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GUEST EDITORS’ INTRODUCTION

The recent phenomenal advances in the foundational
areas of cognitive computing systems are poised to
usher in even more sophisticated systems that will rival
and perhaps even surpass human performance.

umans are arguably the

most intelligent entities

in the known universe;

the objective of cognitive
computing is to understand and rep-
licate the essence of human intel-
ligence. Autonomous systems are
self-contained and self-regulated enti-
ties that continuously evolve in real
time in response to changes to their
environment. Fundamental to this
evolution is learning and develop-
ment. Cognition is the basis for auto-
nomous systems. Human cognition
refers to processes and systems that
enable humans to perform both mun-
dane and specialized tasks. Machine
cognition refers to similar processes
and systems that enable computers
to perform tasks at a level that rivals
human performance. While human
cognition employs biological and nat-
ural means—the brain and mind—for
its realization, machine cognition is a
type of computation. Cognitive com-
puting systems are autonomous sys-
tems that are based on machine cog-
nition. A cognitive system views the
mind as a highly parallel information
processor, uses various models for rep-
resenting information, and employs
algorithms for transforming and rea-
soning with the information.

In contrast to conventional software
systems, cognitive computing systems
effectively deal with ambiguity and
conflicting and missing data. They fuse
several sources of multimodal data and
incorporate context into computation.
When making a decision or answering
a query, these systems quantify uncer-
tainty, generate multiple hypotheses and
supporting evidence, and score hypoth-
eses based on evidence. In other words,
cognitive computing systems provide
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multiple ranked decisions and answers.
These systems can elucidate the reason-
ing that underlies their decisions and
answers. They are stateful and under-
stand various nuances of communica-
tion with humans. They are self-aware
and continuously learn, adapt, and
evolve. Their capabilities vary widely.

Cognitive computing systems use
a broad range of principles and tech-
niques from cognitive science, neuro-
science, data science, machine learn-
ing, and cloud computing. Cognitive
science is the study of mind and offers
theories, including mathematical and
computational models of human cog-
nition. Neuroscience is the study of the
nervous system, including its develop-
ment, structure, and function. Data sci-
enceis anew interdisciplinary domain,
offering processes and systems to
extract information and knowledge
from structured and unstructured data
using machine-learning algorithms.
Its end goal is to discover patterns, gen-
erate actionable insights, and answer
predictive questions. Machine learning
and cloud computing provide the com-
putational infrastructure and algo-
rithms to develop cognitive computing
systems. Machine learning, especially
deep learning, provides learning algo-
rithms that are inspired by the struc-
ture and function of the brain. Cloud
computing provides turnkey solu-
tions, such as the platform, infra-
structure, and software as services. It
achieves economies of scale and helps
cognitive computing applications per-
form at scale without upfront comput-
ing investments.

Broadly speaking, there are two
lines of research in the cognitive com-
puting discipline. The first one is
cognitive science driven. The second,

more recent, is based on computer
science, encompassing data science,
statistics, and various subdisciplines
of computer science. These two lines
of research are complementary and
helping to accelerate discoveries and
innovation. Only a few years ago, it
was believed that self-driving auto-
mobiles were a fantasy and science fic-
tion. But today, self-driving vehicles
are a reality. The recent phenomenal
advances in the foundational areas of
cognitive systems are poised to usher
in even more sophisticated cognitive
systems that will rival and perhaps
even surpass human performance.
However, in the near term, cogni-
tive systems are not going to replace
humans en masse; instead, they will
help humans expand their capabili-
tiesbyleveraging vastamounts of data
and computing power.

A TIME LINE

Chatbots are one class of cognitive
computing systems. They are con-
versational agents and question-an-
swering systems; the human-chatbot
interaction is often an informal con-
versation. ELIZA, which Joseph Wei-
zenbaum created in 1966, is one of the
first chatbots. Other chatbots include
PARRY (1972), A.L.I.C.E (1995), Smart-
erchild (2001), Siri (2010), Google Now
(2012), Alexa (2015), Cortana (2015),
and Woebot (2017).

The expert systems approach to
cognitive systems is based on reason-
ing using bodies of knowledge. The
knowledge is primarily represented
as if-then rules, which are manually
developed and encoded. These systems
cannot learn from their environment
nor evolve. Edward Feigenbaum intro-
duced two early expert systems around
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1965: Mycin for diagnosing infectious
diseases and Dendral for identifying
unknown organic molecules.

