2019 IEEE/ACM 14th International Workshop on Automation of Software Test (AST)

Wait Wait. No, Tell Me. Analyzing Selenium
Configuration Effects on Test Flakiness.

Kai Presler-Marshall, Eric Horton, Sarah Heckman, Kathryn T. Stolee
Department of Computer Science
North Carolina State University
Raleigh, NC
{kpresle, ewhorton, sarah_heckman, ktstolee } @ncsu.edu

Abstract—FlaKky tests are a source of frustration and un-
certainty for developers. In an educational environment, flaky
tests can create doubts related to software behavior and student
grades, especially when the grades depend on tests passing. NC
State University’s junior-level software engineering course models
industrial practice through team-based development and testing
of new features on a large electronic health record (EHR) system,
iTrust2. Students are expected to maintain and supplement an
extensive suite of Ul tests using Selenium WebDriver. Team
builds are run on the course’s continuous integration (CI)
infrastructure. Students report, and we confirm, that tests that
pass on one build will inexplicably fail on the next, impacting
productivity and confidence in code quality and the CI system.
The goal of this work is to find and fix the sources of flaky tests
in iTrust2.

We analyze configurations of Selenium using different under-
lying web browsers and timeout strategies (waits) for both test
stability and runtime performance. We also consider underlying
hardware and operating systems. Our results show that HtmlUnit
with Thread waits provides the lowest number of test failures and
best runtime on poor-performing hardware. When given more
resources (e.g., more memory and a faster CPU), Google Chrome
with Angular waits is less flaky and faster than HtmlUnit,
especially if the browser instance is not restarted between tests.
The outcomes of this research are a more stable and substantially
faster teaching application and a recommendation on how to
configure Selenium for applications similar to iTrust2 that run
in a CI environment.

Index Terms—Software Testing, Selenium, WebDriver, GUI
Tests, Flaky Tests

I. INTRODUCTION

Selenium WebDriver is a tool designed to automate inter-
actions with web browsers, and supports directly controlling
many popular browsers through a modular architecture. Its pri-
mary use case is for developing repeatable suites of integration
and regression tests for web-based user interfaces (UI).

Tests use Selenium to simulate user driving the UL then
verify expectations about the results of the actions performed.
A common issue is that Selenium tests, like other automated
tests with a broad scope, are often non-deterministic (flaky)
[1]. Test flakiness is costly, as effort must be spent determining
if the test failed due to an underlying bug [2], or if the failure
is a result of the test environment. In an academic setting,
flaky tests may impact student grades without fault of their
own.

This work studies Selenium tests in the context of the
undergraduate software engineering class project iTrust2 at NC

978-1-7281-2237-3/19/$31.00 ©2019 IEEE

DOI 10.1109/AST.2019.000-1

State University with the goal of increasing stability experi-
enced by students as measured by test flakiness and runtime
performance. iTrust2 is open source and designed to provide
students with an industry-like experience by exposing them to
a large system and continuous integration (CI) [3]. Flaky tests
are a source of frustration among students. While this may
reflect actual industry experiences, for an educational context
that introduces students to software engineering principles,
ambiguous feedback from flaky tests can cause undue stress.

There are many potential sources of flakiness, but a typical
situation involves a test case that attempts to verify the
presence of a Ul element before the browser has completely
loaded, causing it to fail. To expose the source of flakiness
in iTrust2, we start by analyzing the impact of the WebDriver
and waiting strategy. We then test the best WebDrivers and
wait strategies on three different hardware configurations and
operating systems. Our results indicate that reusing a single
Chrome instance across an entire test suite, when also paired
with Angular waits, gives universally lower flakiness and
runtime regardless of the hardware and software environment.
The improvement is sufficient to allow the iTrust2 tests to
run successfully on all hardware we tried. We refactored the
iTrust2 test suite based on these findings, and it has already
proved successful in class, giving a project that runs more
reliably and more quickly for student projects.

In summary, our work provides the following contributions:

1) A more stable version of iTrust2 that is suitable for use
as a teaching tool in undergraduate software engineering
classes and which performs well on our CI environment.

2) A comparison of four methods of waiting for expected
conditions on webpages when performing automated
testing with Selenium.

3) A comparison of runtime and stability of iTrust2’s
Selenium tests on three different hardware and operating
system configurations.

