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In this paper, we consider numerical approximations for a dendritic solidification phase 
field model with melt convection in the liquid phase, which is a highly nonlinear system 
that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted 
Navier-Stokes equations together. We first reformulate the model into a form which is 
suitable for numerical approximations and establish the energy dissipative law. Then, 
we develop a linear, decoupled, and unconditionally energy stable numerical scheme by 
combining the modified projection scheme for the Navier-Stokes equations, the Invariant 
Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle 
explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various 
numerical simulations are presented.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider numerical approximations for a dendritic phase field model to simulate the microstructure 
evolution in solidification processes that involves melt convections in the liquid phase. The pattern of dendritic growth 
that develops with a typical multi-branching tree-like form, is often observed in the solidification process of metals or 
crystallization in supersaturated solutions, see [15,22,25]. Started from the pioneering modeling work of Halperin, Kobayashi, 
and Collins et al. in [6,20,32], the phase field method or called diffusive interface approach, that is a powerful numerical 
tool for simulating free interfacial motions, had been widely used in modeling and numerical approaches for the study of 
the dendritic solidification process, cf. [2,3,5,13,27,29–31,36,40,50,51,64].

In the phase field approach, the solidification front is treated as a moving interface, that is automatically given by the 
level set of an order parameter (phase field variable) which is adopted to distinguish the physical state (liquid or solid) of 
the system at each point using distinct values. The free-energy functional of the system incorporates a specific form of the 
conformational entropy with anisotropic spatial gradients that is introduced to study the dynamics of atomic-scale dendritic 
crystal growth. If the flow convection in the liquid phase is neglected, the solidification process is then controlled by the 
interplay of thermal, solutal, capillary, and kinetic length or time scales [49]. For this case, the governing model can be 
reduced to the nonlinear coupling of two equations, where one is the anisotropic Allen-Cahn type diffusive equation for the 
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phase field variable, and the other is the second order equation for the latent heat since the crystallization process does 
involve heat-transfer along the interface. Such a partial model with the absence of flow convection had been widely studied 
in numerous works, theoretically and numerically, see [29–31,36,40,50,64] and the references therein.

Comparing to the partial model ignoring the flow field, when the melt convection of the liquid phase is considered, the 
new length and time scales will be added to the problem that results in morphologies which are potentially much different 
from those generated by purely diffusive heat and solute transport. Moreover, when the flow convection influences the so-
lidification pattern, the evolving microstructure can also bring up unexpected and complicated flow phenomena reciprocally, 
cf. [1,5,7,8,53]. The full solidification phase field model with flow convections on the microscopic scale was first proposed by 
Beckerman et al. in [2,48], and had been extensively studied numerically in many subsequent works, see [27,28,33,39,65]. 
Formally, Beckerman’s solidification phase field model (B-SPF) with flow convections consists of three nonlinearly coupled 
equations: the Allen-Cahn type equation with a gradient-dependent anisotropic coefficient for the phase field variable, the 
heat transfer equation, and the Navier-Stokes equation for the flow field. Meanwhile, as a matter of fact, the solidification 
system is a binary mixture of solid and liquid, thus the convection, the fluid velocity, as well as the continuity equation are 
all needed to be confined on the liquid phase, that is fulfilled by using an artful weighted factor in the B-SPF model.

It is remarkable that, despite a great deal of numerical works to simulate the solidification process, to the best of the 
author’s knowledge, even though the model had been given sufficient attentions for around two decades, no numerical 
schemes for solving the B-SPF model can be announced to possess the following three properties, namely, linear, decoupled, 
and unconditionally energy stable. Here the term “unconditionally” means the scheme is energy stable at the discrete level 
irrespectively of the coarseness of the temporal or spatial discretizations. Actually, even for the partial model without flow, 
there still exist several challenging issues for algorithm developments, including the proper discretization for the anisotropic 
coefficient, the stiffness issue induced by the nonlinear double-well potential, and the nonlinear coupling between the phase 
variable and latent heat. Some attempts had been made in this direction, however, most of the available schemes are either 
nonlinear which need some efficient iterative solvers, and/or do not preserve energy stability at all, cf. [3,28,34,35,38,41,
42]. In [64], for the partial model, the authors applied the Invariant Energy Quadratization (IEQ) approach to develop a 
second-order, energy stable scheme by enforcing the free-energy density as an invariant, quadratic functional in terms of 
new, auxiliary variables and treating the nonlinear terms semi-explicitly. However, the energy stability preserves only when 
the temperature is a constant. Meanwhile, even though the scheme follows the discrete energy law formally, it is quite 
challenging to show the discrete energy obtained in [64] is bounded from below rigorously.

Compared with the partial model without flow, in addition to those numerical challenges mentioned above, the B-SPF 
flow coupled model is conceivably more complicated for algorithms design since we have to develop efficient temporal dis-
cretizations for the nonlinear coupling terms among the velocity field, temperature, pressure, and the weight factor which 
appears almost everywhere in the momentum equation and the continuity equation. Thus the main objective of this paper 
is to develop a time marching scheme that is not only easy-to-implement (linear and decoupled) but also uncondition-
ally energy stable for solving the B-SPF flow coupled model. We first reformulate the model into a form which is suitable 
for numerical approximations and establish its energy law. Then, we develop the scheme by combining several effective 
approaches, including, (i) the IEQ approach with linear stabilizers (Stabilized-IEQ method) to discretize the anisotropic po-
tential; (ii) the modified projection method to decouple the pressure from the velocity; and (iii) some subtle implicit-explicit
treatments to discretize the weight factor and nonlinear convections. We rigorously prove that the developed scheme is 
unconditionally energy stable. To the best of the author’s knowledge, for the flow coupled anisotropic solidification system, 
this is the first scheme with provable unconditional energy stabilities.

The rest of the paper is organized as follows. In Section 2, we describe the B-SPF flow coupled model and establish its 
energy law for the slightly modified version. In Section 3, we construct a linear, decoupled, energy stable numerical scheme 
for solving the coupled nonlinear system. In Section 4, we present a number of numerical results to illustrate the efficiency 
of the proposed scheme. Some concluding remarks are given in Section 5.

