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stabilities rigorously. Various 2D and 3D numerical simulations are presented to demonstrate the stability,
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1. Introduction

In this paper, we consider numerical approximations for solv-
ing the anisotropic Cahn-Hilliard equation, which was proposed
in[1,2] to simulate the formation of faceted pyramids on nanoscale
crystal surfaces. Its counterpart, the isotropic Cahn-Hilliard equa-
tion, is a typical system of the diffusive phase field model and has
been widely used in modeling/simulations for the free interface
problems, see [3-6] and the references therein. About time march-
ing schemes for solving the isotropic Cahn-Hilliard equation, there
exists quite a few prevalent numerical methods, for instances,
the fully-explicit [7], fully-implicit [8], convex-splitting [9-14],
linear stabilization [7,15,16], Invariant Energy Quadratization (IEQ)
method [14,17-25], and its variant version Scalar Auxiliary Vari-
able (SAV) method [26], etc. All these methods aim to construct
schemes that can either verify the property at the discrete level ir-
respectively of the coarseness of the temporal discretization (called
energy stable or thermodynamically consistent) or identify the
stability condition on the time step. Since the coarse-graining
(macroscopic) process may undergo rapid changes near the inter-
face, the noncompliance of energy dissipation laws may lead to
spurious numerical solutions if the grid and time step sizes are not
carefully controlled.
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Comparing to the isotropic Cahn-Hilliard model, in addition to
the stiffness issue from the thin interfacial width, the numerical
challenge of constructing energy stable schemes for the anisotropic
system focuses on how to design the proper discretization for the
nonlinear terms multiplied with the strong anisotropic coefficient.
These terms increase the complexity for algorithm developments
to a large extent since they can induce large non-physical spatial
oscillations. Therefore, it is remarkable that there are very few
successful attempts at designing efficient and energy stable time
marching schemes for this model. In [27], the authors discretized
the anisotropic nonlinear term in the explicit way, that resulted
in severe time step restrictions. In [1,2], the authors developed a
second-order fully-implicit scheme based on the Crank-Nicolson
type approach. Its energy stability/solvability are not only ques-
tionable theoretically, but the implementation is also complicated
due to the nonlinear nature. In [28], the authors developed an
unconditionally stable scheme that can work for a class of convex
type anisotropy. However, their method is not applicable since the
anisotropy we consider in this paper is non-convex instead. In [29],
the authors developed a first-order time marching scheme based
on the linear stabilization method. Although the method is very
easy to implement and quite robust in computations, there are
still no clues on how to prove its energy stability theoretically thus
far. In [30], the authors applied the convex splitting approach for
solving this model, however, the energy stability is not provable
for anisotropic case. In [31], the authors proposed a second-order


https://doi.org/10.1016/j.cpc.2018.12.019
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.12.019&domain=pdf
mailto:xuzhenmath@mail.bnu.edu.cn
mailto:xfyang@math.sc.edu
mailto:hzhang@bnu.edu.cn
mailto:ziqingxie@hunnu.edu.cn
https://doi.org/10.1016/j.cpc.2018.12.019

Z. Xu, X. Yang, H. Zhang et al. / Computer Physics Communications 238 (2019) 36-49 37

scheme that is actually the modified version of the linear stabiliza-
tion scheme in [29], where the second order extrapolation is pre-
estimated by the solutions of the first-order scheme. However, it is
not clear on how to prove such a scheme to be energy stable.

Therefore, in this paper, we aim to develop efficient and prov-
ably energy stable time marching schemes for the anisotropic
Cahn-Hilliard model. We use the recently developed IEQ approach
since it can always produce easy-to-implement (linear) and un-
conditionally energy stable schemes. However, this anisotropic
model is so special that the spatial oscillations can induce severe
instability on the time step. In other words, the formally energy
stable IEQ method is found to reach such a bottleneck: it still blows
up even when using very small time steps (shown in Fig. 4.7). To
fix such an inherent deficiency, we combine the IEQ approach with
the stabilization technique which we arrive at a novel stabilized-
IEQ (S-IEQ) method. More precisely, by adding several linear stabi-
lizing terms and treating all involved nonlinear terms in the semi-
explicit way, a unconditionally energy stable scheme is obtained,
theoretically and numerically. These stabilizing terms can not only
enhance energy stability while keeping the required accuracy, but
also are the keys to prove the well-posedness of the linear system.

Overall, the proposed S-IEQ schemes possess the following
three desired properties, i.e., (i) accurate (second order in time);
(ii) energy stable (unconditional energy law holds); and (iii) easy-
to-implement. To the best of the authors’ knowledge, the proposed
S-IEQ scheme is the first scheme for the anisotropic
Cahn-Hilliard system that can be theoretically proved to be en-
ergy stable. Through the comparisons with two other prevalent
numerical schemes such as the linear-stabilized scheme [29] and
the IEQ scheme (without stabilizers) for a number of classical
benchmark numerical examples, we demonstrate the stability and
the accuracy of the proposed S-IEQ schemes as well.

The rest of the paper is organized as follows. In Section 2, we
give a brief introduction to the governing PDE system. In Sec-
tion 3, we present second-order schemes for the anisotropic model
with linear and the Willmore regularizations, respectively. The
unconditional energy stability and the well-posedness of the linear
systems are proved rigorously. In Section 4, we implement various
2D and 3D numerical simulations to demonstrate the stability and
accuracy of the proposed numerical schemes. Some concluding
remarks are given in Section 5.

