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The recent phenomenal advances in the foundational 

areas of cognitive computing systems are poised to 

usher in even more sophisticated systems that will rival 

and perhaps even surpass human performance. 

Humans are arguably the 
most intelligent entities 
in the known universe; 
the objective of cognitive 

computing is to understand and rep-
licate the essence of human intel-
ligence. Autonomous systems are 
self-contained and self-regulated enti-
ties that continuously evolve in real 
time in response to changes to their 
environment. Fundamental to this 
evolution is learning and develop-
ment. Cognition is the basis for auto
nomous systems. Human cognition 
refers to processes and systems that 
enable humans to perform both mun-
dane and specialized tasks. Machine 
cognition refers to similar processes 
and systems that enable computers 
to perform tasks at a level that rivals 
human performance. While human 
cognition employs biological and nat-
ural means—the brain and mind—for 
its realization, machine cognition is a 
type of computation. Cognitive com-
puting systems are autonomous sys-
tems that are based on machine cog-
nition. A cognitive system views the 
mind as a highly parallel information 
processor, uses various models for rep-
resenting information, and employs 
algorithms for transforming and rea-
soning with the information.

In contrast to conventional software 
systems, cognitive computing systems 
effectively deal with ambiguity and 
conflicting and missing data. They fuse 
several sources of multimodal data and 
incorporate context into computation. 
When making a decision or answering 
a query, these systems quantify uncer-
tainty, generate multiple hypotheses and 
supporting evidence, and score hypoth-
eses based on evidence. In other words, 
cognitive computing systems provide 

multiple ranked decisions and answers. 
These systems can elucidate the reason-
ing that underlies their decisions and 
answers. They are stateful and under-
stand various nuances of communica-
tion with humans. They are self-aware 
and continuously learn, adapt, and 
evolve. Their capabilities vary widely.

Cognitive computing systems use 
a broad range of principles and tech-
niques from cognitive science, neuro-
science, data science, machine learn-
ing, and cloud computing. Cognitive 
science is the study of mind and offers 
theories, including mathematical and 
computational models of human cog-
nition. Neuroscience is the study of the 
nervous system, including its develop-
ment, structure, and function. Data sci-
ence is a new interdisciplinary domain, 
offering processes and systems to 
extract information and knowledge 
from structured and unstructured data 
using machine-learning algorithms. 
Its end goal is to discover patterns, gen-
erate actionable insights, and answer 
predictive questions. Machine learning 
and cloud computing provide the com-
putational infrastructure and algo-
rithms to develop cognitive computing 
systems. Machine learning, especially 
deep learning, provides learning algo-
rithms that are inspired by the struc-
ture and function of the brain. Cloud 
computing provides turnkey solu-
tions, such as the platform, infra-
structure, and software as services. It 
achieves economies of scale and helps 
cognitive computing applications per-
form at scale without upfront comput-
ing investments.

Broadly speaking, there are two 
lines of research in the cognitive com-
puting discipline. The first one is  
cognitive science driven. The second, 

more recent, is based on computer 
science, encompassing data science, 
statistics, and various subdisciplines 
of computer science. These two lines 
of research are complementary and 
helping to accelerate discoveries and 
innovation. Only a few years ago, it 
was believed that self-driving auto-
mobiles were a fantasy and science fic-
tion. But today, self-driving vehicles 
are a reality. The recent phenomenal 
advances in the foundational areas of 
cognitive systems are poised to usher 
in even more sophisticated cognitive 
systems that will rival and perhaps 
even surpass human performance. 
However, in the near term, cogni-
tive systems are not going to replace 
humans en masse; instead, they will 
help humans expand their capabili-
ties by leveraging vast amounts of data 
and computing power.

A TIME LINE
Chatbots are one class of cognitive 
computing systems. They are con-
versational agents and question-an-
swering systems; the human–chatbot 
interaction is often an informal con-
versation. ELIZA, which Joseph Wei-
zenbaum created in 1966, is one of the 
first chatbots. Other chatbots include 
PARRY (1972), A.L.I.C.E (1995), Smart-
erchild (2001), Siri (2010), Google Now 
(2012), Alexa (2015), Cortana (2015), 
and Woebot (2017).

The expert systems approach to 
cognitive systems is based on reason-
ing using bodies of knowledge. The 
knowledge is primarily represented 
as if-then rules, which are manually 
developed and encoded. These systems 
cannot learn from their environment 
nor evolve. Edward Feigenbaum intro-
duced two early expert systems around 
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1965: Mycin for diagnosing infectious 
diseases and Dendral for identifying 
unknown organic molecules.

