
Wait Wait. No, Tell Me. Analyzing Selenium

Configuration Effects on Test Flakiness.

Kai Presler-Marshall, Eric Horton, Sarah Heckman, Kathryn T. Stolee

Department of Computer Science

North Carolina State University

Raleigh, NC

{kpresle, ewhorton, sarah heckman, ktstolee}@ncsu.edu

Abstract—Flaky tests are a source of frustration and un-
certainty for developers. In an educational environment, flaky
tests can create doubts related to software behavior and student
grades, especially when the grades depend on tests passing. NC
State University’s junior-level software engineering course models
industrial practice through team-based development and testing
of new features on a large electronic health record (EHR) system,
iTrust2. Students are expected to maintain and supplement an
extensive suite of UI tests using Selenium WebDriver. Team
builds are run on the course’s continuous integration (CI)
infrastructure. Students report, and we confirm, that tests that
pass on one build will inexplicably fail on the next, impacting
productivity and confidence in code quality and the CI system.
The goal of this work is to find and fix the sources of flaky tests
in iTrust2.

We analyze configurations of Selenium using different under-
lying web browsers and timeout strategies (waits) for both test
stability and runtime performance. We also consider underlying
hardware and operating systems. Our results show that HtmlUnit
with Thread waits provides the lowest number of test failures and
best runtime on poor-performing hardware. When given more
resources (e.g., more memory and a faster CPU), Google Chrome
with Angular waits is less flaky and faster than HtmlUnit,
especially if the browser instance is not restarted between tests.
The outcomes of this research are a more stable and substantially
faster teaching application and a recommendation on how to
configure Selenium for applications similar to iTrust2 that run
in a CI environment.

Index Terms—Software Testing, Selenium, WebDriver, GUI
Tests, Flaky Tests

I. INTRODUCTION

Selenium WebDriver is a tool designed to automate inter-

actions with web browsers, and supports directly controlling

many popular browsers through a modular architecture. Its pri-

mary use case is for developing repeatable suites of integration

and regression tests for web-based user interfaces (UI).

Tests use Selenium to simulate user driving the UI, then

verify expectations about the results of the actions performed.

A common issue is that Selenium tests, like other automated

tests with a broad scope, are often non-deterministic (flaky)

[1]. Test flakiness is costly, as effort must be spent determining

if the test failed due to an underlying bug [2], or if the failure

is a result of the test environment. In an academic setting,

flaky tests may impact student grades without fault of their

own.

This work studies Selenium tests in the context of the

undergraduate software engineering class project iTrust2 at NC

State University with the goal of increasing stability experi-

enced by students as measured by test flakiness and runtime

performance. iTrust2 is open source and designed to provide

students with an industry-like experience by exposing them to

a large system and continuous integration (CI) [3]. Flaky tests

are a source of frustration among students. While this may

reflect actual industry experiences, for an educational context

that introduces students to software engineering principles,

ambiguous feedback from flaky tests can cause undue stress.

There are many potential sources of flakiness, but a typical

situation involves a test case that attempts to verify the

presence of a UI element before the browser has completely

loaded, causing it to fail. To expose the source of flakiness

in iTrust2, we start by analyzing the impact of the WebDriver

and waiting strategy. We then test the best WebDrivers and

wait strategies on three different hardware configurations and

operating systems. Our results indicate that reusing a single

Chrome instance across an entire test suite, when also paired

with Angular waits, gives universally lower flakiness and

runtime regardless of the hardware and software environment.

The improvement is sufficient to allow the iTrust2 tests to

run successfully on all hardware we tried. We refactored the

iTrust2 test suite based on these findings, and it has already

proved successful in class, giving a project that runs more

reliably and more quickly for student projects.

In summary, our work provides the following contributions:

1) A more stable version of iTrust2 that is suitable for use

as a teaching tool in undergraduate software engineering

classes and which performs well on our CI environment.

2) A comparison of four methods of waiting for expected

conditions on webpages when performing automated

testing with Selenium.

3) A comparison of runtime and stability of iTrust2’s

Selenium tests on three different hardware and operating

system configurations.

4) A recommendation on the optimal configuration of Se-

lenium for applications similar to iTrust2.