4) A recommendation on the optimal configuration of Se-
lenium for applications similar to iTrust2.

II. MOTIVATION

NC State University’s undergraduate software engineering
course uses iTrust2, a large Java EE medical records appli-
cation, as one of its primary teaching tools. A successor to
the original iTrust application that saw the course through ten

years [3], iTrust2 was introduced to students in Fall 2017 as
part of a larger course redesign. iTrust2 uses the Spring and
Angular]S frameworks used in many enterprise applications.
It consists of about 30,000 lines of Java and JavaScript code
tested with nearly 500 Selenium tests.

Each semester, twenty five groups of students, working in
teams of four or five, push their work to GitHub, where it
is then automatically built and tested using Jenkins CI [4].
When students develop far in advance of a deadline, Jenkins is
able to return feedback quickly (within 15 minutes); however,
as the deadline approaches and load on the system increases,
feedback becomes less timely. This exacerbates the issue of
test flakiness by giving students less time to respond to any
failures and ascertain their cause.

Consider the method in Figure 1, fillHospitalFields,
extracted from iTrust2. It is a subroutine in a test case which
verifies that submitting the form results in a new hospital
record being registered with the system. The method starts
with the implicit assumption that the browser is currently
on the page for creating a new hospital object. It then asks
Selenium to find and fill the input fields for name (lines 2-5),
address (lines 6-8), state (lines 10-12), and zipcode (lines 14-
16). Finally, it instructs Selenium to click the submit button
and trigger a form submission (line 18).

In this example, Selenium may fail because it cannot find
the element it looks for (e.g., an element with an id called
address). Such a failure could be caused by several mistakes
in the test or application: the wrong page was specified by the
test case; the locator used to select the element was faulty;
or there was a bug in the underlying application being tested.
However, it is also possible that the test and application are
both fine, and the befoe the browser had finished loading the
page, Selenium checked, and failed. Selenium has no way
of knowing if the UI will ever be ready, so this leaves it to
developers to tell Selenium when to check.

The motivation of this work is to proactively identify and
remove test flakiness and improve performance in iTrust2
by finding and implementing optimal Selenium and system
configurations. All tests are known to be capable of passing,
but under the conditions of student computers and our CI
environment they do not all pass consistently.

III. BACKGROUND

A WebDriver class implements the Selenium interface
webDriver. Each driver provides an interface for Selenium
to control a single web browser. All WebDrivers in this
study are named for the web browser they control. For
example, ChromeDriver is the WebDriver implementation for
the Google Chrome browser. Because WebDrivers have a 1:1
mapping with their browsers, we refer to the driver and the
browser interchangeably.

A. Drivers

We use the drivers for Chrome, Firefox, PhantomlJS, and
HtmlUnit in this study. The HtmlIUnit driver represents a head-
less browser designed specifically for automation; PhantomJS

1 public void fillHospitalFields (String
— hospitalName) {

2 final WebElement name =
— driver.findElement (By.id("name")
=)
name.clear (

)
name.sendKeys (hospitalName);

o U s W

final WebElement address =

— driver.findElement (By.id(
— "address"));
7 address.clear () ;
3 address.sendKeys ("121 Canada Road");
9
10 final WebElement state =
— driver.findElement (By.id("state"
-))

1 final Select dropdown = new Select (
— state);

12 dropdown.selectByVisibleText ("CA");

13

14 final WebElement zip =
— driver.findElement (By.id("zip")
-)

15 zip.clear();

16 zip.sendKeys ("00912");

17

18 driver.findElement (By.className ("btn"
—)).click();

19 }
Fig. 1. A method from one of the iTrust2 Selenium tests that automates filling
in fields on a web page.
is a more capable browser designed for the same purpose;
Chrome and Firefox are two popular and widely-used web
browsers. The default configuration is used for HtmlUnit and
Phantom]S, as both are already headless. Chrome and Firefox
are run in headless mode (a requirement for our CI environ-
ment), with Chrome additionally specifying the options window
-size = 1200x600 and blink-settings = imagesEnabled =
false, both of which were selected to improve runtime. We
omitted drivers for browsers not supported by every major OS,
such as Apple Safari and Microsoft Edge.

