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ABSTRACT

We describe, study, and experiment with an algorithm for finding
all solutions of systems of polynomial equations using homotopy
continuation and monodromy. This algorithm follows the frame-
work developed in [5] and can operate in the presence of a large
number of failures of the homotopy continuation subroutine.

We give special attention to parallelization and probabilistic
analysis of a model adapted to parallelization and failures. Apart
from theoretical results, we developed a simulator that allows us
to run a large number of experiments without recomputing the
outcomes of the continuation subroutine.
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1 INTRODUCTION

Monodromy Solver (MS) is an algorithmic framework for solving
parametric families of polynomial systems. MS relies on numer-
ical homotopy continuation methods [19], which are applicable
in a very general setting, and monodromy (Galois group) action,
which is specific to polynomial systems. The monodromy tech-
nique has been used successfully in numerical algebraic geometry
(for a good overview, see [21]) mostly for high level tasks: for in-
stance, numerical irreducible decomposition [22] or Galois group
computation [9, 15].
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The MS framework addresses the following basic problem:

Given a family of polynomial maps F, find all solu-
tions to Fj, = 0 for a generic value of p.

Note that, given an ability to construct a complete solution set for
a generic value of the parameter, one can find all isolated solu-
tions Fp = 0 for an arbitrary value of the parameter p by using a
coefficient-parameter homotopy [21, §7].

Apart from MS, current methods of polynomial system solving
via homotopy continuation include polyhedral approaches [11, 24],
total-degree and multihomogeneous-degree homotopies [26], re-
generation [10], and various other more specialized methods.

Most methods of homotopy continuation are embarrassingly
parallel, in that homotopy paths can be tracked completely in-
dependently. Literature on parallelism in relation to homotopy
continuation includes [7, 8, 14, 16-18, 20, 25].

While an atomic task of MS (one homotopy path track) is inde-
pendent of another such task, this is only true for the tasks that
are already scheduled and being processed. The scheduling algo-
rithm, however, follows a probabilistic framework and (at every
state when resources free up) attempts to find a task that maximizes
the number of solutions known once this task and the current (in
progress) tasks are complete. This has to be done using only partial
knowledge of the outcome of the current tasks and, hence, implies
a dependence of the choice of a new candidate task on the current
state of the algorithm.

In the context of the framework that allows multiple threads
to carry out atomic tasks, we analyze the probabilistic model that
results from the assumption of uniform randomness of correspon-
dences induced by edges in an underlying graph (see §2). This is
followed by analysis of a model that accounts for failures in the
homotopy continuation subroutine.

Last, but not least, we have implemented a simulator for the
new algorithm that makes it possible to run fast experiments with-
out rerunning the actual continuation subroutine over and over
again. Using this simulator we conduct several computational ex-
periments on both fabricated data using the probability distribution
in our model and the data coming from the execution of homotopy
continuation algorithms for a family of polynomial systems. This
contribution is important for the further development of the MS
framework, since our probabilistic assumptions are too simple to
completely describe the random behavior in actual computations.
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In §2 we give a primer on MS using an example, and then define
necessary terminology in §3. The pseudocode for the main algo-
rithm appears in §5. A probabilistic model is analyzed in §4 with a
view towards designing a task selection strategy for our algorithm.
The study of the threshold for completion depending on the rate
of failures is in §6. Finally, in §7, we describe the implementation
of the simulator, and use it to showcase the benefits of the new
approach via several experiments. A brief conclusion is in §8.

2 MONODROMY SOLVER FRAMEWORK

For a family Fj, the MS approach treats different parameter choices
pi as nodes in a graph, and by tracking along “edges” (i.e. homo-
topies) between them, seeks to populate the solution set for at
least one node. Each of these homotopies is a coefficient-parameter
homotopy,

H(t) = F(1+t)p1+tp2’ te [O’ 1]’ (1)
which tracks between the parameter choices p; and ps. For generic
p, the number of roots of the system is constant, and following
loops in the graph permutes the roots. In the case when Fp is linear
in p, we may use a segment homotopy,

H(t) = (1 = t)y1Fp, + ty2Fp,, t€[0,1], 2

defined for generic y1, y2 € C. This gives us the ability to introduce
multiple edges between two nodes, in hope that they would induce
distinct maps on the solution sets.