2. Anisotropic Cahn-Hilliard equations

Now we give a brief description for the anisotropic Cahn-
Hilliard equation, that describes binary mixture with the
anisotropic interfacial energy [1,2]. Let 2 be a smooth, open,
bounded, connected domain in R? with d = 2,3, and ¢ be an
order parameter which takes the values +1 in the two phases with
a smooth transitional layer of thickness €. The total free energy of
the system is given in the following form,

@) = [ (vm3IVoP + SF)+ Eoe)ax @)
Q 2 62 2 ’ ’

where y(n) is a function describing the anisotropic property and n
is the interfacial normal defined as

v
n= 0 2.2)
Vol
and the fourfold symmetric anisotropic function is given by
d
y(m)=1+acos(40)=1+a(4) nf-3), (2.3)

i=1
where © denotes the orientation angle of the interfacial normal to

the interface. The non-negative parameter « in (2.3) describes the
intensity of anisotropy. When o = 0, the system degenerates to

the isotropic model, and when « increases, the anisotropy becomes
stronger. The energy density F(¢ ) takes the usual double-well form
F(¢) = ;(¢* — 1)2. The potential G(¢) is added to penalize infinite
curvatures in the resulting corners and g is the magnitude of the
regularization parameter. Two kinds of regularization terms are
usually considered. The first one is the linear regularization that
reads as,

Gu(p) = (ApY (2.4)

and the second one, which is more effective as an approximation
to the consistent sharp-interface model as pointed out in [1], is the
nonlinear Willmore regularization that reads as,

1
Gw(¢) = (A — E—zf(¢))2, (2.5)

where f(¢) = F'(¢) = $(¢* — 1).

By taking the H~! gradient flow of the total free energy (2.1),
we arrive at the anisotropic Cahn-Hilliard system with the linear
regularization that reads as:

¢ =V - (M(@)Vu), (2.6)
w=-v-m+ " Dyg)1 parg, 27)

where M(¢) is the mobility function with M(¢) > My > 0; or with
the Willmore regularization that reads as:

¢ =V - (M(@)Vp), (2.8)
1
p=-v.m+ @f(qs) +B(a - @)
1
x(4¢ — 5f(9), (2.9)
where the vector field m is defined as
PVypy(n)

1 1
7(:2F(¢)+ Elvfbl )-

m=yn)V¢ + Vol

(2.10)

withP =1—nn'.

Note that the expression for m may cause significant difficulties
in numerical simulation due to the term lv—lwi‘f) We use the

asymptotic result that the following fact holds near the interface

(cf. [1])

2
€

F(9) ~ — V[ (2.11)

Thus the vector m can be rewritten as

m = y(n)Ve¢ + PV,y(n)|Ve]|. (2.12)

For simplicity, we adopt the periodic boundary conditions to
remove all complexities associated with the boundary integrals in
this study. We remark that the boundary conditions can also be the
no-flux type as

dw

¢ = o =—| =0, (2.13)
onlae  dnlae  odnlie

where w = Ag¢ for linear regularization model and w = A¢ —
eizf(qb) for the Willmore regularization model, n is the outward
normal of the computational domain £2. All numerical analysis in
this paper can be carried out to the no-flux boundary conditions
without any further difficulties. Note we also define n as the
interfacial normal in the model and anisotropic equations, which
might not be confused by the readers.

The model equations (2.6)-(2.7) and (2.8)-(2.9) follow the dissi-
pative energy law. By taking the L? inner product of (2.6) with —p,
and of (2.7) with ¢, using the integration by parts and combining
the obtained two equalities, we obtain

d
—E(¢) = —llVM()Vpu|* < 0.

o (2.14)



38 Z. Xu, X. Yang, H. Zhang et al. / Computer Physics Communications 238 (2019) 36-49

In addition, the Cahn-Hilliard type dynamical system (2.6)-
(2.7) and (2.8)-(2.9) conserve the local mass density. By taking the
L? inner product of (2.6) with 1, one can obtain the mass conser-
vation property directly using integration by parts, that reads as

d
a/Q¢(a:,t)dx:

3. Numerical schemes

(2.15)

We fix some notations here. We denote §t > 0 the time step
sizeand set t" = nét for0 < n < N with T = Nét. Then we denote
the L? inner product of any two spatial functions f;(x) and f(x)
by (fi(%), (%)) = fg fi(®)fo(x)dx, and the L2 norm of the function

f( )by IfIl = (f,f) . We also define the following Sobolev spaces
Hk,.(£2) = {¢ is periodic, [, ¢dx =0, ¢ € H*(22)} withk = 1, 2.

per

3.1. Linear regularization model

We first deal with the linear regularization model. By using the
IEQ approach, an auxiliary variable U is defined as

1
u =\/y(n)(5|V¢|2+

where B(~ O( }2 )) is a constant that ensures the radicand positive.
Therefore the total free energy (2.1) can be expressed as

E(¢, U) = /Q(u2 B+ g(mp)z)dx. (32)

Using the new variable U, we then obtain an equivalent system
as

—F(¢)) +B, (3.1)

¢ =V - (M(@)Vp), (3.3)
w = HU + BA%9,

1
U = §H¢r7 (3.5)
where

~V-m+ Ly(m)f(e)
H(g) = i . (36)
JrmQIver + LFg) +8

The initial conditions for ¢ and U read as

Pt =0) = ¢°,
1 1
Ut =0) = \/y(nO)(5|v¢0|2 + :ZW’O)) +B

and the boundary conditions of the new system are still same as
the original system (2.6)-(2.7).

The transformed system (3.3)-(3.5) also follows an energy dis-
sipative law in terms of ¢ and the new variable U. By taking the
L? inner product of (3.3) with u, of (3.4) with ¢, of (3.5) with 2U,
performing integration by parts and summing all equalities up, we
can obtain the energy dissipation law of the new system (3.3)-(3.5)
that reads as

(3.7)

d

*E (¢, U)=—lVM(@#)Vul? <o0. (3.8)
Now we present the second-order Adam-Bashforth time step-

ping scheme as follows.

Scheme 3.1. Having computed (¢, U)" and (¢, U)"~!, we update

(¢, UY™1 by solving

3¢n+1 _ 4¢n + ¢n—l

— . *,n+1 n+1
o5t = V- (M(e*" v, (3.9)

Mn+l — H*,n+lun+1 + IBA2¢n+1

Si
+ 50" = 29"+ ")
—SA(¢" = 2¢" + "), (3.10)
1

3UTT - AU+ U = SHYTIBRMT —4g" + 9", (311)

where ¢* "1 = 2¢" — ¢" 1, and H*"*! = H(2¢" —
The boundary conditions are

¢n—l).