2. The model equation and its energy law

Now we give a brief description for the anisotropic phase field solidification model with melt convection in the liquid 
phase. Let � be a smooth, open, bounded, connected domain in Rd with d = 2, 3, we introduce a scalar function φ(x, t)
which is an order parameter to label the liquid and solid phase, where φ = 1 for the solid and φ = −1 for the liquid. These 
two values are connected by a smooth transitional layer with the thickness ε . We consider the total free energy as follows,

E(φ, T ) =
∫
�

(1

2
|κ(∇φ)∇φ|2 + F (φ)

4ε2
+ λ

2εK
T 2)dx, (2.1)

in which, ε is the interfacial width parameter, λ is the linear kinetic coefficient, and K is the latent heat fusion parameter 
that controls the speed of heat transfer along the interface, T (x, t) is the scaled temperature, F (φ) = (φ2 − 1)2 is the double 
well potential, κ(∇φ) is a function describing the anisotropic property that depends on the direction of the outer normal 
vector n which is the interface normal defined as n = − ∇φ

|∇φ| . For the 2D system, the anisotropy coefficient κ(∇φ) is usually 
given by
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κ(∇φ) = 1 + ε4cos(m�), (2.2)

where m is the number of folds of anisotropy, ε4 is the parameter for the anisotropy strength, and � = arctan(
φy
φx

), when 
m = 4 (i.e., fourfold anisotropy), for instance, κ(∇φ) can be easily reformulated in terms of the phase field variable φ, 
namely, for 2D,

κ(∇φ) = (1 − 3ε4)
(

1 + 4ε4

1 − 3ε4

φ4
x + φ4

y

|∇φ|4
)
; (2.3)

and for 3D,

κ(∇φ) = (1 − 3ε4)
(

1 + 4ε4

1 − 3ε4

φ4
x + φ4

y + φ4
z

|∇φ|4
)
. (2.4)

By adopting the Allen-Cahn type (L2-gradient flow) relaxation dynamics for the dendritic crystal growth, one obtains the 
governing dynamical equations via the variational approach, which reads as follows:

τ (φ)φt = − δE

δφ
− λ

ε
r′(φ)T ,

= ∇·(κ2(∇φ)∇φ + κ(∇φ)|∇φ|2 H(φ)) − f (φ)

ε2
− λ

ε
r′(φ)T ,

(2.5)

where f (φ) = F ′(φ), and H(φ) is the variational derivative of κ(∇φ). In 2D, H(φ) reads as

H(φ) = δκ(∇φ)

δφ
= 4ε4

4

|∇φ|6
(
φx(φ

2
x φ2

y − φ4
y), φy(φ

2
x φ2

y − φ4
x )

)
, (2.6)

whereas in 3D, H(φ) reads as

H(φ) = δκ(∇φ)

δφ
=4ε4

4

|∇φ|6
(
φx(φ

2
x φ2

y + φ2
x φ2

z − φ4
y − φ4

z ),

φy(φ
2
yφ

2
z + φ2

x φ2
y − φ4

x − φ4
z ), φz(φ

2
x φ2

z + φ2
yφ

2
z − φ4

x − φ4
y)

)
.

(2.7)

In (2.5), τ (φ) > 0 is the mobility constant that is chosen either as a constant [31,51], or as a function of φ [31], δE
δφ

is the 
variational derivative of the total energy with respect to φ. The function r(φ), that accounts for the generation of latent 
heat which is only exchanged on the interface, is a phenomenological functional taking the form preserving the minima 
of φ at ±1 independently of the local value of T . For r(φ), there are two common choices: r(φ) = 1

5 φ5 − 2
3 φ3 + φ with 

r′(φ) = (1 − φ2)2 (cf. [31,32]); or r(φ) = φ − 1
3 φ3 with r′(φ) = 1 − φ2 (cf. [2,50]).

The solidification system is composed by the liquid and solid phase, thus the fluid momentum equation vanishes in 
the solid phase. The confinement of the fluid velocity can be realized by a weight factor 1−φ

2 , that represents the volume 
fraction of the liquid region, and will vanish in the solid region (φ = 1). By using this weight factor, the Navier-stokes 
equations turn to a weighted form that reads as follows,

1 − φ

2

(
1 − φ

2
u
)

t
+ 1 − φ

2
u · ∇u − ν∇·(1 − φ

2
∇u) + 1 − φ

2
∇p = −νhq(φ)u, (2.8)

∇·(1 − φ

2
u) = 0, (2.9)

where u is the averaged fluid velocity with u = (u, v) for 2D case, p is the pressure, ν is the kinematic viscosity, h is the 
scaled characteristic interface width, and q(φ) = (1 − φ2)(1 + φ). The last term on the right hand side of (2.8) accounts for 
the dissipative viscous stress in the liquid due to interactions with the solid in the diffuse interface region. It serves as a 
distributed momentum sink in the diffuse interface region that forces the liquid velocity to zero as φ → 1 and vanishes in 
the bulk liquid φ = −1, cf. [2,48].

The energy equation in terms of the scaled temperature T reads as follows,

Tt + (
1 − φ

2
u) · ∇T = D�T + Kr′(φ)φt, (2.10)

where D is the diffusion rate of the temperature.
Without the loss of generality, we adopt the following easy boundary conditions to remove all complexities associated 

with the boundary integrals in this study, i.e.,

∂nφ|∂� = ∂nT |∂� = 0, u|∂� = 0, (2.11)

where n is the outward normal of the computational domain �, or we can assume all variables are periodic.
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The model equations (2.5)-(2.8)-(2.9)-(2.10)-(2.11) follows the dissipative energy law. By taking the L2 inner product of 
(2.5) with φt , of (2.8) with u and using (2.9), of (2.10) with λ

εK T , using the integration by parts, and combining the obtained 
equalities, we obtain the following energy law

d

dt
Etot(φ, T ,u) = −‖√τ (φ)φt‖2 − λD

εK
‖∇T ‖2 − ν(

1 − φ

2
∇u,∇u) − νh(q(φ)u,u), (2.12)

where

Etot(φ, T ,u) =
∫
�

(1

2
|κ(∇φ)∇φ|2 + F (φ)

4ε2
+ λ

2εK
T 2 + 1

2

(1 − φ

2
u
)2)

dx. (2.13)

Remark 2.1. It is remarkable that, the momentum equation that was given in Beckerman’s model [2] reads as(
1 − φ

2
u
)

t
+ 1 − φ

2
u · ∇u − ν�(

1 − φ

2
u) + 1 − φ

2
∇p = −νhq(φ)u. (2.14)

However, if the momentum equation is formatted as (2.14), then the energy dissipation law does not hold at all which can 
be justified by taking the L2 inner product of (2.14) with u. Therefore, we slightly modify (2.14) into (2.8) by replacing 
the time derivative term ( 1−φ

2 u)t by 1−φ
2 (

1−φ
2 u)t , and the diffusion term �(

1−φ
2 u) by ∇·( 1−φ

2 ∇u). Through this slight 
modification, the new momentum equation (2.8) is not only consistent to (2.14) for the solid phase (φ = 1) and liquid phase 
(φ = −1), but also can be shown to follow the energy dissipation law.

