sig-
nificantly reduce the bandwidth utilization by up to 60% by sharing
common executions between queries. The only cases where the MOO
could not reduce the bandwidth utilization were for query 1 and 7
which do not exhibit any commonality with the other queries. How-
ever, we can see from Figure 8(a) that query 7 was able to process
more data streams with a similar increase. This indicates that the
bandwidth was efficiently used for transmitting a higher rate of data
streams. We can also see from Figure 8(b) and Figure 8(c) that al-
though NET consumed higher network bandwidth compared to the
MQO it was able to outperform MQO for most queries in terms of min-
imizing execution latency. This shows that minimizing WAN band-
width consumption in a wide-area environment does not necessarily
minimize the query execution latency.

Thirdly, we can see that Sana improves the overall performance
of each query execution while significantly consuming less network
bandwidth. Specifically, it resulted in up to of 87% higher through-
put and 68% lower latency compared to Default. Similar to the
MQO case, both query 1 and 7 consumed higher bandwidth, but the
extra bandwidth is used for transmitting more data. Furthermore,
Sana also achieves 21% higher throughput compared to NET by
eliminating redundant data transmission, as reflected by the reduc-
tion in bandwidth utilization for most queries. Lastly, even though
Sana consumed more bandwidth compared to MQO, it resulted in
a higher throughput for transmitting more data. These experiments
show Sana can utilize WAN bandwidth effectively and efficiently.
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Figure 10: Impact of higher degree of sharing over different input stream rate

7.2 Impact of Degree of Sharing Figure 9(b) shows that although No-Share consumed 41% and
In the next set of experiments, we explore the impact of degree of 65% h%gher pandwidth .Compared to Strict-sShare and. Sana
sharing in applying multi-query optimization. Specifically, the ben- respectively, it resulted in an overall lower throughput. This indi-
efit of allowing queries to partially share common input streams cates there was a large amount of redundant data being transmitted
even though their operators are different. All systems in the follow- over th? WAN. The strict-share also C(?nsumed slightly more
ing experiments apply WAN-aware operator scheduling. Thus, the bandwidth compared to sana but resulted in a lower throughput,
differences in the results are strictly based on the different execution thh highlights the importance of (partially) shgr Ing common
plans generated by the query optimizer. We compare Sana (which input streams even for different operators. From Figure 9(c), we
allows IN and IN-OP) against (1) No-Share, which does not con- can also see that the overhead of the router operators that were
sider execution sharing, and (2) Strict-Share whose query opti- added to route input streams from remote sites is negligible (~5%)
mizer only allows queries to share vertices if they share the same even when they are not utilized, as shown in the case with 1 query

execution. Thus, the router operator can reduce the redundancy in

inputs and operators (IN-OP only). In contrast to Strict-Share,
transmitting duplicate data over the WAN.

Sana allows queries to share partial input streams.

Varying number of concurrent queries. Figure 9 compares the Varying input stream rates. In the following experiments, we eval-
three query optimizers over varying number of concurrent queries. uate the impact of the degree of sharing over different rates of in-
In the case of a single query execution, all the query optimizers put streams with 4 concurrent queries. Figure 10(a) shows that as
generated the same execution plan. However, as the number of the input data rate increases, Sana resulted in a higher throughput
queries increased Sana was able to exploit a higher degree of shar- while consuming lower bandwidth compared to both No-Share
ing by allowing queries to partially share their executions. This and strict-share (Figure 10(b)). Furthermore, sana was able
resulted in a lower bandwidth consumption and approximately 78% to significantly reduce the overall execution latency compared to
and 37% higher throughput execution compared to No-Share and No-Share and Strict-Share, similar to the effect of increasing
Strict-Share respectively (see Figures 9(b) and 9(a)). We can the number of queries (Figure 10(c)). This shows that (1) applying
also see from Figure 9(c) that allowing partial input sharing can also WAN-aware multi-query optimization allows the system to scale as
reduce the overall execution latency due to the higher bandwidth workload increases, and (2) allowing queries to share common input

availability, which provides a higher flexibility to the job scheduler streams even if they have different operators will further improve
to deploy the queries more optimally. the performance and reduce the overall bandwidth consumption.
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Figure 11: WAN-aware query planning: trading-off bandwidth utilization for performance