Vi nfe=0.
(3.12)

(i) all variables are periodic ; or (ii) da¢" |30 =

Remark 3.1. Scheme (3.9)-(3.11) is totally linear where the non-
linear terms are treated by compositions of implicit and explicit
discretization at t"*1. To enhance the stability, we add two second-
order linear stabilizers (associated with Sy and S,) in (3.10). When
both of them vanish, the scheme becomes the IEQ type
scheme that had been developed in literatures, see [14,17-19,21-
24,32-34]. The first term, f—;(qb”“ — 2¢™ + ¢™ 1), is actually a
well-known stabilizer used in the linear stabllization approach
to balance the explicit treatment of the = Lf(¢) for solving the
isotropic phase field model (cf. [7]). Slmllarly, the second stabi-
lizer, —=S; A(¢" ! — 2¢" + ¢" 1y, is used to balance the explicit
treatment of the gradient term with the anisotropic coefficient.
The errors that these two terms introduced are of order 5—58 2pu ()
and S$,8t%2 A¢y(-), respectively, which are of the same order as the
errors induced by the second order extrapolation for the nonlinear
term f(¢) and the gradient term with the anisotropic coefficient.
Numerical examples show that these two stabilizers are crucial
to removing all oscillations induced by the anisotropic coefficient
y(n), since the term n = % changes its sign frequently in the
bulk part where |V¢| is close to zero (cf. Fig. 4.4).

Note that the new variable U will not bring up extra computa-
tional cost due to the following procedure. We first rewrite (3.11)
as follows,

Un+1 — lH*,n+1¢n+1 +An,

: (3.13)

where A" = 4U"-u""" JH* "+1M ,and substitute (3.13)into

(3.10), then we obtain the followmg lmear system as follows
25t

¢n+l _ ?V . (M(¢a,n+l)vun+l) :f{l’ (314)
-+ P = £, (3.15)
where
1 entipyent 2 51
P(¢) = EH TTHYT 9+ A ¢+:2¢—52A¢,
4¢n _ ¢n—l
=23
* 51 * *
fzn — —_H ,n+1An + ;‘ﬁ ,n+1 _SZA¢ ,Tl+l.
(3.16)

Therefore, we can solve ¢"*! and u"+! directly from (3.14)-(3.15)
and then update U™*! from (3.13).

Furthermore, the linear operator P(¢) is symmetric positive
definite. More precisely, for any ¢, u with the boundary condition
(3.12), we have

%(H”H—l(ﬁ, H*.n+1w)

+h(Ag, AY) =

S
(P(¢), ¥) = + G—L(qx V) +S:(V, Vi)

(P(¥), ¢).
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that means P(¢) is symmetric (self-adjoint). For any ¢ with mean
zero, we have

(P(¢). ¢) = IIH* "lg)? +

where “="is valid if and only if¢p =0.

We now show the well-posedness of the associated weak form
for the linear system (3.14)-(3.15). In the following arguments,
we will only consider the periodic boundary condition for conve-
nience. All derivations can be easily applied to the no-flux condi-
tions without any essential difficulties.

Define ¢ = llﬁ [ ¢dx, and i = ﬁ [ mdx. By taking the 12
inner product of (3.14) with 1, we can deduce that ¢"+! = ¢" =

. = ¢° where ¢! = ¢° comes from the corresponding first-
order scheme.

Llet ¢ = ¢"™' — @ and p = p"t! — @™, such that ¢ €
H2,(22), 0 € H),(£2). The weak form of (3.14)-(3.15) can be
written as the following system with the unknowns (u, ¢) €
(Hper» Haer J($2),

per> " per

||¢|| +S0Vel* + Bl sl

28t

(¢, w) + T(M(W’"H)VM, Vw) = (ff' -

—(p, ¥) + (H*"“¢> H*”+1w)+—(¢> v)
+sz(V¢,w)+ﬂ(A¢,Aw =(fz"+u”+‘+P(4'>o>,w), (3.18)

for any (w, ¥) € (Hp,,. Ha,, J(82).
We denote the above bilinear system (3.17)-(3.18) as

&%, w), (3.17)

(AX),Y)=(B,Y), (3.19)
where X = (u,¢) and Y = (w, ¥)", and both of them are in
(Hper» Hyo J(82).

The well-posedness of the weak system (3.17)-(3.18) is shown
as follows.

Theorem 3.1. The linear system (3.17)-(3.18) admits a unique
solution (w, )" € (Hpe,, Happ N(£2).

Proof. (') Forany X = (u,¢) and Y =
(HL, , H2 )(£2), we derive

per> " “per

(w, ¥)T, with X, Y €

(AX), Y) < Gill@ll2 + Nl g2 + Twllg), (3.20)

where C; depends on 6&t, €, B, Si, Sa, [[M(¢*"t")|| 1, and

|[H*"*1|| 0. Therefore, the bilinear form (A(X), Y) is bounded.
(i) Forany X = (i1, ¢)" € (Hp, ng,)(.Q), we derive

25t
(A(X) —w (> Vul® + = ||H*"*‘¢>||

+€—2||¢|| +S:0Vel* + Bl As|?
> G(llell + 1817,).

where C, depends on 8t, €, 8, S1, Sz, and My. Thus the bilinear form
(A(X),Y) is coercive. Then from the Lax-Milgram theorem, we
conclude the linear system (3.14)-(3.15) admits a unique solution

(n @) € Hpe X(2). O

( per> " “per
The energy stability of the scheme (3.9)-(3.11) is shown as
follows.