II. MOTIVATION

NC State University’s undergraduate software engineering

course uses iTrust2, a large Java EE medical records appli-

cation, as one of its primary teaching tools. A successor to

the original iTrust application that saw the course through ten

7

2019 IEEE/ACM 14th International Workshop on Automation of Software Test (AST)

978-1-7281-2237-3/19/$31.00 ©2019 IEEE
DOI 10.1109/AST.2019.000-1

years [3], iTrust2 was introduced to students in Fall 2017 as

part of a larger course redesign. iTrust2 uses the Spring and

AngularJS frameworks used in many enterprise applications.

It consists of about 30,000 lines of Java and JavaScript code

tested with nearly 500 Selenium tests.

Each semester, twenty five groups of students, working in

teams of four or five, push their work to GitHub, where it

is then automatically built and tested using Jenkins CI [4].

When students develop far in advance of a deadline, Jenkins is

able to return feedback quickly (within 15 minutes); however,

as the deadline approaches and load on the system increases,

feedback becomes less timely. This exacerbates the issue of

test flakiness by giving students less time to respond to any

failures and ascertain their cause.

Consider the method in Figure 1, fillHospitalFields,

extracted from iTrust2. It is a subroutine in a test case which

verifies that submitting the form results in a new hospital

record being registered with the system. The method starts

with the implicit assumption that the browser is currently

on the page for creating a new hospital object. It then asks

Selenium to find and fill the input fields for name (lines 2-5),

address (lines 6-8), state (lines 10-12), and zipcode (lines 14-

16). Finally, it instructs Selenium to click the submit button

and trigger a form submission (line 18).

In this example, Selenium may fail because it cannot find

the element it looks for (e.g., an element with an id called

address). Such a failure could be caused by several mistakes

in the test or application: the wrong page was specified by the

test case; the locator used to select the element was faulty;

or there was a bug in the underlying application being tested.

However, it is also possible that the test and application are

both fine, and the befoe the browser had finished loading the

page, Selenium checked, and failed. Selenium has no way

of knowing if the UI will ever be ready, so this leaves it to

developers to tell Selenium when to check.

The motivation of this work is to proactively identify and

remove test flakiness and improve performance in iTrust2

by finding and implementing optimal Selenium and system

configurations. All tests are known to be capable of passing,

but under the conditions of student computers and our CI

environment they do not all pass consistently.

III. BACKGROUND

A WebDriver class implements the Selenium interface

WebDriver. Each driver provides an interface for Selenium

to control a single web browser. All WebDrivers in this

study are named for the web browser they control. For

example, ChromeDriver is the WebDriver implementation for

the Google Chrome browser. Because WebDrivers have a 1:1

mapping with their browsers, we refer to the driver and the

browser interchangeably.

A. Drivers

We use the drivers for Chrome, Firefox, PhantomJS, and

HtmlUnit in this study. The HtmlUnit driver represents a head-

less browser designed specifically for automation; PhantomJS

1 public void fillHospitalFields (String

hospitalName) {↪→

2 final WebElement name =

driver.findElement(By.id("name")

);

↪→

↪→

3 name.clear();

4 name.sendKeys(hospitalName);

5

6 final WebElement address =

driver.findElement(By.id(

"address"));

↪→

↪→

7 address.clear();

8 address.sendKeys("121 Canada Road");

9

10 final WebElement state =

driver.findElement(By.id("state"

));

↪→

↪→

11 final Select dropdown = new Select(

state);↪→

12 dropdown.selectByVisibleText("CA");

13

14 final WebElement zip =

driver.findElement(By.id("zip")

);

↪→

↪→

15 zip.clear();

16 zip.sendKeys("00912");

17

18 driver.findElement(By.className("btn"

)).click();↪→

19 }

Fig. 1. A method from one of the iTrust2 Selenium tests that automates filling
in fields on a web page.

is a more capable browser designed for the same purpose;

Chrome and Firefox are two popular and widely-used web

browsers. The default configuration is used for HtmlUnit and

PhantomJS, as both are already headless. Chrome and Firefox

are run in headless mode (a requirement for our CI environ-

ment), with Chrome additionally specifying the options window

-size = 1200x600 and blink-settings = imagesEnabled =

false, both of which were selected to improve runtime. We

omitted drivers for browsers not supported by every major OS,

such as Apple Safari and Microsoft Edge.