Remark 2.2. Note that the last two terms on the right hand side of (2.12) could be non-negative, which implies the total 
energy might not be dissipative. The signs of these two terms are determined by the value of weight factor 1−φ

2 . This 
energy law is “physically” reasonable since the value of φ is expected to be situated in [−1, 1] in the ideal situation. But 
mathematically, for the PDE system, it is quite challenging to show whether there exists a unique solution and whether the 
solution follows the maximum principle. Likewise, it is also challenging to develop schemes which can ensure the range of 
numerical solution of φ to be in [−1, 1] (discrete maximum principle). To fix the problem of non-dissipative energy, in next 
section, we simply replace the φ using its clamped value in [−1, 1] as defined in (3.8).

Remark 2.3. Note in many previous works, the choice of the function r′(φ) in (2.5) and that in (2.10) are not consistent. For 
instance, r′(φ) in (2.5) is set to be (1 − φ2)2 or 1 − φ2, but r′(φ) in (2.10) is set to be 1 instead, cf. [31]. At this time, the 
resultant PDE system for (φ, T ) can not preserve the energy dissipation law any more, see the detailed discussions in [31].

3. Numerical schemes

Now we aim to develop efficient schemes for solving the flow coupled solidification dendritic model (2.5)-(2.8)-(2.9)-
(2.10)-(2.11), in which the main challenging issues are to find proper approaches to discretize numerous nonlinear terms, 
particularly, (i) the coupling between the pressure and the velocity through the weighted continuity equation (2.9); (ii) the 
cubic term f (φ) in (2.5); (iii) the second order terms associated with the anisotropic gradient-dependent coefficient κ(∇φ); 
(iv) the term coupling the phase field variable and temperature in (2.5) and (2.10); (v) the nonlinear convective term in 
(2.10); and (vi) the coupling among the weight factor 1−φ

2 , the velocity, and the pressure.
If the weight factor is a constant, the first difficulty (i) actually has been well studied during the last forty years; e.g., 

projection-type methods are one of the best options to solve it (cf. the review in [18] and the references therein). However, 
the momentum equation (2.8) and the associated divergence free condition (2.9) become very unusual due to the weight 
factor appearing almost everywhere. Thus the projection-type methods must be modified accordingly.

For the second difficulty (ii), we recall that there have been several established numerical techniques that can preserve 
the unconditional energy stability for phase field models, for instances, the convex splitting approach [11,21,54], the linear 
stabilized-explicit approach [14,23,24,44–46,52,55], the mixed variational methods [16,17,37], the IEQ approach [4,56,58,59,
62–64], and a variety of other methods [9,19,26], etc. However, the convex splitting and stabilized-explicit approaches might 
not be suitable choices for solving this model since it is not clear how the anisotropic gradient potential could be split into 
the combinations of the convex and concave parts for the former method, and it is quite challenging to prove the energy 
stability for the latter method.

Nonetheless, we choose the recently developed IEQ approach to discretize the cubic polynomial term f (φ), and the 
second order term with the anisotropic coefficient κ(∇φ). Since the second order term is treated in the semi-implicit 
way, we add two extra linear stabilizing terms to enhance the stability. These two terms are also crucial to prove the 
well-posedness of the obtained linear system, see the detailed proof of Theorem 3.1.

The key procedure of the IEQ approach is to make the free energy potential to be quadratic via one or more auxiliary 
variables. Thus we define an auxiliary variable as follows:

U =
√

1 |κ(∇φ)∇φ|2 + 1
2

F (φ) + B, (3.1)

2 4ε
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where B is a constant that can ensure the radicand positive (in all numerical examples, we let B ∼ O (104) which is the 
same order of 1

ε2 ). Thus the total free energy (2.13) can be rewritten as

E(φ, U , T ,u) =
∫
�

(U 2 + λ

2εK
T 2 + 1

2

(1 − φ

2
u
)2 − B)dx. (3.2)

By taking the time derivative of the new variable U , we then reformulate the system (2.5)-(2.8)-(2.9)-(2.10)-(2.11) as the 
following equivalent PDE system,

τ (φ)φt = −Z(φ)U − λ

ε
r′(φ)T , (3.3)

Ut = 1

2
Z(φ)φt, (3.4)

Tt + (
1 − φ

2
u) · ∇T = D�T + Kr′(φ)φt, (3.5)

1 − φ

2

(
1 − φ

2
u
)

t
+ 1 − φ

2
u · ∇u − ν∇·(1 − φ̂

2
∇u) + 1 − φ

2
∇p = −νhq(φ̂)u, (3.6)

∇·(1 − φ

2
u) = 0, (3.7)

where

φ̂ =

⎧⎪⎨⎪⎩
1, φ ∈ (1,∞),

φ, φ ∈ [−1,1],
− 1,φ ∈ (−∞,−1),

(3.8)

Z(φ) = −∇·(κ2(∇φ)∇φ + κ(∇φ)|∇φ|2 H(φ)) + 1
ε2 f (φ)√

1
2 |κ(∇φ)∇φ|2 + 1

4ε2 F (φ) + B
. (3.9)

The initial conditions are given by⎧⎪⎪⎨⎪⎪⎩
φ(t = 0) = φ0, T (t = 0) = T0,

U (t = 0) =
√

1

2
|κ(∇φ0)∇φ0|2 + 1

4ε2
F (φ0) + B,

u(t = 0) = u0, p(t = 0) = p0.

(3.10)

The boundary conditions are still (2.11) that we alluded before.
This new and equivalent system (3.3)-(3.7) also follows an energy dissipative law. By taking the L2 inner product of (3.3)

with φt , of (3.4) with −2U , of (3.5) with λ
εK T , of (3.6) with u and using (3.7), performing integration by parts, and summing 

up all equalities, we can obtain the energy dissipation law of the new system (3.3)-(3.7) as

d

dt
E(φ, U , T ,u) = −‖√τ (φ)φt‖2 − λD

εK
‖∇T ‖2 − ν‖

√∣∣∣1 − φ

2

∣∣∣∇u‖2 − νh‖√|q(φ)|u‖2. (3.11)

Next we will develop time marching algorithms for solving the transformed system (3.3)-(3.5). The proposed schemes 
should formally follow the new energy dissipation law (3.11) in the discrete sense, instead of the energy law for the origi-
nated system (2.12). It can be shown that the discrete transformed energy is the approximation to the original energy with 
the first-order accuracy, which is verified by the rigorous error estimates and numerical simulations in [61].

