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We present a new solution to the hierarchy problem, where the Higgs mass is at its observed
electroweak value because such a patch inflates the most in the early universe. If the Higgs mass
depends on a field undergoing quantum fluctuations during inflation, then inflation will fill the
universe with the Higgs mass that corresponds to the largest vacuum energy. The hierarchy problem
is solved if the maximum vacuum energy occurs for the observed Higgs mass. We demonstrate this
notion with a proof-of-principle model containing an axion, a modulus field and the Higgs, and show

that inflation can be responsible for the weak scale.

INTRODUCTION

The hierarchy problem between the electroweak (EW)
and Planck scales has been a driving force in particle
physics for many decades. Popular solutions along the
years have included the introduction of new particles
at or close to the weak scale via supersymmetry, ex-
tra dimensions and composite Higgs. Recent years have
sparked new directions for addressing the hierarchy prob-
lem, including ideas such as Refs. [1-7].

Here we propose an alternative solution to the hierar-
chy problem, where inflation can be responsible for the
weak scale permeating the entire universe.

In the early universe, a scalar field can undergo quan-
tum fluctuations, leading to a distribution in space of
the field values. Each patch will have a different vac-
uum energy, depending on the field value in that volume.
The patches with the largest vacuum energy will inflate
the fastest, and by the end of inflation, most of the uni-
verse will have the corresponding field value. If the Higgs
mass parameter is dynamical, and depends on the fluctu-
ating field, then at the end of inflation the universe will
be filled nearly entirely with the single Higgs mass that
maximizes the scalar potential. The hierarchy problem
will then be solved if the maximum vacuum energy oc-
curs for the observed Higgs mass, and the inflationary
period is long enough to fill the entirety of space with
the observed value.

This letter is organized as follows. We start by elabo-
rating on the basic concept of the proposed mechanism.
To provide proof-of-concept, we then present a concrete
model which realizes this solution to the naturalness
problem. We describe the conditions under which the
model is viable—namely, that the observed Higgs mass
spans the entire universe, without eternal inflation or fine
tuning. We conclude with some discussion on further di-
rections and improvements.

BASIC CONCEPT

During inflation every scalar field has an uncertainty of
the order of the inflationary Hubble scale. Assuming the
potential of the field is very flat, classical rolling down
this potential is negligible. However, the field does un-
dergo a random walk due to the quantum uncertainty,
generating a spread in field value that increases with
time. At any given time, each patch of the universe will
then have a different field value and correspondingly a
different vacuum energy. The patches with the highest
vacuum energy will inflate the most, and if inflation is
long enough, the corresponding field value will fill out
most of space by the end of inflation.

If such a scalar field is coupled to the Higgs boson,
then the Higgs mass parameter in the universe will cor-
respond to the value of the scalar field at the maximum of
the potential. To solve the hierarchy problem, the scalar
potential is constructed such that the maximal vacuum
energy occurs when the Higgs mass fits the observed value
in our universe. There might be more than one way to
build such a model. In our proof-of-concept model, given
in detail in the next sections, we single out the correct
EW mass parameter by using the QCD axion which is
sensitive to the Higgs mass. This axion has a clockwork-
like potential [8-10], which was used in Ref. [2] to scan
the Higgs mass parameter.

MODEL

Here we construct an explicit model that realizes our
proposed mechanism to solve the hierarchy problem via
inflation. This proof-of-concept model serves to illustrate
that the proposed mechanism can be realized. The scalar
fields in the model include the SM Higgs boson h, the
QCD axion a, a modulus field ¢ and the inflaton. We are
agnostic about the inflaton sector, which is only assumed
to end inflation after a long inflationary period. The



potential of the modulus and axion fields is taken to be

V= (M*+yM¢+..)h* + ot +yM3p + ...