B. Wait Strategies

Several waiting strategies are considered. The first, No Wait

is the default behavior of immediately failing when an element

is not found. No Wait informs a baseline against which to

compare other wait strategies. Thread Wait calls Java’s Thread

::sleep, which pauses thread execution for a fixed period of

time. Explicit Wait is a Selenium construct that tells the driver

to wait for an explicit amount of time or until some condition

has been satisfied (whichever occurs first). Explicit waits are

supported by all drivers. We use explicit waits to verify the

presence of elements. For example, the following will wait for

an element with the name of notes to appear:

1 WebDriverWait wait = new WebDriverWait(

driver, 2);↪→

2 wait.until(ExpectedConditions

.visibilityOfElementLocated(By.name(

"notes")));

↪→

↪→

Angular Wait is a Selenium construct that tells the driver

to wait until the Angular web framework has completed all

8

requests. It is only supported by the Chrome driver, and can

be used as follows.

1 new NgWebDriver((ChromeDriver) driver

).waitForAngularRequestsToFinish();↪→

Unlike Explicit Waits, Angular Waits do not wait for a

specific element to appear: rather they wait until all dynamic

requests are finished. This has the potential to work better if

the locator that would be passed to an Explicit Wait is overly

general and thus would locate an element before the page is

truly ready.

C. Current Configuration

The existing test suite for iTrust2 uses the HtmlUnit driver

with a combination of No Wait and Explicit Wait strategies to

verify the correctness of elements. HtmlUnit has been used for

its reasonable runtime performance on our Jenkins CI systems,

with 59 Explicit Waits scattered through individual tests where

the No Wait approach proved insufficient.

IV. STUDY

We explore the following research questions, measuring test

flakiness and runtime performance as the dependent variables,

in the context of iTrust2:

RQ1 What is the impact of the WebDriver?

RQ2 Which wait methods are the most stable?

RQ3 What is the impact of hardware (CPU and memory)?

RQ4 What effect does the host operating system have?

RQ5 What is the effect of restarting the browser between

individual tests?

We refer to a single run of an application’s entire test suite

as a build. A group of multiple builds is referred to as an

evaluation. All evaluations in this work contain 30 builds.

An evaluation is used to determine runtime performance,

measured in seconds (i.e., average test execution time over all

the builds in an evaluation). Because we know that all tests

can pass, any test failure is seen as indicative of test flakiness.

Thus, test flakiness is defined as the sum of all test failures

over an execution.

We refer to the choice of driver and the waiting strategy

employed as WebDriver configuration. We refer to choice of

CPU, memory, and operating system as system configuration.

When considering a combination of WebDriver and system

configurations, we say Selenium configuration, or just config-

uration if it is not ambiguous.

Our configuration options are summarized in Table I. Rows

A and B correspond to WebDriver configuration and will guide

RQ1 and RQ2 (Section V-A), rows C and D are hardware

configuration and will guide RQ3, and row E guides RQ4

(Section V-B). The RQ columns identify the configurations

used in the evaluation. For example, RQ1 has a * for row A,

meaning all four options are considered. In row C, RQ1 uses

column 2, representing 4GB of memory. Not all options are

possible (e.g., HtmlUnit with Angular waits), but this provides

a general outline for how each RQ was evaluated.

A. Setup

To address RQ1 and RQ2, we modified the current iTrust2

codebase and introduced a common superclass for all test

classes. This superclass provides a WebDriver factory method

and a method for performing waits. To obtain a list of flaky

tests, we mined the Jenkins test logs from our undergraduate

software engineering course in Spring 2018. Any Selenium test

failure observed that appeared unconnected to the Git commit

that triggered the build was considered a potentially flaky

one and was included in our study. We manually analyzed

1,000 Jenkins test logs, and found 19 distinct locations in

the source code where tests appeared to be flaky. Before

every flaky location, we inserted a call to the waiting method

in our superclass. We branched the codebase, implementing

the WebDriver factory and waiting method for every valid

combination of driver and waits (see Table I, rows A & B,

yielding 13 valid configurations1).

