
Replication Can Improve Prior Results:
A GitHub Study of Pull Request Acceptance

Di Chen, Kathryn T. Stolee, Tim Menzies

Computer Science, NC State, USA,

dchen20@ncsu.edu; ktstolee@ncsu.edu; timm@ieee.org

Abstract—Crowdsourcing and data mining can be used to
effectively reduce the effort associated with the partial replication
and enhancement of qualitative studies.

For example, in a primary study, other researchers explored
factors influencing the fate of GitHub pull requests using an
extensive qualitative analysis of 20 pull requests. Guided by
their findings, we mapped some of their qualitative insights
onto quantitative questions. To determine how well their findings
generalize, we collected much more data (170 additional pull
requests from 142 GitHub projects). Using crowdsourcing, that
data was augmented with subjective qualitative human opinions
about how pull requests extended the original issue. The crowd’s
answers were then combined with quantitative features and, using
data mining, used to build a predictor for whether code would
be merged. That predictor was far more accurate than the one
built from the primary study’s qualitative factors (F1=90 vs
68%), illustrating the value of a mixed-methods approach and
replication to improve prior results.

To test the generality of this approach, the next step in future
work is to conduct other studies that extend qualitative studies
with crowdsourcing and data mining.

I. INTRODUCTION

Our ability to generate models from software engineering

data has out-paced our abilities to reflect on those models.

Studies can use thousands of projects, millions of lines of

code, or tens of thousands of programmers [1]. However, when

insights from human experts are overlooked, the conclusions

from the automatically generated models can be both wrong

and misleading [2]. After observing case studies where data

mining in software engineering led to spectacularly wrong

results, Basili and Shull [3] recommend qualitative analysis

to collect and use insights from subject matter experts who

understand software engineering.

The general problem we explore is how partial replication

studies can scale and deepen the insights gained from pri-

mary qualitative studies. That is, after collecting qualitative

insights from an in-depth analysis of a small sample, a

partial replication study is conducted using a subset of the

insights as a guide, but targeting a larger sample and using a

different empirical methodology. To show that a given result

is robust, the ideal case is for a completely independent set

of researchers to replicate a published study using their own

experimental design [4]. In this work, we explore a mixed-

methods approach using a crowdsourced evaluation and data

mining to build on a primary qualitative study from prior

work [5], aimed at the goal of understanding the factors that

govern pull request acceptance.

Crowdsourcing brings advantages of a lower cost com-

pared to professional experts. Micro-task crowdsourcing using

established platforms such as Amazon’s Mechanical Turk

(MTurk) [6] also provides a large worker pool with great

diversity and fast completion times. The main issue with

crowdsourcing is the low quality; an uncontrolled experimental

context often leads to less credible results; however, some

results suggest that crowdsourced workers perform similarly

to student populations [7]. Data mining, on the other hand,

is good at predicting future patterns based on the past. It is

an inexpensive and fast tool to analyze quantitative data from

crowdsourcing results, especially when data is large. However,

data mining is limited in that it looks narrowly at the data.

The starting point of this investigation was a conjecture that

combining crowdsourcing and data mining would lead to better

results that using either separately.

To test this conjecture, we used Tsay, Dabbish, Herbsleb

(hereafter, TDH) [5]. That study explored how GitHub-based

teams debate what new code gets merged through the lens

of pull requests. To do this, they used a labor-intensive

qualitative interview-process of 47 users of GitHub, as well

as in-depth case studies of 20 pull-requests. They found that

the submitter’s level of prior interaction on the project changed

how core and audience members interacted with the submitter

during discussions around contributions. The results provide

many insights into the factors and features that govern pull

request acceptance. The TDH authors were clear about their

methodology and results, making it a good candidate for

partial replication and extension.

