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Highlights
• We propose a novel Stabilized-SAV approach for solving the anisotropic Cahn–Hilliard model.
• The scheme is linear, second-order accurate, provably unconditionally energy stable, and non-iterative.
• Three crucial linear stabilization terms are added to remove oscillations caused by anisotropy.
• One only need to solve three decoupled linear equations at each time step.
• We further prove the unconditional energy stabilities rigorously and present numerous simulations.

Abstract

In this paper, we consider numerical approximations for solving the anisotropic Cahn–Hilliard model. We combine the
Scalar Auxiliary Variable (SAV) approach with the stabilization technique to arrive at a novel Stabilized-SAV approach, where
three linear stabilization terms, which are shown to be crucial to remove the oscillations caused by the anisotropic coefficient,
are added to enhance the stability while keeping the required accuracy. The schemes are very easy-to-implement and fast
in the sense that all nonlinear terms are treated in a semi-explicit way, and one only needs to solve three decoupled linear
equations with constant coefficients at each time step. We further prove the unconditional energy stabilities rigorously and
present numerous 2D and 3D numerical simulations to demonstrate the stability and accuracy.
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1. Introduction

In this paper, we consider numerical approximations for solving the anisotropic Cahn–Hilliard model proposed
by Torabi et al. in [1,2], where a sufficiently big anisotropic coefficient is introduced to simulate the formation of
faceted pyramids on nanoscale crystal surfaces. When the anisotropic coefficient vanishes, the system degenerates to
the well-known Cahn–Hilliard model, that is a representative equation of the phase field method, or called diffusive
interface method. Such a method has been extensively studied and applied to resolve the motion of free interfaces
between multiple material components, see [3–10].

Comparing to the isotropic Cahn–Hilliard model, in addition to the stiffness issue from the interfacial width,
the specialty of the anisotropic system is that there exists a strong anisotropic coefficient γ ( ∇φ

|∇φ|
) that can induce

large oscillations numerically so that the complexity of algorithm development is increased to a large extent.
Hence there existed very few successful attempts in designing efficient and provably energy stable schemes for
this model. In [1,2], the authors used the fully-implicit method to discretize the nonlinear terms. Its energy stability
is not provable, and the computational cost is high due to its nonlinear nature. In [11], a first-order scheme is
developed based on the linear stabilization approach where all nonlinear terms are treated explicitly. Some extra
linear stabilizers are added to enhance the stability. However, the energy stability is not provable for the anisotropic
case even though the scheme is quite efficient and stable that allows for the large time step in computations. In [12],
the authors applied the convex-splitting approach for solving this model, however, their scheme is only provably
energy stable for the isotropic case. In [13], the authors proposed a second-order scheme that is actually the modified
version of the scheme in [11], where the second-order extrapolation is pre-estimated by the solutions of the first-
order scheme. However, for the anisotropic case, the predictor–corrector scheme is not provably energy stable as
well. Hence, in summary, to the best of the author’s knowledge, no numerical schemes can be claimed to be provably
unconditionally energy stable, fast (e.g., non-iterative), and second-order accurate in time.

In this paper, the main purpose is to develop efficient algorithms that can possess the three desired properties
mentioned above to solve the anisotropic Cahn–Hilliard model. To this end, by combining the newly developed
SAV approach (cf. [14]) with the stabilization technique, we arrive at a novel stabilized-SAV (SSAV) method.
More precisely, we first transform the total free energy integral into a quadratic function of a new, scalar auxiliary
variable via a change of variables. Then, for the reformulated model in terms of the new variable, we treat all
nonlinear terms in a semi-explicit way. Due to the specialty of the new variable that is non-local type formally,
one only needs to solve several decoupled, linear equations with constant coefficients at each time step. Thus
the scheme is very easy to implement and fast. Most importantly, some extra linear stabilization terms, which are
shown to be crucial to remove oscillations caused by the anisotropic coefficient efficiently, are added to enhance the
stability while keeping the required accuracy. We further show that the developed SSAV schemes are unconditional
energy stable rigorously, and present various numerical examples to demonstrate the accuracy and stability. To the
best of the author’s knowledge, the schemes developed in this paper are the first provable unconditionally energy
stable schemes with non-iterative computations and second-order accuracy in time for the anisotropic Cahn–Hilliard
system.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the governing PDE
system for the anisotropic Cahn–Hilliard model. In Section 3, we develop two numerical schemes with second-order
accuracy for simulating the model, and rigorously prove their unconditional energy stabilities. Various 2D and 3D
numerical experiments are given in Section 4 to demonstrate the accuracy and efficiency of the proposed numerical
schemes. Finally, some concluding remarks are given in Section 5.

2. Model equations and its energy law

Now we give a brief description for the anisotropic Cahn–Hilliard model [1,2]. Let Ω be a smooth, open,
bounded, connected domain in Rd , d = 2, 3. Let φ be an order parameter which takes the values ±1 in the two
phases with a smooth transitional layer of thickness ϵ. We consider the total free energy as follows,

E(φ) =

∫
Ω

(
γ (n)

(
1
2
|∇φ|

2
+

1
ϵ2 F(φ)

)
+
β

2
G(φ)

)
dx, (2.1)
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where γ (n) is a function describing the anisotropic property, and n is the interface normal that is defined as n =
∇φ

|∇φ|
.

For 2D, it reads as

n = (n1, n2)T
=

1√
φ2

x + φ2
y

(φx , φy)T , (2.2)

and for 3D, it reads as

n = (n1, n2, n3)T
=

1√
φ2

x + φ2
y + φ2

z

(φx , φy, φz)T . (2.3)

The nonlinear function F(φ) takes the usual Ginzburg–Landau double-well potential that reads as

F(φ) =
1
4

(φ2
− 1)2. (2.4)

The anisotropic function may take the fourfold form that reads as

γ (n) = 1 + α cos(4Θ) = 1 + α(4
d∑

i=1

n4
i − 3), (2.5)

where Θ denotes the orientation angle of the interfacial normal to the interface. The non-negative parameter α in
(2.5) describes the intensity of anisotropy. In [1,2], it was indicated that a sufficient big α would produce a strongly
anisotropic system, i.e., the underlying Cahn–Hilliard equation is ill-posed. Thus an extra potential G(φ) is usually
added to penalize infinite curvatures in the resulting corners in order to regularize the system, and β > 0 is the
magnitude of the regularization parameter. Two kinds of regularization terms are generally considered where one
is the linear regularization based on the bi-Laplacian of the phase variable, that reads as

G(φ) = (∆φ)2, (2.6)

and the other is the nonlinear Willmore regularization that reads as

G(φ) = (∆φ −
1
ϵ2 f (φ))2, (2.7)

where f (φ) = F ′(φ) = φ(φ2
− 1). When α = β = 0, the system degenerates to the isotropic Cahn–Hilliard model.