B. Wait Strategies

Several waiting strategies are considered. The first, No Wait
is the default behavior of immediately failing when an element
is not found. No Wait informs a baseline against which to
compare other wait strategies. Thread Wait calls Java’s Thread
: :sleep, Which pauses thread execution for a fixed period of
time. Explicit Wait is a Selenium construct that tells the driver
to wait for an explicit amount of time or until some condition
has been satisfied (whichever occurs first). Explicit waits are
supported by all drivers. We use explicit waits to verify the
presence of elements. For example, the following will wait for
an element with the name of notes to appear:

1 WebDriverWait wait = new WebDriverWait (
— driver, 2);

> wait.until (ExpectedConditions
— .visibilityOfElementLocated(By.name (
— "notes")));

Angular Wait is a Selenium construct that tells the driver
to wait until the Angular web framework has completed all

requests. It is only supported by the Chrome driver, and can
be used as follows.
1 new NgWebDriver ((ChromeDriver) driver
—) .waitForAngularRequestsToFinish () ;

Unlike Explicit Waits, Angular Waits do not wait for a
specific element to appear: rather they wait until a/l dynamic
requests are finished. This has the potential to work better if
the locator that would be passed to an Explicit Wait is overly
general and thus would locate an element before the page is
truly ready.

C. Current Configuration

The existing test suite for iTrust2 uses the HtmlUnit driver
with a combination of No Wait and Explicit Wait strategies to
verify the correctness of elements. HtmlUnit has been used for
its reasonable runtime performance on our Jenkins CI systems,
with 59 Explicit Waits scattered through individual tests where
the No Wait approach proved insufficient.

IV. STUDY

We explore the following research questions, measuring test
flakiness and runtime performance as the dependent variables,
in the context of iTrust2:

RQ1 What is the impact of the WebDriver?

RQ2 Which wait methods are the most stable?

RQ3 What is the impact of hardware (CPU and memory)?

RQ4 What effect does the host operating system have?

RQ5 What is the effect of restarting the browser between
individual tests?

We refer to a single run of an application’s entire test suite
as a build. A group of multiple builds is referred to as an
evaluation. All evaluations in this work contain 30 builds.
An evaluation is used to determine runtime performance,
measured in seconds (i.e., average test execution time over all
the builds in an evaluation). Because we know that all tests
can pass, any test failure is seen as indicative of test flakiness.
Thus, test flakiness is defined as the sum of all test failures
over an execution.

We refer to the choice of driver and the waiting strategy
employed as WebDriver configuration. We refer to choice of
CPU, memory, and operating system as system configuration.
When considering a combination of WebDriver and system
configurations, we say Selenium configuration, or just config-
uration if it is not ambiguous.

Our configuration options are summarized in Table I. Rows
A and B correspond to WebDriver configuration and will guide
RQ1 and RQ2 (Section V-A), rows C and D are hardware
configuration and will guide RQ3, and row E guides RQ4
(Section V-B). The RQ columns identify the configurations
used in the evaluation. For example, RQ1 has a * for row A,
meaning all four options are considered. In row C, RQ1 uses
column 2, representing 4GB of memory. Not all options are
possible (e.g., HtmlUnit with Angular waits), but this provides
a general outline for how each RQ was evaluated.

A. Setup

To address RQ1 and RQ2, we modified the current iTrust2
codebase and introduced a common superclass for all test
classes. This superclass provides a WebDriver factory method
and a method for performing waits. To obtain a list of flaky
tests, we mined the Jenkins test logs from our undergraduate
software engineering course in Spring 2018. Any Selenium test
failure observed that appeared unconnected to the Git commit
that triggered the build was considered a potentially flaky
one and was included in our study. We manually analyzed
1,000 Jenkins test logs, and found 19 distinct locations in
the source code where tests appeared to be flaky. Before
every flaky location, we inserted a call to the waiting method
in our superclass. We branched the codebase, implementing
the WebDriver factory and waiting method for every valid
combination of driver and waits (see Table I, rows A & B,
yielding 13 valid configurations').