As an example, suppose we want to know the roots of a generic
univariate cubic polynomial. Writing it as

x3+ax2+bx+c,

®)

we set up a graph for three values p1, p2, p3 € C> of the coefficients.
It may help to visualize the family with one parameter: seta = b = 0.
Then we may just imagine a triangle embedded in the complex
plane, i.e., the parameter space of c. This triangle is the homotopy
graph of Figure 1 that lifts to the solution graph above it.
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Figure 1: The homotopy graph (bottom left) and the solution
graph (top left) viewed as a restriction of the 3-to-1 covering
for x> +c =0.
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Assume that we know one solution (shaded in Figure 1) of Fp,.
Now continue this solution along edges of the solution graph. By
doing so, we recover all three solutions at one of the nodes. As long
as the action of the monodromy group (see [5] for definition and
discussion) is transitive, it is always possible to recover all solutions
from one by following along the edges of a graph that is sufficiently
large and sufficiently general.

In our very simple example there is always a unique choice
for the next edge to track along; in general, this will not be so.
The fact that only a subgraph of the solution graph is known at
any point of the algorithm complicates the selection of the next
(homotopy continuation) atomic task further. Hence, two parts of
the MS approach are probabilistic: first, the homotopy graph is
created at random; and second, the task selection procedure may
either be random or designed to maximize the expectation of some
potential function (see §4) under a fixed probabilistic model.

It has been shown in [5] that given a simple probabilistic model,
the expected number of edges in the solution graph for MS to suc-
ceed is linear in the number of solutions. This bounds the number of
continuation tasks to be carried out and—what seems to be the main
reason for the practical success of MS—ties the overall complexity of
the approach to the actual number of the solutions, and not to some
bound that may be available a priori for a larger family of systems
(e.g., bound of Bézout or Bernstein-Khovanskii-Kouchnirenko).

Note that the Monodromy Solver framework does not specify a
stopping criterion. For the discussion of possible stopping criteria
see §3.2.2 and §3.2.3 of [5].

3 DEFINITIONS

Let G be a loopless multigraph with vertices V = V(G) and edges
E = E(G). Each vertex corresponds to a system Fj, specialized at
parameters p and is associated with d solutions—we refer to the
vertex together with this satellite data as a node. Each edge e € E
connecting nodes v; and v induces a homotopy that establishes a
bijective correspondence between the solutions of the polynomial
systems Fj, and Fp,. We assume the following:

AssuMPTION 1. Edges induce uniformly random correspondences.

In other words, we assume that all bijective correspondences that
could be induced by an edge connecting the solutions of Fj,, and
Fp, are equally likely. This assumption allows us to simplify the
probability calculations and postulate an effective task selection
strategy described in §4 especially when tracking multiple paths in
parallel. See discussion of randomization in §5.1 of [5].

In general, e will refer to an edge and € will refer to a directed
edge (a pair of e and a specified direction). A pair ¢ = (s, €), where
s € S(v) belongs to the solution set S(v) of the polynomial system
corresponding to v = src (€), represents a candidate for (one) ho-
motopy path track, an atomic task that shall be performed by one
thread in a parallel algorithm.

We fix the graph G = (V, E) at the initialization stage. At a given
state x = (Q, C, A) of the algorithm we have the following.

e A collection Q of sets indexed by v € V, where each Qy, is
the subset of solutions at v known at this state.

o A collection C of sets indexed by e € E. Each Ce C Qy X Q4
— where v and w are the nodes e connects — is a partial
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one-to-one correspondence between subsets of Q, and Q.
We denote by 7, and 7, the projections from Q X Q,, to
Qo and Q,,, respectively.

o Aset A = {t1,...,t} of atomic (homotopy path track-
ing) tasks currently being processed (using k independent
threads).