a = a
+?GG+A‘}{ c08 - - (1)
Here M is the cutoff of the theory—the ‘natural’ size
of the Higgs mass—and G is the gluon field strength.
The axion potential A% cos % is generated by the non-
perturbative dynamics of a hidden confining gauge the-
ory, with confinement scale ~ Agy. The +... terms refer
to terms that are higher order in (y¢). The parameter
y is a spurion that breaks a shift symmetry for ¢ (which
will be very small), and thus the potential above is tech-
nically natural. As we will see later, the field ¢ can be a
compact field; the term modulus is used loosely here.
The Higgs mass parameter in Eq. (1) is promoted to a
dynamical field,

)" = M+ yM+ .. (2)

The ¢ field begins at a large negative value ¢ < —M/y,
where the Higgs mass parameter is large and negative,
u?> < —M?2. The field diffuses to larger values where
¢ ~ —M/y, including where the two contributions to the
Higgs mass parameter are ‘tuned’ to give the observed
value p2, . ~ —(125./v/2)? GeV?>. Below we will see how
this point is ‘naturally’ picked out. Since the field ¢ fluc-
tuates, and these fluctuations drive the mechanism, we
call it the fluctuon. We note that, similar to Ref. [2],
since y will be a small coupling, the field ¢ undergoes
excursions much larger than the cutoff and the Planck
scale. We expect that this should not necessarily pose a
problem for a UV-completion of this model, e.g. within
a clockwork framework.

The axion potential can be seen in Fig 1. It is com-
prised of the addition of two modulating potentials, one
with large amplitude and period (from the confining hid-
den sector) and one with small amplitude and period
(from the QCD sector), with F' > f,

Vo = A(¢)*cosa/f + A} cosa/F. (3)

The fluctuon field ¢ begins at a large negative Higgs
mass, and QCD dynamics generates a potential for the
axion, A(¢) ~ Aqgcp. Initially, the axion is misaligned
from the global minimum, trapped at a local minimum
of the QCD potential (see top panel). Near the observed
EW VEV, the amplitude, A(¢)*, is approximately lin-
ear in the Higgs VEV, and therefore varies with ¢. For
larger ¢ values (a consequence of diffusion), the Higgs
VEV decreases, and the barriers created from the QCD
potential falls. If the slope of the barriers of the QCD
potential drops below the slope of the potential from the
hidden confining sector, the axion will be free to roll down
the potential (see bottom panel). The axion parame-
ters are chosen such that the barriers disappear when
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FIG. 1. The axion potential. Top: The axion is initially

misaligned from the global minimum and is trapped at a local
minimun of the potential. Bottom: As ¢ increases and the
Higgs VEV drops, the QCD-induced part of the potential
releases its barriers and the axion is free to roll down to the
global minimum.

the Higgs mass parameter is smaller (or equal) to the
observed value in our universe, i.e.
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The potential energy (from ¢ and a) contributing to
the Hubble scale can be separated into two contributions:
the linear potential from the fluctuon ¢, and the potential
energy of the axion when it has reached it’s local mini-
mum. Integrating out the axion contribution and writing
the potential in terms of the Higgs mass parameter gives

Vet ~ M?p(9)” — 2050 (u()® — pdpe) - (5)

We plot this effective potential in Fig. 2. For smaller ¢,
the potential increases as V ~ yM3¢$ ~ M?u?, but there
is also a constant contribution from the axion which is
trapped in a barrier near the top of the potential V,, ~
A%,. However, as ¢ increases enough, the barrier falls,
and the axion moves towards the global minimum, V, ~
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FIG. 2. Total contributions to the vacuum energy. The green
dashed curve shows the axion potential energy at the end of
inflation; the dashed orange curve depicts the ¢ potential; and
the total contributions are shown in solid blue.

—A%;. The energy density is therefore maximized when
the Higgs VEV is at the measured value in our universe,
which is much less than the cutoff of the theory.

The potential described in Fig. 2 can potentially have
larger vacuum energies for much larger positive values of
u%(¢) than depicted. A necessary requirement is that the
confinement scale of the hidden confining gauge theory
be larger than the cutoff,

Ag > M, (6)

so that the drop in the vacuum energy is significant at
the observed Higgs mass. Nevertheless, for the linear
potential in Eq. (5), the potential energy will eventually
exceed the potential energy at 2, .. Thus a requirement
of the model is that the potential of ¢ have a global
maximum for |¢| < M/y, such that the maximum of the
total potential stays at ugbs. One possibility is that ¢
is compact with a sinusoidal potential and an amplitude
< A%, Alternatively, since the full potential of ¢ contains
terms such as y2M2¢?, y3M@? etc., it could very well be
that V' (¢) is maximized on the range |¢| < M /y, without
a periodic potential.