The first generation of neural net-
works and genetic algorithms rep-
resents another set of approaches to
cognitive systems. Though compu-
tational models for neural networks
were proposed in the 1940s, it was
not until 1975 that neural networks
received widespread attention. Paul
Werbos introduced the back-propa-
gation algorithm in 1975, which made
training multilayer neural networks
feasible and efficient. Genetic algo-
rithms are used for solving nonlinear
or nondifferentiable optimization
problems. They borrow concepts
from evolutionary biology to search
for a global minimum. The lack of
adequate computational power and
other factors led to the neural net-
works’ hibernation.

The emergence of graphics pro-
cessing unit (GPU) technology, crowd-
sourced labeled data, and advances
in machine-learning algorithms cre-
ated a renaissance in neural networks
during the current decade under the
deep-learning label. Since 2012, we
have witnessed an unparalleled inter-
est in using deep learning to solve a
broad range of problems in vision and
spoken- and written-language pro-
cessing. Also, recent advanced learn-
ing algorithms and increased access
to hardware are catalyzing the train-
ing of deeper (e.g., >100 layers) neural
networks. In summary, the trifecta of
growing availability of (e.g., crowd-
sourced) labeled data, availability of
parallel computing hardware, and
advances in learning algorithms has
resulted in significant improvement
in state of the art in diverse research
fields, often surpassing human perfor-
mance levels.

PLATFORMS, FRAMEWORKS,
AND APPLICATIONS

The recent emergence of specialized
processors for cognitive computing, big
data tools, and advances in deep learn-
ing are accelerating cognitive com-
puting systems research and ushering
in novel and transformational appli-
cations. IBM's TrueNorth cognitive
computing system is a case in point.
Its design is inspired by the function
and efficiency of the human brain. The
TrueNorth architecture provides a spik-
ing neuron model as a building block.
Its programming paradigm is based
on an abstraction called corelet, which
represents a network of neurosynaptic
cores. A library of reusable corelets and
an integrated development environ-
ment enable the creation of cognitive
computing applications.

The IBM Watson platform origi-
nated from a precise-query answering
capability that was first demonstrated
when it won the TV game show Jeop-
ardy against world champions of the
game. Its services are based on knowl-
edge, language, speech, and computer
vision application programming inter-
faces (APIs) primarily on the cloud/
mobile devices. In addition, the Wat-
son platform provides tools not only
for integration and curation but also
for testing fairness and integrity of the
services. Finally, the platform focuses
on scaling and openness across multi-
and hybrid-cloud environments to
permit the enterprise customers to
unlock intelligence from the avail-
able data to improve their productivity
and efficacy. Now Watson is deployed
in various applications domains. For
example, Watson Health can read
and understand more than 200 mil-
lion pages of text in fewer than 3 s. Its
application domains include customer
care, the Internet of Things, genomics,

drug discovery, oncology, and patient
engagement.

Recently, Nvidia released the Tesla
P100 GPU, which specifically targets
deep-learning algorithms. The P100
features 150 billion transistors on a sin-
gle chip. In addition, Google released
the Natural Language API, a cloud ser-
vice that provides application devel-
opers access to pretrained algorithms
for sentiment analysis, named-entity
recognition, and syntax analysis. Like-
wise, Speech API, Translate API, and
Vision API are public cloud services
for speech-to-text conversion, transla-
tion between natural languages, and
image analysis, respectively. Speech
API enables converting audio to text
for more than 80 languages, and Trans-
late API provides machine translation
between these languages. Applications
can use Vision API to perform image
analysis tasks, including object detec-
tion and classification.