The first generation of neural net-
works and genetic algorithms rep-
resents another set of approaches to 
cognitive systems. Though compu-
tational models for neural networks 
were proposed in the 1940s, it was 
not until 1975 that neural networks 
received widespread attention. Paul 
Werbos introduced the back-propa-
gation algorithm in 1975, which made 
training multilayer neural networks 
feasible and efficient. Genetic algo-
rithms are used for solving nonlinear 
or nondifferent iable opt i m izat ion 
p r o b l e m s .  T hey bor row concepts 
from evolutionary biology to search 
for a global minimum. The lack of 
adequate computational power and 
other factors led to the neural net-
works’ hibernation.

The emergence of graphics pro-
cessing unit (GPU) technology, crowd-
sourced labeled data, and advances 
in machine-learning algorithms cre-
ated a renaissance in neural networks 
during the current decade under the 
deep-learning label. Since 2012, we 
have witnessed an unparalleled inter-
est in using deep learning to solve a 
broad range of problems in vision and 
spoken- and written-language pro-
cessing. Also, recent advanced learn-
ing algorithms and increased access 
to hardware are catalyzing the train-
ing of deeper (e.g., >100 layers) neural 
networks. In summary, the trifecta of 
growing availability of (e.g., crowd-
sourced) labeled data, availability of 
parallel computing hardware, and 
advances in learning algorithms has 
resulted in significant improvement 
in state of the art in diverse research 
fields, often surpassing human perfor-
mance levels.

PLATFORMS, FRAMEWORKS, 
AND APPLICATIONS
The recent emergence of specialized 
processors for cognitive computing, big 
data tools, and advances in deep learn-
ing are accelerating cognitive com-
puting systems research and ushering 
in novel and transformational appli-
cations. IBM’s TrueNorth cognitive 
computing system is a case in point. 
Its design is inspired by the function 
and efficiency of the human brain. The 
TrueNorth architecture provides a spik-
ing neuron model as a building block. 
Its programming paradigm is based 
on an abstraction called corelet, which 
represents a network of neurosynaptic 
cores. A library of reusable corelets and 
an integrated development environ-
ment enable the creation of cognitive 
computing applications.

The IBM Watson platform origi-
nated from a precise-query answering 
capability that was first demonstrated 
when it won the TV game show Jeop-
ardy against world champions of the 
game. Its services are based on knowl-
edge, language, speech, and computer 
vision application programming inter-
faces (APIs) primarily on the cloud/
mobile devices. In addition, the Wat-
son platform provides tools not only 
for integration and curation but also 
for testing fairness and integrity of the 
services. Finally, the platform focuses 
on scaling and openness across multi- 
and hybrid-cloud environments to 
permit the enterprise customers to 
unlock intelligence from the avail-
able data to improve their productivity 
and efficacy. Now Watson is deployed 
in various applications domains. For 
example, Watson Health can read 
and understand more than 200 mil-
lion pages of text in fewer than 3 s. Its 
application domains include customer 
care, the Internet of Things, genomics, 

drug discovery, oncology, and patient 
engagement.

Recently, Nvidia released the Tesla 
P100 GPU, which specifically targets 
deep-learning algorithms. The P100 
features 150 billion transistors on a sin-
gle chip. In addition, Google released 
the Natural Language API, a cloud ser-
vice that provides application devel-
opers access to pretrained algorithms 
for sentiment analysis, named-entity 
recognition, and syntax analysis. Like-
wise, Speech API, Translate API, and 
Vision API are public cloud services 
for speech-to-text conversion, transla-
tion between natural languages, and 
image analysis, respectively. Speech 
API enables converting audio to text 
for more than 80 languages, and Trans-
late API provides machine translation 
between these languages. Applications 
can use Vision API to perform image 
analysis tasks, including object detec-
tion and classification.

Microsoft Cognitive Services is a set 
of APIs, software development kits, and 
services for creating intelligent, engag-
ing, and discoverable applications. 
These services are available in five 
categories: vision, speech, language, 
knowledge, and search. Cisco Cognitive 
Threat Analytics is a cloud-based solu-
tion that helps to detect sophisticated 
threats in real time. It does not depend 
on manually predefined rule sets; it 
instead employs machine learning and 
statistical modeling to independently 
identify new threats, learn from the 
data, adapt, and evolve over time. 
DeepMind focuses on developing algo-
rithms and approaches for programs 
that can learn to solve complex prob-
lems without needing to be explicitly 
taught about the problems beforehand. 
It provides open source environments, 
data sets, and code for developing cog-
nitive computing systems.



