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ABSTRACT
We describe, study, and experiment with an algorithm for finding

all solutions of systems of polynomial equations using homotopy

continuation and monodromy. This algorithm follows the frame-

work developed in [5] and can operate in the presence of a large

number of failures of the homotopy continuation subroutine.

We give special attention to parallelization and probabilistic

analysis of a model adapted to parallelization and failures. Apart

from theoretical results, we developed a simulator that allows us

to run a large number of experiments without recomputing the

outcomes of the continuation subroutine.
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1 INTRODUCTION
Monodromy Solver (MS) is an algorithmic framework for solving

parametric families of polynomial systems. MS relies on numer-

ical homotopy continuation methods [19], which are applicable

in a very general setting, and monodromy (Galois group) action,

which is specific to polynomial systems. The monodromy tech-

nique has been used successfully in numerical algebraic geometry
(for a good overview, see [21]) mostly for high level tasks: for in-

stance, numerical irreducible decomposition [22] or Galois group

computation [9, 15].
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The MS framework addresses the following basic problem:

Given a family of polynomial maps Fp , find all solu-
tions to Fp = 0 for a generic value of p.

Note that, given an ability to construct a complete solution set for

a generic value of the parameter, one can find all isolated solu-

tions Fp = 0 for an arbitrary value of the parameter p by using a

coefficient-parameter homotopy [21, §7].

Apart from MS, current methods of polynomial system solving

via homotopy continuation include polyhedral approaches [11, 24],

total-degree and multihomogeneous-degree homotopies [26], re-

generation [10], and various other more specialized methods.

Most methods of homotopy continuation are embarrassingly

parallel, in that homotopy paths can be tracked completely in-

dependently. Literature on parallelism in relation to homotopy

continuation includes [7, 8, 14, 16–18, 20, 25].

While an atomic task of MS (one homotopy path track) is inde-

pendent of another such task, this is only true for the tasks that

are already scheduled and being processed. The scheduling algo-

rithm, however, follows a probabilistic framework and (at every

state when resources free up) attempts to find a task that maximizes

the number of solutions known once this task and the current (in

progress) tasks are complete. This has to be done using only partial

knowledge of the outcome of the current tasks and, hence, implies

a dependence of the choice of a new candidate task on the current

state of the algorithm.

In the context of the framework that allows multiple threads

to carry out atomic tasks, we analyze the probabilistic model that

results from the assumption of uniform randomness of correspon-

dences induced by edges in an underlying graph (see §2). This is

followed by analysis of a model that accounts for failures in the

homotopy continuation subroutine.

Last, but not least, we have implemented a simulator for the

new algorithm that makes it possible to run fast experiments with-

out rerunning the actual continuation subroutine over and over

again. Using this simulator we conduct several computational ex-

periments on both fabricated data using the probability distribution

in our model and the data coming from the execution of homotopy

continuation algorithms for a family of polynomial systems. This

contribution is important for the further development of the MS

framework, since our probabilistic assumptions are too simple to

completely describe the random behavior in actual computations.
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In §2 we give a primer on MS using an example, and then define

necessary terminology in §3. The pseudocode for the main algo-

rithm appears in §5. A probabilistic model is analyzed in §4 with a

view towards designing a task selection strategy for our algorithm.

The study of the threshold for completion depending on the rate

of failures is in §6. Finally, in §7, we describe the implementation

of the simulator, and use it to showcase the benefits of the new

approach via several experiments. A brief conclusion is in §8.

2 MONODROMY SOLVER FRAMEWORK
For a family Fp , the MS approach treats different parameter choices

pi as nodes in a graph, and by tracking along “edges” (i.e. homo-

topies) between them, seeks to populate the solution set for at

least one node. Each of these homotopies is a coefficient-parameter
homotopy,

H (t) = F(1+t )p1+tp2
, t ∈ [0, 1], (1)

which tracks between the parameter choices p1 and p2. For generic

p, the number of roots of the system is constant, and following

loops in the graph permutes the roots. In the case when Fp is linear

in p, we may use a segment homotopy,

H (t) = (1 − t)γ1Fp1
+ tγ2Fp2

, t ∈ [0, 1], (2)

defined for generic γ1,γ2 ∈ C. This gives us the ability to introduce

multiple edges between two nodes, in hope that they would induce

distinct maps on the solution sets.