The patches where the Higgs VEV matches the ob-
served value have the highest vacuum energy, and there-
fore expand exponentially faster than the rest of the uni-
verse. If inflation is long enough, most of the universe (by
volume) will have the observed Higgs mass. Thus, infla-
tion solves the hierarchy problem by filling the universe
with the correct Higgs mass.

BASIC REQUIREMENTS

Having set up the model, we now move to the condi-
tions such that the mechanism works within this model.

We derive the necessary conditions on the model param-
eters such that the universe is filled with O(EW) scale
Higgs mass, and that the probability of being found in
a patch with Higgs mass much larger than the observed
value is close to zero. Furthermore, we will give the con-
ditions that the spread in the observable universe is small.

We assume that the inflaton dynamics is external to
the dynamics of the Higgs mass, and that the inflaton
dominates the energy density during inflation. The Hub-
ble scale at this time can be expanded around the ¢/a
contribution,

%4
H ~ H;, AH, AH~——
o 2Hinfm?)1 (7)

with V = yM3¢ + V,, where V, is the vacuum energy
of the axion and Hi,f = M2;/my is the Hubble scale
from inflation. Note that since the inflaton dominates
the energy density, Mins = M.

First, it is important that when the barriers release
the axion, it rolls sufficiently down the potential so as to
generate a sizable change in the vacuum energy of the
universe. This imposes two requirements: (i) that the
classical motion of the axion dominates over its quantum
fluctuations, in order that all patches roll towards the
minimum; and (i), that during inflation the axion has
rolled enough such that its contribution to the potential
has dropped relative to the variance in the ¢ potential.

In one Hubble time, the axion field undergoes quan-
tum fluctuations of order Aaq, ~ Hint, and rolls classi-

o a\gt(la). For the potential Eq. (1), the
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requirement of classical motion beating quantum fluctu-
ations for the axion thus implies an upper bound on the
cutoff of the theory:

cally Aag ~

2/3  1/2
QCcDMpl

108 GeV /¢
f1/6 - (8)

f

Here we used the relationship in Eq. (4), that Vi o < Vius,
and took Aqcp = 0.1 GeV. Translating this bound to a
bound on F, gives F' > 10%0 GeV, for the values taken
in Eq. (8), which can be accommodated in a clockwork
mechanism.

Further requiring condition (%), that the axion contri-
bution to the potential decreases by O(A%), by moving
O(F), during inflation, imposes that inflation takes place
for a sufficiently long time,

N> M4M§1ff2 ~ 10% f ? M Mg ‘
Agcpm? 108 GeV ) \ (107 GeV)Z )

(9)
where N = Hiyetins is the number of e-folds and ;¢ is
the time that inflation ends. In the above we assume
the initial axion misalignment does not place the axion
at the top of the potential. However, if the distribution
of the initial condition for the axion is spread over local

M < Miys < ~ 107 GeV (




minimum, then the axion will be at the top of the po-
tential in most of the Hubble patches. We have checked
that our mechanism works in that case as well and that
the requirement in Eq. (9) is then weakened. We leave
this for future work.

Next we study the diffusion and growth of the dis-
tribution of ¢ during inflation, which is similar to the
evolution originally studied in models of chaotic eternal
inflation [11, 12], the Higgs field during inflation [13-15],
and the relaxion [16, 17]. One needs to find the fraction
of the physical volume of the universe that is filled with
the observed EW scale, and require that this probably
is very close to unity. A complete analysis of the proba-
bility distribution requires solving the full Fokker-Planck
diffusion equations for ¢ and a, which is being studied in
detail in upcoming work [18].