To address RQ3 and RQ4, we procured two computers.

First, an Acer netbook provisioned with Ubuntu 17.10, known

hereafter as “NB-Linux”. It was deliberately selected for its

poor performance, as it represents the lower end of what

students have been observed using. Second is an HP worksta-

tion system provisioned with Ubuntu 17.10 (known hereafter

as “HP-Linux”) and Windows 10 (known hereafter as “HP-

Windows”). It was selected for giving performance similar to

most student systems and to evaluate the impact of operating

system when hardware is controlled for. Turbo Boost was

disabled on both platforms, and Hyper-threading on the HP

Z420 (the Acer’s CPU does not support any form of SMT2), to

result in a more consistent execution environment. Evaluations

on HP-Linux were tested with 2, 4, 8, 16, and 32GB memory.

Evaluations on HP-Windows were run at 8GB memory as a

comparison against HP-Linux at 8GB.

To address RQ5 we reconfigured our WebDriver factory to

not restart the browser between individual tests and retested

on our three environments (NB-Linux, HP-Linux, and HP-

Windows).

B. Execution

After each build, the execution time and list of failing test

cases were recorded. At the end of an evaluation (30 builds),

test flakiness was recorded as the sum of all failures seen

in each build, and runtime was computed by averaging the

runtime of each build within the evaluation.

We ran evaluations for each configuration on our procured

systems, using performance results on NB-Linux to inform our

selection of run configurations on the HP workstation.

V. RESULTS

The results from our study can be grouped into three broad

categories: the impact of WebDriver configurations (RQ1 and

1(Chrome + Firefox + HtmlUnit + PhantomJS) * (No Wait + Thread.sleep
+ Explicit) = 12 + Chrome * AngularWait = 13

2Simultaneous Multithreading, a hardware technique allowing the simul-
taneous execution of two or more logical threads per physical CPU core.
Hyper-threading is Intel’s implementation of the technology.

9

TABLE I
SELENIUM & SYSTEM CONFIGURATION OPTIONS

Options

Factor 1 2 3 4 5 RQ1 RQ2 RQ3 RQ4 RQ5

A Wait No Wait Explicit Thread.sleep Angular - * * 2,4 2,4 2,4
B WebDriver HtmlUnit Chrome Firefox PhantomJS - * * 1,2 1,2 1,2
C Memory 2GB 4GB 8GB 16GB 32GB 2 2 * 3 3
D Processor AMD C60 (NB) Intel E5-1620 (HP) - - - 1 1 1,2 2 1,2
E OS Windows 10 Linux 4.13 - - - 2 2 2 1,2 1,2

Fig. 2. Total failing test cases for supported waiting strategies with Chrome
and HtmlUnit. Each bar represents one evaluation. Evaluations were run on
NB-Linux.

RQ2), the impact of system configuration (RQ3 and RQ4),

and further optimization (RQ5)3.

A. WebDriver Configuration

RQ1 addresses the impact of WebDriver choice on test

stability and runtime. This corresponds to varying rows A and

B of Table I. Even on our fast HP-Linux system, running the

test suite with Firefox or PhantomJS took well over an hour

a build, making them unsuitable for use in a CI environment.

HtmlUnit, the least featured and least resource-intensive

WebDriver used, experienced fewer flaky tests overall than

Chrome on NB-Linux. This was consistent across all wait

strategies on this system; not once did Chrome deliver a more

stable testing experience. These results are shown in Figure 2;

the Y-axis reports the total number of tests that failed across

each evaluation. Because each test was run thirty times, a test

that failed in multiple builds will increase the count on each

observed failure. Runtime differences between the WebDrivers

were minor; an average build time of 31 minutes for HtmlUnit

and 35 minutes for Chrome.

RQ1: HtmlUnit yields fewer flaky tests than Chrome on NB-

Linux, regardless of wait strategy. HtmlUnit is approximately

10% faster than Chrome in terms of test runtime.