By taking the H−1 gradient flow on the total free energy E(φ), we obtain the anisotropic Cahn–Hilliard system
with the linear regularization:

φt = ∇ · (M(φ)∇µ), (2.8)

µ =
1
ϵ2 γ (n) f (φ) − ∇ · m + β∆2φ; (2.9)

or with the Willmore regularization:

φt = ∇ · (M(φ)∇µ), (2.10)

µ =
1
ϵ2 γ (n) f (φ) − ∇ · m + β(∆ −

1
ϵ2 f ′(φ))(∆φ −

1
ϵ2 f (φ)), (2.11)

where f ′(φ) = 3φ2
−1, M(φ) ≥ M0 > 0 is the mobility function that depends on the phase variable φ or a constant.

The vector field m is defined as

m = γ (n)∇φ +
P∇nγ (n)

|∇φ|
(
1
2
|∇φ|

2
+

1
ϵ2 F(φ)), (2.12)

where the matrix P = I − nnT .
Without the loss of generality, we adopt the periodic boundary condition to remove all complexities associated

with the boundary integrals in this study. We remark that the boundary conditions can also be the no-flux type as
∂φ

∂n

⏐⏐⏐
∂Ω

=
∂µ

∂n

⏐⏐⏐
∂Ω

=
∂ω

∂n

⏐⏐⏐
∂Ω

= 0, (2.13)

where ω = ∆φ for linear regularization model and ω = ∆φ −
1
ϵ2 f (φ) for the Willmore regularization model, n is

the outward normal of the computational domain Ω . All numerical analyses in this paper can be carried out with
the no-flux boundary conditions without any further difficulties.
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The model equations (2.8)–(2.9) and (2.10)–(2.11) follow the dissipative energy law. By taking the L2 inner
product of (2.8) with −µ, and of (2.9) with φt , using the integration by parts and combining the obtained two
equalities, we obtain

d
dt

E(φ) = −∥
√

M(φ)∇µ∥
2

≤ 0. (2.14)

Meanwhile, the Cahn–Hilliard model conserves the local mass density. By taking the L2 inner product of (2.8)
with 1, one can obtain the mass conservation property directly using integration by parts, that reads as

d
dt

∫
Ω

φdx = 0. (2.15)

3. Numerical schemes

We develop in this section a set of linear, second-order, unconditionally energy stable schemes for solving the
anisotropic model (2.8)–(2.9) and (2.10)–(2.11). The main challenging issues are to develop suitable approaches to
discretize the nonlinear terms, particularly, the terms associated with the anisotropic coefficient γ (n), as well as the
nonlinear term from the Willmore regularization potential (the term associated with β in (2.11)).

For the isotropic Cahn–Hilliard equation where the only numerical challenge is to discretize the nonlinear cubic
term f (φ), there are many successful techniques to preserve the unconditional energy stability, for instances, the
convex splitting approach [15], the stabilization approach [13,16–22], Invariant Energy Quadratization method
[23–29], and a variety of other type methods, see [7–10], etc. In the convex-splitting method, the convex part of the
potential is treated implicitly and the concave part is treated explicitly. This approach is energy stable, however, it
usually produces a nonlinear scheme in most cases, thus the implementation is complicated and the computational
cost is high. In the stabilization approach, the nonlinear term is treated in a simple explicit way. In order to preserve
the energy stability, a linear stabilizing term has to be added, and the magnitude of that term usually depends on
the upper bound of the second order derivative of the double-well potential. The stabilization approach introduces a
purely linear scheme, thus it is very easy to implement. However, if there does not exist any finite upper bound for
that second order derivative, one must make some reasonable revisions to the nonlinear potential in order to obtain
a finite bound, for example, a quadratic cut-off function for the double-well potential. Such a method is particularly
reliable for those models satisfying the maximum principle. Otherwise, if the maximum principle does not hold,
the revisions to the nonlinear potentials may lead to spurious solutions.

Concerning the convex splitting method, it is not clear on whether the nonlinear potentials multiplied with the
anisotropic coefficient could be split into the combinations of the convex and concave parts, which exclude the
convex splitting approach. With regard to the stabilization approach, it is also not an ideal choice even though there
existed some work on this method [11], since (i) it is uncertain whether the PDE solution could satisfy any maximum
principle; (ii) the developed scheme is not provable energy stable. Therefore, the ideas of the convex splitting or
the stabilization approaches may not be suitable for solving the anisotropic model to obtain the provably energy
stable schemes, indeed.

We develop second-order accurate and provably unconditionally energy stable schemes by combining the recently
SAV approach [14] with the stabilization technique. Without worrying about whether the continuous/discrete
maximum principle holds or a convexity/concavity splitting exists, we arrive at a novel Stabilized-SAV approach.
The added linear stabilization terms are particularly efficient in removing oscillations caused by the anisotropic
coefficient while keeping the computation fast and easy-to-implement with the required accuracy.

3.1. Linear regularization model

We first deal with the linear regularization model. We define an auxiliary variable u(t) as follows:

u(t) =

√∫
Ω

γ (n)
(1

2
|∇φ|

2
+

1
ϵ2 F(φ)

)
dx + B, (3.1)

where B is any constant that ensures the radicand positive (in all numerical examples, we let B = 1e4 which is the
order of O(ϵ−2). Thus the total free energy (2.1) can be rewritten as

E(u, φ) = u2
− B +

β

2

∫
Ω

(∆φ)2dx, (3.2)
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Using the new variable u, we then have the following equivalent PDE system,

φt = ∇ · (M(φ)∇µ), (3.3)
µ = H (φ)u + β∆2φ, (3.4)

ut =
1
2

∫
Ω

H (φ)φt dx, (3.5)

where

H (φ) =

1
ϵ2 γ (n) f (φ) − ∇ · m√∫

Ω γ (n)
( 1

2 |∇φ|
2
+

1
ϵ2 F(φ)

)
dx + B

. (3.6)

The transformed system (3.3)–(3.5) forms a closed PDE system with the following initial conditions,⎧⎪⎨⎪⎩
φ(t = 0) = φ0,

u(t = 0) =

√∫
Ω

γ (n0)
(1

2
|∇φ0|

2
+

1
ϵ2 F(φ0)

)
dx + B.