Given a state x = (Q,C, A) we denote Q(x) := Q, C(x) := C, and
A(x) := A. Note that in most states (in our basic framework, in all
states but the initial state) one can determine Q from C. We shall
call a state x idle if A(x) = 0.

For an atomic task t = (s, €) € A, src(t) and dest(t) will refer to
the source and destination vertices of edge(t) := €.

Prior to running ¢, it is unknown which solution at dest(¢) will
be found. We use the random variable sol; to denote the outcome of
running this task, conditioned on the current state. Likewise, sol 4
will denote the random set of solutions known after running the
tasks in A. Suppose we know (or can estimate) the solution count
for a generic system; refer to this (integer) count as d, the degree of
the problem. Assumption 1 implies that

d- |Qdest(§)|
d—|Cel
Define E(x) to be the expected total number of known solutions

at all vertices after running all tasks t € A to completion. That is, if

y is the state after the completion, i.e., A(y) = 0, then

E(x)= ) Eo(x), with Eo(x) = E(Qu(y))),

veV(G)

PI‘(SO]; ¢ Qdest(E)) = (4)

where the (new) number of known points |Q,(y)| is perceived as a
random variable with expected value E(|Q.(y)|); state transition
probabilities are induced by Assumption 1.

4 TASK SELECTION VIA POTENTIAL

We intend to use either E(Q, C, AU{t}) to define a potential function
driving our choice of the next task ¢ to append to A once a thread
becomes available. The basic update rule is given below:

E,(Q,C,AU{t}) = E(Q,C, A) + Pr(sol; ¢ soly). (5)

This follows by a simple conditioning argument:
Eo(Q,C,AU{t}) = E,(Q,C,AU {t} | sol; € soly)Pr(sol; € soly)
+Ey(Q,C,AU {t} | sol; & solg)Pr(sol; ¢ soly)
=E,(Q,C, A)Pr(sol; € soly)
+ (1 +Eo(0,C, A)) Pr(sol; ¢ soly)

=E,(Q,C, A) + Pr(sol; ¢ soly)

4.1 Potential given no path failures

Since random homotopy paths stay away from the discriminant
locus with probability 1, it is natural to seek a “smart” task-selection
strategy in the idealized setting when no failures in homotopy
tracking occur. The following proposition shows that E;,(Q, C, A)
can be computed recursively.
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PROPOSITION 4.1. Let v be a vertex and e an edge incident to v. If
t is a candidate path track with dest(t) = v and edge(t) = €, then
EU(Q’ C’A U {t}) = EU(Q’ C’A)
d-E,(Q,C,A)
d—|Ce| — #{t’ € A: edge(t’) = €}

(6)

+

Thus, if we keep track of these expectations as we go, we may de-
termine the potential of tracking a new thread without recomputing
anything else.

Proor. Let X denote the random variable that, conditioned on
the idle state (Q, C, 0), counts the total number of solutions at v
after completing all tasks in A. Noting equation (5), we have

Pr(sol; ¢ soly) =

- >

kesupp X

-k i
d—|Ce| —#{t' € A: edge(t’) = €} Pr(X = k)

B d —E4(Q,C, A)
T d—|Ce| —#{t' € A:edge(t’) =&}

4.2 Potential in the presence of failures

The failure of certain atomic tasks is an inevitable feature of any
MS implementation: such failures may occur when paths verge too
close to the locus of singular systems, and may be influenced by the
aggressiveness of threshold settings in the underlying numerical
software as well as various others factors. In anticipation of such
failures, we consider the effects of failures in a simple probabilistic
model generalizing the results of the previous section.

ASSUMPTION 2. We now assume that the probability of success
for every atomic task equals a global fixed constant a € [0, 1] and that
formation of edge correspondences and all task failures are mutually
independent events.