As an example, suppose we want to know the roots of a generic

univariate cubic polynomial. Writing it as

x3 + ax2 + bx + c, (3)

we set up a graph for three values p1,p2,p3 ∈ C
3
of the coefficients.

It may help to visualize the family with one parameter: set a = b = 0.

Then we may just imagine a triangle embedded in the complex

plane, i.e., the parameter space of c . This triangle is the homotopy
graph of Figure 1 that lifts to the solution graph above it.

p1 p2

p3

Figure 1: The homotopy graph (bottom left) and the solution
graph (top left) viewed as a restriction of the 3-to-1 covering
for x3 + c = 0.

Assume that we know one solution (shaded in Figure 1) of Fp1
.

Now continue this solution along edges of the solution graph. By

doing so, we recover all three solutions at one of the nodes. As long
as the action of the monodromy group (see [5] for definition and

discussion) is transitive, it is always possible to recover all solutions

from one by following along the edges of a graph that is sufficiently

large and sufficiently general.

In our very simple example there is always a unique choice

for the next edge to track along; in general, this will not be so.

The fact that only a subgraph of the solution graph is known at

any point of the algorithm complicates the selection of the next

(homotopy continuation) atomic task further. Hence, two parts of

the MS approach are probabilistic: first, the homotopy graph is

created at random; and second, the task selection procedure may

either be random or designed to maximize the expectation of some

potential function (see §4) under a fixed probabilistic model.

It has been shown in [5] that given a simple probabilistic model,

the expected number of edges in the solution graph for MS to suc-

ceed is linear in the number of solutions. This bounds the number of

continuation tasks to be carried out and—what seems to be the main

reason for the practical success of MS—ties the overall complexity of

the approach to the actual number of the solutions, and not to some

bound that may be available a priori for a larger family of systems

(e.g., bound of Bézout or Bernstein-Khovanskii-Kouchnirenko).

Note that the Monodromy Solver framework does not specify a

stopping criterion. For the discussion of possible stopping criteria

see §3.2.2 and §3.2.3 of [5].

3 DEFINITIONS
Let G be a loopless multigraph with vertices V = V (G) and edges

E = E(G). Each vertex corresponds to a system Fp specialized at

parameters p and is associated with d solutions—we refer to the

vertex together with this satellite data as a node. Each edge e ∈ E
connecting nodes v1 and v2 induces a homotopy that establishes a

bijective correspondence between the solutions of the polynomial

systems Fp1
and Fp2

. We assume the following:

Assumption 1. Edges induce uniformly random correspondences.

In other words, we assume that all bijective correspondences that

could be induced by an edge connecting the solutions of Fp1
and

Fp2
are equally likely. This assumption allows us to simplify the

probability calculations and postulate an effective task selection

strategy described in §4 especially when tracking multiple paths in

parallel. See discussion of randomization in §5.1 of [5].

In general, e will refer to an edge and ®e will refer to a directed

edge (a pair of e and a specified direction). A pair t = (s, ®e), where
s ∈ S(v) belongs to the solution set S(v) of the polynomial system

corresponding to v = src (®e), represents a candidate for (one) ho-
motopy path track, an atomic task that shall be performed by one

thread in a parallel algorithm.

We fix the graphG = (V ,E) at the initialization stage. At a given

state x = (Q,C,A) of the algorithm we have the following.

• A collection Q of sets indexed by v ∈ V , where each Qv is

the subset of solutions at v known at this state.

• A collectionC of sets indexed by e ∈ E. EachCe ⊂ Qv ×Qw
— where v and w are the nodes e connects — is a partial
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one-to-one correspondence between subsets of Qv and Qw .

We denote by πv and πw the projections from Qv ×Qw to

Qv and Qw , respectively.

• A set A = {t1, . . . , tk } of atomic (homotopy path track-

ing) tasks currently being processed (using k independent

threads).