To address RQ3 and RQ4, we procured two computers.
First, an Acer netbook provisioned with Ubuntu 17.10, known
hereafter as “NB-Linux”. It was deliberately selected for its
poor performance, as it represents the lower end of what
students have been observed using. Second is an HP worksta-
tion system provisioned with Ubuntu 17.10 (known hereafter
as “HP-Linux”) and Windows 10 (known hereafter as “HP-
Windows”). It was selected for giving performance similar to
most student systems and to evaluate the impact of operating
system when hardware is controlled for. Turbo Boost was
disabled on both platforms, and Hyper-threading on the HP
7420 (the Acer’s CPU does not support any form of SMT?), to
result in a more consistent execution environment. Evaluations
on HP-Linux were tested with 2, 4, 8, 16, and 32GB memory.
Evaluations on HP-Windows were run at 8GB memory as a
comparison against HP-Linux at 8GB.

To address RQ5 we reconfigured our WebDriver factory to
not restart the browser between individual tests and retested
on our three environments (NB-Linux, HP-Linux, and HP-
Windows).

B. Execution

After each build, the execution time and list of failing test
cases were recorded. At the end of an evaluation (30 builds),
test flakiness was recorded as the sum of all failures seen
in each build, and runtime was computed by averaging the
runtime of each build within the evaluation.

We ran evaluations for each configuration on our procured
systems, using performance results on NB-Linux to inform our
selection of run configurations on the HP workstation.

V. RESULTS

The results from our study can be grouped into three broad
categories: the impact of WebDriver configurations (RQ1 and

!(Chrome + Firefox + HtmlUnit + PhantomJS) * (No Wait + Thread.sleep
+ Explicit) = 12 + Chrome * AngularWait = 13

2Simultaneous Multithreading, a hardware technique allowing the simul-
taneous execution of two or more logical threads per physical CPU core.
Hyper-threading is Intel’s implementation of the technology.

TABLE I
SELENIUM & SYSTEM CONFIGURATION OPTIONS

Options
Factor 1 2 3 4 5 RQ1 RQ2 RQ3 RQ4 RQ5
A Wait No Wait Explicit Thread.sleep Angular - * * 2.4 2,4 2.4
B WebDriver HtmlUnit Chrome Firefox PhantomJS - * * 1,2 1,2 1,2
C Memory 2GB 4GB 8GB 16GB 32GB 2 2 * 3 3
D Processor AMD C60 (NB) Intel E5-1620 (HP) - - - 1 1 1,2 2 1,2
E OS Windows 10 Linux 4.13 - - - 2 2 2 1,2 1,2
Driver Flakiness by Wait Strategy RQ2 addresses the impact of the specific waiting strategy
Driver on test flakiness. We evaluated waiting strategy for Chrome
175 = chrome. and HtmlUnit by running both browsers with all supported
150 waits on NB-Linux. Figure 2 presents the total number of test
flakes seen in each evaluation.
21 We see that Thread Waits perform the best for both HtmlU-
13:;1004 nit and Chrome, while Explicit Waits performed the worst.
5 The performance of Thread Waits was unsurprising — by
g] suspending test execution for a relatively long (5 second)
50 1 period of time, we give the browser hopefully ample time to
25] catch up to where the test expects it to be. Surprisingly, No
Wait manages to perform better than Explicit Wait, particularly
ol

no wait explicit thread

Wait Strategy

angular

Fig. 2. Total failing test cases for supported waiting strategies with Chrome
and HtmlIUnit. Each bar represents one evaluation. Evaluations were run on
NB-Linux.

RQ?2), the impact of system configuration (RQ3 and RQ4),
and further optimization (RQ5)>.

A. WebDriver Configuration

RQ1 addresses the impact of WebDriver choice on test
stability and runtime. This corresponds to varying rows A and
B of Table I. Even on our fast HP-Linux system, running the
test suite with Firefox or PhantomJS took well over an hour
a build, making them unsuitable for use in a CI environment.

HtmlUnit, the least featured and least resource-intensive
WebDriver used, experienced fewer flaky tests overall than
Chrome on NB-Linux. This was consistent across all wait
strategies on this system; not once did Chrome deliver a more
stable testing experience. These results are shown in Figure 2;
the Y-axis reports the total number of tests that failed across
each evaluation. Because each test was run thirty times, a test
that failed in multiple builds will increase the count on each
observed failure. Runtime differences between the WebDrivers
were minor; an average build time of 31 minutes for HtmlUnit
and 35 minutes for Chrome.