Let us emphasize a technical feature of this assumption—if we
have edge(t) = edge(t’) and dest(t) = src(t’), the tasks t and ¢’ still
fail independently. This lack of symmetry should be accounted for
in any given state of the algorithm. Thus, we extend our definition
of a state x = (Q, C, A, F) as follows:

e As before, Q, denotes the set of solutions known atv € V,
each Cyw C Qo X Qyy is a set of known, successful correspon-
dences, and A is the set of current tasks.

e Failures are indexed by directed edges. For each €, the set F;
consists of known solutions s € Qgc(e) such that the task
(s, €) has completed with a failure. For & = 1, we have F;
empty for all € and hence abbreviate x = (Q, C, A).

PROPOSITION 4.2. With notation as in Proposition 4.1,
Eu(Q,C, AU {t},F) = E4,(Q,C,AF) + a X
#Fedge(t‘)"'B
(d ~Eo(Q.C. A F)) (1 -E d—#Co—#{t' EA|edge(t’):E}+B)
d—#Ce — #Fedge(t) —#{t’ € A| edge(t’) = e}

where B a random variable with a binomial distribution: B ~ Bin(#{t’ €
A:edge(t’) =€}, 1 - a).
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Proor. Let u = src(edge(t)). We consider the following set-
valued random variables whose state spaces are conditional on the
idle state (Q,C, 0, F) :

e X is the set of all solutions at v which are known after com-
pleting all tasks in A-hence E[X] = E(Q,C, A).

o Y consists of all solutions at v whose correspondences along
uv have failed after completing all tasks in A. Thus, the ran-
dom variable B := (#Y — #Fqge(s)) has the desired binomial
distribution.

Recalling (5), note that task t yields a solution undiscovered by A
with probability « - Pr(sol; ¢ sol4). Moreover, we have

d—Ey(Q,C,A F) —E[#(Y N X°)]
d — #Ce — #Feqge(r) — #{t' € A | edge(t’) = €}

Pr(sol; ¢ soly) =

Conditional on the event (X = k, B = j), we have that
#Y = #Fedge(r) +Js
but the intersection Y N X¢ still depends on
d— (#Ce + #{t' € A| edge(t’) = €} — j)

unknown correspondences. Assumption 1 implies that the condi-
tional distribution may be generated as follows:

1) For each solution at u which is known to fail along uv after
completing all tasks in A, the corresponding solutions in
Y are drawn uniformly without replacement from the (d —
#Co — #{t’ € A | edge(t’) = €} + j) solutions at v without
correspondences.

2) Declare each solution in Y N X€ to be a “success”

Hence the conditional expectation of the number of “successes” is
given by the mean of a hypergeometric distribution:

E#YNXY)|X=kB=j)= )
(#Fedge(t) +)(d-k) ®)
d—#C, —#{t' € A| edge(t’) =€} +j
Averaging over k and then j gives the result. ]

In practice, it is also useful to group current tasks together according
to their directed edges. This is reflected in the following proposition:

PROPOSITION 4.3. Let AU A’ denote the set of tasks, where A’
consists of all tasks using the directed edge uv. Then

d—Eu(Q,C,AF)

Eo(Q,C,AUA",F) = Eo(Q,C, A, F) + a #A’
d - #C,

Proor. Let A’ = {11, ..., t; } and consider the events

E; = “t; finds a solution unknown after completing all tasks in A”
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Then
k
Eo(Q,C,AUA’,F) = B(Q,C, A F) + Z Pr(E;)
i=1
=E(Q,C, A F) + a #A” Pr(soly, ¢ soly)
=Eo(Q.C, A F) + a#A’ x

#Fogoe(r) (d=Eo(Q,C, A, F
d-Eu(Q, c,A,F)—( = “>(d_#c(eQ )))

d—#Ce - #Fedge(t)
=Ey(Q,C, A F) + a#A’ x

d -E(Q,C,AF)
d —#C, ’

5 ALGORITHM

For every edge € we have its potential Az(x) at state x = (Q,C, A, F).
The potential guides edge selection in our main algorithm below.
Following the study in §4, the natural greedy potential aiming to
maximize the expected total number of discovered solutions is

Ag(x) = E(chaA U {(S, E)}’F) - E(x)

Algorithm 1 (Main algorithm). The following is executed on all
available threads after initializing the statex = (Q, C, A, F).

while 3Q,, such that |Q,| = d do

Pick an edge € = (w,v) that maximizes Ag(x) and such that

there iss € Qyy \ TwCe.

t — (s,€)

Update the state: x «— (Q,C,AU {t},F).