Let δt > 0 be a time step size and set tn = nδt for 0 ≤ n ≤ N with T = Nδt . We also denote the L2 inner product of 
any two spatial functions ϕ1(x) and ϕ2(x) by (ϕ1(x), ϕ2(x)) = ∫

�
ϕ1(x)ϕ2(x)dx, and the L2 norm of the function ϕ(x) by 

‖ϕ‖2 = (ϕ, ϕ). Let ϕn denote the numerical approximation to ϕ(·, t)|t=tn for any function ϕ .
We construct a first-order time marching scheme for solving the system (3.3)-(3.7), as follows.
Assumming φn, T n, Un, (ψu)n, pn are known, we update φn+1, T n+1, Un+1, ̃un+1, (ψu)n+1, pn+1 by solving the following 

three steps:
Step 1:

τ (φn)
φn+1 − φn

δt
+ S1

ε2
(φn+1 − φn) − S2�(φn+1 − φn) = −ZnUn+1 − λ

ε
r′(φn)T n+1, (3.12)

Un+1 − Un = 1
Zn(φn+1 − φn), (3.13)
2
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T n+1 − T n

δt
+ (ψnun) · ∇T n+1 − D�T n+1 = Kr′(φn)

φn+1 − φn

δt
, (3.14)

∂nφn+1|∂� = ∂nT n+1|∂� = 0, (3.15)

where

ψn = 1 − φn

2
, Zn = Z(φn), (3.16)

and Si with i = 1, 2 are two positive stabilizing parameters;
Step 2:

ψn+1 ψn+1ũn+1 − ψnun

δt
+ ψnun · ∇ũn+1 − ν∇·(ψ̂n+1∇ũn+1) (3.17)

+ψn+1∇pn = −νhq(φ̂n+1)̃un+1,

ũn+1|∂� = 0; (3.18)

where ψ̂n = 1−φ̂n

2 ;
Step 3:

ψn+1un+1 − ψn+1ũn+1

δt
+ ∇(pn+1 − pn) = 0, (3.19)

∇·(ψn+1un+1) = 0, (3.20)

(ψn+1un+1) · n|∂� = 0. (3.21)

Remark 3.1. Two first-order linear stabilizers (associated with S1 and S2) are added in the scheme (3.12) to enhance the 
stability since anisotropic coefficient κ(∇φ) is treated semi-implicitly which can cause large spatial oscillations and lead to 
blow up for large time steps, see [57]. These stabilizers are two commonly used linear stabilizers in the stabilized-explicit 
method for solving the isotropic or anisotropic phase field model, cf. [45,46,52,57]. The errors that these two terms introduce 
are of order S1δtφ(·) and S2δt�φ(·), respectively, which are of the same order as the error introduced by the first-order 
extrapolation of the nonlinear term f (φ) and the Laplacian term �φ. Therefore, the magnitude of S1 and S2 should be 
comparable with | f (φn)|∞ and |κ(∇φn)|∞ . In our numerical simulations, we use S1 = S2 = 4 which appears to provide a 
good balance between stability and accuracy.

Remark 3.2. For step 3, by applying the divergence operator ∇· and using (3.20), we can obtain the following Poisson 
equation for pn+1 with the homogeneous Neumann boundary conditions,⎧⎨⎩ − �(pn+1 − pn) = − 1

δt
∇·(ψn+1ũn+1),

∂n pn+1|∂� = 0.

(3.22)

Once pn+1 − pn is computed from (3.22), we update ψn+1un+1 by using (3.19), i.e.,

ψn+1un+1 = ψn+1ũn+1 − δt∇(pn+1 − pn). (3.23)

It is remarkable that the computations will overflow if we try to obtain un+1 by dividing ψn+1 for both sides of (3.23), since 
ψn+1 may equal to zero at plenty of grid points. But fortunately, we only need the values of ψnun instead of un to obtain 
ũn+1 in the momentum equation (3.17). Therefore, in practice, the algorithm will not blow up and we only need to store 
the values of ψnun at each time step.

Remark 3.3. The computations of (φ, T )n+1, ũn+1, and pn+1 are totally decoupled via a first-order pressure-correction 
scheme [18] with some modifications. Furthermore, through some subtle implicit-explicit discretizations for the stress and 
convective terms, the above scheme is totally linear thus it is very easy-to-implement.

In step 1, the new auxiliary variable U and the two added linear stabilizers will not result in extra computational cost 
since we can implement the scheme by the following procedure. We rewrite (3.13) as follows,

Un+1 = 1

2
Znφn+1 + A1, (3.24)

with A1 = Un − 1 Znφn and substitute (3.24) to (3.12), then the system (3.12)-(3.14) can be rewritten as
2
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Q (φn+1) + λ

ε
r′(φn)T n+1 = f1, (3.25)

λ

εK
T n+1 + δt

λ

εK
(ψnun) · ∇T n+1 − δt

λD

εK
�T n+1 − λ

ε
r′(φn)φn+1 = f2, (3.26)

where

Q (φn+1) = 1

δt
τ (φn)φn+1 + S1

ε2
φn+1 − S2�φn+1 + 1

2
Zn Znφn+1, (3.27)

and f1, f2 include only terms from previous time steps. In practice, we solve (3.25)-(3.26) directly to obtain φn+1 and T n+1, 
and then update the new variable Un+1 from (3.24).

Furthermore, we notice (Q (φ), ψ) = (φ, Q (ψ)) when φ, ψ satisfy the boundary conditions in (2.11), that means the 
linear operator Q (φ) is self-adjoint; and (Q (φ), φ) ≥ 0, where “=” is valid if and only if φ ≡ 0, that means the linear 
operator Q (φ) is actually symmetric positive definite.

We now show the well-posedness of the weak form of the above linear system (3.25)-(3.26). For the wellposedness of 
projection type scheme (3.17)-(3.19), we omit the proof since it is similar. In the following arguments, we will only consider 
the boundary condition (2.11) for convenience. For the case of periodic boundary conditions, the proof is similar.

The weak form of (3.25)-(3.26) can be written as the following system with the unknowns (φ, T ) ∈ (H1, H1)(�),

1

δt
(τ (φn)φ,ϕ) + S1

ε2
(φ,ϕ) + S2(∇φ,∇ϕ) + 1

2
(Znφ, Znϕ) + λ

ε
(r′(φn)T ,ϕ) = ( f1,ϕ), (3.28)

λ

εK
(T ,ϑ) + δt

λ

εK
((ψnun) · ∇T ,ϑ) + δt

λD

εK
(∇T ,∇ϑ) − λ

ε
(r′(φn)φ,ϑ) = ( f2,ϑ), (3.29)

for any (ϕ, ϑ) ∈ (H1, H1)(�).
We denote the above bilinear system (3.28)-(3.29) as the bilinear system

(A(X), Y ) = (B, Y ), (3.30)

where A is the linear operator, X = (φ, T )T , Y = (ϕ, ϑ)T , and X, Y ∈ (H1, H1)(�).

Theorem 3.1. The bilinear system (3.30) admits a unique solution (φ, T ) ∈ (H1, H1)(�).