This paper extends that primary qualitative study of pull

requests with an independent partial replication study using

a crowdsourced evaluation and data mining. To perform this

independent, partial replication and extension, using the in-

sights from the original study, we design questions that can

be answered by a crowdsourced worker pool and serve to

confirm some of the original findings. The crowd is able to

handle a larger pool of artifacts than the original study, which

tests the external validity of the findings. In addition to the

original 20 pull requests, the crowd in our study analyzes an

additional 170 pull requests. Next, data mining was applied to

the crowd’s responses, resulting in accurate predictors for pull

request acceptance. The predictors based on crowd data were

compared to predictors built using quantitative methods from

the literature (i.e., traditional data mining without crowdsourc-

ing and without insights from the primary study).

179

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00037

Our results show that the crowd can replicate the TDH

results, and that for those factors studied, most results are

stable when scaled to larger data sets. After using data mining

to develop predictors for pull request acceptance, we found

that the predictors based on quantitative factors from the

literature were more accurate than the predictor based on

the TDH features we studied. Even though the predictors

for pull request acceptance based on data mining were more

accurate than predictors based on crowd-generated data alone,

it would be extremely premature to use this one result to

make generalizations about the relative merits of the different

empirical approaches. The primary study revealed insights that

we were not able to scale up; for example, the original study

found that evaluation outcomes of pull request were sometimes

more complex than acceptance or rejection. That is, a rejected

pull request may be followed up with another pull request

from the core team fulfilling the goals of the rejected pull

request [5]. Such insights would be difficult, if not impossible,

to expose through data mining alone. That said, other insights

can be verified through scaled replication, such as the impact

of different features of a pull request discussion on that pull

request’s acceptance, which we explore in this work.

This paper makes three specific contributions:

• A cost-effective, independent, partial replication and ex-

tension of a primary study of pull request acceptance

factors using a scaled sample of artifacts (RQ1).

• Analysis of the external validity of findings from the

original study, demonstrating stability in most of the

results. This has implications for which questions warrant

further analysis (RQ2).

• Comparison of qualitative and quantitative factors that

impact pull request acceptance from related work (RQ3).

To assist other researchers, a reproduction package with all

our scripts and data is available1 and in archival form (with a

DOI)2 to simplify all future citations to this material.

II. BACKGROUND

With over 14 million users and 35 million repositories as of

April 2016, GitHub has become the largest and most influential

open source projects hosting sites. Numerous qualitative [5],

[8]–[14], quantitative [1], [15]–[22] and mixed methods stud-

ies [23], [24] have been published about GitHub.

Pull requests are created when contributors want their

changes to be merged to the main repository. After core

members get pull requests, they inspect the changes and decide

whether to accept or reject them. This process usually involves

code inspection, discussion, and inline comments between

contributors and repository owners. Note that core members

have the ability to close the pull requests by either accepting

the code and merging the contribution with the master branch,

or rejecting the pull requests. Core members could also ignore

the pull requests and leave them in an open state.

1github.com/dichen001/IST 17
2doi.org/10.5281/zenodo.802698

Fig. 1. An example GitHub pull request

Figure 1 shows an example of pull requests with reduced

discussion (No.16 of the 20 pull requests TDH studied.3), in-

line code comments and final result (closed). This pull request,

on the topic of UI changes and moderizr.js for the contacts

app, was submitted by user raghunayyar on August 27, 2012.

The intention of the pull request was to address a bug, which

is linked within the submitter’s first comment. User tanghus

commented on the diff for file contacts/index.php on

August 30, 2012. A discussion ensued between user tanghus

and user DeepDiver1975. After one more comment from

tanghus, the pull request is closed by the submitter on August

31, 2012. All three people involved with the pull request are

Members, meaning they are developers. From the contributors’

page of this repository, we and the crowd could find the user

tanghus and user DeepDiver1975 are core members, while the

submitter, user raghunayyar, is an external developer. The pull

request was closed without being merged. The crowd worker

who was assigned to analyze this pull requests finds:

1) There are core developers supporting this pull requests.

2) There are alternates proposed by the core members.

3) There are people disapproving the proposed solution .

4) No one disapproves the problem being solved here.

5) The pull requests are rejected but the core team im-

plemented their own solution to the problem in the

contribution.