(3.7)

The system (3.3)–(3.5) also follows an energy dissipative laws in terms of the new variable u and φ. By taking
the L2 inner product of (3.3) with −µ, of (3.4) with φt , multiplying (3.5) with 2u, performing integration by parts
and summing all equalities up, we can obtain the energy dissipation law of the new system (3.3)–(3.5) as

d
dt

E(u, φ) = −∥
√

M(φ)∇µ∥
2

≤ 0. (3.8)

We note that the new transformed system (3.3)–(3.5) is equivalent to the original system (2.8)–(2.9) for the time
continuous case since (3.1) can be easily obtained by integrating (3.5) with respect to the time. Next we will develop
unconditionally energy stable linear numerical schemes for time stepping of the transformed system (3.3)–(3.5), and
the proposed schemes should formally follow the new energy dissipation law (3.8) in the discrete sense, instead of
the energy law for the originated system (2.14).

Let δt > 0 be a time step size and set tn
= nδt for 0 ≤ n ≤ N with T = Nδt . We also denote the L2 inner

product of any two spatial functions φ(x) and ψ(x) by (φ,ψ) =
∫
Ω φ(x)ψ(x)dx, and the L2 norm of the function

φ(x) by ∥φ∥
2

= (φ, φ). Let ψn denote the numerical approximation to ψ(·, t)|t=tn for any function ψ .
We construct a numerical scheme based on the second-order backward differentiation formula (BDF2).

Scheme 1. Assuming φn, un and φn−1, un−1 are known, we update φn+1, un+1 by solving

3φn+1
− 4φn

+ φn−1

2δt
= ∇ · (M∗,n+1

∇µn+1), (3.9)

µn+1
= H∗,n+1un+1

+ β∆2φn+1 (3.10)

+
S1

ϵ2 (φn+1
− 2φn

+ φn−1) − S2∆(φn+1
− 2φn

+ φn−1),

3un+1
− 4un

+ un−1
=

1
2

∫
Ω

H∗,n+1(3φn+1
− 4φn

+ φn−1)dx, (3.11)

where

φ∗,n+1
= 2φn

− φn−1, M∗,n+1
= M(φ∗,n+1), H∗,n+1

= H (φ∗,n+1), (3.12)

and Si with i = 1, 2, 3 are three positive stabilizing parameters.

Remark 3.1. Two second-order linear stabilizers (associated with S1, S2) are added in the above scheme. These
terms, S1

ϵ2 ∆(φn+1
− 2φn

+ φn−1) and −S2∆(φn+1
− 2φn

+ φn−1) are two commonly used linear stabilizers in the
linear stabilization method for solving the isotropic or anisotropic phase field model, (cf.[11] for the anisotropic
model, and [16] for the isotropic model). The errors that these two terms introduce are of order S1

ϵ2 δt2φt t (·) and
S2δt2∆φt t (·), respectively, which are of the same order as the error introduced by the second-order extrapolation
of the nonlinear term f (φ) and the Laplacian term ∆φ. Numerical examples show that the combinations of these
two stabilizers are crucial to removing all oscillations induced by the anisotropic coefficient γ (n), since the term
n =

∇φ

|∇φ|
changes its sign frequently as long as when |∇φ| is close to zero (cf. Fig. 4.4 in Section 4).
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As far as one can see, we have to solve a nonlocal and coupled system for φn+1 and un+1 in the scheme (3.9)–
(3.11) at each time step which is very complicated. But in practice, we can simplify the solving process through
the following procedure.

We first rewrite (3.11) as follows,

un+1
=

1
2

∫
Ω

H∗,n+1φn+1dx + gn, (3.13)

where

gn
=

4un
− un−1

3
−

1
2

∫
Ω

H∗,n+1 4φn
− φn−1

3
dx.

Then the scheme (3.9) can be written as

P(φn+1) −
1
2
∇ · (M∗,n+1

∇ H∗,n+1)
∫
Ω

H∗,n+1φn+1dx = g̃n, (3.14)

where⎧⎪⎨⎪⎩
P(φ) =

3
2δt

φ − ∇ · (M∗,n+1
∇(β∆2φ +

S1

ϵ2 φ − S2∆φ)),

g̃n
=

4φn
− φn−1

2δt
+ gn

∇ · (M∗,n+1
∇(H∗,n+1)) − ∇ · M∗,n+1

∇(
S1

ϵ2 φ
∗,n+1

− S2∆φ
∗,n+1).

Define a linear operator P−1(·), such that for any ψ ∈ L2(Ω ), φ = P−1(ψ) is defined as

3
2δt

φ − ∇ · (M∗,n+1
∇(β∆2φ +

S1

ϵ2 φ − S2∆φ)) = ψ. (3.15)

By applying the operator P−1 to (3.14), then we obtain

φn+1
−

1
2
P−1(∇ · (M∗,n+1

∇ H∗,n+1))
∫
Ω

H∗,n+1φn+1dx = P−1(g̃n). (3.16)

By taking the L2 inner product with H∗,n+1, we obtain∫
Ω

H∗,n+1φn+1dx =

∫
Ω H∗,n+1P−1(g̃n)dx

1 −
1
2

∫
Ω H∗,n+1P−1(∇ · (M∗,n+1∇ H∗,n+1))dx

. (3.17)

It is easy to check the term in the denominator −
∫
Ω H∗,n+1P−1(∇ · (M∗,n+1

∇ H∗,n+1))dx ≥ 0 since −P−1(∇ ·

(M∗,n+1
∇(•))) is a positive definite operator. Therefore, in the computations, one only needs to find ψ1 = P−1(g̃n)

and ψ2 = P−1(∇ · (M∗,n+1
∇ H∗,n+1)), that means to solve the following two sixth order equations,

3
2δt

ψ1 − ∇ · (M∗,n+1
∇(β∆2ψ1 +

S1

ϵ2ψ1 − S2∆ψ1)) = g̃n, (3.18)

and

3
2δt

ψ2 − ∇ · (M∗,n+1
∇(β∆2ψ2 +

S1

ϵ2ψ2 − S2∆ψ2)) = ∇ · (M∗,n+1
∇ H∗,n+1), (3.19)

with the periodic boundary conditions. Once ψ1 and ψ2 are obtained, by applying (3.17) to get
∫
Ω H∗,n+1φn+1dx,

we then solve the third sixth order equation (3.14) to obtain φn+1.
To summarize, the scheme (3.9)–(3.11) can be easily implemented in the following manner:

• Compute ψ1 and ψ2 by solving two sixth-order equations, (3.18) and (3.19);
• Compute

∫
Ω H∗,n+1φn+1dx from (3.17) and un+1 from (3.13);

• Compute φn+1 by solving the third sixth-order equation (3.14).
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Hence, instead of solving nonlocal equations that might need some costly iterative solvers, the total cost of
solving scheme (3.9)–(3.11) at each time step is just solving three decoupled, sixth-order linear equations.