Proof. (i) For any X = (φ, T )T and Y = (ϕ, ϑ)T with X, Y ∈ (H1, H1)(�), we have

(A(X, )Y ) ≤ C1(‖φ‖H1 + ‖T ‖H1)(‖ϕ‖H1 + ‖ϑ‖H1), (3.31)

where C1 is a constant depending on δt , S1, S2, λ, ε , D , K , ‖Zn‖∞ , ‖ψnun‖∞ , and ‖r′(φn)‖∞ . Therefore, the bilinear system 
(A(X), Y ) is bounded.

(ii) It is easy to derive that

(A(X), X) = 1

δt
‖√τ (φn)φ‖2 + S1

ε2
‖φ‖2 + S2‖∇φ‖2

+ 1

2
‖Znφ‖2 + λ

εK
‖T ‖2 + δt

λD

εK
‖∇T ‖2

≥ C2(‖φ‖2
H1 + ‖T ‖2

H1),

(3.32)

where C2 is a constant depending on δt , S1, S2, ε , λ, D , K . Thus the bilinear system (A(X), Y ) is coercive.
Then from the Lax-Milgram theorem, we conclude the linear system (3.30) admits a unique solution (φ, T ) ∈

(H1, H1)(�). �
Remark 3.4. The stabilizer S2 is crucial to ensure the coercivity of the bilinear system in H1(�). If we set S2 = 0, then we 
can only show that the system admits a unique solution φ in L2(�) that might bring up some essential difficulties for error 
estimates. However, to implement the error analysis for the scheme is absolutely non-trivial due to the nonlinear anisotropic 
terms and weight factor. We will consider the subsequent error analysis in our future work by following the same lines as 
the analytical work for isotropic Allen-Cahn/Cahn-Hilliard models in [61]. The error estimates for the fully discrete schemes 
in the context of finite element method or spectral method, we refer to [12,14,45].

Now we prove the scheme (3.12)-(3.21) is unconditionally energy stable.
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Theorem 3.2. The scheme (3.12)-(3.21) is unconditionally energy stable which satisfies the following discrete energy dissipation law,

En+1 ≤ En − δt‖√τ (φn)
φn+1 − φn

δt
‖2 − δt

λD

εK
‖∇T n+1‖2

− νhδt‖
√

q(φ̂n )̃un+1‖2 − νδt‖
√

ψ̂n+1∇ũn+1‖2,

(3.33)

where

En+1 = ‖Un+1‖2 + λ

2εK
‖T n+1‖2 + 1

2
‖ψn+1un+1‖2 + δt2

2
‖∇pn+1‖2. (3.34)

Proof. By taking the L2 inner product of (3.12) with φn+1 − φn and using integration by parts, we obtain

δt‖√τ (φn)
φn+1 − φn

δt
‖2 + δt2 S1

ε2
‖φn+1 − φn

δt
‖2 + S2δt2‖∇(φn+1 − φn)

δt
‖2

= −(ZnUn+1, φn+1 − φn) − λ

ε
(r′(φn)T n+1, φn+1 − φn).

(3.35)

By taking the L2 inner product of (3.13) with 2Un+1 and using the following identity

2a(a − b) = a2 − b2 + (a − b)2, (3.36)

we obtain

‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un‖2 = (Zn(φn+1 − φn), Un+1). (3.37)

By taking the L2 inner product of (3.14) with δt λ
εK T n+1, and using (3.36), we obtain

λ

2εK
(‖T n+1‖2 − ‖T n‖2 + ‖T n+1 − T n‖2) + λD

εK
δt‖∇T n+1‖2

= λ

ε
(r′(φn)(φn+1 − φn), T n+1),

(3.38)

where the convective term vanishes since the following equality holds∫
�

(ψnun · ∇)T n+1T n+1dx = 0, (3.39)

if (ψnun) · n|∂� = 0 and ∇·(ψnun) = 0.
By combining (3.35), (3.37), and (3.38), we obtain

δt‖√τ (φn)
φn+1 − φn

δt
‖2 + δt2 S1

ε2
‖φn+1 − φn

δt
‖2 + δt2 S2‖∇(φn+1 − φn)

δt
‖2

+ ‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un‖2

+ λ

2εK
(‖T n+1‖2 − ‖T n‖2 + ‖T n+1 − T n‖2) + λD

εK
δt‖∇T n+1‖2 = 0.

(3.40)

By taking the L2 inner product of (3.17) with δtũn+1 and using (3.36), we obtain

1

2
‖ψn+1ũn+1‖2 − 1

2
‖ψnun‖2 + 1

2
‖ψn+1ũn+1 − ψnun‖2

+ νδt‖
√

|ψn+1|∇ũn+1‖2 + δt(ψn+1∇pn, ũn+1)

= −νhδt
√|q(φn)|̃un+1‖2,

(3.41)

where the convective term vanishes since the following equality holds∫
�

(ψnun · ∇ )̃un+1 · ũn+1dx = 0, (3.42)

when (ψnun) · n|∂� = 0 and ∇·(ψnun) = 0.
By taking the L2 inner product of (3.19) with δtψn+1un+1, we obtain

1‖ψn+1un+1‖2 − 1‖ψn+1ũn+1‖2 + 1‖ψn+1un+1 − ψn+1ũn+1‖2 = 0. (3.43)

2 2 2
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By taking the L2 inner product of (3.19) with δt2∇pn and using (3.20), we obtain

δt2

2
(‖∇pn+1‖2 − ‖∇pn‖2) − δt2

2
‖∇pn+1 − ∇pn‖2) = δt(ψn+1ũn+1,∇pn). (3.44)

By taking the square of (3.19) and multiplying with δt2

2 , we obtain

δt2

2
‖∇pn+1 − ∇pn‖2 = 1

2
‖ψn+1un+1 − ψn+1ũn+1‖2. (3.45)

By combining (3.41), (3.43), (3.44), and (3.45), we obtain

1

2
‖ψn+1un+1‖2 − 1

2
‖ψnun‖2 + 1

2
‖ψn+1ũn+1 − ψnun‖2 + νδt‖

√
ψ̂n+1 ∇ũn+1‖2

+ δt2

2
(‖∇pn+1‖2 − ‖∇pn‖2) = −νhδt‖

√
q(φ̂n) ũn+1‖2.