(3.21)

Theorem 3.2. The scheme (3.9)-(3.11) is unconditionally energy
stable which satisfies the following discrete energy dissipation law,

1
E) < —[VM(¢m1)yvu™|? <0,

(En+l
St

(3.22)

where
L (IIU”+1 Iz 2umtt — U”II2>
=
2 2
+§(|IA¢”“ 12 n [2A4¢™! — A¢”||2)
2 2 2 ’
S n+1 __ 4ny 2 er—l_an
Jr71||¢> "l JrSII¢ "l
2 2 2 2
—B|£2]. (3.23)

Proof. By taking the L? inner product of (3.9) with —28tu"*1, we
obtain

_(3¢n+l _4¢n +¢n—l’ l’LTH_])
= 28t||y/M(¢*m+ 1)V 2. (3.24)

By taking the L? inner product of (3.10) with 3¢™! — 4¢™ + ¢" 1,
we obtain

(™. 39™" — 49" +¢"7")
— (H*’"+1U”+1, 3¢n+1 — 4" + ¢n—1)
+,3(A¢"+1,3A¢n+1 _4A¢n + A(bn_l)
+ ;(¢n+1 _ 2¢n+l _|_¢n—1’ 3¢n+1 — 4¢" +¢n—1)
+S(Ve" ! —2VeTt 4 v,
3V —ave" + Vo)
By taking the L? inner product of (3.11) with —2U™*!, we obtain
—2(3U™! —4ut+ Ut UMt
= —(H*"'(3¢™" — 4g" +¢" 1), U™). (3.25)

By combining these above equations and applying the following
identities,

2a(3a — 4b + ¢) = a®> — b* + (2a — b)?
—(2b—c) +(a=2b+c),
(a—2b+c)3a—4b+c)=(a—b? —(b—c)
+2(a—2b+c)?,

we obtain
1 n+1,2 1 n+1 npj2 1 np2 1 n n—1,2
(GIU™H2 + o j2u™ = Ut —*IIU I> = Sl120" — U™ ")
2 2 2
ﬂ
( [A¢™ > + = ||2A¢"+l A"
- §||A¢"|| - 5||2A¢" —A¢"%)
S1,1 ngz Lo n—12
+ 25 (510" = 9" = 519" 9" 1)
1 1
+5:(51Ve"™ = V"II* = ZIVe" — V4"
1
+ 5||Un+1 _ ZUn + Un71|l2
+§||A¢11+1 _2A¢H+A¢n71”2
51 n+1 n n—1)2
+:2||¢ —2¢"+¢ |l
+ S,||Ve™ —2Ve" + Vo'

= —8tlly/M(@ VP,

Finally, we obtain the desired result after dropping some positive
terms. O

Remark 3. 2 Heuristically, ; (E”“ —E")is a second-order approx-
imation of £ aE(@. U)att = t"+l For any smooth variable ¢ with
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time, we have
™2 4 129" — )2 _ ™12 + 129" — "1
25t 25t
ll™ 2% — [y 2
25t

%uw(t““)n2 +0(8t%),  (3.26)

12

+ 0(5t?)

112

and

™ — " I2 =y =y 0
25t -

(5t2). (3.27)

Remark 3.3. We can easily develop an alternative second-order
scheme based on the Crank-Nicolson type approach, where the
second-order stabilization terms are still in the same form. The
corresponding well-posedness and energy stability can be proved
similarly. Thus we omit the details here.

Remark 3.4. Other numerical schemes have been proposed for the
anisotropic Cahn-Hilliard model under consideration. In [29], Chen
and Shen proposed the first-order, stabilized-explicit schemes
with linear regularization and Willmore regularization, respec-
tively. By using the similar strategy, for the linear regularization
model, we can construct a corresponding second-order stabilized-
explicit scheme, it reads as

3¢n+1 _ 4¢n + ¢n—1 _

V- (M(¢r " Hvpmh,

25t
nr.n+1
Mn+1 - _V. m*,n+1 + y( 62 )f(¢*.n+])
+ ﬂA2¢n+1
S
+ E%((er—l _ 2¢n _,’_¢n—l) —SzA

% (¢n+l _ 2¢n + ¢n—l)’
(3.28)

where m*"™! = m(¢*"*1). Here all nonlinear terms are treated
explicitly and the exactly same two linear stabilizers are added in
order to enhance the stability. In Section 4, we will compare this
stabilized-explicit type scheme (with and without stabilizers) with
the proposed S-IEQ schemes (3.9)-(3.11), to show the impacts of
stabilizing terms on the energy stability.

3.2. Willmore regularization model

In this subsection, we construct a second-order time-stepping
scheme for the anisotropic model (2.8)-(2.9) with Willmore type
regularization.

Using the quadratization technique, an auxiliary variable is
defined as follows,

1
V= \/ y(n)(%lvqﬁlz + ;Fw)) + g(Aqs - Elsz))2 + B, (3.29)

where B is any constant that ensures the radicand positive. Then
the total free energy (2.1) can be expressed as

E(¢,V):/(V2—B)dx.
2

Similarly, we derive an equivalent PDE system using the new
variable V and ¢, and it reads as

(3.30)

¢ = V- (M(¢)Vp), (3.31)
w=2v, (3.32)
Ve = %Z@, (3.33)

where
Y mt Ly mf(6) + B(A— 3F(9) (40 — 1i(9)
Jrm(LIVePr + SF@) + £ (a9 — Lf(#) +B
(3.34)

Z(¢) =

The initial conditions for ¢ and V read as

1
L (490~ 5560 +5.
(3.35)

Now we present the BDF2 scheme for solving the transformed
model (3.31)—(3.33) as follows.

1 1
V(t=0)= \/y(no)(5|V¢°|2 + :zFW’O)) +

Scheme 3.2. Assuming that (¢, V)" and (¢, V)"~! are known, we
update (¢, V)1 by solving
3¢n+1 _ 4¢n + ¢n71

— . *,Nn+1 n+1
ot = V- (M(g"" V),

n+1 __ Z*,n+1 Vn+1

(3.36)

" (3.37)
+;(¢”“ —2¢" +¢")
—S A" —2¢" + 9" )
+S3A%(p" — 29" + 9" 1),

3vn+1 —4y" 4 anl — %Z*,n+1(3¢n+l _ 4¢n + ¢n7]), (3.38)

where ¢*"1 = 20" — ¢"~1, and 7*"+1
boundary conditions are

= Z(2¢™ — ¢™ ). The

1 1
"ae=Vu'" . nje=0.