Given a state x = (Q,C,A) we denote Q(x) := Q , C(x) := C , and
A(x) := A. Note that in most states (in our basic framework, in all

states but the initial state) one can determine Q from C . We shall

call a state x idle if A(x) = ∅.
For an atomic task t = (s, ®e) ∈ A, src(t) and dest(t) will refer to

the source and destination vertices of edge(t) := ®e .
Prior to running t , it is unknown which solution at dest(t) will

be found. We use the random variable solt to denote the outcome of

running this task, conditioned on the current state. Likewise, solA
will denote the random set of solutions known after running the

tasks in A. Suppose we know (or can estimate) the solution count

for a generic system; refer to this (integer) count as d , the degree of
the problem. Assumption 1 implies that

Pr(solt < Qdest(®e)) =
d − |Q

dest(®e) |

d − |Ce |
(4)

Define E(x) to be the expected total number of known solutions

at all vertices after running all tasks t ∈ A to completion. That is, if

y is the state after the completion, i.e., A(y) = ∅, then

E(x) =
∑

v ∈V (G)

Ev (x), with Ev (x) := E(|Qv (y)|),

where the (new) number of known points |Qv (y)| is perceived as a

random variable with expected value E(|Qv (y)|); state transition
probabilities are induced by Assumption 1.

4 TASK SELECTION VIA POTENTIAL
We intend to use either E(Q,C,A∪{t}) to define a potential function
driving our choice of the next task t to append to A once a thread

becomes available. The basic update rule is given below:

Ev (Q,C,A ∪ {t}) = Ev (Q,C,A) + Pr(solt < solA). (5)

This follows by a simple conditioning argument:

Ev (Q,C,A ∪ {t}) = Ev (Q,C,A ∪ {t} | solt ∈ solA) Pr(solt ∈ solA)

+ Ev (Q,C,A ∪ {t} | solt < solA) Pr(solt < solA)

= Ev (Q,C,A) Pr(solt ∈ solA)

+
(
1 + Ev (Q,C,A)

)
Pr(solt < solA)

= Ev (Q,C,A) + Pr(solt < solA)

4.1 Potential given no path failures
Since random homotopy paths stay away from the discriminant

locus with probability 1, it is natural to seek a “smart” task-selection

strategy in the idealized setting when no failures in homotopy

tracking occur. The following proposition shows that Ev (Q,C,A)
can be computed recursively.

Proposition 4.1. Let v be a vertex and e an edge incident to v . If
t is a candidate path track with dest(t) = v and edge(t) = ®e , then

Ev (Q,C,A ∪ {t}) = Ev (Q,C,A)

+
d − Ev (Q,C,A)

d − |Ce | − #{t ′ ∈ A : edge(t ′) = ®e}

(6)

Thus, if we keep track of these expectations as we go, we may de-

termine the potential of tracking a new thread without recomputing

anything else.

Proof. Let X denote the random variable that, conditioned on

the idle state (Q,C, ∅), counts the total number of solutions at v
after completing all tasks in A. Noting equation (5), we have

Pr(solt < solA) =

=
∑

k ∈suppX

(d − k)

d − |Ce | − #{t ′ ∈ A : edge(t ′) = ®e}
Pr(X = k)

=
d − Ev (Q,C,A)

d − |Ce | − #{t ′ ∈ A : edge(t ′) = ®e}
.

□

4.2 Potential in the presence of failures
The failure of certain atomic tasks is an inevitable feature of any

MS implementation: such failures may occur when paths verge too

close to the locus of singular systems, and may be influenced by the

aggressiveness of threshold settings in the underlying numerical

software as well as various others factors. In anticipation of such

failures, we consider the effects of failures in a simple probabilistic

model generalizing the results of the previous section.

Assumption 2. We now assume that the probability of success

for every atomic task equals a global fixed constant α ∈ [0, 1] and that
formation of edge correspondences and all task failures are mutually
independent events.