Remark 3.2. It is remarkable that, if the mobility function M(φ) is a constant, e.g., M(φ) = M , then these
sixth-order equations form like

3
2Mδt

ψ −
S1

ϵ2 ∆ψ + S2∆
2ψ − β∆3ψ = · · · . (3.20)

These equations with periodic boundary conditions can be easily solved by using the Fourier-spectral methods.
Hence, the stabilized SAV scheme is extremely efficient and easy to implement.

Now we prove the scheme (3.9)–(3.11) is unconditionally energy stable as follows.

Theorem 3.1. The scheme (3.9)–(3.11) is unconditionally energy stable which satisfies the following discrete
energy dissipation law,

1
δt

(En+1
linear − En

linear ) ≤ −∥

√

M∗,n+1∇µn+1
∥

2
≤ 0, (3.21)

where

En+1
linear =

(un+1)2
+ (2un+1

− un)2

2
+
β

2

(
∥∆φn+1

∥
2
+ ∥2∆φn+1

− ∆φn
∥

2

2

)
+

S1

ϵ2

∥φn+1
− φn

∥
2

2
+ S2

∥∇φn+1
− ∇φn

∥
2

2
.

(3.22)

Proof. By taking the L2 inner product of (3.9) with −2δtµn+1, we obtain

−(3φn+1
− 4φn

+ φn−1, µn+1) = 2δt∥
√

M∗,n+1∇µn+1
∥

2. (3.23)

By taking the L2 inner product of (3.10) with 3φn+1
− 4φn

+ φn−1, and using integration by parts, we obtain

(µn+1, 3φn+1
− 4φn

+ φn−1) = un+1(H∗,n+1, 3φn+1
− 4φn

+ φn−1)

+
S1

ϵ2 (φn+1
− 2φn

+ φn−1, 3φn+1
− 4φn

+ φn−1)

+ S2(∇(φn+1
− 2φn

+ φn−1),∇(3φn+1
− 4φn

+ φn−1))

+β(∆φn+1,∆(3φn+1
− 4φn

+ φn−1).

(3.24)

By multiplying (3.11) with −2un+1, we obtain

−2(3un+1
− 4un

+ un−1)un+1
= −un+1

∫
Ω

H∗,n+1(3φn+1
− 4φn

+ φn−1)dx. (3.25)

Combining the above equations and applying the following two identities

2a(3a − 4b + c) = a2
+ (2a − b)2

− b2
− (2b − c)2

+ (a − 2b + c)2,

(3a − 4b + c)(a − 2b + c) = (a − b)2
− (b − c)2

+ 2(a − 2b + c)2,
(3.26)

we obtain(
(un+1)2

+ (2un+1
− un)2

)
−

(
(un)2

+ (2un
− un−1)2

)
+
β

2

(
∥∆φn+1

∥
2
+ ∥2∆φn+1

− ∆φn
∥

2
)

−
β

2

(
∥∆φn

∥
2
+ ∥2∆φn

− ∆φn−1
∥

2
)

+
S1

ϵ2 ∥φn+1
− φn

∥
2
−

S1

ϵ2 ∥φn
− φn−1

∥
2

+ S2∥∇φ
n+1

− ∇φn
∥

2
− S2∥∇φ

n
− ∇φn−1

∥
2

+ (un+1
− 2un

+ un−1)2
+

2S1

ϵ2 ∥φn+1
− 2φn

+ φn−1
∥

2
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+ 2S2∥∇(φn+1
− 2φn

+ φn−1)∥2
+
β

2
∥∆(φn+1

− 2φn
+ φn−1)∥2

= −2δt∥
√

M∗,n+1∇µn+1
∥

2.

Finally, we obtain the desired result after dropping some positive terms. □

Remark 3.3. Heuristically, 1
δt (En+1

linear − En
linear ) is a second-order approximation of d

dt E(φ, u) at t = tn+1. For any
smooth variable ψ with time, we have

∥ψn+1
∥

2
− ∥2ψn+1

− ψn
∥

2

2δt
−

∥ψn
∥

2
− ∥2ψn

− ψn−1
∥

2

2δt

∼=
∥ψn+2

∥
2
− ∥ψn

∥
2

2δt
+ O(δt2) ∼=

d
dt

∥ψ(tn+1)∥2
+ O(δt2), (3.27)

and
∥ψn+1

− ψn
∥

2
− ∥ψn

− ψn−1
∥

2

2δt
∼= O(δt2). (3.28)

Remark 3.4. It is also straightforward to develop the second-order Crank–Nicolson scheme where the linear
stabilizers terms still form like ψn+1

− 2ψn
+ ψn−1. We omit the details to the interested readers since the proof

of energy stability is quite similar to Theorem 3.1. In addition, although we consider only time discrete schemes in
this study, the results can be carried over to any consistent finite-dimensional Galerkin approximations in the space
since the proofs are all based on a variational formulation with all test functions in the same space as the space of
the trial functions.

3.2. Willmore regularization model

We deal with the Willmore regularization model in this subsection. Similar to the linear regularization case, we
define an auxiliary variable as follows:

u(t) =

√∫
Ω

(
γ (n)

(1
2
|∇φ|

2
+

1
ϵ2 F(φ)

)
+
β

2
(∆φ −

1
ϵ2 f (φ))2

)
dx + B, (3.29)

where B is a constant to ensure the radicand positive and we let B ∼ O(ϵ−2) in computations. Thus the total free
energy (2.1) can be rewritten as

E(u, φ) = u2
− B. (3.30)

Using these new variables u, we then have the following equivalent PDE system,

φt = ∇ · (M(φ)∇µ), (3.31)

µ = Z (φ)u, (3.32)

ut =
1
2

∫
Ω

Z (φ)φt dx, (3.33)

where

Z (φ) =

1
ϵ2 γ (n) f (φ) − ∇ · m + β(∆ −

1
ϵ2 f ′(φ))(∆φ −

1
ϵ2 f (φ))√∫

Ω

(
γ (n)

( 1
2 |∇φ|

2
+

1
ϵ2 F(φ)

)
+

β

2 (∆φ −
1
ϵ2 f (φ))2

)
dx + B

. (3.34)

The system (3.31)–(3.33) is equipped with the following initial conditions,⎧⎪⎨⎪⎩
φ(t = 0) = φ0,

u(t = 0) =

√∫
Ω

(
γ (n0)

(1
2
|∇φ0|

2
+

1
ϵ2 F(φ0)

)
+
β

2
(∆φ0 −

1
ϵ2 f (φ0))2

)
dx + B.