RQ1: HtmlUnit yields fewer flaky tests than Chrome on NB-
Linux, regardless of wait strategy. HtmlUnit is approximately
10% faster than Chrome in terms of test runtime.

30ur updated version of iTrust2 and evaluation scripts are located at
https://github.com/ncsu-csc326/iTrust2-SeleniumAnalysis

10

so for HtmlUnit, where it resulted in under half of the flakes
seen with Explicit Waits. Explicit Waits used the exact same
timeout (5 seconds) as Thread Waits, so we expected to see
similar results for both. While waiting approach had a sizable
impact upon stability, its impact upon runtime was minor on
both browsers: no more than an 8%* difference was observed
between the fastest (no waits) and slowest (explicit waits and
thread waits) regardless of browser.

We also acknowledge that RQ1 and RQ2 were evaluated
on poor hardware. As we show in the next section, better
hardware leads to better performance and less flakiness for
Chrome. At the same time, using a slower system for evalua-
tion is valuable as it mimics some students’ situations.

We note here that while Thread Waits provide the lowest
flakiness score, the number of unique tests impacted by the
failures is actually the highest. That is, the Thread Wait failures
are more insidious, being both more likely to occur for any
test and less predictable. On the other hand, the Explicit Waits
and Angular Waits are more predictable; a test failing with an
Explicit or Angular Wait is more likely to fail again within
the evaluation. Since we want to suggest a wait strategy that
has predictable behavior, we move forward with Angular and
Explicit Waits when evaluating system configurations.

RQ2: Thread waits give the lowest flakiness for both HtmlUnit
and Chrome, with Explicit Waits giving the highest.

B. System Configuration

Anecdotally, we expected that slower hardware results in
more unstable and slower builds. We consider three types of
system configuration: the CPU, the amount of RAM, and the

4Calculated as (Tsiow — Tfast)/Tfast, Where Ttqst is the runtime of the
faster build, and T’;,,, is the runtime of the slower build

Driver Flakiness by CPU

System
BE NB-Linux
HP-Linux

Number of Failing Tests
=
~ o
G S)
| L

3
o
L

N
ol
L

htmlunit + explicit chrome + explicit

Driver

chrome + angular

Fig. 3. Number of failing tests for HtmlUnit with explicit waits and Chrome
with explicit and Angular waits for NB-Linux and HP-Linux systems (fixed
4GB memory, increasing CPU performance).

OS managing test processes. We prune our search space by
focusing our testing on Angular Waits and Explicit Waits.

1) Increasing CPU: Evaluations of flaky tests in Chrome
and HtmlUnit on NB-Linux and HP-Linux (at 4GB RAM)
are presented in Figure 3. Note that there are no results for
HtmlUnit and Angular Waits, as Chrome is the only browser
to support them. For both browsers, moving to HP-Linux
resulted in substantially fewer flaky tests across the evalua-
tions, regardless of wait strategy. The impact was particularly
pronounced for Chrome, with test flakiness falling by over
70%° in both configurations, but HtmIUnit still saw a very
respectable improvement of 55%.

The average build time over all evaluations was reduced
by 80-84% when moving to faster hardware (i.e., D1 to D2).
With Chrome, the average build times were reduced from 35
minutes to 7 minutes; with HtmlUnit, they dropped from 31
minutes to 5 minutes. Thus, not only does Chrome give far
more stable build results on fast hardware, it does so quickly
as well. Fast build times are imperative for CI environments,
and better hardware is an easy way to achieve this.

RQ3a: A faster CPU results in a substantially faster build on
both HtmlUnit and Chrome.

2) Increasing Memory: Figure 4 shows the impact of
manipulating the amount of available memory for each of three
configurations of driver and wait method. The Y-axis shows
the sum total of test failures over all 30 builds in an evaluation.
The X-axis shows the memory configuration. Each evaluation
was run three times (totaling 90 builds of iTrust2 and its test
suite), and each data point on the graph is an average over
the three evaluations. No significant outliers were observed
in any configuration. For example, with HtmlUnit + explicit,
there were an average of 61 test failures per evaluation with
2GB of memory. This is an average of two per build.