(3.39)

(i) all variables are periodic ; or (ii) On¢

Remark 3.5. Here we add the third second-order linear stabilizer,
S3A% (@™ — 2¢™ + ™ 1), to enhance the stability since the
nonlinear term induced by the Willmore regularization potential
is treated semi-explicitly. Moreover, for this model, if we set S; =
S, = S3 = 0, we note that it appears very difficult to show the
coerciveness of the corresponding weak form, see [18]. Thus the
three stabilizing terms are crucial to show the well-posedness of
the resulting system. The corresponding details are not shown here
since the processes are quite similar to Theorem 3.1.

The above scheme (3.36)-(3.38) is almost identical to the
scheme (3.9)-(3.11) for the linear regularization model, thus we
omit the details of the well-posedness, and just present the theo-
rem of the energy stability for it as follows.

Theorem 3.3. The scheme (3.36)-(3.38) is unconditionally energy

stable which satisfies the following discrete energy dissipation law,

1
e B B = —IVM(grm Vet < 0,
where

(3.40)

Vn+] 2 Zvn+1 _yn 2 S n+1 __ 4nj 2
g vy — (VP I\, 519" — 9"l
w 2 2 e? 2
v n+1 __ Vo' 2
L5 Vo - Ve
2
A n+1 — AP 2
+53M - B|£2|. (3.41)

Proof. The proofis omitted since it is quite similar to Theorems 3.1
and 3.2. O
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4. Numerical simulation

We now present various numerical simulations in 2D and 3D
to demonstrate the efficiency, energy stability and accuracy of the
proposed numerical schemes. The computational domain is £2 =
[0,27]¢,d = 2, 3 and the Fourier-Spectral method is adopted to
discretize the domain, where 128¢ Fourier modes are used.

4.1. Accuracy test: mesh refinement in time

We first implement 2D simulations to test the convergence
rates of these proposed S-IEQ schemes (3.9)-(3.11) and (3.36)-
(3.38). In this part, M(¢) = € and the other order parameters are
set as follows,

€ =6.28¢e—2, B = led. (4.1)

To see how the stability/accuracy is affected by the linear stabi-
lizing terms, we will compare the numerical results computed by
four schemes, i.e., the stabilized-explicit scheme (3.28) (denoted
by S-LS) and its counterpart: the linear explicit scheme (3.28) with
S1 = S, = 0 (denoted by LS); the stabilized IEQ scheme (3.9)-
(3.11) (denoted by S-IEQ) and its counterpart: the IEQ scheme
(3.9)-(3.11) with S; = S; = 0 (denoted by IEQ).

We set the initial condition as follows,

2 —
¢0(X,y)=tanh(‘/(x ) +2(i’ ) 1.7).

Since the exact solutions are not known, we choose the solution
obtained with the time step size §t = 1e—8 as the benchmark
solution (approximately the exact solution) for computing errors.

We set the anisotropy parameter « = 0.1 and regularization
parameter 8 = 6e—4 for both models. The accuracy test for
the linear regularization model is shown in Fig. 4.1(a), where we
compare the numerical L? errors of the phase variable between
the numerical solution and the benchmark solution at t = 1le—3
with different time step sizes. For S-LS and S-IEQ schemes, the
stabilizing constants are S; = S, = 4. Some remarkable features
observed from Fig. 4.1(a) are listed as follows.

(4.2)

e We observe that the S-IEQ and S-LS schemes can achieve
almost perfect second-order accuracy in time.

e When §t > 6.25e—6, the LS scheme blows up therefore the
accuracy points are missing, and the IEQ scheme presents
no order of accuracy. When §t < 6.25e—6, the LS scheme
presents the second-order accuracy and the order of the [EQ
scheme is a little bit worse than that of the LS scheme.

e When §t < 6.25e—6, all four schemes achieve almost perfect
second-order accuracy in time. But obviously, the magnitude
of errors computed by the S-LS and S-IEQ schemes are bigger
than that computed by the LS and IEQ schemes. This phe-
nomenon is reasonable since the added stabilizers actually
increase the splitting errors indeed.

For the case of Willmore regularization model, we compare the
performance of the IEQ and S-IEQ methods. We set S; = S, =
4, S3 = 2.4e—3 in the S-IEQ scheme. In Fig. 4.1(b), we compare the
numerical L? errors of the phase variable ¢ between the numerical
solution and the benchmark solution at t = 1le—3 with different
time step sizes. We observe that the S-IEQ scheme can achieve
almost perfect second-order accuracy in time. But for IEQ scheme,
when §t > 7.8125e—7, it blows up thus most accuracy points are
missing, and presents no accuracy.

Therefore, from these two accurate tests, when concerning the
stability, we find that the two stabilized schemes (S-LS and S-1IEQ)
can conquer their non-stabilized versions (LS and IEQ). Meanwhile,
these two stabilized schemes are comparable and one cannot tell

any obvious differences between them, from any point of view of
the stability and/or accuracy.

4.2. Isotropic case with linear regularization

In this example, we consider the isotropic model (@« = 0) with
the linear regularization where we still set 8 = 6e—4. In the
following simulation, M(¢) = 1 and all other parameters are from
(4.1). We adopt the S-IEQ scheme with S; = S; = 4. The initial
condition reads as follows,

2
X=X+ -y —ri
Bo(x,y) = ;tanh(‘/ P ) -1, (4.3)

where (x1, y1, 1) = (1.1, 0.97, 0.457) and (x,, ¥2, 12) = (0.57,
1.57,0.157).