(3.46)

Finally, by combining (3.40) and (3.46), we obtain

‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un‖2 + λ

2εK
(‖T n+1‖2 − ‖T n‖2 + ‖T n+1 − T n‖2)

+ 1

2
‖ψn+1un+1‖2 − 1

2
‖ψnun‖2 + 1

2
‖ψn+1ũn+1 − ψnun‖2

+ δt2

2
(‖∇pn+1‖2 − ‖∇pn‖2)

+ δt2 S1

ε2
‖φn+1 − φn

δt
‖2 + δt2 S2‖∇(φn+1 − φn)

δt
‖2

= −νhδt‖
√

q(φ̂n )̃un+1‖2 − λD

εK
δt‖∇T n+1‖2

− νδt(
√

ψ̂n+1∇ũn+1‖2 − δt‖√τ (φn)
φn+1 − φn

δt
‖2.

(3.47)

We can obtain the desired result after dropping some unnecessary positive terms. �
Remark 3.5. For the reduced dendritic model without flow, second order unconditional energy stable schemes had been 
developed in our recent work, see [57]. For the flow coupled anisotropic solidification model, however, it is absolutely 
non-trivial to develop second-order time marching schemes that can preserve unconditionally energy stabilities where the 
main difficulty lies on the treatments for weight factor 1−φ

2 in the Navier-Stokes equations. We leave this part to the 
future work. In addition, although we consider only time discrete schemes in this study, the results can be carried over 
to any consistent finite-dimensional Galerkin approximations in the space since the proofs are all based on a variational 
formulation with all test functions in the same space as the space of the trial functions.

4. Numerical simulations

In this section, we present various numerical examples to validate the proposed schemes and demonstrate their accuracy, 
energy stability and efficiency.

4.1. Brief description of the full discretization schemes

In all of the following examples, we consider a two-dimensional rectangular domain � = [0, L1] × [0, L2]. For x-axis, we 
set the periodic boundary conditions thus we adopt the Fourier-spectral method. For y-axis, the boundary conditions (2.11)
are used and the spatial discretizations are based on the Legendre-Galerkin method [43] which results in very efficient and 
accurate solvers for elliptic equations with constant coefficients. We adopt the inf-sup stable (P N , P N−2) pair for the velocity 
and pressure, and P N for the phase and temperature variables. For solving the coupled linear variable-coefficient system in 
step 1 and 2, we refer to our recent work [60] where the procedure was given in details.

4.2. Accuracy test

We first implement a numerical example with fourfold anisotropy (2.3) in 2D space to test the convergence rates of 
the proposed scheme. N Fourier modes are used to discretize the x-direction, and Legendre polynomials with degree up to 
M are used for y-direction. We set N = 129 and M = 128, so that the errors from the spatial discretization is negligible 
compared with the time discretization errors.
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Fig. 4.1. The L2 numerical errors for all variables at t = 0.1, that are computed using various temporal resolutions with order parameters given in (4.1) and 
the initial conditions of (4.2).

The model parameters are set as follows,{
L1 = L2 = 3, τ = 100, ε = 0.06, ε4 = 0.05,

D = λ = K = 1, S1 = S2 = 4, ν = 1,h = 0.01, B = 5 × 104.
(4.1)

We now perform refinement tests for temporal convergence by assuming the following initial conditions{
φ0 = sin(ax)cos(by), T0 = cos(ax)cos(by),

u0 = (u0, v0) = (0,0.02), p0 = 0,
(4.2)

with a = 2π
L1

and b = 2π
L2

. The boundary conditions for y-direction are set as follows,{
∂yφ|(y=0, y=L2) = 0, ∂y T |(y=0, y=L2) = 0,

u|(y=0, y=L2) = 0, v|(y=0, y=L2) = −0.02.
(4.3)

Since the exact solutions are not known, we choose the solution obtained by the scheme with the time step size δt = 10−6

as the benchmark solution (approximately the exact solution) for computing errors. We present the L2 errors of each 
variable between the numerical solution and the exact solution at t = 0.1 with different time step sizes in Fig. 4.1. We 
observe that the scheme almost perfectly matches the first-order accuracy in time for all variables. In Fig. 4.2(b) and (c), 
we plot the L2 errors of all variables at time t = 0.1 by refining the grid points along the x and y directions, respectively. 
We use a very small time step δt = 10−6 so that the errors from the temporal discretization are negligible compared to the 
spatial discretization errors. For the x-direction, we fix the number of Legendre modes M = 256 and vary the number of 
Fourier modes N starting from 33 with an increment of 32, with a reference solution obtained using the finest resolution 
of N = 257, M = 256. The convergence in the y-direction is obtained in a similar way. We see that the scheme achieves the 
spectral accuracy in the L2 norm.

4.3. 2D dendrite crystal growth with fourfold anisotropy

In this subsection, we investigate how the anisotropic entropy coefficient and the flow field can affect the shape of the 
dendritic crystal through the dynamical process in which a small crystal nucleus grows heterogeneously in 2D space. We 
still use the same boundary conditions specified in (4.3) but setting

v|(y=0, y=L2) = −0.008. (4.4)

The initial conditions are set as
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Fig. 4.2. (a) the L2 numerical errors for all variables with respect to number of DoFs in the x direction; and (b) the L2 numerical errors for all variables 
with respect to number of DoFs in the y direction. The order parameters are from (4.1) and the initial conditions are from (4.2).

⎧⎪⎨⎪⎩φ0 = tanh(
r0 − √

(x − x0)2 + (y − y0)2

ε0
), T0 =

{
0, φ > 0;
T̂0,otherwise;

u0 = 0, p0 = 0,

(4.5)

where x0 = y0 = 1.5, r0 = 0.0519, ε0 = 0.0106 and T̂0 = −0.55. The other parameters are set as follows,⎧⎪⎨⎪⎩
L1 = L2 = 3, N = 257, M = 256,

τ = 4268.4, ε = 0.0115, D = 0.000225,

K = 0.8, λ = 355, S = S = 4, ν = 1,h = 0.01, B = 5 × 104.

(4.6)
1 2
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Fig. 4.3. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are absent by using the weakly anisotropic strength parameter 
ε4 = 0.01, where (a) is the profiles for the phase field variable φ , and (b) is the profiles for the temperature T . Snapshots of the numerical approximation 
are taken at t = 0, 100, 140, and 180.

Fig. 4.4. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are coupled by using the weakly anisotropic strength parame-
ter ε4 = 0.01, where (a) is the profiles for the phase field variable φ , and (b) is the profiles for the temperature T . Snapshots of the numerical approximation 
are taken t = 20, 60, 100, 120, and 140.

Note these parameters are the rescaled values which are in the rough range of the parameters provided by [29,31,32,64]. We 
next perform a series of simulations with the fourfold anisotropic by varying the anisotropy strength ε4. In all simulations, 
we use the time step δt = 0.01.