Update A(x).

Run homotopy continuation for task t.

if the run fails then
Fedge(t) < Fedge(r) Y {s}.

else
Update Qy, Ce, and A. {Note that an update is needed only
for A, such that dest(g') =v.J

end if

end while

Here are other (heuristic) potential functions we considered: :
A (x) 1/i,
where v; = desté

D, 0©) (Euo(Q,C,AU{(s, O} F) - Eu(x)),
veV
where weight w(v) € [0, 1].

(assuming i € {1,...,N})
AZ()

Note A° js designed to bias edge selection towards nodes in
their order of appearance. This potential is likely to force the algo-
rithm to complete the solution set of the first node.

The weighted potential A“ depends on the design of the weight
function. See §7.3 for a family of weight functions that seems to be
useful in practice.

In the initial idle state, A can be computed and stored and then
updated during the computation. Propositions 4.1 and 4.2 allow for
an efficient way to do that in both sequential and parallel setting,
with or without an assumption of failures.
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Figure 2: Solution multigraph w/ N =3,d =4, m = 2.

6 FAILURE RATE AND THRESHOLD

With assumptions 1 and 2, suppose we have a complete multigraph
on N nodes with m edges connecting each pair of nodes, d solutions
at each node, and tracking success probability a. To each homo-
topy graph, we associate a solution (multi)graph whose vertices
are given by all of the solutions at each node and whose edges are
the successful correspondences between solutions. One possible
instance of this random solution graph is depicted in Figure 2.

Note that the graph in Figure 2 has only 10 edges out of a possible
24. Nevertheless, our algorithm succeeds in completing the bottom
node whenever we start from one of the 9 black solutions, which
form a large connected component. We see that connectivity of the
solution graph is sufficient, but not necessary, for our algorithm to
terminate.

In our random solution graph model, define A := A, 7 4 to be
the event that the algorithm starting at a random node terminates
with d solutions. We are interested in the asymptotic behavior of
Pr(A) as d — oo, with reasonable assumptions on m and N. More
precisely, we wish to describe an interval [a,, N4, bm, N, 4] con-
taining a threshold for the event A; this means that for a(m, N, d) =
0(am, N.4), we have Pr(A,, N 4) — 0, while Pr(A,, N 4) — 1if
a(m,N. D) = (b, N, 0)

The characterization of thresholds for various properties is a
well-studied problem in random graph theory, particularly in the
context of the Erdds-Renyi graph model. Our random solution
graph does not enjoy the same asymptotic properties as the Edos-
Renyi graph—since no two solutions at the same node may be
connected, the graph is sparse, even for a near 1. Minding these
difficulties, we provide a simple threshold region for the event A
in Proposition 6.1—see subsection 7.2 for experimental verification
and further discussion.

PROPOSITION 6.1. With m, N possibly depending on d, we have
the following large-d asymptotics:
i) Ifa(d) = o (Nm)™!) and N(d) = o(exp(d)), then
limg 0 Pr(Am,N,d) =0.
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ii) Ifa(d) = w (logd/m) and N(d) = O(log d), then
limg_,c0 Pr(Am,N,d) =1
We require a simple fact known as the Harris/Kleitman inequal-
ity, specialized to our model (cf. [1] pp. 86-87, [2] pp. 39-41):

THEOREM 6.2 (HARRIS/KLEITMAN INEQUALITY). If A and B are
events in the random solution graph model which are upward-closed
with respect to inclusion,

Pr(A N B) = Pr(A) X Pr(B).