We note that any time step size §t is allowable for the com-
putations from the stability concern since the developed S-IEQ
scheme is unconditionally energy stable. But larger time step can
induce larger numerical errors. Therefore, we need discover the
maximum allowable time step to save the computational cost and
keep reasonable accuracy. In Fig. 4.2, we present the energy curves
using five different time steps, 6t = le—3, 5e—4, 2e—4, le—4,
and 5e—5. When using the tiny time steps 1e—4 and 5e—5, we
note both of the energy curves coincide well. But when using
le—3, 5e—4 and 2e—4, the energy curves derivate viewable away
from others. Therefore we will use §t = 1e—4 in the following
simulation in order to obtain good accuracy and to consume as low
computational cost as possible.

We also note when using the IEQ type scheme, even though the
original energy (2.1) and the modified energy (3.2) are equivalent
in the PDE level, their discrete cases are not identical indeed. Thus,
we also compare the evolutions of the original discrete energy (2.1)
and the modified discrete energy (3.23) in Fig. 4.2, where these
two curves coincide very well and show monotonic decay to the
equilibrium state.

In Fig. 4.3, we show the profiles for the phase field variable ¢
up to the equilibrium state, where snapshots are taken at t = 0,
le—2, 1.5e—2, 2e—2, 4e—2. We observe the coarsening effect that
the small circle is absorbed into the big circle smoothly.

4.3. Anisotropic case with the linear regularization

4.3.1. Evolution of a 2D circle

In this example, by using the S-IEQ scheme (3.9)-(3.11) with
S1 = S; = 4, we compute the simulation for the evolution of a
2D circle for the linear regularization model (3.3)-(3.5). The initial
condition is set as

_ 2 _ 2_0.
dolx, ) = tanh (LA Y - ) - 0omy (4.4)

We set M(¢) = 1, = 0.3, 8 = 6e—4 and other order parameters
are still from (4.1).

In Fig. 4.4, the 2D profile of y(n®) and 1D cross-section of
y(n°)|(A_y:ﬂ) are presented, and we can observe the high oscillation
profile almost everywhere. In Fig. 4.5, we show the dynamics
how a circular shape interface with full orientations evolves to
an anisotropic pyramid with missing orientations at four corners.
Snapshots of the phase field variable ¢ are taken at t = le—3,
3e—3, 5e—3, and 1e—2. In Fig. 4.6, we show the evolutions of the
two free energies, the original energy (2.1) and modified energy
(3.23), up to the steady state.

As mentioned in Section 1, the spatial oscillations caused by
y(n) can induce severe instability on the time step, therefore
the formally energy stable IEQ method still blows up even when
using very small time steps. This phenomenon is demonstrated
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condition (4.2).

185

—— 1:§t=1e-3,original energy
-------- 2:6t=1e-3,modified energy |-
—— 3:4t=5e-4,original energy
4:6t=5e-4,modified energy
—— 5:0t=2e-4,0riginal energy
------- 6:6t=2e-4,modified energy
7:6t=1e-4,original energy |
:0t=1e-4,modified energy
4 |- :6t=5e-5,original energy | -
—— 10:0t=5e-5,modified energy

180 R

175+

170 ¢

5165»

2
5 160 s |
1550 g o —>6 |
1501 9 < J
145] 10— E
140 ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1
Time

(a) Evolutions of the original energy and the modified

energy for o = 0 with different Jt.

185

—— 1:t=1e-3,original energy
-=ememe 2:5t=1e-3,modified energy
3:4t=5e-4,original energy
4:5t=5e-4,modified energy
e-4,0riginal energy
e-4,modified energy
e-4,original energy

180 N\

175

170 - =1e-4,modified energy
- :5t=5e-5,0riginal energy
= —— 10:6t=5e-5,modified energy
) 165 q
2
5160}
165 1
150 - 1
145 1
140 s w ‘
0 0.01 0.02 0.03 0.04 0.05
Time

(b) A close-up view.

Fig. 4.2. Comparisons of the evolutions of the original energy (2.1) and modified energy (3.23) for the isotropic case (@« = 0) with different time steps (§t = 1e—3,
5e—4, 2e—4, 1e—4, 5e—5), and initial condition (4.3). The left subfigure is the energy profile until the equilibrium, and the right subfigure is a close-up view showing where

the energy decreases fast.

Fig. 4.3. Evolution of the interface with the isotropic case (@ = 0) of two circles. Snapshots of the numerical approximation are taken at t = 0, 1le—2, 1.5e—2, 2e—2, and

4e—2.

in Fig. 4.7, where we use the IEQ scheme ((3.9)-(3.11) with S =
S, = 0) and tiny time steps (§t = 1le—7 and 1e—8) to compute
the evolutions of the original free energy functional (2.1) and the
modified free energy functional (3.23). We observe that, besides
the appearance of the strong oscillations, large deviations between
the original energy and modified energy emerge as well. Moreover,
any computed results with the time step §t > 1e—7 are not shown
here since they all blow up.

We further show how the spatial oscillations can be eliminated
by the combination of stabilizers S; and S,. In Fig. 4.8, the evolu-
tions of the original energy (2.1) for five combinations of stabilizers
are shown: (1)S; = S, = 0;(2)S1 = 4,5, = 0;(3)S; =
0,5, = 4;(4)S; = S, = 2;and (5)S; = S, = 4. For cases
(1) and (2), the energies increase with time and present some

non-physical oscillations; for cases (3) and (4), the energy initially
decays but further increase and present oscillations; only for case
(5), all oscillations vanish and energy decays monotonically, that
means the case (5), which is adopted for simulations, is an effective
combination of stabilizers to suppress high-frequency oscillations
efficiently.

4.3.2. Evolution of two circles in 2D
In this example, we set the initial condition to be two 2D circles
with different radii, that reads as

2
xX—xP+ -y —r
do(x,y) = ;tanh(\/ e )—1, (4.5)



Z. Xu, X. Yang, H. Zhang et al. / Computer Physics Communications 238 (2019) 36-49 43

m\ iy
' |

| ! H “{ | ‘i“ " 1w|| W“‘("”“ il ""W, “\\H 1 ‘
AL

\
|

Ll
‘_ i

~(n%)

08 +f ]

0.7 ) 4

06 . L ! L L L
0

Fig.4.4. The profile of y(n®) with & = 0.3 by using the initial condition (4.4). The left subfigure is the 2D surface plots of y(n®), and the right subfigure is the 1D cross-section

of V("U)l(-,y:n).