GUEST EDITORS’ INTRODUCTION

16	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

Numenta is a small team of scientists 
and engineers specializing in reverse 
engineering the neocortex. They believe 
that understanding how the brain works 
is the key to understanding the principles 
of intelligence and that the same princi-
ples can be used to develop cognitive 
computing systems. Numenta’s scien-
tific findings, software, and intellectual 
property are free for noncommercial pur-
poses and can be licensed for commercial 
use. Augmented Intelligence Software 
from CognitiveScale targets emulating 
and extending human cognitive func-

tion by pairing people and computers. 
The software is based on the premise that 
augmented intelligence is the most effec-
tive way to maximize the value of artifi-
cial intelligence and machine learning.

PROMISES AND  
RESEARCH ISSUES
Cognitive computing system applica-
tions are both numerous and varied. 
They are used for diverse applications 
including fighting cybercrime, person-
alized learning, conversational chat-
bots and question answering, personal 
assistants, prescriptive analytics, anom-
aly detection, humanoid robots and 
assisted living, brain–computer inter-
faces, and language services for multi-
lingual environments. We envision two 
major classes of cognitive computing 
systems. The first class includes those 
that can perform tasks independently, 

without human intervention. Exam-
ples include self-driving vehicles, per-
sonal assistants, and drones for deliver-
ing supplies. The second class includes 
those that augment human capabili-
ties. Such systems will work collabora-
tively with humans to solve complex 
and ill-defined problems. A good exam-
ple is personalized medicine, in which a 
physician and a cognitive system work 
together, and the cognitive system also 
plays a physician role.

The primary research issues in cog-
nitive systems are the architectures for 

building them and the mechanisms used 
for learning, adaptation, and evolution. 
A cognitive architecture is a blueprint 
for developing cognitive systems. It 
specifies predetermined structures and 
interactions among them with the goal 
of achieving functions of the mind. They 
constrain the types of cognitive models 
that can be developed. The knowledge 
embodied in the architecture drives the 
interactions among the structures to 
achieve intelligent behavior.

A cognitive model, in contrast, 
focuses on a single cognitive process, 
such as language acquisition. It is also 
used to study the interaction between 
cognitive processes, such as language 
understanding and problem solv-
ing. Cognitive models help to reveal 
the limitations of cognitive architec-
tures. Thus, there is a strong interplay 
between cognitive architectures and 

models. In the literature, the terms cog-
nitive architecture and cognitive model are 
not used consistently and are often used 
synonymously. The context should help 
to reveal the intended meaning.

There are three major classes of cog-
nitive architectures: cognitivist, connec-
tionist, and hybrid. Cognitivist architec-
tures represent information that uses 
explicit symbolic representations. Cog-
nitivist architectures are also called sym-
bolic architectures/artificial intelligence 
approaches. Cognitive systems based on 
this architecture can successfully solve 
specific problems. However, they lack 
the generality needed to be useful across 
domains. Symbolic representations 
reflect the designers’ understanding of 
the domain and may bias the system. 
Also, as systems become more complex, 
it is difficult for the designers to ensure 
whether all relevant representations are 
adequate to realize the desired cognitive 
behaviors of the system.

Connectionist architectures are 
inspired by the information process-
ing that occurs in biological neural 
systems. Information is processed 
by simple, networked computational 
units called neurons, which communi-
cate in parallel with each other using 
electrochemical signals. A synapse is a 
junction between two neurons with a 
minute gap across which signals pass 
by way of neurotransmitter diffusion.

The brain is made up of neurons, 
which number from 10 to 100 billion. 
Each neuron is predicted to have more 
than 10,000 connections to other neu-
rons. They receive stimuli from other 
neurons through incoming connec-
tions and perform nonlinear compu-
tations using the received stimuli. The 
effect of this computation activates 
other neurons through its outgoing 
connections. The strengths of con-
nection activations are quantified on 

COGNITIVE COMPUTING SYSTEM 
APPLICATIONS ARE BOTH NUMEROUS 

AND VARIED.
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a numeric scale and adjusted to reflect 
the state of network learning. Architec-
tures based on this approach are called 
connectionist or emergent architectures.

