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a b s t r a c t

We consider numerical approximations for a phase-field dendritic crystal growth
model, which is a highly nonlinear system that couples the anisotropic Allen–
Cahn type equation and the heat equation. By combining the stabilized-Invariant
Energy Quadratization method with a novel decoupling technique, the scheme
requires solving only a sequence of linear elliptic equations at each time step,
making it the first, to the best of the author’s knowledge, totally decoupled,
linear, unconditionally energy stable scheme for the model. We further prove the
unconditional energy stability rigorously and present various numerical simulations
to demonstrate the stability and accuracy.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider numerical approximations for a phase-field dendritic crystal growth model which
was proposed in [1], where the system is composed of two second-order, coupled nonlinear equations: the
Allen–Cahn type equation with a gradient-dependent anisotropic coefficient, and the heat transfer equation.
The phase-field method had been widely used in the modeling and numerical simulations for investigating the
process of dendritic crystal growth since the pioneering modeling work of Halperin, Kobayashi, and Collins
et al. in [2–4], and some subsequent modeling/simulation advances in [5–10].

While it might be easy to design energy stable schemes to solving the coupled nonlinear phase-field
systems at each time step, it is extremely difficult to construct decoupled, and preferably linear, elliptic
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equations while preserving the energy stability. For the particular dendritic model proposed in [1], the main
numerical challenges include: (i) the stiffness of the phase equation associated with the interfacial width; (ii)
the anisotropic coefficient which induces large spatial oscillations that may cause the computations easily
blow up or loss of accuracy; and (iii) the coupling between the temperature and phase function through
the nonlinear latent heat transfer terms. We recall that the difficulty (i) had been studied extensively and
some methods have been proved to be effective, cf. [11–18]. However, for the difficulty (ii) and (iii), most
of the available schemes are either coupled nonlinear which need some efficient iterative solvers, and/or do
not preserve energy stability at all, see [19–22]. Hence, thus far, it remains unclear on how to construct a
decoupled scheme while keeping the other two desirable features: unconditionally energy stable and linear.

The aim of this paper is to construct an efficient scheme with these features mentioned above for solving
the coupled nonlinear phase-field dendritic model. To this end, we develop a novel decoupling technique,
where an extra stabilizing term is added to the latent heat transfer term, and combine it with the stabilized-
IEQ approach developed in [23–25], to construct a totally decoupled time discretization scheme, which
leads to, at each time step, an elliptic system for the phase function, and a linear elliptic equation for the
temperature. We rigorously prove that the scheme is unconditionally energy stable. To the best of author’s
knowledge, the scheme is the first totally decoupled, linear, unconditionally energy stable scheme for the
phase-field dendritic crystal growth model.

The remaining of the paper is organized as follows. In Section 2, we give a brief introduction of the
governing PDE system for the phase-field anisotropic dendritic crystal growth model. In Section 3, we
develop a numerical scheme for solving the model, and rigorously prove its unconditional energy stability.
Various numerical experiments are given in Section 4 to demonstrate the accuracy and efficiency of the
proposed numerical scheme. Finally, some concluding remarks are given in Section 5.

2. Model equations

We give a brief description of the anisotropic phase-field dendritic crystal growth model proposed in [1].
Let Ω be a smooth, open, bounded, connected domain in Rd with d = 2, 3. A scalar phase-field function
ϕ(x, t) is introduced to label the liquid and solid phases, where ϕ = 1 for the solid and ϕ = −1 for the fluid.
These two regions are connected by a smooth transitional layer with the thickness ϵ. The total effective free
energy is postulated as follows,

E(ϕ, T ) =
∫
Ω

(1
2 |κ(∇ϕ)∇ϕ|2 + λ

2ϵK T 2 + 1
4ϵ2F (ϕ)

)
dx, (2.1)

in which, T (x, t) is the temperature, ϵ, λ and K are all positive parameters, F (ϕ) = (ϕ2−1)2 is the Ginzburg–
Landau double well potential, κ(∇ϕ) is a function describing the anisotropic property that depends on the
direction of the outer normal vector n which is the interface normal defined as n = − ∇ϕ

|∇ϕ| . For the 2D
system, the anisotropy coefficient κ(∇ϕ) is usually given by

κ(∇ϕ) = 1 + ϵ4 cos(mθ), (2.2)

where m is the number of folds of anisotropy, ϵ4 is the parameter for the anisotropy strength, and θ =
arctan( ϕy

ϕx
). By adopting the L2-gradient flow relaxation dynamics for the dendritic crystal growth, one

obtains the governing dynamical equations via the variational approach, which reads as follows:

τ(ϕ)ϕt = ∇ · (κ2(∇ϕ)∇ϕ+ κ(∇ϕ)|∇ϕ|2H(ϕ)) − f(ϕ)
ϵ2

− λ

ϵ
p′(ϕ)T, (2.3)