SCalculated as (Frign, — Flow)/Frign. Where Fl,;gp, is test flakiness from
the flakier build, and Fj,,, is the flakiness from the less flaky build

11

Test Flakiness by Memory Level

80 1

o
=}

I chrome + angular
B chrome + explicit
B htmlunit + explicit

N
o

Number of Test Failures

N
o

8
Memory (GB)

Fig. 4. Total number of test case failures for all builds in evaluations of
Chrome with explicit and Angular waits and HtmlUnit with explicit. All
evaluations were run on the HP-Linux platform (D2/E2).

There is no clear trend on flakiness for chrome + explicit or
for htmlunit + explicit, but the trend for chrome + angular is
decreasing flakiness as memory is increased. If we had cut off
the evaluation at 8GB, we would have concluded that chrome
+ explicit has fewer flakes with more memory, but the behavior
at and above 16GB is not clear. Further exploration is needed.

HtmlUnit had more flakes, on average, with extra memory.
It is the most lightweight browser tested and does not appear
require significant resources. However, our evaluations do
show the number of test failures varied wildly, suggesting that
HtmlUnit may not give consistent results, even with sufficient
hardware. This is supported by the data for RQ2, where the
naive No Wait approach outperformed the Explicit Wait.

RQ3b: More memory results in tests that fail less regularly
for Chrome + Angular, but not for the other configurations.

3) Host Operating System: RQ3 specifically considers
hardware. However, all results are presented for systems
running Linux. Next, we turn to RQ4 to generalize past Linux.
While the primary goal was to improve the experience on the
CI server used for automated feedback and grading projects®,
a secondary goal was to give students a more stable testing
environment for their local development.

Section V-B1 indicates that Chrome on a system with
sufficient CPU and memory was the most stable configuration
for Linux. However, an attempt to replicate this on Windows
was unsuccessful. Our evaluations found 1923 test failures
(across a 30-build evaluation) on Windows (El1) vs 12 on
Linux (E2) with other factors held constant (A4/B2/C3/D2).
The Windows build time was much higher, averaging 44
minutes versus six for Linux. Other browsers and waits also
performed poorly on Windows, giving either high runtime,
flakiness, or both. For instance, HtmlUnit was fast, but flaky,
and Firefox and PhantomJS were still too slow. We turn now to
a solution that helped all platforms, but particularly Windows.

%Qur CI environment runs CentOS Linux 7.5

Average Build Time With and Without Driver Restarts

Restart
mmm With Restart

25001 Without Restart

2000 A

1500 -

1000

Average Build Time (Seconds)

5001

NB-Linux HP-Linux

System

HP-Windows

Fig. 5. Average build time, in seconds, of Chrome with Angular waits on
each of the three systems under test. Evaluations Without Restart used a
single instance of a WebDriver across all tests in a build. Evaluations With
Restart created a new WebDriver instance before every test.

RQ4: Windows gives worse performance than Linux with
respect to flaky tests and runtime given comparable hardware.

C. Restarts

Attempting to generalize our results to Windows worked
poorly, with all configurations resulting in high test failures,
unacceptable runtime, or both. We consider now the impact of
restarting the browser between each test versus a configuration
that does not do so.

By default, each test starts by launching a fresh WebDriver
and logging in as a user of the appropriate type. Here, we
modified the test suite to share a single Chrome instance across
all tests rather than launching the browser between every test.
To ensure a consistent starting environment, we introduced a
method that would log out of the iTrust2 web portal if a user
was logged in and ensured it was run before every test.

Figure 5 shows average test execution times when running
with and without restarts on each of our systems (NB-Linux,
HP-Linux, HP-Windows). Our results show a decrease in build
time for every system under test. Even HP-Linux, which
already saw the best runtime, saw the tests run 49% faster.
Similar to HP-Linux, on NB-Linux we saw a 46% reduction
in test execution time. However, HP-Windows saw the biggest
proportional improvement, from 44 to five minutes, an im-
provement of 89%. In addition to faster speeds, none of the
platforms had any flaky tests in this configuration. Results here
did not generalize to other WebDrivers, where test flakiness
and runtime both remained high. For instance, HtmlUnit on
Windows remained flaky (giving over a thousand test failures
across a single evaluation), while Firefox still was slow (with
build time over an hour) on all platform configurations.

RQS5: By using Angular waits and not restarting the Chrome
browser between tests, we get substantially faster performance
and no test failures.