3www.jsntsay.com/work/FSE2014.html

180

Note that findings 3 and 4 conflict with the results from TDH.

TDH finds there are disapproving comments for the problems

being proposed due to project appropriateness (but not for the

solutions itself being inconsistent, as found by the crowd).

A small number of such inconsistencies are not unexpected

in qualitative work, and replication can help identify where

ambiguities may be present.

In this paper, crowd workers analyze pull request features

and the conversations within the pull request, as just illustrated,

and answer quantitative questions about the pull request con-

versations and outcomes.

III. RESEARCH QUESTIONS

We evaluate the following research questions:

RQ1: Can the crowd reproduce prior results with high

quality? One challenge with crowdsourcing is quality control;

we employ several strategies to encourage high-quality

responses from the crowd to determine if the crowd can

partially replicate the results from the TDH paper.

RQ2: Does crowdsourcing identify which conclusions from

the primary study are stable? This question is important

for the external validity of the original findings used in the

extension part of the experiment. We collected 170 additional

pull requests using similar sampling criteria to the primary

study, and added these to the original 20. We then tested if

the crowd reaches the same or different conclusions using the

original 20 and using the extended data set.

RQ3: Can the pull request features identified in the primary

study accurately predict pull request acceptance? Given the

larger data set collected and evaluated in this work, there is

now an opportunity to evaluate the performance of prediction

models based on (1) the subset of features identified as

important in the primary study and included in our partial

replication (collected in RQ1 and RQ2), and (2) features

identified as important in previous data mining-only studies

(identified from related work).

IV. METHODOLOGY

To leverage the advantages of crowdsourcing, we perform

a five-step process from exploring prior studies to running the

replication studies using crowdsourcing and then data mining.

Step 1: Related work exploration on GitHub pull requests

studies; extract data, insights, features and results from the

existing work. Quantitative features should also be extracted

from existing work (to answer RQ3).

Step 2: Map insights from qualitative work into questions

that could be answered by crowd workers in micro-tasks.

Map existing quantitative features into questions with known

answers, which are “gold” questions used for quality control.

TABLE I
A SAMPLE OF RELATED QUALITATIVE AND QUANTITATIVE WORK. HERE, BY “QUANTITATIVE”, WE MEAN USING DATA MINING WITH LITTLE TO NO

INTERACTION WITH PROJECT PERSONNEL.

Year Source Method Data Title

2012 [8] CSCW Qualitative Interview 24 GitHub Users. Pull requests
case study 10.

Social coding in GitHub: transparency and collaboration in an open
software repository

2013 [11] CSCW Qualitative Interview 18 GitHub users. Pull requests
case study 10.

Impression Formation in Online Peer Production: Activity Traces
and Personal Profiles in GitHub

2014 [5] FSE Qualitative Interview 47 GitHub users. Pull requests
case study 20.

Let’s Talk About It: Evaluating Contributions through Discus-

sion in GitHub (TDH)

2015 [9] ICSE Qualitative Online survey 749 integrators. Work Practices and Challenges in Pull-Based Development: The
Integrators Perspective

2016 [10] ICSE Qualitative Online survey 645 contributors. Work Practices and Challenges in Pull-Based Development: The
Contributors Perspective

2014 [25] ICSE Quantitative GHTorrent, 166,884 pull requests An Exploratory Study of the Pull-Based Software Development
Model

2014 [15] ICSE Quantitative GitHub API, GitHub Archive. 659,501 pull
requests

Influence of Social and Technical Factors for Evaluating Contribu-
tion in GitHub.