(3.35)
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It is easy to see that the system (3.31)–(3.33) follows an energy dissipative law in terms of the new variable u
and φ. By taking the L2 inner product of (3.3) with −µ, of (3.4) with φt , multiplying (3.5) with 2u, performing
integration by parts, and summing all equalities up, we can obtain the energy dissipation law of the new system
(3.3)–(3.5) as

d
dt

E(u, φ) = −∥
√

M(φ)∇µ∥
2

≤ 0. (3.36)

We present the second-order numerical scheme based on the BDF2 for solving the transformed model
(3.31)–(3.33).

Scheme 2. Assuming φn, un and φn−1, un−1 are known, we update φn+1, un+1 by solving

3φn+1
− 4φn

+ φn−1

2δt
= ∇ · (M∗,n+1

∇µn+1), (3.37)

µn+1
= Z∗,n+1un+1

+
S1

ϵ2 (φn+1
− 2φn

+ φn−1) (3.38)

−S2∆(φn+1
− 2φn

+ φn−1) + S3∆
2(φn+1

− 2φn
+ φn−1),

3un+1
− 4un

+ un−1
=

1
2

∫
Ω

Z∗,n+1(3φn+1
− 4φn

+ φn−1)dx, (3.39)

where Z∗,n+1
= Z (φ∗,n+1), Si,i=1,2,3 are three positive stabilizing parameters.

Here we add the third stabilization term associated with S3 is of the order S3δt2∆2φt t (·) since we also treat the
Willmore regularization term in the semi-explicit way. Thus we choose S3 ∼ O(β) in practice.

Since the scheme (3.37)–(3.39) is almost identical to the scheme (3.9)–(3.11) formally, thus we omit the details
of its implementation procedure and only present the theorem of energy stability as follows.

Theorem 3.2. The scheme (3.37)–(3.39) is unconditionally energy stable which satisfies the following discrete
energy dissipation law,

1
δt

(En+1
will − En

will) ≤ −∥

√

M∗,n+1∇µn+1
∥

2
≤ 0, (3.40)

where

En+1
will =

(un+1)2
+ (2un+1

− un)2

2
+

S1

ϵ2

∥φn+1
− φn

∥
2

2

+ S2
∥∇φn+1

− ∇φn
∥

2

2
+ S3

∥∆φn+1
− ∆φn

∥
2

2
.

(3.41)

4. Numerical simulations

We now present various numerical examples to demonstrate the accuracy, energy stability, and efficiency of the
developed schemes. Here, we set the computational domain as Ω = [0, 2π ]d , d = 2, 3 and use periodic boundary
conditions. The Fourier-spectral method is adopted to discretize the space, where 1292 Fourier modes are used for
2D simulations, and 1293 Fourier modes are used for 3D simulations.

If not explicitly specified, the default values of order parameters and stabilization parameters are set as follows,

M(φ) = 1, ϵ = 6e–2, α = 0.3, β = 6e–4, S1 = 4, S2 = 4, S3 = 1e–3. (4.1)

4.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the two proposed schemes, the stabilized
SAV scheme (3.9)–(3.11) for the linear regularization model, denoted by SSAV; and the stabilized SAV scheme
(3.37)–(3.39) for the Willmore regularization model, denoted by SSAV-W. For comparisons, we also compute the
convergence rates for the two non-stabilized schemes, namely, the scheme (3.9)–(3.11) with S1 = S2 = 0, denoted
by SAV; and the scheme (3.37)–(3.39) with S1 = S2 = S3 = 0, denoted by SAV-W.
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Fig. 4.1. The L2 numerical errors of φ computed by using the stabilized scheme SSAV and non-stabilized scheme SAV with various time
steps for the isotropic Cahn–Hilliard model (γ (n) = 1, β = 0) with two different mobility parameters where (a) M = 0.001 and (b) M = 1.
Other parameters are from (4.1).

Fig. 4.2. (a) The L2 numerical errors of φ that are computed using the stabilized scheme SSAV and the non-stabilized scheme SAV with
various time steps for the anisotropic Cahn–Hilliard model with linear regularization. (b) The L2 numerical errors of φ computed by using
the stabilized scheme SSAV-W and the non-stabilized scheme SAV-W with various time steps for the anisotropic Cahn–Hilliard model with
Willmore regularizations. For both figures, the mobility parameter M = 1, anisotropic strength α = 0.1, and other parameters are from (4.1).

We set the initial conditions as follows,

φ(x, y, t = 0) =

2∑
i=1

− tanh(

√
(x − xi )2 + (y − yi )2 − ri

1.2ϵ
) + 1, (4.2)

where (x1, y1, r1) = (π − 0.7, π − 0.6, 1.5) and (x2, y2, r2) = (π + 1.65, π + 1.6, 0.7). Since the exact solutions
are not known, we choose the solution obtained with the time step size δt = 1e–7 computed by the scheme SSAV
and SSAV-W as the benchmark solution (approximately the exact solution) for computing errors of each model.

We first test the convergences of schemes SSAV and SAV for the isotropic Cahn–Hilliard model (γ (n) =

1, β = 0) by varying two mobility parameters of M = 0.001 and M = 1 and using other parameters from
(4.1). A special remark is, for the isotropic model, we treat the ∆φ implicitly and define the auxiliary variable
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Fig. 4.3. Coarsening dynamics of two 2D circles for the isotropic Cahn–Hilliard model with α = 1, β = 0. (a) Time evolution of the total
free energy functional (2.1) computed by using six different time steps. (b) Time evolution of the free energy (2.1) and the modified energy
(3.2) computed by using δt = 1e–4. (c) The 2D dynamical evolution of the phase variable φ by using δt = 1e–4 where snapshots are taken
at t = 0, 6.36e–2, 7e–3, and 1.5e–1.

Fig. 4.4. The profile of γ (n0) with α = 0.3 by using the initial condition (4.3). The left subfigure is the 2D surface plots of γ (n0), and
the right subfigure is the 1D cross-section of γ (n0)|(·,y=π ).

u(t) =

√∫
Ω

1
ϵ2 F(φ)dx + B. Thus in the stabilized scheme SSAV for solving the isotropic model, the second

stabilizer is not needed, namely, we set S1 = 4, S2 = 0.
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Fig. 4.5. Time evolution of the total free energy functional (2.1) for the anisotropic linear regularization model by using the non-stabilized
scheme SAV for four time steps of 1e–5, 1e–6, 1e–7, and 1e–8.

We perform the refinement test for the temporal convergence and present the L2 errors of φ between the numerical
solution with various time steps and the benchmark solution at t = 0.1 in Fig. 4.1. Some remarkable features
observed from Fig. 4.1 are listed as follows.

• When M = 0.001, both schemes, SSAV and SAV, present the second-order convergence rate asymptotically,
and good approximations to the exact solution, regardless of whether they are stabilized or not, shown in
Fig. 4.1(a). But obviously, the magnitude of errors computed by the SSAV is bigger than that computed by
the SAV since extra splitting errors are induced by the two added stabilizers.