3Our updated version of iTrust2 and evaluation scripts are located at
https://github.com/ncsu-csc326/iTrust2-SeleniumAnalysis

RQ2 addresses the impact of the specific waiting strategy

on test flakiness. We evaluated waiting strategy for Chrome

and HtmlUnit by running both browsers with all supported

waits on NB-Linux. Figure 2 presents the total number of test

flakes seen in each evaluation.

We see that Thread Waits perform the best for both HtmlU-

nit and Chrome, while Explicit Waits performed the worst.

The performance of Thread Waits was unsurprising – by

suspending test execution for a relatively long (5 second)

period of time, we give the browser hopefully ample time to

catch up to where the test expects it to be. Surprisingly, No

Wait manages to perform better than Explicit Wait, particularly

so for HtmlUnit, where it resulted in under half of the flakes

seen with Explicit Waits. Explicit Waits used the exact same

timeout (5 seconds) as Thread Waits, so we expected to see

similar results for both. While waiting approach had a sizable

impact upon stability, its impact upon runtime was minor on

both browsers: no more than an 8%4 difference was observed

between the fastest (no waits) and slowest (explicit waits and

thread waits) regardless of browser.

We also acknowledge that RQ1 and RQ2 were evaluated

on poor hardware. As we show in the next section, better

hardware leads to better performance and less flakiness for

Chrome. At the same time, using a slower system for evalua-

tion is valuable as it mimics some students’ situations.

We note here that while Thread Waits provide the lowest

flakiness score, the number of unique tests impacted by the

failures is actually the highest. That is, the Thread Wait failures

are more insidious, being both more likely to occur for any

test and less predictable. On the other hand, the Explicit Waits

and Angular Waits are more predictable; a test failing with an

Explicit or Angular Wait is more likely to fail again within

the evaluation. Since we want to suggest a wait strategy that

has predictable behavior, we move forward with Angular and

Explicit Waits when evaluating system configurations.

RQ2: Thread waits give the lowest flakiness for both HtmlUnit

and Chrome, with Explicit Waits giving the highest.

B. System Configuration

Anecdotally, we expected that slower hardware results in

more unstable and slower builds. We consider three types of

system configuration: the CPU, the amount of RAM, and the

4Calculated as (Tslow−Tfast)/Tfast, where Tfast is the runtime of the
faster build, and Tslow is the runtime of the slower build

10

Fig. 3. Number of failing tests for HtmlUnit with explicit waits and Chrome
with explicit and Angular waits for NB-Linux and HP-Linux systems (fixed
4GB memory, increasing CPU performance).

OS managing test processes. We prune our search space by

focusing our testing on Angular Waits and Explicit Waits.

1) Increasing CPU: Evaluations of flaky tests in Chrome

and HtmlUnit on NB-Linux and HP-Linux (at 4GB RAM)

are presented in Figure 3. Note that there are no results for

HtmlUnit and Angular Waits, as Chrome is the only browser

to support them. For both browsers, moving to HP-Linux

resulted in substantially fewer flaky tests across the evalua-

tions, regardless of wait strategy. The impact was particularly

pronounced for Chrome, with test flakiness falling by over

70%5 in both configurations, but HtmlUnit still saw a very

respectable improvement of 55%.

The average build time over all evaluations was reduced

by 80-84% when moving to faster hardware (i.e., D1 to D2).

With Chrome, the average build times were reduced from 35

minutes to 7 minutes; with HtmlUnit, they dropped from 31

minutes to 5 minutes. Thus, not only does Chrome give far

more stable build results on fast hardware, it does so quickly

as well. Fast build times are imperative for CI environments,

and better hardware is an easy way to achieve this.

RQ3a: A faster CPU results in a substantially faster build on

both HtmlUnit and Chrome.

2) Increasing Memory: Figure 4 shows the impact of

manipulating the amount of available memory for each of three

configurations of driver and wait method. The Y-axis shows

the sum total of test failures over all 30 builds in an evaluation.

The X-axis shows the memory configuration. Each evaluation

was run three times (totaling 90 builds of iTrust2 and its test

suite), and each data point on the graph is an average over

the three evaluations. No significant outliers were observed

in any configuration. For example, with HtmlUnit + explicit,

there were an average of 61 test failures per evaluation with

2GB of memory. This is an average of two per build.