2014 [26] ICSME Quantitative GHTorrent, 1,000 pull requests. Reviewer Recommender of Pull-Requests in GitHub
2014 [27] ICSME Quantitative GHTorrent Continuous Integration in a SocialCoding World Empirical Evi-

dence from GitHub
2014 [28] APSEC Quantitative GHTorrent, 1,000 pull requests. Who Should Review This Pull-Request: Reviewer Recommenda-

tion to Expedite Crowd Collaboration
2014 [19] CrowdSoft Quantitative GHTorrent, GitHubArchive. Investigating Social Media in GitHubs Pull-Requests: A Case Study

on Ruby on Rails
2014 [29] MSR Quantitative GHTorrent A Dataset for Pull-Based Development Research
2014 [20] MSR Quantitative GHTorrent, 78,955 pull requests. An Insight into the Pull Requests of GitHub
2014 [30] MSR Quantitative GHTorrent, 54,892 pull requests. Security and emotion sentiment analysis of security discussions on

GitHub
2014 [31] MSR Quantitative GHTorrent Do developers discuss design
2014 [32] MSR Quantitative GHTorrent, 75,526 pull requests. A study of external community contribution to opensource projects

on GitHub
2015 [33] MSR Quantitative GHTorrent Automatically Prioritizing Pull Requests
2015 [18] MSR Quantitative GHTorrent, 103,284 pull requests. Wait For It: Determinants of Pull Request Evaluation Latency on

GitHub

2014 [23] MSR
Quantitative &
Qualitative

Quant. : GHTorrent
Qual. : 240 Survey, 434 projects.

The promises and perils of mining GitHub

3
181

Step 3: Collect more artifacts using similar sampling pro-

cesses to the primary study. Apply the mapped questions from

Step 2 to the additional data.

Step 4: Using the original data as “gold” queries for quality

control in crowdsourcing, run the crowdsourced study.

Step 5: Extract and analyze features defined in Step 2 from the

crowd answers. Compare those with the findings from Step 1

to discover new insights.

Next, we apply these methods to the primary TDH study [5].

A. Step 1: Literature Overview and Data Extraction

We first identified TDH as our primary study after finding

its data source is publicly available and some of its insights

about GitHub pull requests could be mapped into quantitative

questions for the crowd to answer. Next, we explored prior

work related to GitHub pull requests in the literature.
For the literature exploration, we searched for keywords

‘pull’, ‘request’ and ‘GitHub’ on Google Scholar from 2008

to 2016 and also obtained a dataset from 16 top software

engineering conferences, 1992 to 2016 [34], filtering out the

work unrelated to GitHub pull requests. Table I lists the

remaining research papers that have studied pull requests

in GitHub using either qualitative or quantitative methods.

Here, we distinguish qualitative and quantitative methods by

whether or not there is human involvement during the data col-

lection process. Qualitative studies have human involvement

and include interviews, controlled human experiments, and

surveys. We observe that all previous studies on pull request

in GitHub, except for one, use either qualitative or quantitative

methods. The remaining study combines both with a very time

consuming manual analysis for the qualitative part [23], which

starts from the very beginning with no previous knowledge.

This is quite different from ours; we leverage prior work and

apply crowdsourcing directly on the results extracted from

primary qualitative studies.

Table II summarizes the features found to be relevant in

determining pull request acceptance. This includes all quan-

titative papers from Table I that use features to predict the

outcomes of pull requests, and the features explored in at

least one of those papers. Fewer papers are listed here some

predicted for other thing such as sentiment or best reviewers

for pull request. In Table II:

• White boxes � denote that a paper examined that feature;

• Black boxes � denote when that paper concluded that

feature was important;

TABLE II
FEATURES USED IN RELATED WORK. � INDICATES THAT A FEATURE IS USED; � INDICATED THE FEATURE IS FOUND TO BE HEAVILY RELATED TO THE

RESULTS OF PULL REQUESTS IN THE CORRESPONDING PAPER.