• When M = 1, both schemes, SSAV and SAV, are still stable for all tested time steps, shown in Fig. 4.1(b).
However, the non-stabilized scheme SAV shows very bad accuracy results for δt > 3.90625e–6. When
δt ≤ 3.90625e–6, it presents good approximations to the exact solution and second-order convergence rate.
On the contrary, the stabilized scheme SSAV is not only stable for all tested time steps but also presents good
approximations to the exact solutions and show second-order accuracy all along. But when δt ≤ 3.90625e–6,
the magnitude of errors computed by the stabilized scheme SSAV is remarkably bigger than that computed
by the non-stabilized scheme SAV due to extra splitting errors introduced by stabilization terms.
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Fig. 4.6. Time evolution of the free energy functional (2.1) of three combinations of linear stabilizers, for solving the anisotropic linear
regularization model with the initial condition of (4.3) by using the stabilized scheme SSAV and time step δt = 1e–4. The left subfigure
(a) is the energy profile for t ∈ [0, 3e–2], and the right subfigure (b) is a close-up view for t ∈ [0, 5e–3].

Fig. 4.7. (a) The 2D dynamical evolution of the phase variable φ for the anisotropic linear regularization model by using the initial condition
(4.3) and the stabilized scheme SSAV. Snapshots of the numerical approximation are taken at t = 5e–4, 1.5e–3, 2.5e–3, and 2e–2. (b) Time
evolution of the two free energy functionals, the original energy (2.1) and the modified energy (3.2).

Next, we set M = 1 and perform the mesh refinement test for the anisotropic Cahn–Hilliard models with the
linear and Willmore regularizations where the anisotropic strength is α = 0.1 and all other parameters are from
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Fig. 4.8. (a) The 2D dynamical evolution of the phase variable φ for the anisotropic model with the linear regularization, where the initial
condition is (4.2) and snapshots are taken at t = 2e–3, 9.2e–2, 1e–1, and 2e–1. (b) Time evolution of the total free energy functional (2.1).

(4.1). We use the same initial condition of (4.2), and choose the solution computed by the scheme SSAV with the
time step size δt = 1e–7 as the benchmark solution. The L2 errors of the phase variable between the numerical
solution and the exact solution at t = 0.1 with different time step sizes are shown in Fig. 4.2. It is found that
the performance of these four schemes, SSAV and SAV, SSAV-W and SAV-W, is similar to Fig. 4.1(b), where we
observe that (i) even though the two non-stabilized schemes, SAV and SAV-W, are stable for all tested time steps,
they show very bad accuracy results, (ii) with the stabilizers, the two stabilized schemes, SSAV and SSAV-W, are
stable for all tested time steps and perform good approximations and second-order accuracy all along.

In summary, through these accuracy tests, we conclude

• For the isotropic Cahn–Hilliard model with a low mobility parameter, the stabilizers are not needed. The non-
stabilized scheme SAV is already very stable and can show very good approximations to the exact solutions
and second-order convergence rate.

• For the isotropic Cahn–Hilliard model with a high mobility parameter, (i) when larger time steps are used, the
stabilized scheme SSAV can overwhelmingly defeat their non-stabilized version SAV, for both accuracy and
stability; (ii) when very tiny time steps are used, the non-stabilized scheme SAV is superior to its stabilized
version SSAV concerning the accuracy.

• For the anisotropic Cahn–Hilliard model, the stabilized schemes (SSAV and SSAV-W) can overwhelmingly
defeat their non-stabilized versions (SAV and SAV-W), for both accuracy and stability.

4.2. Isotropic evolution for two 2D circles

In this example, by setting M(φ) = 1, we investigate how the coarsening effect acts for two 2D circles by solving
the isotropic Cahn–Hilliard model using the scheme SSAV with the initial condition of (4.2) where γ (n) = 1, β = 0,
and other parameters are from (4.1).
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Fig. 4.9. (a) 2D dynamical evolutions of φ for the spinodal decomposition example for solving the anisotropic linear regularization model,
where the initial condition is (4.4) and snapshots are taken at t = 1.5e–3, 1e–2, 2.5e–1, 5e–1, and 1. (b) Time evolution of the total free
energy functional (2.1).

We first estimate the rough range of the allowable maximum time step size in order to obtain good accuracy and
to consume as low computational cost as possible. This time step range could be obtained through comparing the
energy evolution curve plots with various time steps, shown in Fig. 4.3(a), where we compare the time evolution
of the free energy for six different time step sizes until the equilibrium. We observe that all energy curves decay
monotonically for all time step sizes, which numerically confirms that our algorithms are unconditionally energy
stable. For smaller time steps of 1e–5, 5e–5, and 1e–4, the three energy curves coincide very well. But for the larger
time step of 5e–4, 1e–3, and 5e–3, the energy curves deviate visibly away from others. This means the adopted
time step size should not be larger than 1e–4, in order to get reasonably good accuracy.

In Fig. 4.3(b), we present the evolution of the two free energy functionals, the modified energy (3.2) and original
energy (2.1) computed using δt = 1e–4. We cannot tell any quantitative differences between these two energies
and both decay to the equilibrium, monotonically. At around t = 6.36e–2, the energies undergo a rapid decrease
when the complete absorption happens, and the system achieves the equilibrium of circular shape right after that.
In Fig. 4.3(c), snapshots of φ at various moments are presented, where we observe the coarsening effect that the
small circle is absorbed into the big circle.

4.3. Anisotropic model with linear regularizations

In this subsection, we perform simulations for the anisotropic system with linear regularizations. We use
parameters from (4.1), if not explicitly specified.
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Fig. 4.10. (a) The dynamical evolution of a 3D sphere for the anisotropic linear regularization model by using the initial condition (4.5)
where snapshots of the isosurfaces of the phase field variable {φ = 0} are taken at t = 1.2e–3, 3e–3, 6e–3 and 2e–1. (b) Time evolution of
the total free energy functional (2.1).

4.3.1. Anisotropic evolution of a 2D circle
We first perform the simulation for the evolution of a 2D circle where the initial condition is specified as follows

φ(x, y, t = 0) = − tanh
(√

(x − π )2 + (y − π )2 − 1.7
2ϵ

)
. (4.3)

In Fig. 4.4, we present the 2D profile of γ (n0) and 1D cross-section of γ (n0)|(·,y=π ), where we observe that a high
oscillation profile appears almost everywhere in the computed domain.

We first examine whether the non-stabilized scheme SAV is effective for solving the anisotropic model. In
Fig. 4.5, we present the time evolutions of the free energy (2.1) by using four time steps δt = 1e–5, 1e–6, 1e–7,
and 1e–8. We observe that the free energy either increases or oscillates even when very tiny time steps are used,
that implies the non-stabilized scheme SAV meets the bottleneck for handling the anisotropic model.