Microsoft Cognitive Services is a set
of APIs, software development kits, and
services for creating intelligent, engag-
ing, and discoverable applications.
These services are available in five
categories: vision, speech, language,
knowledge, and search. Cisco Cognitive
Threat Analytics is a cloud-based solu-
tion that helps to detect sophisticated
threats in real time. It does not depend
on manually predefined rule sets; it
instead employs machine learning and
statistical modeling to independently
identify new threats, learn from the
data, adapt, and evolve over time.
DeepMind focuses on developing algo-
rithms and approaches for programs
that can learn to solve complex prob-
lems without needing to be explicitly
taught about the problems beforehand.
It provides open source environments,
data sets, and code for developing cog-
nitive computing systems.
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Numenta is a small team of scientists
and engineers specializing in reverse
engineering the neocortex. They believe
that understanding how the brain works
isthe key to understanding the principles
of intelligence and that the same princi-
ples can be used to develop cognitive
computing systems. Numenta's scien-
tific findings, software, and intellectual
property are free for noncommercial pur-
poses and can be licensed for commercial
use. Augmented Intelligence Software
from CognitiveScale targets emulating
and extending human cognitive func-

without human intervention. Exam-
ples include self-driving vehicles, per-
sonal assistants, and drones for deliver-
ing supplies. The second class includes
those that augment human capabili-
ties. Such systems will work collabora-
tively with humans to solve complex
and ill-defined problems. A good exam-
ple is personalized medicine, in which a
physician and a cognitive system work
together, and the cognitive system also
plays a physician role.

The primary research issues in cog-
nitive systems are the architectures for

COGNITIVE COMPUTING SYSTEM
APPLICATIONS ARE BOTH NUMEROUS
AND VARIED.

tion by pairing people and computers.
The software is based on the premise that
augmented intelligence is the most effec-
tive way to maximize the value of artifi-
cial intelligence and machine learning.

PROMISES AND

RESEARCH ISSUES

Cognitive computing system applica-
tions are both numerous and varied.
They are used for diverse applications
including fighting cybercrime, person-
alized learning, conversational chat-
bots and question answering, personal
assistants, prescriptive analytics, anom-
aly detection, humanoid robots and
assisted living, brain-computer inter-
faces, and language services for multi-
lingual environments. We envision two
major classes of cognitive computing
systems. The first class includes those
that can perform tasks independently,
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building them and the mechanisms used
for learning, adaptation, and evolution.
A cognitive architecture is a blueprint
for developing cognitive systems. It
specifies predetermined structures and
interactions among them with the goal
ofachieving functions of the mind. They
constrain the types of cognitive models
that can be developed. The knowledge
embodied in the architecture drives the
interactions among the structures to
achieve intelligent behavior.

A cognitive model, in contrast,
focuses on a single cognitive process,
such as language acquisition. It is also
used to study the interaction between
cognitive processes, such as language
understanding and problem solv-
ing. Cognitive models help to reveal
the limitations of cognitive architec-
tures. Thus, there is a strong interplay
between cognitive architectures and

models. In the literature, the terms cog-
nitive architecture and cognitive model are
notused consistently and are often used
synonymously. The context should help
toreveal the intended meaning.

There are three major classes of cog-
nitive architectures: cognitivist, connec-
tionist, and hybrid. Cognitivist architec-
tures represent information that uses
explicit symbolic representations. Cog-
nitivist architectures are also called sym-
bolic architectures /artificial intelligence
approaches. Cognitive systems based on
this architecture can successfully solve
specific problems. However, they lack
the generality needed to be useful across
domains. Symbolic representations
reflect the designers’ understanding of
the domain and may bias the system.
Also, as systems become more complex,
it is difficult for the designers to ensure
whether all relevant representations are
adequate to realize the desired cognitive
behaviors of the system.

Connectionist architectures are
inspired by the information process-
ing that occurs in biological neural
systems. Information is processed
by simple, networked computational
units called neurons, which communi-
cate in parallel with each other using
electrochemical signals. A synapseisa
junction between two neurons with a
minute gap across which signals pass
by way of neurotransmitter diffusion.

The brain is made up of neurons,
which number from 10 to 100 billion.
Each neuron is predicted to have more
than 10,000 connections to other neu-
rons. They receive stimuli from other
neurons through incoming connec-
tions and perform nonlinear compu-
tations using the received stimuli. The
effect of this computation activates
other neurons through its outgoing
connections. The strengths of con-
nection activations are quantified on
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a numeric scale and adjusted to reflect
the state of network learning. Architec-
tures based on this approach are called
connectionist or emergent architectures.