Let us emphasize a technical feature of this assumption—if we

have edge(t) = edge(t ′) and dest(t) = src(t ′), the tasks t and t ′ still
fail independently. This lack of symmetry should be accounted for

in any given state of the algorithm. Thus, we extend our definition

of a state x = (Q,C,A, F ) as follows:

• As before, Qv denotes the set of solutions known at v ∈ V ,
eachCvw ⊂ Qv ×Qw is a set of known, successful correspon-
dences, and A is the set of current tasks.

• Failures are indexed by directed edges. For each ®e , the set F ®e
consists of known solutions s ∈ Q

src(e) such that the task

(s, ®e) has completed with a failure. For α = 1, we have F ®e
empty for all ®e and hence abbreviate x = (Q,C,A).

Proposition 4.2. With notation as in Proposition 4.1,

Ev (Q,C,A ∪ {t}, F ) = Ev (Q,C,A, F ) + α ×(
d − Ev (Q,C,A, F )

) (
1 − E

#F
edge(t )+B

d−#Ce−·#{t ′∈A |edge(t ′)=®e }+B

)
d − #Ce − #F

edge(t ) − #{t ′ ∈ A | edge(t ′) = ®e}
.

whereB a random variable with a binomial distribution:B ∼ Bin(#{t ′ ∈
A : edge(t ′) = ®e}, 1 − α).
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Proof. Let u = src(edge(t)). We consider the following set-

valued random variables whose state spaces are conditional on the

idle state (Q,C, ∅, F ) :

• X is the set of all solutions at v which are known after com-

pleting all tasks in A–hence E[X ] = Ev (Q,C,A).
• Y consists of all solutions at v whose correspondences along

®uv have failed after completing all tasks in A. Thus, the ran-
dom variable B := (#Y − #F

edge(t )) has the desired binomial

distribution.

Recalling (5), note that task t yields a solution undiscovered by A
with probability α · Pr(solt < solA). Moreover, we have

Pr(solt < solA) =
d − Ev (Q,C,A, F ) − E[#(Y ∩ X c )]

d − #Ce − #F
edge(t ) − #{t ′ ∈ A | edge(t ′) = ®e}

Conditional on the event (X = k,B = j), we have that

#Y = #F
edge(t ) + j,

but the intersection Y ∩ X c
still depends on

d − (#Ce + #{t ′ ∈ A | edge(t ′) = ®e} − j)

unknown correspondences. Assumption 1 implies that the condi-

tional distribution may be generated as follows:

1) For each solution at u which is known to fail along ®uv after

completing all tasks in A, the corresponding solutions in

Y are drawn uniformly without replacement from the (d −
#Ce − #{t ′ ∈ A | edge(t ′) = ®e} + j) solutions at v without

correspondences.

2) Declare each solution in Y ∩ X c
to be a “success.”

Hence the conditional expectation of the number of “successes” is

given by the mean of a hypergeometric distribution:

E
(
#(Y ∩ X c ) | X = k,B = j

)
= (7)

(#F
edge(t ) + j) (d − k)

d − #Ce − #{t ′ ∈ A | edge(t ′) = ®e} + j
(8)

Averaging over k and then j gives the result. □

In practice, it is also useful to group current tasks together according

to their directed edges. This is reflected in the following proposition:

Proposition 4.3. Let A ∪ A′ denote the set of tasks, where A′

consists of all tasks using the directed edge ®uv . Then

Ev (Q,C,A∪A
′, F ) = Ev (Q,C,A, F )+α #A′

(
d − Ev (Q,C,A, F )

d − #Ce

)
.

Proof. Let A′ = {t1, . . . , tk } and consider the events

Ei = “ti finds a solution unknown after completing all tasks in A.”

Then

Ev (Q,C,A ∪A
′, F ) = Ev (Q,C,A, F ) +

k∑
i=1

Pr(Ei )

= Ev (Q,C,A, F ) + α #A′ Pr(solt1
< solA)

= Ev (Q,C,A, F ) + α #A′ ×

d − Ev (Q,C,A, F ) −
(

#F
edge(t ) ·(d−Ev (Q,C,A,F ))

d−#Ce

)
d − #Ce − #F

edge(t )

= Ev (Q,C,A, F ) + α #A′ ×(
d − Ev (Q,C,A, F )

d − #Ce

)
.