Thus we solve the anisotropic model by using the stabilized scheme SSAV. By using the same time step δt = 1e–4
as the previous isotropic example, we test performance of three combinations of stabilizers: (I) S1 = 4, S2 = 0, (II)
S1 = 4, S2 = 4 (default values from (4.1)), and (III) S1 = 0, S2 = 4. In Fig. 4.6, the evolutions of the free energy
functional (2.1) are shown for these three cases. For (I) and (III), the energies either present some non-physical
oscillations or increase with time. These unreasonable phenomena can be eliminated efficiently for combination
(II), that means the values in (II) can suppress high-frequency oscillations efficiently.

In Fig. 4.7(a), with the stabilizer (II) and time step δt = 1e–4, we show the dynamics of how a 2D circular
shape interface with full orientations evolves to an anisotropic pyramid with missing orientations at four corners.
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Fig. 4.11. (a) Snapshots of the equilibrium solution of the anisotropic linear regularization model at t = 0.03 for four different anisotropic
parameters α (from left to right): 0.1, 0.2, 0.3, and 0.4, respectively, by using the initial condition (4.5). (b) 2D cross-section of φ(π, ·, ·)
of the equilibrium solution corresponding to each subfigure in (a). (c) Time evolutions of the free energy functional (2.1) for four different
values of α.

Snapshots of the phase field variable φ are taken at t = 5e–4, 1.5e–3, 2.5e–3, and 2e–2. In Fig. 4.7(b), we show
the evolution of the two free energy functionals (2.1) and (3.2) until the equilibrium. With a very slight difference,
these two energy functionals decay to the equilibrium at around t = 0.01.

4.3.2. Anisotropic evolution of two 2D circles
In this example, we use the initial condition given in (4.2) of two circles to see how the combined effects of

anisotropy and coarsening execute. We still use the defaults values of parameters from (4.1) and δt = 1e–4 for
better accuracy.
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Fig. 4.12. (a) The dynamical evolution of two 3D spheres for the anisotropic model with the linear regularization, by using the initial
condition (4.6) where snapshots of the isosurfaces of the phase field variable φ are taken at t = 0, 1.32e–2, 1.98e–2 and 4e–2. (b) Time
evolution of the total free energy functional (2.1).

In Fig. 4.8(a), snapshots of the profiles of the phase field variable φ are taken at t = 2e–3, 9.2e–2, 1e–1, and
2e–1. We observe that the two circles first evolve to anisotropic shapes with missing orientation at the four corners,
then the anisotropic system coarsens and the small shape disappears. In Fig. 4.8(b), we present the evolution of the
free energy functional (2.1) until the equilibrium. The energy undergoes two rapid decreases. The first one happens
at around t = 8e–3 when the two circles become pyramid-shape due to anisotropy. The second one happens at
around t = 9.2e–2 when the coarsening process finishes and the small pyramid is completely absorbed by the
bigger one.

4.3.3. Anisotropic spinodal decomposition in 2D
In this example, we study the spinodal decomposition for the anisotropic linear regularization model using the

scheme SSAV. By considering a homogeneous binary mixture, when the spinodal decomposition takes place, the
spontaneous growth of the concentration fluctuations can lead to the two-phase state. The initial condition is taken
as the randomly perturbed concentration field as follows,

φ(x, y, t = 0) = −0.4 + 0.001rand(x, y). (4.4)

In Fig. 4.9(a), we perform the simulations by using the time step δt = 1e–4 and other parameters from (4.1).
We observe the combined effects of anisotropy and coarsening when time evolves. The final equilibrium solution
is obtained after t = 1, where equilibrium shape becomes a pyramid. In Fig. 4.9(b), we plot the evolution of the
total free energy (2.1), which decays with the time.
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Fig. 4.13. (a) The dynamical evolution of the phase variable φ of the 3D spinodal decompositions for the anisotropic linear regularization
model, by using the initial condition (4.7) where snapshots of the isosurfaces of {φ = 0} are taken at t = 0.001, 0.1, 0.3, and 4. (b) 2D
cross-sections of the equilibrium solution of t = 4. (c) Time evolution of the free energy functional (2.1) and the small insert figure is a
close-up-view where the energy decreases fast.

4.3.4. Anisotropic evolution of a 3D sphere

We next investigate the 3D simulation of a sphere by using the following initial condition

φ(x, y, z, t = 0) = − tanh
(√

(x − π )2 + (y − π )2 + (z − π )2 − 1.7
2ϵ

)
. (4.5)
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Fig. 4.14. (a) Time evolution of the free energy functional (2.1) computed by using the non-stabilized scheme SAV-W for the anisotropic
Willmore regularization model, where two tiny time steps 1e–7 and 1e–8 are used, respectively. (b) Time evolution of the free energy
functional (2.1) computed by using the stabilized scheme SSAV-W and δt = 1e–4, where three combinations of linear stabilizers are tested.
The right subfigure is a close-up view.

Fig. 4.15. The 2D dynamical evolutions of the phase variable φ for the anisotropic model with Willmore regularization, that are computed
by the stabilized scheme SSAV-W with the initial condition (4.3) and δt = 1e–4. Snapshots are taken at t = 2e–3, 4e–3, 6e–3 and 3e–2.
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Fig. 4.16. Snapshots of the phase variable φ with four different time steps for solving the anisotropic model with the Willmore regularization
with the initial condition is (4.3) computed by using the stabilized scheme SSAV-W, where (a) δt = 1e–1; (b) δt = 1e–2; (c) δt = 1e–3;
and (d) δt = 1e–4. For each panel, the left subfigure is the profile of φ at t = 0.2, and the right subfigure is that of t = 2.

The evolution of the spherical shape towards its equilibrium is shown in Fig. 4.10(a), where we observe that the
3D sphere evolves to an anisotropic pyramid with missing orientations at six corners. Snapshots of the profiles of
the isosurfaces of {φ = 0} are taken at t = 1.2e–3, 3e–3, 6e–3 and 2e–1. In Fig. 4.10(b), we present the evolution
of the free energy functional (2.1) until the steady state.

We further investigate the effect of the strength of the anisotropy parameter α on crystal shapes in 3D. We
choose four different values of α = 0.1, 0.2, 0.3, 0.4 and list the steady-state solutions for these four cases in
Fig. 4.11(a). The corresponding 2D cross-sections along x = π are shown in Fig. 4.11(b). When α is relatively
small, e.g., α = 0.1, missing orientations are not seen clearly. But when α increases, equilibrium shapes tend to
become pyramids with sharper corners due to the strong anisotropy. In Fig. 4.11(c), we show the evolution of the
free energy functional (2.1) for each α. We can observe that the energy decreases faster with larger α. The results
are in very good agreement with simulations shown in [1,11].