5Calculated as (Fhigh−Flow)/Fhigh, where Fhigh is test flakiness from
the flakier build, and Flow is the flakiness from the less flaky build

Fig. 4. Total number of test case failures for all builds in evaluations of
Chrome with explicit and Angular waits and HtmlUnit with explicit. All
evaluations were run on the HP-Linux platform (D2/E2).

There is no clear trend on flakiness for chrome + explicit or

for htmlunit + explicit, but the trend for chrome + angular is

decreasing flakiness as memory is increased. If we had cut off

the evaluation at 8GB, we would have concluded that chrome

+ explicit has fewer flakes with more memory, but the behavior

at and above 16GB is not clear. Further exploration is needed.

HtmlUnit had more flakes, on average, with extra memory.

It is the most lightweight browser tested and does not appear

require significant resources. However, our evaluations do

show the number of test failures varied wildly, suggesting that

HtmlUnit may not give consistent results, even with sufficient

hardware. This is supported by the data for RQ2, where the

naive No Wait approach outperformed the Explicit Wait.

RQ3b: More memory results in tests that fail less regularly

for Chrome + Angular, but not for the other configurations.

3) Host Operating System: RQ3 specifically considers

hardware. However, all results are presented for systems

running Linux. Next, we turn to RQ4 to generalize past Linux.

While the primary goal was to improve the experience on the

CI server used for automated feedback and grading projects6,

a secondary goal was to give students a more stable testing

environment for their local development.

Section V-B1 indicates that Chrome on a system with

sufficient CPU and memory was the most stable configuration

for Linux. However, an attempt to replicate this on Windows

was unsuccessful. Our evaluations found 1923 test failures

(across a 30-build evaluation) on Windows (E1) vs 12 on

Linux (E2) with other factors held constant (A4/B2/C3/D2).

The Windows build time was much higher, averaging 44

minutes versus six for Linux. Other browsers and waits also

performed poorly on Windows, giving either high runtime,

flakiness, or both. For instance, HtmlUnit was fast, but flaky,

and Firefox and PhantomJS were still too slow. We turn now to

a solution that helped all platforms, but particularly Windows.

6Our CI environment runs CentOS Linux 7.5

11

Fig. 5. Average build time, in seconds, of Chrome with Angular waits on
each of the three systems under test. Evaluations Without Restart used a
single instance of a WebDriver across all tests in a build. Evaluations With
Restart created a new WebDriver instance before every test.

RQ4: Windows gives worse performance than Linux with

respect to flaky tests and runtime given comparable hardware.

C. Restarts

Attempting to generalize our results to Windows worked

poorly, with all configurations resulting in high test failures,

unacceptable runtime, or both. We consider now the impact of

restarting the browser between each test versus a configuration

that does not do so.

By default, each test starts by launching a fresh WebDriver

and logging in as a user of the appropriate type. Here, we

modified the test suite to share a single Chrome instance across

all tests rather than launching the browser between every test.

To ensure a consistent starting environment, we introduced a

method that would log out of the iTrust2 web portal if a user

was logged in and ensured it was run before every test.

Figure 5 shows average test execution times when running

with and without restarts on each of our systems (NB-Linux,

HP-Linux, HP-Windows). Our results show a decrease in build

time for every system under test. Even HP-Linux, which

already saw the best runtime, saw the tests run 49% faster.

Similar to HP-Linux, on NB-Linux we saw a 46% reduction

in test execution time. However, HP-Windows saw the biggest

proportional improvement, from 44 to five minutes, an im-

provement of 89%. In addition to faster speeds, none of the

platforms had any flaky tests in this configuration. Results here

did not generalize to other WebDrivers, where test flakiness

and runtime both remained high. For instance, HtmlUnit on

Windows remained flaky (giving over a thousand test failures

across a single evaluation), while Firefox still was slow (with

build time over an hour) on all platform configurations.

RQ5: By using Angular waits and not restarting the Chrome

browser between tests, we get substantially faster performance

and no test failures.