Tt = D∆T +Kp′(ϕ)ϕt, (2.4)
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where, τ(ϕ) > 0 is the mobility parameter that is chosen either as a constant [1,26] or a function of ϕ [1], D
is the diffusion rate of the temperature, H(ϕ) in 2D reads as

H(ϕ) = δκ(∇ϕ)
δϕ

= 4ε4
4

|∇ϕ|6
(
ϕx(ϕ2

xϕ
2
y − ϕ4

y), ϕy(ϕ2
xϕ

2
y − ϕ4

x)
)
, (2.5)

the function p(ϕ) accounting for the generation of latent heat is a phenomenological functional taking the
form preserving the minima of ϕ at ±1 independently of the local value of T . The common choice for
p(ϕ) is p(ϕ) = 1

5ϕ
5 − 2

3ϕ
3 + ϕ and p′(ϕ) = (1 − ϕ2)2 that implies the heat only transfers through the

interface [1,3]. Without the loss of generality, we adopt the periodic boundary condition in this study to
remove the complexities from the boundary integrals.

3. Numerical schemes

The aim of this section is to construct a totally decoupled, energy stable scheme to solving the system
(2.3)–(2.4). To realize the linear and unconditionally energy stable features, we handle the nonlinear
anisotropic gradient potential and the double-well potential by adopting the stabilized-IEQ approach
developed in [23]. To realize the decoupling feature, we develop a novel decoupling technique by introducing
an intermediate temperature that combines the temperature at previous time step and an extra semi-
explicit stabilizing term. Finally, a decoupled and linear scheme is obtained and it can be proved to be
unconditionally energy stable theoretically and numerically.

We define an auxiliary variable U(x, t) that reads as follows:

U =
√

1
2 |κ(∇ϕ)∇ϕ|2 + 1

4ϵ2F (ϕ) +B, (3.1)

where B is a constant that can ensure the radicand positive. By taking the time derivative of the new variable
U , we then reformulate the system (2.3)–(2.4) as the following equivalent PDE system,

τ(ϕ)ϕt = −Z(ϕ)U − λ

ϵ
p′(ϕ)T, (3.2)

Ut = 1
2Z(ϕ)ϕt, (3.3)

Tt = D∆T +Kp′(ϕ)ϕt, (3.4)

where

Z(ϕ) =
−∇ · (κ2(∇ϕ)∇ϕ+ κ(∇ϕ)|∇ϕ|2H(ϕ)) + 1

ϵ2 f(ϕ)√
1
2 |κ(∇ϕ)∇ϕ|2 + 1

4ϵ2F (ϕ) +B
. (3.5)

The initial conditions are given by⎧⎨⎩
ϕ(t = 0) = ϕ0, T (t = 0) = T0,

U(t = 0) =
√

1
2 |κ(∇ϕ0)∇ϕ0|2 + 1

4ϵ2F (ϕ0) +B.
(3.6)

The boundary conditions are still periodic that we alluded before.
Next, we will develop an energy stable time marching algorithm for solving the transformed system (3.2)–

(3.4). Let δt > 0 be a time step size and set tn = nδt for 0 ≤ n ≤ N with tmax = Nδt. ψn denotes the
numerical approximation to ψ(·, t)|t=tn for any function ψ. We construct a first-order time marching scheme
for solving the system (3.2)–(3.4) based on the first-order backward formula, shown as follows.

Assuming ϕn, Un, Tn are known, we update ϕn+1, Un+1, Tn+1 by solving the following scheme.
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Step 1:

τ(ϕn)ϕ
n+1 − ϕn

δt
+ S1

ϵ2
(ϕn+1 − ϕn) − S2∆(ϕn+1 − ϕn) = −ZnUn+1 − λ

ϵ
p′(ϕn)Tn

⋆ , (3.7)

Tn
⋆ − Tn

δt
= Kp′(ϕn)ϕ

n+1 − ϕn

δt
, (3.8)

Un+1 − Un = 1
2Z

n(ϕn+1 − ϕn), (3.9)

where Zn = Z(ϕn) and Si, i = 1, 2 are two positive stabilizing parameters.
Step 2:

Tn+1 − Tn
⋆

δt
−D∆Tn+1 = 0. (3.10)

Remark 3.1. The scheme (3.7)–(3.10) is a totally decoupled, linear scheme by using the intermediate
temperature Tn

⋆ and the implicit–explicit discretization for the nonlinear terms. (3.8) implies that Tn
⋆ is

a first-order approximation to Tn. Moreover, from (3.8), the heat transfer term is already included in the
intermediate temperature Tn

⋆ , hence this term vanishes in the heat equation (3.10) as a result.