7.3 WAN-Aware Execution Sharing: Bandwidth
Utilization vs. Performance Trade-Off

In the following experiments, we show the importance of network
awareness in applying multi-query optimization in a wide-area en-
vironment to maintain high performance executions while reducing
WAN bandwidth consumption (§5.1). We compared Sana against
(1) No-share which did not exploit any execution sharing and (2)
Max-Share which allowed queries to share common executions but
did not consider the WAN bandwidth availability in sharing exe-
cutions. In contrast to Sana, the latter will always try to exploit
any sharing opportunity that maximize the sharing regardless of
the WAN bandwidth availability, which is essentially the traditional
multi-query optimization for a local environment. The main prob-
lem with maximizing sharing without network awareness in a wide-
area environment is that it may result in WAN bandwidth contention
between queries, which can degrade the performance of either or
both the sharing and the shared executions.

Figure 11(a) and Figure 11(c) show that Sana resulted in 35%
higher throughput and 23% lower latency compared to Max-Share,
but consuming approximately 20% higher bandwidth. The perfor-
mance gain achieved by Sana compared to Max—-Share is because
Sana’s query optimizer prevented exploiting sharing opportunities
that led to bandwidth contention which would degrade the overall
performance. We can also see that as the number of queries in-
creases, the performance gap between Sana and Max-Share also
increases. This indicates that the WAN awareness in Sana resulted
in less number of contended links. Thus, there is a trade-off between
minimizing WAN bandwidth utilization and maximizing the overall
performance of multiple query executions.

7.4 Potential Bandwidth Saving

In the following experiments, we observe the potential bandwidth
saving from applying multi-query optimization in the case where
network bandwidth is not constrained. We deployed sana on a lo-
calized CloudLab? environment where the available bandwidth be-
tween nodes are higher than the rate of the data streams. In such a
condition where bandwidth is sufficient, reducing the data transfer
over the network is still desirable in a wide-area environment since
WAN bandwidth is expensive in terms of monetary cost [64].

3hllps://Www.cloudlab.us/
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Figure 12: Network bandwidth saving

Figure 12(a) and Figure 12(b) show the average bandwidth con-
sumption rate over different number of concurrent queries and shar-
ing ratio respectively. The sharing ratio is defined as the percent-
age of vertices that are shared between queries. The average shar-
ing ratio between the queries in Figure 12(a) was approximately
0.2 whereas the number of concurrent queries in Figure 12(b) was
set to 4. We can see from both figures that sana greatly mitigates
the bandwidth consumption as the number of queries and the shar-
ing ratio increase. Specifically, it resulted in up to 60% reduction
in bandwidth consumption rate compared to the sharing-agnostic
approach. Thus applying multi-query optimization even in an un-
constrained wide-area environment can still reduce the bandwidth
utilization and save monetary cost.

8 RELATED WORK

Geo-Distributed Data Analytics. Table 2 shows where Sana
stands in the world of geo-distributed data analytic systems. Irid-
ium [53] proposes a WAN-aware optimization that minimizes query
execution latency for batch-oriented workloads by proactively mi-
grating input data prior to the arrivals of queries based on history.
Geode [62] also relies on recurring queries but focuses on min-
imizing WAN bandwidth consumption by sending only the diff
of input data over the wide-area network for subsequent queries.
In contrast to both approaches, Sana focuses on stream-oriented
workloads where most queries rely on continuous data streams that
are continuously being generated in real time. Furthermore, sana
does not make any assumptions on the query arrivals. None of these
techniques support multi-query optimization.
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Table 2: Geo-distributed Data Analytics Systems

Systems | Workload Type | WAN-Aware Optimization | Multi-Query Optimization
Iridium [53] Recurring Data and task placements prior to query arrivals N/A
Geode [62] Recurring diff or incremental data transfer over the WAN N/A
Clarinet [61] Batch WAN-aware query plan selection Multiple job scheduling
Tetrium [30] Batch Heterogeneous network and compute resource scheduling Multiple job scheduling
JetStream [54] Stream Data aggregation/degradation using data cube abstraction N/A
Sana Stream WAN-aware operator sharing and scheduling Execution sharing (data transfer and processing)