Fig. 4.5. The 2D dynamical evolution of the phase variable ¢ for the anisotropic linear regularization model by using the initial condition (4.4), §t = le—4, « = 0.3, and
B = 6e—4. Snapshots of the numerical approximation are taken at t = 1e—3, 3e—3, 5e—3, and le—2.
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Fig. 4.6. Time evolutions of the two free energy functionals, the original energy (2.1) and the modified energy (3.23), for the anisotropic model with linear regularization
witho = 0.3, 8 = 6e—4,S; = S, = 4, and initial condition (4.4). The left subfigure is the energy profile until the equilibrium, and the right subfigure is a close-up view

showing where the energy decreases fast.

where (x1, y1, 1) = (0.8, 1.027, 0.57)and (X3, y,, 12) = (1.677,
0.987, 0.277). We vary the parameter « and fix all other parameters
from the previous Section 4.3.1. We still keep S; = S, = 4, and
the time step is §t = le—4.

In Fig. 4.9(a), we set « = 0.1, and present snapshots of the
profiles of the phase field variable ¢ when t = 2e—3, 5e—3,
3.4e—2, 5e—2, and 1.5e—1. We observe that the two circles first
evolve to anisotropic shapes with missing orientations at the four
corners, then the anisotropic system coarsens and the small shape
is absorbed into the big one. In Fig. 4.9(b) and (c), we increase «
to 0.2, 0.3, and observe that the facets become more flat and the
corners become sharper. In Fig. 4.10, we present the evolutions
of the original energy (2.1) and the modified energy (3.23) up to
the steady states for these three cases where we can see that the
coarsening process is faster for smaller «.

4.3.3. Spinodal decomposition in 2D

In this example, we simulate the phase separation dynamics
and the effect of anisotropic terms that is called spinodal decompo-
sition by using the S-IEQ scheme (3.9)—(3.11). The initial condition
is taken as the randomly perturbed function as follows,

do(x,y) =

where ¢ = 0.5 and rand(x, y) is the random number which
follows the standard uniform distribution on the open interval
(0, 1). The order parameters here are the same as Section 4.3.1 and
the time step is §t = le—4.

In Fig. 4.11, we show the profiles of the phase field variable
¢ up to the steady state where we can observe the combined
effects of anisotropy and coarsening when time evolves. Snapshots
of the numerical approximation ¢ are taken at t = le—2, le—1,

o + 0.001rand(x, y), (4.6)
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Fig. 4.8. Time evolutions of the original free energy functional (2.1) of five combinations of linear stabilizers, for the anisotropic model with the linear regularization. The
left subfigure (a) is the energy profile for t € [0, 1.5e—2], and the right subfigure (b) is a close-up view for t € [0, 4e—3].

3e—1,5e—1, and 1. The final equilibrium solution is obtained after
t = 7.79e—1, where the equilibrium shape becomes a pyramid
due to the strong anisotropy. In Fig. 4.12, we plot the evolutions
of the original energy (2.1) and the modified energy (3.23), which
show the decays with time that confirms that our algorithms are
unconditionally stable.

4.3.4. Evolution of a 3D sphere
In this example, we investigate the 3D simulations of a sphere
by using the following initial condition

VEx—a24+ @y —n2+(@z—-n)?-057
( . )

¢o(x,y, z) = tanh

(4.7)

We use 128> grid points to discretize the computational domain
and the time step is §t = 1e—4. We vary the magnitude of & and
B, and other order parameters are still from Section 4.3.1.

First, we set « = 0.1 and 8 = 6e—4, the evolution of the
spherical shape towards its equilibrium is shown in Fig. 4.13(a),
where we observe that the 3D sphere evolves to an anisotropic
octahedron with missing orientations. We further fix 8 = 6e—4
and increase « = 0.3, the octahedrons become more flat and
the edges become sharper, shown in Fig. 4.13(b). At last, we fix
«a = 0.3, and increase 8 = 6e—3, the edges become more smooth,
shown in Fig. 4.13(c).

4.4. Willmore regularization model

In this subsection, we consider the anisotropic system with the
Willmore regularization.

4.4.1. Evolution of a 2D circle

In this example, by using the S-IEQ scheme (3.36)-(3.38), we
compute the simulation for the evolution of a 2D circle, where the
initial condition is set as

Vx—nP+(y—n)?—-057

$o(x, y) = tanh( )s (4.8)
1.2¢
and the order parameters are set as
=6.28e—2, B =6e—4, B = le4,
i p (4.9)

S1=95,=4, S3 =4e-3, 5t =5e-5.

We investigate the impacts of the strength of the anisotropy
parameter « and the Willmore regularization parameter 8 on the
equilibrium fourfold shapes. We choose three different values of
a = 0.1,0.2, 0.3, and fix § = 6e—4, the equilibrium shapes are
compared in Fig. 4.14. 1t can be observed that the increase of « leads
to a pyramid with shaper corners and smoother facets because of
the strong anisotropy. The evolutions of the original energy (2.1)
and the modified energy (3.41) are shown in Fig. 4.15, where we
observe that the energy decreases faster with larger «.
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(a) a=0.1.

Fig. 4.9. The 2D dynamical evolutions of the phase variable ¢ with @ = 0.1, 0.2, and & = 0.3. The snapshots of the numerical approximation are taken at t = 2e—3, 5e—3,

3.4e—3,5e—2,and 1.5e—1.
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Fig. 4.10. Time evolutions of the two free energy functionals, the original energy (2.1) and the modified energy (3.23) for the linear regularization with « = 0.1, 0.2, 0.3,
B = 6e—4, and initial condition (4.5). The left subfigure (a) is the energy profile for t € [0, 1.5e—1], and the right subfigure (b) is a close-up view for t € [0, 3e—2].
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Fig.4.11. The 2D dynamical evolution of the phase variable ¢ of the spinodal decomposition example for the linear regularization model, by using the initial condition (4.6),
8t = le—4,« = 0.3,and 8 = 6e—4. Snapshots are taken at t = 1e—2, le—1, 3e—1,5e—1, and 1.