It is remarkable that the intermediate variable Tn+1
⋆ and the new variable Un+1 will not bring up any extra

computational costs. Indeed, (3.7)–(3.9), and (3.10) are respectively (decoupled) linear elliptic equations for
ϕn+1 and Tn+1. This is because we can rewrite (3.10) as follows

Un+1 = 1
2Z

nϕn+1 +A1, (3.11)

where A1 = Un − 1
2Z

nϕn. Then, by substituting (3.11) and (3.8) to (3.7), the system (3.7)–(3.9) can be
rewritten as

L (ϕn+1) = f, (3.12)

where ⎧⎪⎨⎪⎩
L (ψ) = 1

δt
τ(ϕn)ψ + S1

ϵ2
ψ − S2∆ψ + 1

2Z
nZnψ + λK

ϵ
p′(ϕn)p′(ϕn)ψ,

f = τ(ϕn)ϕ
n

δt
+ S1

ϵ2
− S2∆ϕ

n − ZnA1 − λ

ϵ
p′(ϕn)(Tn −Kp′(ϕn)ϕn).

(3.13)

In practice, we first solve the linear system (3.12) directly to obtain ϕn+1, and then update the variables
Tn+1

⋆ and Un+1 from (3.8) and (3.11). Therefore, at each time step, one only needs to solve a sequence of
decoupled elliptic equations which can be solved very efficiently. We can further prove the linear system is
well-posed from the Lax–Milgram theorem but omit the details due to the page limit.

Now we prove the scheme (3.7)–(3.10) is unconditionally energy stable as follows.

Theorem 3.1. The scheme (3.7)–(3.10) is unconditionally energy stable which satisfies the following discrete
energy dissipation law,

1
δt

(En+1 − En) ≤ −∥
√
τ(ϕn)ϕ

n+1 − ϕn

δt
∥2 − λD

ϵK
∥∇Tn+1∥2 ≤ 0, (3.14)

where En+1 =
∫
Ω

(|Un+1|2 + λ
2ϵK |Tn+1|2 −B)dx.

Proof. By taking the L2 inner product of (3.7) with ϕn+1 − ϕn, and using the identity

2(a− b)a = a2 − b2 + (a− b)2,
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we obtain
δt

√
τ(ϕn)ϕ

n+1 − ϕn

δt

2
+S1

ϵ2
∥ϕn+1 − ϕn∥2 + S2∥∇(ϕn+1 − ϕn)∥2

= − (ZnUn+1, ϕn+1 − ϕn) − λ

ϵ
(p′(ϕn)Tn

⋆ , ϕ
n+1 − ϕn).

(3.15)

By taking the L2 inner product of (3.8) with λ
ϵK δtT

n
⋆ , we obtain

λ

2ϵK (∥Tn
⋆ ∥2 − ∥Tn∥2 + ∥Tn

⋆ − Tn∥2) = λ

ϵ
(p′(ϕn)(ϕn+1 − ϕn), Tn

⋆ ). (3.16)

By taking the L2 inner product of (3.9) with 2Un+1, we obtain

∥Un+1∥2 − ∥Un∥2 + ∥Un+1 − Un∥2 = (Zn(ϕn+1 − ϕn), Un+1). (3.17)

By taking the L2 inner product of (3.10) with λ
ϵK δtT

n+1, we obtain

λ

2ϵK (∥Tn+1∥2 − ∥Tn
⋆ ∥2 + ∥Tn+1 − Tn−1

⋆ ∥2) = λD

ϵK
δt∥∇Tn+1∥2. (3.18)

By combining (3.15), (3.16), (3.17), and (3.18), we obtain

∥Un+1∥2 − ∥Un∥2 + λ

2ϵK (∥Tn+1∥2 − ∥Tn∥2)

+ λ

2ϵK (∥Tn
⋆ − Tn∥2 + ∥Tn+1 − Tn

⋆ ∥2) + ∥Un+1 − Un∥2

+ S1

ϵ2
∥ϕn+1 − ϕn∥2 + S2∥∇(ϕn+1 − ϕn)∥2 = −δt

√
τ(ϕn)ϕ

n+1 − ϕn

δt

2
− λD

ϵK
δt∥∇Tn+1∥2.

Finally, we obtain the desired result after dropping some positive terms. □

Remark 3.2. Note the energy laws is based on the modified energy in terms of the new defined variable
U . For the continuous case, the energy law for the transformed system (3.2)–(3.4) is exactly the same as the
energy law for the original system (2.3)–(2.4). For the discrete case, the modified energy is an approximation
to the original energy with the first-order accuracy.

4. Numerical simulations

In this section, we present various numerical examples to demonstrate accuracy, energy stability, and
efficiency of the proposed scheme.