We first set a weak anisotropic strength as ε4 = 0.01. In Fig. 4.3(a), snapshots of the phase variable φ are shown at 
various times when the flow field are absent by setting u ≡ 0 in (3.5). The tiny circle at the initial moment t = 0, shown 
in the first subfigure in Fig. 4.3(a), works as a crystal nucleus to grow with the time. Due to the anisotropic effects, we 
then observe the growth of the crystalline phase that finally becomes an anisotropic shape with four protrusive branches. 
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Fig. 4.5. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are absent by using the moderate anisotropic strength 
parameter ε4 = 0.03, where (a) is the profiles for the phase field variable φ and (b) is the profiles for the temperature T . Snapshots of the numerical 
approximations are taken t = 20, 60, 100, and 140.

Fig. 4.6. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are coupled, by using the moderate anisotropic strength 
parameter ε4 = 0.03, where (a) is the profiles for the phase field variable φ , and (b) is the profiles for the temperature T . Snapshots of the numerical 
approximation are taken t = 20, 60, 80, and 100.

In Fig. 4.3(b), we show the profiles of the temperature field T , that agrees well with the phase field variable φ due to the 
latent heat coupling terms.

In Fig. 4.4, we show snapshots of the phase variable φ at various times for the flow coupled case. We observe that the 
growth speed of the upstream tip with flow is much higher than that without flow because the impinging flow reduces the 
thermal boundary-layer thickness on the upstream side (cf. [2,48]). For example, when t = 140, the upstream tip with flow 
almost touches the upper domain boundary, but the distance that the upstream tip without flow travels is just half of that 
with flow. The growth speed of the downstream tip performs the opposite, i.e., it grows more slowly than that without flow 
because of advection of heat from the upstream portion of the dendrite. An interesting observation is that the horizontal 
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Fig. 4.7. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are absent by using the strongly anisotropic strength parameter 
ε4 = 0.05, where (a) is the profiles for the phase field variable φ , and (b) is the profiles for the temperature T . Snapshots of the numerical approximation 
are taken t = 20, 60, 80, and 100.

Fig. 4.8. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are coupled, by using the strongly anisotropic strength 
parameter ε4 = 0.05, where (a) is the profiles for the phase field variable φ , and (b) is the profiles for the temperature T . Snapshots of the numerical 
approximation are taken t = 20, 60, 80, and 90.

tips grow slightly upwards that present the tilting shape, which is due to the asymmetry of the heat fluxes on the upper 
and lower sides of the horizontal arm (cf. [48]). The profiles of the temperature field T for the flow coupled case are shown 
in Fig. 4.3(b) as well.

Next, we set the anisotropic strength to be a moderate value of ε4 = 0.03. In Fig. 4.5 and Fig. 4.6, we show the evolution 
of the phase variable φ and temperature field T for the no flow case and flow coupled case, respectively. Comparing to the 
weak anisotropy case shown in Fig. 4.3 and Fig. 4.4, we observe that the four protrusion branches become more slender 
remarkably. This means the thickness of formed branches can be affected by the magnitude of ε4, and larger value of ε4
can bring more slender pattern of branches. Moreover, similar to the weak anisotropy case, the upstream tip grows much 
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Fig. 4.9. The summary of the contour of the interface {φ = 0} every 10 time units from the initial moment for the three anisotropy strengths without flow 
(left panel), and with flow (right panel), where, ε4 = 0.01 (top panel), ε4 = 0.03 (middle panel), and ε4 = 0.05 (bottom panel). For the flow coupled case, 
the flow fields are interpolated for the better visualization.
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Fig. 4.10. The comparisons between the original B-SPF model (2.14)-(2.9)-(2.5)-(2.10) and the modified model (2.8)-(2.9)-(2.5)-(2.10) for the flow coupled 
case, where the contours of the interface {φ = 0} every 10 time units from the initial moment are plotted, the original B-SPF model (left), modified model 
(middle), and their detailed comparisons at t = 90 (right). In both computations, we set ε4 = 0.05.

Fig. 4.11. (a) Time evolutions of the logarithm of the free energy functional for the 2D fourfold examples with three different anisotropy strengths ε4 = 0.01, 
0.03, and 0.05, for the flow absent and flow coupled cases; (b) The size of the dendritic crystals changing with time, where the crystal size is measured by 
an equivalent radius of a circle with the same area.

more quickly than that of no flow case, while the downstream tip grows more slowly than that of no flow case. We also 
observe that the tilting shape appears for the two horizontal arms. The profiles of the temperature field T for the no flow 
case and flow coupled case are shown in Fig. 4.5(b) and Fig. 4.6(b), respectively.

Finally, we perform the simulations by using a strong anisotropy parameter as ε4 = 0.05 in Fig. 4.7 and Fig. 4.8 for the 
no flow case and flow coupled case, respectively. The hypothesis that larger ε4 lead to more slender branches are proven 
once again, that can be easily observed by comparing Fig. 4.5(b) with Fig. 4.7(b), and Fig. 4.6(b) with Fig. 4.8(b). Meanwhile, 
the growth speed of the upstream and downstream tips are still similar as the two previous cases. The tilting shape appears 
on the horizontal arms are observed too.

To get more detailed evolution of the dendrites, in Fig. 4.9, we summarize the contour of the interface {φ = 0} every 
10 time units from the initial moment for the above three anisotropy strengths without flow (top panel), and with flow 
(bottom panel). For the better visualization, we have interpolated the flow field onto a grid that is about 6 times coarser 
than the one used in the computations. It can be seen that the shape of the dendrites is significantly influenced by the flow. 
When the flow field is coupled, the growth velocities of the upstream tips are much higher than those of the downstream 
tips and the horizontal tips. All these numerical results demonstrate similar features to those obtained in the computations 
of Beckerman et al. in [2,48].

We further compare the computed results by using the original B-SPF model (2.14)-(2.9)-(2.5)-(2.10) and the modified 
model (2.8)-(2.9)-(2.5)-(2.10) for the flow coupled case. In both simulations, we use the same anisotropic strength ε4 = 0.05
and the flow is coupled therein. In Fig. 4.10(a) and (b), we summarize the contour of the interface {φ = 0} every 10 time 
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Fig. 4.12. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are absent, by using the sixfold anisotropy, the linear 
kinetic coefficient λ = 355, and other parameters specified in (4.8), where (a) is the profiles for the phase field variable φ , and (b) is the profiles for the 
temperature T . Snapshots of the numerical approximation are taken t = 60, 100, 140, and 180.

Fig. 4.13. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are coupled, by using the sixfold anisotropy, the linear 
kinetic coefficient λ = 355, and other parameters specified in (4.8), where (a) is the profiles for the phase field variable φ and (b) is the profiles for the 
temperature T . Snapshots of the numerical approximation are taken t = 60, 100, 140, and 180.

units for these two models respectively, and we find that no visible differences are noticeable. A more detailed comparison 
for the interfaces at t = 90 is given in Fig. 4.10(c).