For the case where quantum fluctuations of ¢ domi-
nate over classical motion (which we will quantify below)
and that the fluctuon ¢ contribution to the Hubble scale
is small, an approximate solution can be obtained. The
distribution factorizes into two contributions: the gaus-
sian distribution that characterizes standard diffusion in
a comoving volume, and the growth of the volume with
the Hubble scale:

P(¢7t) ~ Paigg X Pgrowth (10)

[6(t) — pa(t)]?
~ exp <_ H~3 ftl

m

) x exp (3AHt) ,

where ¢q1(t) is the classical expectation value of the fluc-
tuon field, and AH is given in Eq. (7).

In order for the fluctuon to move up the potential, its
quantum fluctuations must be larger than the classical
motion, which is condition (7):

y < Mil?ﬂf ~ 1033 Ming 67107 GeV\®
M?’mil - 107 GeV M ‘

(1)
The growth from inflation has dominated over the diffu-
sion when the EW vacuum has a larger density than the
classical value, e.g., P(¢drw,tint) > P(dal, tint). Requir-
ing inflation is long enough—condition (iv)— imposes
that the number of e-folds must be greater than

My 107 GeV 10~33
N> 2 ~ 0% 12
Z UM M ) 12

where we used the fact that ¢pw — dc1(ting) = M/y.

We now require that the EW-scale VEVs are present
across the entire universe, so that the hierarchy prob-
lem is solved everywhere. After a long enough
time of inflation (given by Eq. (12)), the distribu-
tion is dominated by inflationary growth, P(¢,tins)
exp (3AH ting) ©(d(ting) — drw). The probability to be
found in a patch less than —du? from the observed value

is
3M2%t;¢

P (1 < pilys — 0p°) ~ exp [— Hoom?
in pl

5;3] . (13)

Requiring this probability be small for §u? ~ |pobs|?

which is condition (v), imposes

)

N o Hhemy ( Ming )4 (10? GeV)2 .
M2 pobs)? 107 GeV M
(14)
Given Egs. (12) and (14), the likelihood of a patch with
Higgs mass much larger than the observed value is close
to nil.

Therefore, given moderately long inflation, the expo-
nential growth of the inflationary period will fill the uni-
verse with EW-scale VEVs, that are much smaller than
the cutoff. The longer the period of inflation, the smaller
the spread in the electroweak scale is across the universe.
In the following section, we will discuss post-inflationary
dynamics of the fluctuon field and the spread of the EW
scale within the observable universe.

POST-INFLATIONARY DYNAMICS

If the fluctuon field ¢ continues to classically roll af-
ter inflation, it can change the electroweak scale and the
vacuum energy that was picked out by inflation. Thus
we require that the change in the Higgs mass and the
vacuum energy from post-inflationary classical rolling of
¢ be less than the observed values today. The post in-
flationary change in ¢ until today can be estimated as
A¢g ~ yM3/HZ, where Hy is the Hubble scale today.
The subsequent constraints on the slope from the Higgs
mass and vacuum energy, conditions (vi) and (vii), are

H 107 GeV' 2
y < "“]‘JFO ~ 1077 (Me> (15)
and
Ace 107 GeV®
y < fM”;p‘ ~ 1076 (Me) : (16)

respectively, where A, ~ 10_122m1[2)1 is the observed cos-

mological constant. Using this constraint, along with
Eq. (12), we find that in order to avoid rolling of the
EW scale after inflation, the number of e-folds must be
N > 10%7 for the parameters chosen.

Typical models of slow-roll inflation can maximally in-
flate for

m? 107 GeV\*
Ns OW—T0 S, i =~ 1044 <) ’ 17
ol Mg ()

inf

before the universe is eternally inflating. While there are
unsolved problems in eternal inflation, it is possible that



our universe is eternally inflating, or that the inflation-
ary model is not a standard slow-roll model. If allowing
for eternal inflation, then for small enough y and long
enough inflation, the Higgs mass can be driven to arbi-
trarily uniformity throughout the universe.