Both Clarinet [61] and Tetrium [30] look at optimizing batch-
oriented queries in a wide-area environment. Specifically, Clarinet
incorporates WAN awareness into the query optimizer to choose
a query execution plan based on inter-site bandwidth availability,
whereas Tetrium additionally considers the heterogeneity of com-
putational resources across sites in scheduling jobs. In addition to
incorporating WAN-aware optimization for single-query deploy-
ment, both of them consider optimizing multiple query executions
by batch-scheduling multiple queries (jobs) rather than scheduling
each query independently. This approach, however, is not practi-
cal for stream-oriented workloads. Furthermore, they do not allow
queries to share common executions and hence their techniques
would still result in a redundant data transmission and processing.
In contrast, Sana can eliminate redundant executions and optimize
multiple query executions in an incremental manner, which is criti-
cal for long-running, continuous queries.

Recent attempts also consider optimizing stream-oritented work-
loads in a wide-area environment. Photon [7] and Ubiq [10] address
the fault tolerant aspect of geo-distributed data analytics over con-
tinuous data streams in production clusters. JetStream [54] handles
WAN bandwidth limitation by making a trade-off between quality
and performance, which may not be applicable for queries that rely
on exact computations. Heintz et al. [26] propose an online algo-
rithm that trades off timeliness and acccuracy in the context of win-
dowed grouped aggregation. Pietzuch et al. [52] examine the prob-
lem of operator placement on the open Internet environment. Al-
though they related to our work, they mainly focus on optimizing
each individual query independently.

Others have also looked at optimizing different types of work-

load in a wide-area environment. Gaia [29] proposes a system that
optimizes machine learning workloads in a wide-area environment
by identifying and eliminating any insignificant updates over the
WAN. Monarch [34] focuses on geo-distributed graph analytics
workloads by optimizing existing processing model of a graph
processing systems in a wide-area environment.
Multi-Query Optimization. The problem of multi-query optimiza-
tion has been extensively studied in classic RDBMS [21, 55] and
have been adopted for OLAP workloads [9, 11, 22, 24, 67] and later,
data analytics [43, 49, 63]. sana adopts the data-centric philoso-
phy with pipelining technique [24] to share common executions be-
tween streaming queries. Although most of them are related to our
work, they focus on a local environment whereas Sana focuses on a
wide-area environment with different bottleneck. We show that ap-
plying traditional multi-query optimization designed for a local en-
vironment in wide-area settings without WAN awareness may lead
to performance degradation.

Other research has also examined the problem of multi-query op-

timization over continuous data streams in streaming databases [20,
28, 56]. Seshadri et al. [56] propose an algorithm to find an opti-
mal execution plan with reduced search space. Rule-based [28] and
sketch-based [20] optimization have also been proposed for multi-
ple queries over data streams, and NiagaraCQ [16] addresses the
scalability issue in applying multi-query optimization for Internet
Databases. Although they are related to our work, they are typi-
cally constrained by memory resources since they focus on a single-
server deployment.
Incremental Processing and Caching Systems. It is worth men-
tioning that our work shares similarity with other work in incremen-
tal processing [46, 51] and caching systems [14, 23, 48, 65] since
they also address the problem of redundant computation. However,
they are orthogonal to our work. The incremental processing tech-
nique can be applied by each individual query by updating its state
incrementally instead of computing from the beginning [37]. How-
ever, this is application-specific. Caching intermediate hot data also
prevents performing redundant data processing, but it may not be
applicable for queries that rely on real-time data streams. Thus,
these techniques can be used in conjunction with our techniques.

9 CONCLUSION

This paper introduces sana a system that optimizes multiple query
executions in the context of wide-area streaming analytics. We ob-
served that many streaming analytics queries often rely on common
input streams from popular data sources and may exhibit common
data processing. Thus, there is an opportunity of applying multi-
query optimization in this context to mitigate the redundancy in
transmitting duplicate data over the wide-area network (WAN) that
has limited bandwidth. In this paper, we study different types of
sharing opportunities and propose a multi-query optimization that
allows multiple queries to incrementally share common executions
in an online manner. We also address the importance of WAN aware-
ness in applying multi-query optimization in a wide-area environ-
ment. We show that a WAN-agnostic multi-query optimization may
lead to performance degradation. The evaluation using a wide-area
system deployment across multiple geo-distributed EC2 data cen-
ters shows that sana resulted in 21% higher throughput while sav-
ing WAN bandwidth utilization by 33% compared to a WAN-aware,
sharing-agnostic system.
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