In random graph theory, a property which is upward-closed with
respect to inclusion is called a monotone increasing property. For
us, monotone increasing simply means that increasing o does not
decrease Pr(A) or Pr(B). It is a famous result that every monotone
property in the Erdos-Renyi model has a sharp threshold—for a
precise statement, see [3].

Proor oF PropPOsITION 6.1. Consider the following auxiliary events:

® 5:= 5, N.d,o Will denote the event that there exists some
node with a successful correspondence at each solution

e C:=Cpy N,d,q Will denote the event that the solution graph
is connected

Clearly we have

Pr(C) < Pr(A) < Pr(S) )
For part i), we may assume WLOG that a(d) > 0 for d sufficiently
large. Now, simply note that

Pr(S) = 1 — Pr( all nodes fail )

N
<1- l—[ Pr(node j fails) (Theorem 6.2)

j=1
<1- (1 - (szm)d)N
For N = O(1) as d — oo, we have
(1= (@NmHN = (1-01)H)N > 1asd > .
For the regime w(1) = N(d) = o(exp(d)), we have
(1= @Nm)HN ~ exp(~(aN"*1/¥m)?),
which is w(1) for a(d) = o( N~/ =1y = o(Nm)™!). In either

regime, we have Pr(S) — 0 as d — .

To bound Pr(A) from below, let vy, ..., v, be the nodes of the ho-
motopy graph and G; denote the subgraph of the solution graph
induced by the solutions at nodes v; through v;. By repeated appli-
cation of Theorem 6.2, we have

Pr(Cn) = Pr(Cn—1 N each sol at vy has a nbrin Gn—1)
> Pr(Cn—1) X Pr(each sol at vn has a nbr in Gy_1)

N
> 1_[ Pr( all solutions at v; have a nbr in G;_1)

—_

(1 -(1- a)(N‘i)e)d

.

I
—_

> (l - exp(—(xm))Nd
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Now, setting

log(d) x |1 +1ogy (N + g(d))
a(d) = s

m

with g(d) any function such that g(d) — oo as d — oo, we have

Pr(C) > (1 - g(d)/(Nd)N? ~ exp (- g(d)) — 1.

7 EXPERIMENTAL RESULTS
Our simulator enables the study of two types of experiments:

e Experiments analyzing fake solution graph data generated
according to Assumptions 1 and 2, and

e experiments based on real parametric systems, for which all
data — actual solutions, actual correspondences for edges in
the graph, actual timings for each homotopy path that may
be tracked — is harvested before the experimentation begins.

The simulator (code available at https://github.com/sommars/
parallel-monodromy) proceeds in two stages:

o The first stage takes either randomly generated data using
Assumption 1, which does not require running homotopy
continuation, or collects the data through tracking homotopy
paths with existing software.

The second uses the datafile produced by the first. If sev-
eral threads are simulated then we assume that there is no
communication overhead, which is a close approximation of
reality. Indeed, the messages passed around are rather short:
a longest one contains coordinates of a newly discovered
solution. This cost can be ignored in comparison to the cost
of a homotopy continuation task.

Based on observed runs of PHCpack [23] and the homotopy
tracker of NumericalAlgebraicGeometry [13], we chose to model
the time taken by each fake path track on the negative binomial
distribution with parameters p = 0.3, n = 10. For clarity and con-
sistency with the results of §6, all simulations have been run using
the complete graph configuration described in [5].

7.1 Parallel Performance

To demonstrate the quality of a parallel algorithm, the typical
metrics used are speedup and efficiency (for textbook references,
see [12], [27]). For a number of processors p, speedup is defined to
be

sequential execution time

S(p) = 10
®) parallel execution time (10)
while efficiency is defined as
S
E(p) = % % 100% (11)

Ideally one would obtain S(p) = p and E(p) = 100%, which means
that all processor resources are constantly in use and no extra
work is performed, compared to running the program with a single
processor.

We ran two experiments to observe the efficiency of our algo-
rithm, one with simulated data as in (1) and one with observed data
as in (2). Table 1 contains efficiency results for the simulated data
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experiment, while Table 2 has efficiency results for the cyclic-n
roots problem.