Connectionist architectures use dis-
tributed representations for encoding 
knowledge. An advantage of these rep-
resentations is that they are more resil-
ient to noisy input, and performance 
degradation is generally more graceful, 
although interesting research is provid-
ing insights into how these models can 
be attacked adversarially with small per-
turbation in the inputs. Deep learning 
relies heavily on multiscale distributed 
representations. There is a strong cou-
pling between the cognitive computing 
architectures and the knowledge repre-
sentations used. Convolutional neural 
networks, recurrent neural networks 
(RNNs), long short-term memory units 
embedded in RNNs, and differentiable 
neural computers are types of connec-
tionist architectures. Hybrid architec-
tures employ a combination of symbolic 
and connectionist architectures.

Other issues include the need for 
large volumes of data and a high-per-
formance computing infrastructure for 
model development, overfitting models 
to training data, difficulties in domain 
adaptation, the need to explain how 
cognitive systems deduce conclusions, 
and hyperparameter optimization. In 
addition, for mainstream adoption, it 
is important to ensure how the connec-
tionist architectures can be trusted and 
be transparent.

ABOUT THIS SPECIAL ISSUE
The four articles in this special issue 
are representative of the cognitive 
computing systems domain. Cog-
nitive computing applications typi-
cally require sophisticated processing 
of noisy and unstructured real-world 
data under stringent time constraints. 

Neuromorphic computing and neu-
ral-network accelerators are solutions 
to meet these processing challenges. 
The goal of neuromorphic computing 
is to use very large-scale integration 
(VLSI) systems that are driven by elec-
tronic analog circuits to simulate neu-
robiological architectures present in 
the nervous system. These VLSI chips 
are characterized by ultralow power 
consumption and high performance. 
They are referred to as neuromorphic 
chips or brain chips. 

The first article, “TrueNorth: Accel-
erating From Zero to 64 Million Neu-
rons in 10 Years” by DeBole et al. from 
IBM, presents TrueNorth architecture. 
TrueNorth is a brain-inspired massively 
multicore neural-network inference 
chip containing 1 million spiking neu-
rons and 256 million low-precision 
synapses. This is a culmination of a 
decade of fundamental research span-
ning neuroscience, architecture, chips, 
systems, algorithms, and software. 
TrueNorth is the largest neurosynap-
tic computer ever built. The 64-chip 

system has 64 million neurons and 16 
billion synapses and can be configured 
with deep neural networks trained to 
accurately detect, localize, and clas-
sify objects in high-definition video at 
faster-than-real-time frame rates and 
unprecedented energy efficiency.

The second article, “Leveraging Sto-
chasticity for In Situ Learning in Bina-
rized Deep Neural Networks” by Pyle et 
al., presents a binary approach for com-
pact and energy-sparing neuromorphic 
architectures using emerging devices. 
Approaches that deal with device pro-
cess variations and the realization of 
stochastic behavior intrinsically within 
neural circuits are explored. The authors 
leverage a novel probabilistic spin-
tronic device for low-energy recognition 
operations, which improves deep neu-
ral-network performance through active 
on-chip learning via the mitigation of 
device reliability challenges.

“Perspectives on Becoming an Appl
ied Machine Learning Scientist” by Rasi-
wasia, the third article, provides insights 
into the application of machine-learning 
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techniques to solve business problems. 
The author reflects on his experience 
of transitioning from a researcher to 
an applied machine-learning scientist 
by drawing on his end-to-end solutions 
experience at software companies, 
including Yahoo Research Labs, Fashi-
ate, Snapdeal, and Amazon.

The special issue concludes with 
“Human Eye Movements Reveal Video 
Frame Importance” by Ma et al. This 
article explores whether eye move-
ment patterns reflect frame importance 
during video viewing and facilitate 
video summarization. The authors re-
corded eye movements while subjects 
watched videos from the SumMe video 
summarization data set. They found 

more gaze consistency for selected 
frames than for unselected. A novel 
multistream deep-learning model for 
video summarization is introduced 
that incorporates subjects’ eye move-
ment information. Gaze data im-
proved the model’s performance over 
that observed when they used only 
the frames’ physical attributes. Their 
results suggest that eye movement 
patterns reflect the cognitive process-
ing of sequential information. This in-
sight helps to select important video 
frames and provide an innovative al-
gorithm that uses gaze information in 
video summarization.

Recent progress in cognitive comput-
ing has resulted in significant advances 

in the state of the art in diverse fields 
ranging from radio astronomy to life sci-
ences. Cognitive computing is likely to 
dramatically disrupt the conventional 
workflows and practices and catapult us 
into a new era and culture that is a steep 
change from the present age.

T he guest editors are grateful to 
the anonymous reviewers for 
their diligence and insightful 

comments. 
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