4.1. Accuracy test

We first implement a numerical example with fourfold anisotropy (m = 4) in 2D space Ω = [0, 2π]×[0, 2π]
to test the convergence rates of the proposed scheme (3.7)–(3.10), denoted by S-IEQ. To show the accuracy
comparisons, we also compute the convergence rates by using the non-stabilized version, i.e., scheme
(3.7)–(3.10) but with S1 = S2 = 0, denoted by IEQ.

We assume the following two functions

ϕ(x, y, t) = sin(x) cos(y) cos(t), T (x, y, t) = cos(x) sin(y) cos(t) (4.1)

to be the exact solutions, and impose some suitable force fields such that the given solutions can satisfy the
system (2.3)–(2.4). The model parameters are set as follows,

τ(ϕ) = τ0, ϵ = 0.06, ϵ4 = 0.05, D = λ = K = 1, S1 = S2 = 4, B = 1e5.



J. Zhang, C. Chen and X. Yang / Applied Mathematics Letters 95 (2019) 122–129 127

Fig. 4.1. The L2 numerical errors for the phase variable ϕ and temperature T at t = 0.2 with the mobility parameter (a) τ0 = 1
ϵ2

and (b) τ0 = 1
ϵ

and various time steps. (c) Time evolutions of the logarithm of the total energy (2.1) computed by six different time
step sizes until t = 10.

We discretize the space by using Nx = Ny = 129 Fourier modes for x and y directions so that the errors
from the spatial discretization are negligible compared to the temporal discretization errors.

In Fig. 4.1(a), we set τ0 = 1
ϵ2 and plot the errors computed by using the two schemes, S-IEQ and IEQ.

We observe these two schemes not only present the good convergence rate that almost perfectly matches
the first-order accuracy for the time step but also good approximations to the exact solution, regardless of
whether they are stabilized or not. In Fig. 4.1(b), we set τ0 = 1

ϵ . We observe that the non-stabilized scheme
IEQ totally loses the accuracy for all tested time steps. On the contrary, the scheme S-IEQ is stable for all
tested time steps and perform good approximations and the first-order accuracy all along. Therefore, we
conclude that (i) if the mobility parameter τ0 is large, both schemes can solve the model well; and (ii) if the
mobility parameter τ0 is small, the stabilized scheme S-IEQ overwhelmingly defeats its non-stabilized version
IEQ from the stability and/or accuracy. In Fig. 4.1(c), we plot the evolution curves of the total energy (2.1)
computed by six different time step sizes until t = 10. For all tested time steps, the obtained energy curves
show the monotonic decays that confirm the developed algorithm is unconditionally stable.

4.2. 2D dendrite crystal growth with sixfold anisotropy

In this subsection, we investigate the dynamics on how the anisotropic coefficient affects the shape of the
dendritic crystal. We initially deposit a single small crystal nucleus in the center of the computed domain
and observe how it grows heterogeneously. This is a benchmark simulation that had been extensively studied
in [1,3,9,27].

The initial condition reads as⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(x, y, t = 0) = tanh(

r0 −
√

(x− x0)2 + (y − y0)2

ϵ0
);

T (x, y, t = 0) =
{

0, ϕ > 0;
T0, otherwise,

(4.2)

where (x0, y0, r0, ϵ0, T0) = (π, π, 0.02, 0.072,−0.55), and the model parameters read as follows,

τ = 4.4e3, ϵ = 1.12e−2, ϵ4 = 0.05, D = 2.25e−4,K = 0.5, λ = 380, S1 = S2 = 4, B = 1e5. (4.3)

We discretize the space using Nx = Ny = 513 Fourier modes.
We investigate the sixfold (m = 6) anisotropic case by varying the parameter K and fixing all other

parameters from (4.3). We summarize the contour of the interface {ϕ = 0} every 20 time units from the initial
moment in Fig. 4.2 for three cases of K = 0.65, K = 0.7 and K = 0.75. We observe that circular nucleus
grows into various snow-flake patterns but always with six sub-branches. These simulations are qualitatively
consistent with [3] where a slightly different model was used.
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Fig. 4.2. The summary of the contour of the interface {ϕ = 0} every 20 time units from the initial moment for the sixfold anisotropy
by using the four different parameters K, where, (a) K = 0.65, (b) K = 0.7, and (c) K = 0.75.

5. Concluding remarks

In this paper, we have developed a totally decoupled, linear, and unconditionally energy stable scheme
for solving the anisotropic dendritic phase-field model. Compared to the existing schemes for the anisotropic
model, the proposed decoupled schemes (i) conquer the inconvenience from nonlinearities by linearizing the
nonlinear terms in a new way, (ii) possess advantages of easy implementations and lower computational cost,
(iii) are provably and/or numerically unconditionally energy stable, and thus (iv) allow for large time steps
in computations. The technique developed in this paper can be used to construct efficient numerical schemes
in other situations, for example, the dendritic solidification phase-field model with melt convection [28], or
the binary alloy solidification model [29].
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