Category Fetures Description [29] [25] [15] [18] [19] [20] Ours

Pull Request lifetime minites Minutes between opening and closing �

Pull Request mergetime minutes Minutes between opening and merging �

Pull Request num commits Number of commits � � � � �

Pull Request src churn Number of lines changed (added + deleted) � � � �

Pull Request test churn Number of test lines changed � �

Pull Request files added Number of files added �

Pull Request files deleted Number of files deleted �

Pull Request files modified Number of files modified �

Pull Request files changed Number of files touched (sum of the above) � � �

Pull Request src files Number of source code files touched by the pull request �

Pull Request doc files Number of documentation (markup) files touched �

Pull Request other files Number of non-source, non-documentation files touched �

Pull Request num commit comments Total number of code review comments �

Pull Request num issue comments Total number of discussion comments �

Pull Request num comments Total number of discussion and code review � � � � �

Pull Request num participants Number of participants in the discussion � �

Pull Request test inclusion Whether or not the pull request included test cases � �

Pull Request prior interaction Number of events the submitter has participated previously �

Pull Request social distance Whether the submitter follows the user who closes the PR � � �

Pull Request strength of social connection Fraction of members interacted with the submitter in T0 �

(the last 3 months prior to creation)
Pull Request description complexity Total number of words in the pull request title and description �

Pull Request first human response Interval from PR creation to first response by reviewers � �

Pull Request total CI latency: Interval from PR creation to the last commit tested by CI � �

Pull Request CI result: Presence of errors and test failures while running Travis-CI � �

Pull Request mention-@ Weather there exist an @-mention in the comments �

Repository sloc Executable lines of code at creation time. � � �

Repository team size Number of active cores in T0 � � � � � �

Repository perc external contribs Ratio of commits from externals over cores in T0 � � �

Repository commits on files touched Number of total commits on files touched by the PR in T0 � � � �

Repository test lines per kloc Executable lines of test code per 1,000 lines of source code � � �

Repository test cases per kloc Number of test cases per 1,000 lines of source code �

Repository asserts per kloc Number of assert statements per 1,000 lines of source code �

Repository watchers Project watchers (stars) at creation � � �

Repository repo age Life of a project since the time of data collection � �

Repository workload Total number of PRs still open at current PR creation time �

Repository integrator availability Minimal hours until either of the top 2 integrators are active �

Repository project maturity Number of forked projects as an estimate of project maturity � �

Developer prev pullreqs Number of PRs previously submitted by the submitter � � �

Developer requester succ rate Percentage of the submitters PRs got merged previously. � � � �

Developer followers Followers to the developer at creation � � �

Developer collaborator status The user’s collaborator status within the project � � � �

Developer experience Developers working experience with the project � �

Other Friday effect True if the pull request arrives Friday �

4
182

The last column in Table II shows what lessons we took

from these prior studies for the data mining analysis (RQ3).

If any other column marked a feature as important, then we

added it into the set of features we examined. Such features

are denoted with a white box � in the last column. If, in

RQ3, we determine the feature is informative for pull request

acceptance, it is marked with a black box �.

B. Step 2: Map Insights into Questions and Features

The tasks performed by the crowd were designed to collect

quantitative information about the pull requests, which could

be checked against a ground truth extracted programmatically

(e.g., was the pull request accepted?), and also collect infor-

mation related to the pull request discussion, which cannot be

easily extracted programmatically, described next.

The primary study [5] concluded, among other things, that:

Methods to affect the decision making process for

pull requests are mainly by offering support (Q1)

from either external developers or core members.

Issues raised around code contributions are mostly

disapproval for the problems being solved (Q4),

disapproval for the solutions (Q3) and

suggestion for alternate solutions (Q2).

These are the insights we use to derive quantitative questions

for the crowd, which are mapped to the question in Table III

(including Q5 regarding pull request acceptance).

In order to use crowdsourcing to do a case study for pull

requests, our tasks contained questions related to the four

concepts underlined above and shown explicitly in Table III

in the Concepts column. This is followed by the Questions

related to each concept. For example, in Q2, the worker would

answer Yes or No depending on whether alternate solutions

were proposed at all (Q2 alternate solution), were proposed

by core members (Q2 alt soln core), or were propose by

other developers (Q2 alt soln other). These four concepts

reference important findings from TDH’s work and were

selected because they could be easily converted into micro

questions for crowd workers to answer, though we note that

not all the TDH findings were converted into questions for the

crowd. The full version of our questions are available on-line

(tiny.cc/mt questions).