#Solutions 100 500 1000 5000 10000
1 100% 100% 100% 100% 100%
2 98.87% | 98.36% | 99.88% | 98.61% | 99.3%
4 96.71% | 96.34% | 98.28% | 99.75% | 100.45%
8 91.92% | 95.04% | 97.55% | 98.7% | 100.56%
16 84.65% | 92.82% | 98.68% | 99.24% | 99.82%
32 71.39% | 87.12% | 94.89% | 97.8% | 100.74%
64 55.04% | 78.78% | 89.45% | 96.7% | 99.07%
128 35.95% | 65.82% | 79.62% | 93.68% | 97.87%

Table 1: Efficiency for simulated polynomial systems with
varied numbers of solutions.

n 5 6 7 8 9 10

1 100% 100% 100% 100% 100% 100%
2 110.48% | 98.34% | 104.3% | 99.41% | 99.44% | 109.02%
4 107.7% | 98.57% | 110.79% | 103.06% | 99.81% | 107.62%
8 101.53% | 98.23% | 108.02% | 108.59% | 101.02% | 106.58%
16 94.88% | 91.52% | 103.53% | 100.53% | 101.79% | 103.91%
32 76.23% | 86.73% | 97.72% | 100.81% | 101.92% | 105.54%
64 54.59% | 70.47% | 93.45% | 98.62% | 99.92% | 102.88%
128 || 34.38% | 52.37% 84% 96.23% | 97.81% 102%

Table 2: Efficiency for cyclic-n polynomial systems.

The cyclic n-roots problem is a classic benchmark problem in poly-
nomial system solving, commonly formulated as

Xo+x1+ --+xp-1=0
n—1 j+i-1

i=23..,n-1: > [] % moan=0
70 k=j

XoX1X2 -+ Xp—1—1=0.

(12)

Both Tables 1 and 2 show the same relationships: as the number
of threads increases, efficiency slowly decreases, and as the size of
the problem increases, efficiency improves. This shows that it is an
effective algorithm for running large systems in parallel, though
it is unfortunate that for huge numbers of threads that efficiency
decreases.

One could be concerned that Algorithm 1 would be slow to
start, because initially a single node has a single solution. For small
homotopy graphs with large numbers of threads, some threads will
by necessity be idle until there are sufficiently many tasks available.
Define
¥, 1dle time
_. (13)
Wall time X p
As the number of solutions increases, %Idle approaches zero. It
would be possible to make %Idle = 0 through a modification to
Algorithm 1. When a thread rests idle waiting for a task to become
available, it could define its own edge by picking a random y and
tracking the sole known solution to a different node. In doing this,
it has the potential to discover new solutions, but without adding to

%ldle =
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Simulated number of wracks vs task success rate (1000 solutlons, 2 nodes, 1 thread)

2 edges {13 succesful runs wi £ 600D tracks) 3 edges (10 succesful runs wi' ¢ 6000 tracks)
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Figure 3: Total number of tracks vs task success rate a for
varying edge multiplicities on a 3-node graph with 1000 so-
lutions. The red and blue vertical lines given by x = 1/3m and
x =logy(d)/m, respectively, give an approximate window for
the failure threshold. To give a sense of scale, a purple hori-
zontal line at y = 6000 has been added.

the known set of correspondences. Each thread could do this until it
can be assigned a path track as the algorithm prescribes. However,
this will provide only a minimal benefit, because the amount of idle
time according to a wall clock is low.