□

5 ALGORITHM
For every edge ®e we have its potential ∆®e (x) at state x = (Q,C,A, F ).
The potential guides edge selection in our main algorithm below.

Following the study in §4, the natural greedy potential aiming to

maximize the expected total number of discovered solutions is

∆
E
®e (x) = E(Q,C,A ∪ {(s, ®e)}, F ) − E(x).

Algorithm 1 (Main algorithm). The following is executed on all
available threads after initializing the statex = (Q,C,A, F ).

while ∄Qv such that |Qv | = d do
Pick an edge ®e = (w,v) that maximizes ∆®e (x) and such that
there is s ∈ Qw \ πwCe .
t ← (s, ®e)
Update the state: x ← (Q,C,A ∪ {t}, F ).
Update ∆(x).
Run homotopy continuation for task t .
if the run fails then

F
edge(t ) ← F

edge(t ) ∪ {s}.
else
Update Qv , Ce , and ∆. {Note that an update is needed only
for ∆ ®e ′ such that dest( ®e ′) = v .}

end if
end while

Here are other (heuristic) potential functions we considered: :

∆
ord

®e (x) = 1/i,

where vi = dest ®e (assuming i ∈ {1, . . . ,N })

∆
ω
®e (x) =

∑
v ∈V

ω(v) (Ev (Q,C,A ∪ {(s, ®e)}, F ) − Ev (x)) ,

where weight ω(v) ∈ [0, 1].

Note ∆
ord

is designed to bias edge selection towards nodes in

their order of appearance. This potential is likely to force the algo-

rithm to complete the solution set of the first node.

The weighted potential ∆
ω
depends on the design of the weight

function. See §7.3 for a family of weight functions that seems to be

useful in practice.

In the initial idle state, ∆ can be computed and stored and then

updated during the computation. Propositions 4.1 and 4.2 allow for

an efficient way to do that in both sequential and parallel setting,

with or without an assumption of failures.

Contributed Paper ISSAC’18, July 16-19, 2018, New York, NY, USA

90



Figure 2: Solution multigraph w/ N = 3,d = 4,m = 2.

6 FAILURE RATE AND THRESHOLD
With assumptions 1 and 2, suppose we have a complete multigraph

on N nodes withm edges connecting each pair of nodes, d solutions

at each node, and tracking success probability α . To each homo-

topy graph, we associate a solution (multi)graph whose vertices

are given by all of the solutions at each node and whose edges are

the successful correspondences between solutions. One possible

instance of this random solution graph is depicted in Figure 2.

Note that the graph in Figure 2 has only 10 edges out of a possible

24. Nevertheless, our algorithm succeeds in completing the bottom

node whenever we start from one of the 9 black solutions, which

form a large connected component. We see that connectivity of the

solution graph is sufficient, but not necessary, for our algorithm to

terminate.

In our random solution graph model, define A := Am,N ,d to be

the event that the algorithm starting at a random node terminates

with d solutions. We are interested in the asymptotic behavior of

Pr(A) as d →∞, with reasonable assumptions onm and N . More

precisely, we wish to describe an interval [am,N ,d ,bm,N ,d ] con-

taining a threshold for the eventA; this means that for α(m,N ,d) =
o(am,N ,d ), we have Pr(Am,N ,d ) → 0, while Pr(Am,N ,d ) → 1 if

α(m,N ,D) = ω(bm,N ,d ).

The characterization of thresholds for various properties is a

well-studied problem in random graph theory, particularly in the

context of the Erdös-Renyi graph model. Our random solution

graph does not enjoy the same asymptotic properties as the Edös-

Renyi graph—since no two solutions at the same node may be

connected, the graph is sparse, even for α near 1. Minding these

difficulties, we provide a simple threshold region for the event A
in Proposition 6.1—see subsection 7.2 for experimental verification

and further discussion.

Proposition 6.1. Withm,N possibly depending on d, we have
the following large-d asymptotics:

i) If α(d) = o
(
(Nm)−1

)
and N (d) = o

(
exp(d)

)
, then

limd→∞ Pr(Am,N ,d ) = 0.

ii) If α(d) = ω (logd/m) and N (d) = O(logd), then
limd→∞ Pr(Am,N ,d ) = 1.