Per Step 2 in our methods (Section IV), we use quantitative

questions over the original pull requests from the TDH study

as gold standard tasks. After extracting answers from the TDH

results, we compare the crowd’s performance on those pull

requests to ensure the crowd is qualified to perform the tasks.

To further ensure response quality in a crowdsourced envi-

ronment, for all pull requests, we also added three preliminary

qualification questions that require crowd workers to identify

the submitter, core members and external developers for each

pull request; these are gold standard questions. These extra

questions let a crowd worker grow familiar with analyzing pull

request discussions, and let us reject answers from unqualified

crowd workers since we could programmatically extract the

ground truth from the pull request for comparison. Details on

our quality control used during the study are in Section IV-D.

C. Step 3: Data Collection and Expansion

To make sure the pull requests are statistically similar to

those of TDH’s work [5], we applied similar selection rules

on 612,207 pull requests that were opened as new in January

2016 from GHTorrent [35], which is a scalable, searchable,

offline mirror of data offered through the GitHub Application

Programmer Interface (API). The selection criteria are stated

as follows. The main difference between our selection and

TDH’s selection is the time requirements for when the pull

requests are created or last updated.

1) Pull requests should be closed.

2) Pull requests should have comments.

3) Pull request comment number should be above eight.

4) Exclude pull requests whose repository is a fork to avoid

counting the same contribution multiple times.

5) Exclude pull requests whose last update is not later than

January, 2016, so that we can make sure the project is

still active.

TABLE III
QUESTIONS FOR EACH PULL REQUEST IN SECONDARY STUDY

Concepts Questions Response Identifier

Support showed Yes/No Q1 support
Support from core members Yes/No Q1 spt core

Q1: Is there a comment showing support for this
pull request, and from which party?

Support from other developers Yes/No Q1 spt other
Alternate solutions proposed Yes/No Q2 alternate solution
Alternate solution proposed by core members Yes/No Q2 alt soln core

Q2: Is there a comment proposing alternate
solutions, and from which party?

Alternate solution proposed by other developers Yes/No Q2 alt soln other
Disapproval for the solution proposed Yes/No Q3 dis solution
Disapproval due to bug Yes/No Q3 dis soln bug
Disapproval because code could be improved Yes/No Q3 dis soln improve

Q3: Did anyone disapprove the proposed solution
in this pull request, and for what reason?

Disapproval due to consistency issues Yes/No Q3 dis soln consistency
Disapproval for the problem being solved Yes/No Q4 dis probelm
Disapproval due to no value for solving this problem Yes/No Q4 dis prob no value

Q4: Did anyone disapprove the problems being
solved? E.g., question the value or appropriateness
of this pull request for its repository.

Disapproval because the problem being solved
does not fit the project well

Yes/No Q4 dis prob no fit

Q5: Does this pull request get merged/accepted? Pull request got merged into the project Yes/No Q5 merged

183

6) Retain only pull requests with at least three participants

and where the repository has at least ten forks and ten

stars.

There are 565 pull requests left after applying the selection

criteria stated above. From these pull requests, we sampled

170 such that half were ultimately merged and the other half

were rejected.

The 170 additional pull requests were published on MTurk

for analyzing in two rounds, together with the 20 carefully

studied pull requests from TDH [5] inserted for each round as

“gold” standard tasks. The 1st round has 100 (80 new + 20

TDH) pull requests in total, while 2nd round has 110 (90 new

+ 20 TDH) pull requests in total. So 210 total pull request

were published on for the crowd to complete.

D. Step 4: Crowdsourcing Study

Mechanical Turk is a crowdsourcing platform that connects

workers (i.e., the people performing the tasks) with requesters

(i.e., the people creating the tasks) [6]. MTurk has been used

extensively in software engineering applications [36] and for

the evaluation of software engineering research (e.g., [7], [37],

[38]). It manages recruitment and payment of participants and

hosts the tasks posted by requesters.
1) Tasks: The tasks performed by participants are called

Human Intelligence Tasks (HITs). These represent individual

activities that crowd workers perform and submit. The scope

of a HIT for our study included a single pull request, the ques-

tions outlined in Table III, as well as the following questions

about the pull request that could be checked programmatically

for quality control:

1) What is the submitter GitHub ID?