VI. DISCUSSION AND FUTURE WORK

Our work provides the first investigation of which we

are aware into the effect of Selenium configuration on both
reliability and runtime. We end our investigation with an
optimal configuration for our use case of running a large
Selenium test suite in a CI environment for an undergraduate
software engineering class: Chrome + Angular waits + no
browser restarts + Linux + fast processor. We have imple-
mented this configuration in our current version of iTrust2
and reconfigured our CI environment accordingly. Knowledge
of this configuration has already proven a valuable resource
for the class by providing us with a substantially more stable
teaching application that performs much better on our CI
environment. However, there is still much left for future work.
Explicit Waits: In Section V-A, Explicit Waits give worse
performance in terms of total test failures than any other
approach. We presumed that test flakiness resulted from the
browser having insufficient time to load a page before the
test started interacting with it, so any waiting approach should
perform better than none at all. We struggle to explain why
performance here was so poor, particularly in relation to the
Thread Wait approach, so further investigation is needed.
Hardware and Operating System: We see in Figure 4 that
the number of test failures increases when going from 8GB
to 16GB. Every other memory increase for Chrome, and all
but one for HtmlUnit, resulted in a decrease in number of
failing tests. While the three evaluations performed at each
configuration suggests this is not due to random variation, we
cannot be certain without further exploration.
WebDrivers: We limited our search to WebDriver implemen-
tations which run on all major operating systems. It remains
open as to whether an untested driver performs better on any
of the operating systems included in the study. If this is the
case, future applications may benefit by detecting and using
the best driver for the platform on which they are running.

VII. THREATS TO VALIDITY

The threats to validity of our experiments are as follows:

Conclusion Validity: Due to the time taken to run exper-
iments, most of the conclusions on test flakiness in this
paper were drawn from a single 30-build evaluation (the
conclusions to RQ3b were drawn from an average across three
evaluations). This may not be sufficient to observe all tests that
could be flaky. However, it does represent a number of builds
similar to the number of teams in the software engineering
course each semester. Still, extending the number of builds
per evaluation may lead to different conclusions.
Internal Validity: In our experiments, we were careful to
vary only a single factor at a time (WebDriver, wait strategy,
CPU, memory, operating system, or browser restarts). We also
controlled for other factors, such as software versions, memory
and disk performance, and internet connection. All testing
was performed in an automated and repeatable manner. We
thus believe that the differences we observed come from the
experimental factor that was varied.

Construct Validity: We assume that test flakiness occurs
because the test attempts to interact with an element that
has not yet appeared on the page; other factors, such as test
order, may also impact correctness. However, we eliminated
all observed test case flakiness solely by changing Selenium
settings, and without changing the order in which the tests are
run, which suggests that our tests do not face this issue.
External Validity: Our study has focused on a single artifact,
iTrust2. While the Spring and Angular]JS frameworks used in
iTrust2 are widely used, we have not attempted to replicate our
results past iTrust2. We have, however, performed some gener-
alization, applying our optimal configuration to two expanded
versions of iTrust2 that were developed in parallel to our work.
Our solution, when applied, eliminated all test flakiness and
improved runtime. Replicating our work on projects other than
iTrust2 would see if the results generalize further.

VIII. RELATED WORK

Automated testing frameworks for web applications are
necessary [5], and research has focused on generating robust
element locators [6] and repairing test cases when localization
fails [7]. Closest to our work, Kuutila et al. benchmark the
effect of programming language and WebDriver choice on
overall performance [8], finding that the choice of WebDriver
and language bindings have an impact on mean execution time
of Selenium tests as well as test results. Their results agree
broadly with ours that Chrome is both the fastest and the most
stable of the drivers that we consider.

Flakiness has been found to be particularly troublesome
in large continuous integration environments [2]. Bell et al.
present DeFlaker, an application that automatically detects
flaky tests in Java applications [9]. Their work focuses not
on our goal of fixing flaky tests, but finding them in the first
place. Additionally, their implementation relies heavily on Java
AST analysis, which makes it inapplicable to applications that
place functionality in a Javascript front-end, such as iTrust2.

Luo et al. analyze what causes automated tests in open-
source projects to be flaky, revealing that asynchronous be-
havior is the leading cause of flakes [10]. This agrees with
our hypothesis that Selenium tests are flaky because of the
time for dynamic elements to appear on a web page.