In Fig. 4.16, we show the effects of the Willmore regularization
parameter 8 on the equilibrium shapes, in which, we choose § =
3e—4, 6e—4, 1.2e—3, 2.4e—3, and fix « = 0.4. There are no
visible differences with respect to the facets, but the corners be-
come sharper in the equilibrium morphologies, as 8 decreases. The

corresponding original energy evolutions are plotted in Fig. 4.17,
where one can observe that energy decreases faster with smaller 8.

A closer look at Fig. 4.16 also indicates that the numerical solu-
tion with the Willmore regularization converges to the asymptotic
solution as B approaches to zero. At the same time, the edges
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Fig. 4.12. Time evolutions of the two free energy functionals, the original energy (2.1) and the modified energy (3.23), of the spinodal decomposition example for the linear
regularization model by using the initial condition (4.6). The left subfigure (a) is the energy profile for t € [0, 1], and the right subfigure (b) is a close-up view for t € [0, 3e—1].
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Fig.4.13. The dynamical evolution of a 3D sphere for the anisotropic linear regularization model, by using the initial condition (4.7), and §t = le—4.(a)a = 0.1, 8 = 6e—4;
(b)a = 0.3, B = 6e—4; and (c) « = 0.3, B8 = 6e—3. Snapshots of the isosurfaces of the phase field variable {¢ = 0} are taken at t = 0, 2e—2, 4e—2, and le—1.

and corners match the asymptotic result more closely than in
the linear regularization, which can be seen in Fig. 4.18. All these
observations are in good agreements with the numerical results
presented in [2,29,31].

4.4.2. Roughing process of a smooth curve

In this example, we use the Willmore regularization model
to examine evolution of a smooth interface to facets. The initial
condition reads as

$o(x,y) = tanh(—(y — 1.47 — 0.2r(x))/€)

+ tanh((y — 0.6 — 0.2r(x))/€) — 1, (4.10)

where r(x) = 1.87 cos(2x) + 1.5 cos(6x) + 0.4m cos(6x) +
0.17 cos(14x), and the order parameters are set as

€ =6.28e—2, o = 0.3, f =4e—4, it = le—6,
B=1e4, 51 =5, =4, S3 =4e-3.

The profiles of the phase field variable ¢ up to the steady state
are shown in Fig. 4.19, where the initially smooth interface quickly
forms many small facets along the low-energy orientations. Sooner
after that, the small facets evolve into larger ones. Finally, the equi-
librium shape is dominated by the largest initial mode, which is
1.8 cos(2x). These simulations are consistent with the computed
results in [2,29,31].
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Fig. 4.15. Time evolutions of the two free energy functionals, the original energy (2.1) and the modified energy (3.41), for the 2D circle example of the anisotropic model
with the Willmore regularization, by using the initial condition (4.8), 8 = 6e—4 and three different values « = 0.1, 0.2, 0.3. The left subfigure (a) is the energy profile for
t € [0, 2e—2], and the right subfigure (b) is a close-up view for t € [0, 4e—3].
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Fig. 4.16. The contours of {¢ = 0} of the equilibrium solutions for the anisotropic model with the Willmore regularization by using the initial condition (4.8), « = 0.4 and
four different values 8 = 3e—4, 6e—4, 1.2e—3, and 2.4e—3. The right subfigure (b) is the close-up view, for the top corner of the left subfigure (a).
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Fig.4.17. Time evolutions of the original free energy functional (2.1) for the 2D circle example of the anisotropic model with the Willmore regularization, by using the initial
condition (4.8), « = 0.4 and four different values 8 = 3e—4, 6e—4, 1.2e—3, and 2.4e—3. The left subfigure (a) is the energy profile for t € [0, 2e—2], and the right subfigure
(b) is a close-up view for t € [0, 4e—3].
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Fig. 4.18. The contours of {¢) = 0} of the equilibrium solutions for the anisotropic model with the linear regularization by using the initial condition (4.8), = 0.4 and five
different values 8 = 1.5e—4, 3e—4, 6e—4, 1.2e—3, and 2.4e—3. The right subfigure (b) is the close-up view, for the top corner of the left subfigure (a).

Fig.4.19. The 2D dynamical evolution of the phase variable ¢ of the roughing curve example for the anisotropic Willmore regularization model, by using the initial condition
(4.10). Snapshots are taken at t = 0, 5e—5, 8e—5, le—4, 1.5e—4, 2e—4, 5e—4, and 1e—3.

5. Concluding remarks linear stabilizers are added which are shown to be very crucial
to suppress the non-physical oscillations caused by the strong

In this paper, we develop two second-order, stabilized-IEQ anisotropic coefficient. The proposed schemes (i) are accurate
schemes to solve the anisotropic Cahn-Hilliard system by com-  (second-order in time); (ii) are stable (the unconditional energy
bining the IEQ approach with the stabilization technique. Some dissipation law holds); and (iii) are easy to implement (only need
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to solve linear equations at each time step). Furthermore, the
induced linear system is well-posed, thus one can apply any Krylov
subspace method with mass lumping as pre-conditioner for solv-
ing such system efficiently. We perform a number of numerical
simulations in 2D and 3D to demonstrate the efficiency, accuracy
and energy stability for the schemes. Moreover, the proposed
method can be extended to develop linear schemes for a large
class of gradient flow problems with complex nonlinearities in the
free energy density. The related error analysis work, including the
semi-discrete scheme and fully-discrete schemes in the context
of finite element method or spectral method, is expected to be
implemented in the future by following the same line of procedure
as [35-40].
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