We require a simple fact known as the Harris/Kleitman inequal-

ity, specialized to our model (cf. [1] pp. 86-87, [2] pp. 39-41):

Theorem 6.2 (Harris/Kleitman Ineqality). If A and B are
events in the random solution graph model which are upward-closed
with respect to inclusion,

Pr(A ∩ B) ≥ Pr(A) × Pr(B).

In random graph theory, a property which is upward-closed with

respect to inclusion is called a monotone increasing property. For
us, monotone increasing simply means that increasing α does not

decrease Pr(A) or Pr(B). It is a famous result that every monotone

property in the Erdös-Renyi model has a sharp threshold—for a

precise statement, see [3].

Proof of Proposition 6.1. Consider the following auxiliary events:

• S := Sm,N ,d,α will denote the event that there exists some

node with a successful correspondence at each solution

• C := Cm,N ,d,α will denote the event that the solution graph

is connected

Clearly we have

Pr(C) ≤ Pr(A) ≤ Pr(S) (9)

For part i), we may assume WLOG that α(d) > 0 for d sufficiently

large. Now, simply note that

Pr(S) = 1 − Pr( all nodes fail )

≤ 1 −

N∏
j=1

Pr(node j fails) (Theorem 6.2)

≤ 1 −

(
1 − (αNm)d

)N
.

For N = O(1) as d →∞, we have

(1 − (αNm)d )N = (1 − o(1)d )N → 1 as d →∞.

For the regime ω(1) = N (d) = o(exp(d)), we have

(1 − (αNm)d )N ∼ exp(−(αN 1+1/dm)d ),

which is ω(1) for α(d) = o(N−(1+1/d )m−1) = o((Nm)−1). In either

regime, we have Pr(S) → 0 as d →∞.

To bound Pr(A) from below, let v1, . . . ,vn be the nodes of the ho-

motopy graph and Gi denote the subgraph of the solution graph

induced by the solutions at nodes v1 through vi . By repeated appli-

cation of Theorem 6.2, we have

Pr(CN ) = Pr(CN−1 ∩ each sol at vN has a nbr in GN−1)

≥ Pr(CN−1) × Pr(each sol at vN has a nbr in GN−1)

≥

N∏
i=1

Pr( all solutions at vi have a nbr in Gi−1)

=

N∏
i=1

(
1 − (1 − α)(N−i)e

)d
≥

(
1 − exp(−αm)

)Nd
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Now, setting

α(d) =

log(d) ×

(
1 + logd

(
N + д(d)

) )
m

,

with д(d) any function such that д(d) → ∞ as d →∞, we have

Pr(C) ≥ (1 − д(d)/(Nd))Nd ∼ exp

(
− д(d)

)
→ 1.

□

7 EXPERIMENTAL RESULTS
Our simulator enables the study of two types of experiments:

• Experiments analyzing fake solution graph data generated

according to Assumptions 1 and 2, and

• experiments based on real parametric systems, for which all

data — actual solutions, actual correspondences for edges in

the graph, actual timings for each homotopy path that may

be tracked — is harvested before the experimentation begins.

The simulator (code available at https://github.com/sommars/

parallel-monodromy) proceeds in two stages:

• The first stage takes either randomly generated data using

Assumption 1, which does not require running homotopy

continuation, or collects the data through tracking homotopy

paths with existing software.

• The second uses the datafile produced by the first. If sev-

eral threads are simulated then we assume that there is no

communication overhead, which is a close approximation of

reality. Indeed, the messages passed around are rather short:

a longest one contains coordinates of a newly discovered

solution. This cost can be ignored in comparison to the cost

of a homotopy continuation task.

Based on observed runs of PHCpack [23] and the homotopy

tracker of NumericalAlgebraicGeometry [13], we chose to model

the time taken by each fake path track on the negative binomial

distribution with parameters p = 0.3, n = 10. For clarity and con-

sistency with the results of §6, all simulations have been run using

the complete graph configuration described in [5].