7.2 Path Failures

The “probability-one” homotopy in a linear family F, fails with
some nonzero probability. At fixed precision, this probability be-
comes non-negligible, say, as the degree of the discriminant rises. In
practice, the reliability of homotopy continuation may be impacted
by more aggressive path-tracking. For instance, raising the mini-
mum step-size lowers the number of predictor steps, but there is a
risk that errors accumulated may too large to finish continuation.
In MS, this risk is spread across its incoming edges. Thus, we are
interested in balancing tradeoffs between task reliability and speed.
Assumption 2 gives a simple model for path failures in a practical
setting. An important feature of this model is that our simulator
assumes a “true correspondence” between the solutions of two con-
nected nodes before declaring that some of these paths fail. Thus,
our model of failures ignores the phenomenon of path-jumping
(potentially resulting in a 2-1 correspondence between approximate
solutions,) or the possibility that some node has a near-singular
solution. A logical next step would be to incorporate these possi-
bilities into our model. However, we find that the simple model
already sheds some light on the tradeoff previously described.
The plots in figure 3 supplement the results of Section 6. In each
panel, the vertical distance equals the theoretical maximum number
of tracks for each graph layout. Each run was performed with a
single fake thread using the potential potE. These plots illustrate a
major strength of using potentials in the presence of failures—even
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when additional edges are added, the number of path tracks at a
fixed failure rate is stable (eg. at most 6000 for & > 0.9.)

The bounds in Proposition 6.1 do not provide a useful upper
bound on the threshold of global failure when the number of edges
is relatively small (as in the top two plots of Figure 3.) We attempted
to determine tighter threshold regions experimentally—see Table 3
for fabricated data and Table 4 for the cyclic n-roots problem.

d\N| 4 | 5| 6 | 7] 89

16 716 | 544 | 426 | 36 | 332 | 271
32 756 | 599 | 495 | 427 | 362 | 312
64 771 | 62 | 537 | 47 | 391 | 366
128 || 799 | 666 | .584 | .498 | 453 | .405
256 || .841 | 732 | 634 | 572 | 497 | 445
512 || .873 | 752 | 674 | 598 | 536 | .49

Table 3: An approximate threshold for the success rate .
N = the number of nodes in the complete graph (with m = 1),
d = the number of solutions.

n\NJ 5] 6 | 7] 8]0

5 546 | 492 | 34 | 298 | .281
6 605 | 516 | 416 | .344 | 316
7 686 | 611 | .531 | 452 | .453
8 734 | 688 | .647 | 564 | .492
9 818 | .733 | .672 | .629 | .556

Table 4: An approximate threshold for the success rate « for
the cyclic-n family.
N = the number of nodes in the complete graph (with m = 1).

7.3 Potential functions and edge selection

We defined potentials AE, A‘“d, and A®. The last potential offers
a lot of freedom to the user of the method. For instance, we could
combine the ideas behind AF and A°™ in A® by setting

o(©) = (1Qul/d)",
where d is the root count. (It could be replaced with the maximal
number of solutions known at any node). Note that if 1 = 0, one
gets AF; for large A the effect is similar to that of A°"d except the
nodes are likely to be ordered according to the number of known
solutions at any point of the execution.

In the sequential case, [5] shows that edge selection guided by the
greedy potential AF outperforms several naive choices, among them
the random edge selection strategy. According to our experiments
this, as we expect, still holds for the parallel setting.

We conducted several experiments with the weight potential A®
on graphs with edge multiplicity m = 1 for fabricated and cyclic
problems of degree up to 10000 with and without failures. The
weights described in (14) seem to deliver better (but not necessarily
the best) performance as 1 — co. In other words, while a variant of
the order potential A°"d may serve as a good heuristic, there is still
some room for improvement for edge selection strategies guiding
the MS algorithm.

1> 0, (14)
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8 CONCLUSION

The benefits of the Monodromy Solver framework are demonstrated
by an implementation in Macaulay2 [4, 6], which outperforms all
existing blackbox polynomial system solvers on certain classes of
problems. This is reported in §6.4 of the first article devoted to the
framework [5].

The present work addressed items 1 (failures) and 3 (paralleliza-
tion) in the program outlined in §7 of [5]. The experiments con-
ducted with the simulator that we built, albeit not very extensive,
shed light on the phenomena arising with the introduction of fail-
ures and parallel computation. The results of the experiments and
the simulator itself will help to hone the core of the technique as
well as construct efficient heuristics for software implementation
in the future.
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