4.3.5. Anisotropic evolution of two 3D spheres
In this example, we implement the 3D simulation of two spheres for the anisotropic linear regularization model

by using the following initial condition

φ(x, y, t = 0) =

2∑
i=1

− tanh(

√
(x − xi )2 + (y − yi )2 + (z − zi ) − ri

1.2ϵ
) + 1, (4.6)

where (x1, y1, z1, r1) = (π − 0.7, π − 0.6, π, 1.5) and (x2, y2, z2, r2) = (π + 1.65, π + 1.6, π, 0.7).
The evolution of the two 3D spheres towards its equilibrium is shown in Fig. 4.12(a). Snapshots of the profiles of

the isosurfaces of {φ = 0} are taken at t = 0, 1.32e–2, 1.98e–2 and 4e–2. The two spheres first evolve to anisotropic
pyramids with missing orientation at the six corners, then the anisotropic system coarsens and the small pyramid
is completely absorbed into the larger one. The 3D dynamics are consistent with the 2D example (Fig. 4.8). In
Fig. 4.12(b), we present the evolution of the free energy functional (2.1) until the steady state where two rapid
decreases can be clearly observed.
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Fig. 4.17. (a) The contours of {φ = 0} of the equilibrium solutions for the anisotropic Willmore regularization model by using the initial
condition (4.3), β = 6e–4 and three anisotropic strengths α = 0.1, 0.2, 0.3. (b) Time evolution of the original free energy functional (2.1)
with various α where the right subfigure is a close-up view.

4.3.6. Anisotropic spinodal decomposition in 3D
In this example, we study the 3D spinodal decomposition for the anisotropic model with linear regularization

using the scheme SSAV. To be consistent with the 2D example, we use the initial condition as follows,

φ(x, y, z, 0) = −0.4 + 0.001rand(x, y, z). (4.7)

We still use δt = 1e–4 for better accuracy and other parameters are still from (4.1). In Fig. 4.13, we present
evolutions of the phase field variable φ by showing the snapshots of the isosurfaces of {φ = 0}. The final equilibrium
solution is obtained around t = 1 where it presents pyramid-like shape due to the strong anisotropy. To see the
equilibrium shape more clearly, we show the 2D cross-sections of the equilibrium solution in Fig. 4.13(b). In
Fig. 4.13(c), we further show the evolution of the total free energy functional (2.1).

4.4. Anisotropic model with Willmore regularizations

We consider the anisotropic system with the Willmore regularization in this subsection. To be consistent with
the linear regularization model, we still use default parameters (4.1), if not explicitly specified.
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Fig. 4.18. (a) The contours of {φ = 0} of the equilibrium solutions for the anisotropic Willmore regularization model by using the initial
condition (4.3), α = 0.3 and three different parameters β = 8e–4, 1e–3, 3e–3. (b) Time evolution of the original free energy functional (2.1)
where the right subfigure is a close-up view.

We first examine whether the non-stabilized scheme SAV-W is effective for solving the anisotropic Willmore
regularization model. In Fig. 4.14, we present the time evolutions of the free energy (2.1) by using two tiny time
steps, 1e–7 and 1e–8. We observe that the free energy increases even for these two tiny time steps, that implies the
non-stabilized scheme SAV-W is inherently deficient for handling the anisotropic model.

In Fig. 4.14(b), with δt = 1e–4, we present the evolution of the free energy functional (2.1) for three combinations
of stabilizers: (I) S1 = 4, S2 = 4, S3 = 0, (II) S1 = 4, S2 = 4, S3 = 1e–3, and (III) S1 = 0, S2 = 4, S3 = 1e–3.
Note there are supposed to be five more combinations of these values, however, the scheme blows up after several
times of computations for them. From Fig. 4.14(b), we see that the free energies oscillate or increase with time in
(I) and (III), and only the combination (II) can suppress high-frequency oscillations efficiently.

By using the scheme SSAV-W with the stabilizers in (II) and time step δt = 1e–4, we implement the simulations
for the evolution of a 2D circle in Fig. 4.15. We show how the circular interface with full orientations evolves to
an anisotropic one with missing orientations at four corners. Snapshots of the phase field variable φ are taken at
t = 2e–3, 4e–3, 6e–3 and 3e–2.

We further examine if our developed scheme SSAV-W can allow large time steps. In Fig. 4.16, we show the
snapshots of the phase field variable φ at t = 0.2 and 2 for four different time steps δt = 1e–1, 1e–2, 1e–3, and
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1e–4. We observe that, for the two smaller time steps (e.g. 1e–3 and 1e–4), the profiles coincide very well. But for
the largest time step of 1e–1 and 1e–2, the results deviate visibly away from others.

Finally, we investigate the impacts of the strength of the anisotropy strengths α and the regularization parameter
β on the equilibrium of four-fold shapes. By fixing β = 6e–4, we choose three different values of α = 0.1, 0.2, 0.3,
and compare the equilibrium shapes in Fig. 4.17(a). We see that the increase of α leads to a pyramid with sharper
corners. The evolutions of the free energy (2.1) are shown in Fig. 4.17(b), where the energy decreases faster with
larger α. The effects of the Willmore regularization parameter β on the equilibrium shapes are shown in Fig. 4.18(a),
in which, we choose β = 8e–4, 1e–3, 3e–3 and fix α = 0.3. As β decreases, the corners become sharper in the
equilibrium morphologies. The corresponding energy evolutions are plotted in Fig. 4.18(b), where one can observe
that energy decreases faster with smaller β. These numerical results are in very good agreement with the results
shown in [1,11,13].

5. Concluding remarks

In this paper, we have developed two fast (non-iterative), semi-discrete in time, second-order linear schemes
for solving the anisotropic Cahn–Hilliard phase field model. The schemes combine the SAV approach with the
stabilization technique. The novelty of the proposed stabilized SAV schemes is that all nonlinear terms are treated
semi-explicitly, and one only needs to solve three linear decoupled equations with constant coefficients at each time
step. More importantly, several linear stabilization terms, which are shown to be crucial to remove the oscillations
caused by the anisotropy coefficients, are added to enhance the stability while keeping the required accuracy.
Compared to the existing schemes for the anisotropic model, our proposed schemes that conquer the inconvenience
from nonlinearities by linearizing the nonlinear terms in a new way, are provably unconditionally energy stable,
and thus allow for large time steps. We further numerically verify the accuracy in time and present various 2D and
3D numerical results for numerous benchmark numerical simulations.
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