VI. DISCUSSION AND FUTURE WORK

Our work provides the first investigation of which we

are aware into the effect of Selenium configuration on both

reliability and runtime. We end our investigation with an

optimal configuration for our use case of running a large

Selenium test suite in a CI environment for an undergraduate

software engineering class: Chrome + Angular waits + no

browser restarts + Linux + fast processor. We have imple-

mented this configuration in our current version of iTrust2

and reconfigured our CI environment accordingly. Knowledge

of this configuration has already proven a valuable resource

for the class by providing us with a substantially more stable

teaching application that performs much better on our CI

environment. However, there is still much left for future work.

Explicit Waits: In Section V-A, Explicit Waits give worse

performance in terms of total test failures than any other

approach. We presumed that test flakiness resulted from the

browser having insufficient time to load a page before the

test started interacting with it, so any waiting approach should

perform better than none at all. We struggle to explain why

performance here was so poor, particularly in relation to the

Thread Wait approach, so further investigation is needed.

Hardware and Operating System: We see in Figure 4 that

the number of test failures increases when going from 8GB

to 16GB. Every other memory increase for Chrome, and all

but one for HtmlUnit, resulted in a decrease in number of

failing tests. While the three evaluations performed at each

configuration suggests this is not due to random variation, we

cannot be certain without further exploration.

WebDrivers: We limited our search to WebDriver implemen-

tations which run on all major operating systems. It remains

open as to whether an untested driver performs better on any

of the operating systems included in the study. If this is the

case, future applications may benefit by detecting and using

the best driver for the platform on which they are running.

VII. THREATS TO VALIDITY

The threats to validity of our experiments are as follows:

Conclusion Validity: Due to the time taken to run exper-

iments, most of the conclusions on test flakiness in this

paper were drawn from a single 30-build evaluation (the

conclusions to RQ3b were drawn from an average across three

evaluations). This may not be sufficient to observe all tests that

could be flaky. However, it does represent a number of builds

similar to the number of teams in the software engineering

course each semester. Still, extending the number of builds

per evaluation may lead to different conclusions.

Internal Validity: In our experiments, we were careful to

vary only a single factor at a time (WebDriver, wait strategy,

CPU, memory, operating system, or browser restarts). We also

controlled for other factors, such as software versions, memory

and disk performance, and internet connection. All testing

was performed in an automated and repeatable manner. We

thus believe that the differences we observed come from the

experimental factor that was varied.

12

Construct Validity: We assume that test flakiness occurs

because the test attempts to interact with an element that

has not yet appeared on the page; other factors, such as test

order, may also impact correctness. However, we eliminated

all observed test case flakiness solely by changing Selenium

settings, and without changing the order in which the tests are

run, which suggests that our tests do not face this issue.

External Validity: Our study has focused on a single artifact,

iTrust2. While the Spring and AngularJS frameworks used in

iTrust2 are widely used, we have not attempted to replicate our

results past iTrust2. We have, however, performed some gener-

alization, applying our optimal configuration to two expanded

versions of iTrust2 that were developed in parallel to our work.

Our solution, when applied, eliminated all test flakiness and

improved runtime. Replicating our work on projects other than

iTrust2 would see if the results generalize further.

VIII. RELATED WORK

Automated testing frameworks for web applications are

necessary [5], and research has focused on generating robust

element locators [6] and repairing test cases when localization

fails [7]. Closest to our work, Kuutila et al. benchmark the

effect of programming language and WebDriver choice on

overall performance [8], finding that the choice of WebDriver

and language bindings have an impact on mean execution time

of Selenium tests as well as test results. Their results agree

broadly with ours that Chrome is both the fastest and the most

stable of the drivers that we consider.

Flakiness has been found to be particularly troublesome

in large continuous integration environments [2]. Bell et al.

present DeFlaker, an application that automatically detects

flaky tests in Java applications [9]. Their work focuses not

on our goal of fixing flaky tests, but finding them in the first

place. Additionally, their implementation relies heavily on Java

AST analysis, which makes it inapplicable to applications that

place functionality in a Javascript front-end, such as iTrust2.

Luo et al. analyze what causes automated tests in open-

source projects to be flaky, revealing that asynchronous be-

havior is the leading cause of flakes [10]. This agrees with

our hypothesis that Selenium tests are flaky because of the

time for dynamic elements to appear on a web page.