In Fig. 4.11, we summarize the evolutions of the logarithm of the total free energy which monotonically decay and the 
radius of the crystal that is measured by an equivalent radius of a circle with the same area. When the flow field is present, 
we observe that the total energy decays faster, and the radius or area of the dendrites grows faster than those of the no 
flow case.
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Fig. 4.14. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are absent, by using the sixfold anisotropy, the linear 
kinetic coefficient λ = 380, and other parameters specified in (4.8), where (a) is the profiles for the phase field variable φ and (b) is the profiles for the 
temperature T . Snapshots of the numerical approximation are taken t = 40, 80, 120, and 160.

Fig. 4.15. The 2D dynamical evolution of dendritic crystal growth process when the flow fields are coupled, by using the sixfold anisotropy, the linear 
kinetic coefficient λ = 380, and other parameters specified in (4.8), where (a) is the profiles for the phase field variable φ and (b) is the profiles for the 
temperature T . Snapshots of the numerical approximation are taken t = 40, 80, 120, and 160.

4.4. 2D dendrite crystal growth with sixfold anisotropy

In this subsection, we investigate how the sixfold anisotropy can affect the shape of the dendritic crystal by setting m = 6
in (2.2). We use the same initial condition (4.5), and the same boundary conditions specified in (4.3) but setting

v|(y=0, y=L ) = −0.02. (4.7)
2
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Fig. 4.16. The summary of the contour of the interface {φ = 0} every 20 time units since the initial moment for the sixfold anisotropy, without flow (top 
panel), and with flow (bottom panel). λ = 355 (left panel), λ = 380 (right panel). For the flow coupled case, the flow fields are interpolated for the better 
visualization.

The order parameters are set as follows,⎧⎪⎨⎪⎩
L1 = L2 = 2π, N = 801, M = 800,

τ = 4268.4, ε4 = 0.05, ε = 0.0112, D = 0.000225,

K = 0.75, S1 = S2 = 4, ν = 1,h = 0.01, B = 5 × 104.

(4.8)

We perform a series of simulations by varying the linear kinetic coefficient λ. In all simulations, we use the time step 
δt = 0.01.

First, to be consistent with the fourfold case, we still set λ = 355. In Fig. 4.12, we present the dynamics of the phase 
variable and temperature field for the no flow case. We observe that the initial circular nucleus grows into six main branches 
when time evolves. Moreover, on each main branch, some tiny protrusions appear. We further perform simulations for the 
flow coupled case. In Fig. 4.13(a), snapshots of the phase variable at various times are presented, in which we observe, (i) 
the growth speed of the upstream, upper right, upper left tips are much higher than that without flow; (ii) the growth 
speed of the lower right and lower left tips grow almost the same as that without flow; (iii) the growth speed of the 
downstream grows much slowly than that without flow; (iv) the tilting phenomenon appears on the upper right, upper left, 
lower right, and lower left arms.

We further set the kinetic coefficient λ = 380 and fix all other parameters. In Fig. 4.14(a), for the flow absent case, 
the snapshots of the phase field variable are shown, where we observe that plenty of tiny protrusions form on each main 
branch, and the initial circular nucleus grows to a snowflake pattern finally. Similar snowflake patterns had been reported in 
[32] using a slightly different model. The temperature field is presented in Fig. 4.14(b). When the flow field is coupled, the 
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Fig. 4.17. (a) Time evolutions of the logarithm of the free energy functional for the 2D sixfold examples with two different linear kinetic coefficients λ = 355
and λ = 380, for the flow absent and flow coupled cases; (b) The size of the dendritic crystals changing with time where the crystal size is measured by 
an equivalent radius of a circle with the same area.

patterns of the phase field variable and temperature field are shown in Fig. 4.15(a) and (b), respectively. Since the growth 
speed of six tips, and the tilting shape all follow the same line as the previous case, it is unnecessary to go into details.

In Fig. 4.16, we summarize the contour of the interface {φ = 0} every 20 time units from the initial moment for the 
above two cases without flow (top panel), and with flow (bottom panel). For the better visualization, we have interpolated 
the flow field onto a grid that is about 12 times coarser than the one used in the computations. In Fig. 4.17, we summarize 
the evolutions of the logarithm of the total free energy which mono-tonically decay and the radius of the crystal. Similar as 
the fourfold case, when the flow field is coupled, the total free energy decays faster, and the radius or area of the dendrites 
grows faster than those of the no flow case.

5. Concluding remarks

We studied in this paper a dendritic solidification phase field that involves melt convections in the liquid phase. We 
first reformulate the momentum equation in Beckerman’s model into a form which is suitable for numerical approximations 
and derived the associated energy dissipation law. We then construct an efficient time marching scheme by combining the 
modified pressure-correction method and the stabilized-IEQ method. The scheme enjoys the following properties: (i) it leads 
to three decoupled linear systems to solve at each time step, and (ii) it is unconditionally stable and obeys a discrete energy 
law. Hence, the obtained numerical scheme is extremely efficient. To the author’s knowledge, this is the first unconditionally 
energy stable scheme for the flow coupled anisotropic phase field dendritic model, that can decouple the phase function, 
temperature, velocity, and pressure, and lead to linear decoupled elliptic equations, at each time step. We further numeri-
cally verify the accuracy in time and present various numerical results for some benchmark numerical simulations. While 
we have considered only time discretizations here, the results can carry over to any consistent finite-dimensional Galerkin 
approximations (finite elements or spectral), since the proofs are all based on variational formulations with all test functions 
in the same space as the trial function.

It is remarkable that the numerical work about the dendritic model is still on early stage and there remain many 
potential research topics concerning the modeling, analysis, and simulations. For example, an obvious topic is how to derive 
the rigorous error analysis for the proposed scheme, in the context of the semi-discrete in time or fully-discrete in space 
and time. Meanwhile, note the proposed scheme in this paper is just first-order accurate in time, thus how to develop 
an energy stable scheme while preserving the second-order accuracy in time will be another challenging and meaningful 
topic. It is also unclear but possible to develop a fully decoupled scheme that can decouple the computations of the phase 
field variable from the temperature. We notice that there are many interests focusing on the numerical simulations of 
atomic crystal evolving with dendritic tips (cf. [47]), which requires to develop a seamless model that can couple the 
dendritic phase-field model with the so-called phase-field crystal free energy [10], that could be another challenging topic 
of modeling and algorithm developments. The model in this paper only considers the dendritic solidification for the pure 
material, thus an interesting but very challenging research topic is how to develop an efficient scheme to solving the binary 
alloy dendritic solidification model which couples the hydrodynamics, phase field variable, concentration field for solvents, 
as well as the heat transfer.
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