Here we offer an approach which avoids eternal infla-
tion. We take the fluctuon ¢ to also be an axion-like field,
that develops a periodic potential after inflation ends,

A;ﬁ cos i (18)

fo

During inflation this cosine potential is inactive if Hi,s >
Ay, but is reactivated after inflation. For Aé /fo = yM3,
there are local minima along the ¢ potential in which
the field can settle. Within quantum field theory [19]
and string theory [20], the technical naturalness of y for
‘non-compact axions’ can be problematic, but is realiz-
able within the clockwork mechanism [8].

This automatically solves the problem of the fluctuon
rolling after inflation, since within each period fg4, ¢ will
roll to a fixed value. We require that in the last Ngg = 60
e-folds ¢ does not fluctuate larger than fy, or else some of
the observable patches will end up in different minimum
after inflation:

A¢ = N60Hinf < f¢,. (19)

This leads to a condition on y:

L Hie _joose (Mot 67107 Gev\?
VS N e = <107 GeV> ( M ) '
(20)
Here, eternal inflation can be avoided if the cutoff is
brought down to e.g. M < 105 GeV.

MODEL DISCUSSION

In short, we have derived the necessary conditions on
the model parameters for the mechanism to solve the hi-
erarchy problem. During inflation we require that the
axion a rolls (i) classically [Eq. (8)] and (ii) sufficiently
far down the potential during inflation [Eq. (9)], in or-
der that when the barriers release the axion potential en-
ergy significantly lowers; that (i) the fluctuon ¢ is domi-
nated by quantum motion so it can move up the potential
[Eq. (11)]; that (iv) inflation is long enough so that the
fluctuon has spread over a large range and inflationary
growth drives the distribution [Eq. (12)]; and (v) that the
likelihood of a patch with Higgs mass much larger than
the observed value is close to nil [Eq. (14)]. Post-inflation,
the fluctuon ¢ must not roll sufficiently back down the
potential changing the Higgs mass and vacuum energy,
given by conditions (vi) and (vii) [Egs. (15) and (16)].
These last two constraints can be relaxed to Eq. (20) if
¢ generates local minima after inflation.

We remark that as in Ref. [2], the model above gener-
ates a large # angle in absence of a tuning, and therefore
re-introduces the strong-CP problem that the QCD ax-
ion aims to solve. There are several possible solutions to
this problem which could be applied to the framework
here, such as using a QCD’ sector, an additional axion,
the Nelson-Barr mechanism or particle production, as in
Refs. [2, 21-24]. These would also relate to the possible
signatures of the model. Additionally, the model pro-
posed here does not address the cosmological constant
problem, and we do not explain why the patches with
the maximal vacuum energy during inflation will have
very little vacuum energy afterwards. We leave a de-
tailed study of expansions of the idea presented here, as
well as potential signatures of this mechanism, to future
work [18].

We leave the constraints from standard cosmology on
this mechanism to future work as well [18], but we note
here that the oscillations of the fluctuon ¢ around the
minimum after inflation will start early enough, so that
¢ will not overclose the universe.

Finally, we comment on the use of measure probabil-
ities [25-28] in this work. Since inflation can be non-
eternal, we have adopted the measure to be the physical
volume at the end of inflation. Furthermore, the patches
with the wrong Higgs VEV will have negative vacuum
energy, and will crunch after inflation. Therefore we ex-
pect much of the typical ambiguity of defining measures
during inflation to be addressable here.

SUMMARY

In this work we have proposed a new solution to the hi-
erarchy problem. We have shown that if the Higgs mass is
a dynamical variable that is coupled to a fluctuating light
field, inflation can be responsible for the electroweak scale
by filling the universe with this Higgs mass if it maximizes
the scalar potential. We have constructed a simple proof-
of-concept model that realizes this idea, and contains a
modulus field, an axion, and the Higgs, and derived the
conditions for such a model to work. For small enough
coupling and long enough inflation, the Higgs mass can
be driven to arbitrarily uniformity throughout the uni-
verse. We have shown that the model is viable without
necessarily eternal inflation. There are many possible ex-
tensions of this idea and further model realizations, which
will be explored in future work.
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