7.1 Parallel Performance
To demonstrate the quality of a parallel algorithm, the typical

metrics used are speedup and efficiency (for textbook references,

see [12], [27]). For a number of processors p, speedup is defined to

be

S(p) =
sequential execution time

parallel execution time

(10)

while efficiency is defined as

E(p) =
S(p)

p
× 100% (11)

Ideally one would obtain S(p) = p and E(p) = 100%, which means

that all processor resources are constantly in use and no extra

work is performed, compared to running the program with a single

processor.

We ran two experiments to observe the efficiency of our algo-

rithm, one with simulated data as in (1) and one with observed data

as in (2). Table 1 contains efficiency results for the simulated data

experiment, while Table 2 has efficiency results for the cyclic-n
roots problem.

#Solutions 100 500 1000 5000 10000

1 100% 100% 100% 100% 100%

2 98.87% 98.36% 99.88% 98.61% 99.3%

4 96.71% 96.34% 98.28% 99.75% 100.45%

8 91.92% 95.04% 97.55% 98.7% 100.56%

16 84.65% 92.82% 98.68% 99.24% 99.82%

32 71.39% 87.12% 94.89% 97.8% 100.74%

64 55.04% 78.78% 89.45% 96.7% 99.07%

128 35.95% 65.82% 79.62% 93.68% 97.87%

Table 1: Efficiency for simulated polynomial systems with
varied numbers of solutions.

n 5 6 7 8 9 10

1 100% 100% 100% 100% 100% 100%

2 110.48% 98.34% 104.3% 99.41% 99.44% 109.02%

4 107.7% 98.57% 110.79% 103.06% 99.81% 107.62%

8 101.53% 98.23% 108.02% 108.59% 101.02% 106.58%

16 94.88% 91.52% 103.53% 100.53% 101.79% 103.91%

32 76.23% 86.73% 97.72% 100.81% 101.92% 105.54%

64 54.59% 70.47% 93.45% 98.62% 99.92% 102.88%

128 34.38% 52.37% 84% 96.23% 97.81% 102%

Table 2: Efficiency for cyclic-n polynomial systems.

The cyclic n-roots problem is a classic benchmark problem in poly-

nomial system solving, commonly formulated as
x0 + x1 + · · · + xn−1 = 0

i = 2, 3, . . . ,n − 1 :

n−1∑
j=0

j+i−1∏
k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

(12)

Both Tables 1 and 2 show the same relationships: as the number

of threads increases, efficiency slowly decreases, and as the size of

the problem increases, efficiency improves. This shows that it is an

effective algorithm for running large systems in parallel, though

it is unfortunate that for huge numbers of threads that efficiency

decreases.

One could be concerned that Algorithm 1 would be slow to

start, because initially a single node has a single solution. For small

homotopy graphs with large numbers of threads, some threads will

by necessity be idle until there are sufficiently many tasks available.

Define

%Idle =

∑p
i=1

Idle time

Wall time × p
. (13)

As the number of solutions increases, %Idle approaches zero. It

would be possible to make %Idle = 0 through a modification to

Algorithm 1. When a thread rests idle waiting for a task to become

available, it could define its own edge by picking a random γ and

tracking the sole known solution to a different node. In doing this,

it has the potential to discover new solutions, but without adding to
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Figure 3: Total number of tracks vs task success rate α for
varying edge multiplicities on a 3-node graph with 1000 so-
lutions. The red and blue vertical lines given by x = 1/3m and
x = log

10
(d)/m, respectively, give an approximatewindow for

the failure threshold. To give a sense of scale, a purple hori-
zontal line at y = 6000 has been added.

the known set of correspondences. Each thread could do this until it

can be assigned a path track as the algorithm prescribes. However,

this will provide only a minimal benefit, because the amount of idle

time according to a wall clock is low.

7.2 Path Failures
The “probability-one” homotopy in a linear family Fp fails with

some nonzero probability. At fixed precision, this probability be-

comes non-negligible, say, as the degree of the discriminant rises. In

practice, the reliability of homotopy continuation may be impacted

by more aggressive path-tracking. For instance, raising the mini-

mum step-size lowers the number of predictor steps, but there is a

risk that errors accumulated may too large to finish continuation.