Denzler and Gruntz [11] and Luukkainen et al. [12] discuss

using the Spring framework for teaching applications in their

courses. However, they make no mention of testing these

applications nor any flakiness experienced with them.

No study we are aware of focuses on removing test flakiness

in Selenium. Most studies instead focusing on regression tests

and assuming that failures happen because of changes to a

codebase (e.g., DeFlaker integrates with version control to

watch for changes [9]). Others, such as Kuutila et al. [8], use

different combinations of waits for each browser under test in

an attempt to guarantee correctness. Doing so prevents their

results from generalizing to the consideration of the effect of

configuration options on test stability.

IX. CONCLUSIONS

Our work has implications for automated testing of web

applications using Selenium. We evaluated four WebDrivers

and four different approaches for waiting on elements to

appear on a page. We demonstrated that there are differences

between the studied WebDrivers: HtmlUnit driver performs

best where system resources are heavily constrained and the

browsers must be run in their default configuration, while

Chrome works best on faster systems or where configuration

can be optimized. We demonstrated that hardware has a

significant impact upon the runtime and reliability of a test

suite and that a faster CI environment makes a meaningful

difference. Our work has already contributed a substantially

more stable teaching application to our undergraduate software

engineering course, giving students confidence in the tests they

write and the results they see.

X. ACKNOWLEDGEMENTS

This work was supported in part by the NC State DELTA Course Redesign
Grant and NSF SHF grants #1714699, #1749936, and #1645136. We would
also like to thank T. Dickerson, E. Gilbert, D. Grochmal, C. Harris, A. Hayes,
R. Jaouhari, N. Landsberg, M. Lemons, A. Phelps, D. Rao, A. Shaikh, and
A. Wright for their assistance developing iTrust2. Finally, we’d like to thank
B. Thorne for feedback throughout the project.

REFERENCES

[1] M. Fowler. (2011) Eradicating non-determinism in tests. [Online].
Available: https://martinfowler.com/articles/nonDeterminism.html

[2] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in International Conference on Software Engi-

neering, vol. 2, May 2015, pp. 39–48.
[3] S. Heckman, K. T. Stolee, and C. Parnin, “10+ years of teaching software

engineering with itrust: The good, the bad, and the ugly,” in International

Conference on Software Engineering: Software Engineering Education

and Training, ser. ICSE-SEET ’18. ACM, 2018, pp. 1–4. [Online].
Available: http://doi.acm.org/10.1145/3183377.3183393

[4] S. Heckman and J. King, “Developing software engineering skills using
real tools for automated grading,” in Technical Symposium on Computer

Science Education, ser. SIGCSE ’18. ACM, 2018, pp. 794–799.
[Online]. Available: http://doi.acm.org/10.1145/3159450.3159595

[5] E. Vila, G. Novakova, and D. Todorova, “Automation testing
framework for web applications with selenium webdriver: Opportunities
and threats,” in International Conference on Advances in Image

Processing, ser. ICAIP 2017, 2017, pp. 144–150. [Online]. Available:
http://doi.acm.org/10.1145/3133264.3133300

[6] M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Reducing web test
cases aging by means of robust xpath locators,” in Software Reliability

Engineering Workshops, Nov 2014, pp. 449–454.
[7] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Repairing selenium

test cases: An industrial case study about web page element localization,”
in Int’l Conf. on Software Testing, Verification and Validation, March
2013, pp. 487–488.

[8] M. Kuutila, M. Mäntylä, and P. Raulamo-Jurvanen, “Benchmarking web-
testing-selenium versus watir and the choice of programming language
and browser,” arXiv preprint arXiv:1611.00578, 2016.

[9] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in International Confer-

ence on Software Engineering, 2018.
[10] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis

of flaky tests,” in International Symposium on Foundations of Software

Engineering, ser. FSE 2014. ACM, 2014, pp. 643–653. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635920

[11] C. Denzler and D. Gruntz, “Design patterns: Between programming and
software design,” in International Conference on Software Engineering,
ser. ICSE ’08. ACM, 2008, pp. 801–804. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368202

[12] T. V. Matti Luukkainen, Arto Vihavainen, “Three years of design-based
research to reform a software engineering curriculum,” 2012.

13