Connectionist architectures use dis-
tributed representations for encoding
knowledge. An advantage of these rep-
resentations is that they are more resil-
ient to noisy input, and performance
degradation is generally more graceful,
although interesting research is provid-
ing insights into how these models can
be attacked adversarially with small per-
turbation in the inputs. Deep learning
relies heavily on multiscale distributed
representations. There is a strong cou-
pling between the cognitive computing
architectures and the knowledge repre-
sentations used. Convolutional neural
networks, recurrent neural networks
(RNNs), long short-term memory units
embedded in RNNs, and differentiable
neural computers are types of connec-
tionist architectures. Hybrid architec-
tures employ a combination of symbolic
and connectionist architectures.

Other issues include the need for
large volumes of data and a high-per-
formance computing infrastructure for
model development, overfitting models
to training data, difficulties in domain
adaptation, the need to explain how
cognitive systems deduce conclusions,
and hyperparameter optimization. In
addition, for mainstream adoption, it
is important to ensure how the connec-
tionist architectures can be trusted and
be transparent.

ABOUT THIS SPECIAL ISSUE

The four articles in this special issue
are representative of the cognitive
computing systems domain. Cog-
nitive computing applications typi-
cally require sophisticated processing
of noisy and unstructured real-world
data under stringent time constraints.
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Neuromorphic computing and neu-
ral-network accelerators are solutions
to meet these processing challenges.
The goal of neuromorphic computing
is to use very large-scale integration
(VLSI) systems that are driven by elec-
tronic analog circuits to simulate neu-
robiological architectures present in
the nervous system. These VLSI chips
are characterized by ultralow power
consumption and high performance.
They are referred to as neuromorphic
chips or brain chips.

The first article, “TrueNorth: Accel-
erating From Zero to 64 Million Neu-
rons in 10 Years” by DeBole et al. from
IBM, presents TrueNorth architecture.
TrueNorthisabrain-inspired massively
multicore neural-network inference
chip containing 1 million spiking neu-
rons and 256 million low-precision
synapses. This is a culmination of a
decade of fundamental research span-
ning neuroscience, architecture, chips,
systems, algorithms, and software.
TrueNorth is the largest neurosynap-
tic computer ever built. The 64-chip

system has 64 million neurons and 16
billion synapses and can be configured
with deep neural networks trained to
accurately detect, localize, and clas-
sify objects in high-definition video at
faster-than-real-time frame rates and
unprecedented energy efficiency.

The second article, “Leveraging Sto-
chasticity for In Situ Learning in Bina-
rized Deep Neural Networks” by Pyle et
al., presents a binary approach for com-
pact and energy-sparing neuromorphic
architectures using emerging devices.
Approaches that deal with device pro-
cess variations and the realization of
stochastic behavior intrinsically within
neural circuits are explored. The authors
leverage a novel probabilistic spin-
tronic device for low-energy recognition
operations, which improves deep neu-
ral-network performance through active
on-chip learning via the mitigation of
device reliability challenges.

“Perspectives on Becoming an Appl-
ied Machine Learning Scientist” by Rasi-
wasia, the third article, provides insights
into the application of machine-learning
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techniques to solve business problems.
The author reflects on his experience
of transitioning from a researcher to
an applied machine-learning scientist
by drawing on his end-to-end solutions
experience at software companies,
including Yahoo Research Labs, Fashi-
ate, Snapdeal, and Amazon.

The special issue concludes with
“Human Eye Movements Reveal Video
Frame Importance” by Ma et al. This
article explores whether eye move-
ment patterns reflect frame importance
during video viewing and facilitate
video summarization. The authors re-
corded eye movements while subjects
watched videos from the SumMe video
summarization data set. They found
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more gaze consistency for selected
frames than for unselected. A novel
multistream deep-learning model for
video summarization is introduced
that incorporates subjects’ eye move-
ment information. Gaze data im-
proved the model’'s performance over
that observed when they used only
the frames’ physical attributes. Their
results suggest that eye movement
patterns reflect the cognitive process-
ing of sequential information. This in-
sight helps to select important video
frames and provide an innovative al-
gorithm that uses gaze information in
video summarization.

Recent progress in cognitive comput-
ing has resulted in significant advances
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in the state of the art in diverse fields
ranging from radio astronomy to life sci-
ences. Cognitive computing is likely to
dramatically disrupt the conventional
workflows and practices and catapult us
into a new era and culture that is a steep
change from the present age.
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