In MS, this risk is spread across its incoming edges. Thus, we are

interested in balancing tradeoffs between task reliability and speed.

Assumption 2 gives a simple model for path failures in a practical

setting. An important feature of this model is that our simulator

assumes a “true correspondence” between the solutions of two con-

nected nodes before declaring that some of these paths fail. Thus,

our model of failures ignores the phenomenon of path-jumping

(potentially resulting in a 2-1 correspondence between approximate

solutions,) or the possibility that some node has a near-singular

solution. A logical next step would be to incorporate these possi-

bilities into our model. However, we find that the simple model

already sheds some light on the tradeoff previously described.

The plots in figure 3 supplement the results of Section 6. In each

panel, the vertical distance equals the theoretical maximum number

of tracks for each graph layout. Each run was performed with a

single fake thread using the potential potE. These plots illustrate a
major strength of using potentials in the presence of failures—even

when additional edges are added, the number of path tracks at a

fixed failure rate is stable (eg. at most 6000 for α ≥ 0.9.)

The bounds in Proposition 6.1 do not provide a useful upper

bound on the threshold of global failure when the number of edges

is relatively small (as in the top two plots of Figure 3.) We attempted

to determine tighter threshold regions experimentally—see Table 3

for fabricated data and Table 4 for the cyclic n-roots problem.

d \ N 4 5 6 7 8 9

16 .716 .544 .426 .36 .332 .271

32 .756 .599 .495 .427 .362 .312

64 .771 .62 .537 .47 .391 .366

128 .799 .666 .584 .498 .453 .405

256 .841 .732 .634 .572 .497 .445

512 .873 .752 .674 .598 .536 .49

Table 3: An approximate threshold for the success rate α .
N = the number of nodes in the complete graph (withm = 1),
d = the number of solutions.

n \ N 5 6 7 8 9

5 .546 .492 .34 .298 .281

6 .605 .516 .416 .344 .316

7 .686 .611 .531 .452 .453

8 .734 .688 .647 .564 .492

9 .818 .733 .672 .629 .556

Table 4: An approximate threshold for the success rate α for
the cyclic-n family.
N = the number of nodes in the complete graph (withm = 1).

7.3 Potential functions and edge selection
We defined potentials ∆

E
, ∆

ord
, and ∆

ω
. The last potential offers

a lot of freedom to the user of the method. For instance, we could

combine the ideas behind ∆
E
and ∆

ord
in ∆

ω
by setting

ω(v) = (|Qv |/d)
λ , λ ≥ 0, (14)

where d is the root count. (It could be replaced with the maximal

number of solutions known at any node). Note that if λ = 0, one

gets ∆
E
; for large λ the effect is similar to that of ∆

ord
except the

nodes are likely to be ordered according to the number of known

solutions at any point of the execution.

In the sequential case, [5] shows that edge selection guided by the

greedy potential ∆
E
outperforms several naive choices, among them

the random edge selection strategy. According to our experiments

this, as we expect, still holds for the parallel setting.

We conducted several experiments with the weight potential ∆
ω

on graphs with edge multiplicitym = 1 for fabricated and cyclic

problems of degree up to 10000 with and without failures. The

weights described in (14) seem to deliver better (but not necessarily

the best) performance as λ→∞. In other words, while a variant of

the order potential ∆
ord

may serve as a good heuristic, there is still

some room for improvement for edge selection strategies guiding

the MS algorithm.
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8 CONCLUSION
The benefits of theMonodromy Solver framework are demonstrated

by an implementation in Macaulay2 [4, 6], which outperforms all

existing blackbox polynomial system solvers on certain classes of

problems. This is reported in §6.4 of the first article devoted to the

framework [5].

The present work addressed items 1 (failures) and 3 (paralleliza-

tion) in the program outlined in §7 of [5]. The experiments con-

ducted with the simulator that we built, albeit not very extensive,

shed light on the phenomena arising with the introduction of fail-

ures and parallel computation. The results of the experiments and

the simulator itself will help to hone the core of the technique as

well as construct efficient heuristics for software implementation

in the future.
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