Denzler and Gruntz [11] and Luukkainen et al. [12] discuss
using the Spring framework for teaching applications in their
courses. However, they make no mention of testing these
applications nor any flakiness experienced with them.

No study we are aware of focuses on removing test flakiness
in Selenium. Most studies instead focusing on regression tests
and assuming that failures happen because of changes to a
codebase (e.g., DeFlaker integrates with version control to
watch for changes [9]). Others, such as Kuutila et al. [8], use
different combinations of waits for each browser under test in
an attempt to guarantee correctness. Doing so prevents their
results from generalizing to the consideration of the effect of
configuration options on test stability.

IX. CONCLUSIONS

Our work has implications for automated testing of web
applications using Selenium. We evaluated four WebDrivers
and four different approaches for waiting on elements to
appear on a page. We demonstrated that there are differences
between the studied WebDrivers: HtmlUnit driver performs
best where system resources are heavily constrained and the
browsers must be run in their default configuration, while
Chrome works best on faster systems or where configuration
can be optimized. We demonstrated that hardware has a
significant impact upon the runtime and reliability of a test
suite and that a faster CI environment makes a meaningful
difference. Our work has already contributed a substantially
more stable teaching application to our undergraduate software
engineering course, giving students confidence in the tests they
write and the results they see.

X. ACKNOWLEDGEMENTS

This work was supported in part by the NC State DELTA Course Redesign
Grant and NSF SHF grants #1714699, #1749936, and #1645136. We would
also like to thank T. Dickerson, E. Gilbert, D. Grochmal, C. Harris, A. Hayes,
R. Jaouhari, N. Landsberg, M. Lemons, A. Phelps, D. Rao, A. Shaikh, and
A. Wright for their assistance developing iTrust2. Finally, we’d like to thank
B. Thorne for feedback throughout the project.

REFERENCES
[1]
[2]

M. Fowler. (2011) Eradicating non-determinism in tests. [Online].
Available: https://martinfowler.com/articles/nonDeterminism.html

K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in International Conference on Software Engi-
neering, vol. 2, May 2015, pp. 39-48.

S. Heckman, K. T. Stolee, and C. Parnin, “10+ years of teaching software
engineering with itrust: The good, the bad, and the ugly,” in International
Conference on Software Engineering: Software Engineering Education
and Training, ser. ICSE-SEET °18. ACM, 2018, pp. 1-4. [Online].
Available: http://doi.acm.org/10.1145/3183377.3183393

S. Heckman and J. King, “Developing software engineering skills using
real tools for automated grading,” in Technical Symposium on Computer
Science Education, ser. SIGCSE ’18. ACM, 2018, pp. 794-799.
[Online]. Available: http://doi.acm.org/10.1145/3159450.3159595

E. Vila, G. Novakova, and D. Todorova, “Automation testing
framework for web applications with selenium webdriver: Opportunities
and threats,” in International Conference on Advances in Image
Processing, ser. ICAIP 2017, 2017, pp. 144—150. [Online]. Available:
http://doi.acm.org/10.1145/3133264.3133300

M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Reducing web test
cases aging by means of robust xpath locators,” in Software Reliability
Engineering Workshops, Nov 2014, pp. 449-454.

M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Repairing selenium
test cases: An industrial case study about web page element localization,”
in Int’l Conf. on Software Testing, Verification and Validation, March
2013, pp. 487-488.

M. Kuutila, M. Mintyl4, and P. Raulamo-Jurvanen, “Benchmarking web-
testing-selenium versus watir and the choice of programming language
and browser,” arXiv preprint arXiv:1611.00578, 2016.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in International Confer-
ence on Software Engineering, 2018.

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in International Symposium on Foundations of Software
Engineering, ser. FSE 2014. ACM, 2014, pp. 643-653. [Online].
Available: http://doi.acm.org/10.1145/2635868.2635920

C. Denzler and D. Gruntz, “Design patterns: Between programming and
software design,” in International Conference on Software Engineering,
ser. ICSE ’08. ACM, 2008, pp. 801-804. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368202

T. V. Matti Luukkainen, Arto Vihavainen, “Three years of design-based
research to reform a software engineering curriculum,” 2012.

[3]

[4]

[51

[6]

[71

[8]

[9]

(10]

(11]

[12]