2) From the contributor page of this repository, who are

the core members of this repository?

3) Who are the external developers among the participants

of this pull request?

4) Does this pull request get merged/accepted? (Q5)

2) Participants: Workers for our study were required to

have demonstrated high quality in prior tasks on the MTurk

platform and answer simple questions about the pull request

correctly. Quality and experience filters were applied to screen

potential participants; only workers with HIT approval rate

above 90%, and who had completed at least 100 approved

HITs could participate. To make sure the crowd participants

are qualified to analyze the pull requests in our study, we also

require them to be GitHub users.
3) Cost: We want to make sure the cost is low but also

provide a fair payment for the participants. According to

several recent surveys on MTurk [39]–[42], the average hourly

wage is $1.66 and MTurk workers are willing to work at

$1.40/hour. We estimated about 10 minutes needed for each

HIT, and first launched our task with $0.25 per HIT but only

received 1 invalid feedback after 2 days. So we doubled our

payment to $0.50 for each HIT, which requires to analyze one

single pull request. Each round of tasks was completed in one

week. Our final results show that 17 minutes are spent for

each HIT on average, which means $1.76 per hour. In total,

27 workers participated in our tasks, and 77 hours of crowd

time were spent to get all the pull requests studied4.

4) Quality Control: A major issue in crowdsourcing is

how to reduce the noise inherent in data collection. This

section describes the three approaches we used to increase

data quality:

• Qualification questions;

• Redundant question formats [44]; and

• “Gold” standard tasks [45], [46].

a) Qualification Questions: A domain-specific screening

process was applied as participants were required to answer

preliminary qualification questions related to identifying the

pull request key players and pull request acceptance on every

pull request analyzed. These are questions for which we can

systematically extract values from the pull requests (i.e., those

in Section IV-D1); if these objective questions are answered

incorrectly, the task was rejected and made available to other

crowd workers.

This is unlike the qualification test which is available on

the MTurk platform to screen participants once for eligibility

to participate in any of our tasks. A qualification test is

administered once. Once participants pass, they can perform

our HITs. Our qualification questions, on the other hand,

were used for every HIT we published. This ensured quality

responses for each and every HIT.

b) Redundant Question Formats: For each question in

the task related to the pull request comment discussion, we

require workers to answer a yes/no question and then copy

the comments supporting their answers from the pull request

into the text area under each question, as suggested in prior

work [44]. Take question 1 for example (Is there a comment

proposing alternate solutions?): if they choose ”Yes, from core

members”, then they need to copy the comments within the

pull requests to the text area we provided.

c) “Gold” Standard Tasks: This study was run in two

phases. In each phase, the original 20 pull requests were added

to the group as “gold” standard tasks. The tasks were randomly

assigned to crowd workers. For those crowd workers who got

one of the 20 previously studied pull requests, we checked

their answers against the ground truth [5]; inaccurate responses

were rejected and those workers were blocked. This acted as

a random quality control mechanism.

We used multiple quality control mechanisms in keeping

with prior work [47], and the result quality was satisfactory.

However, evaluating the effectiveness of each quality control

mechanism we employed is left for future work.

E. Step 5: Data Mining Analysis

In this study, we have two groups of features: (1) all the

quantitative features found important in previous works (see

Table II), and (2) the qualitative features extracted from the

results of studying pull requests in detail by the qualified

4Since the time of this writing, there has been a campaign of “fair wages”
for crowd workers. In future studies, we would set our minimum costs to the
minimum wage [43]

184

crowd (see Section IV-D). For each group of features, we run

the CFS feature selector [48] to reduce the features to use for

our decision tree classifier. To collect the quantitative features,

we used the GitHub API to extract the features marked in the

ours column of Table II.

CFS evaluates and ranks feature subsets. One reason to use

CFS over, say, correlation, is that CFS returns sets of useful

features while simpler feature selectors do not understand the

interaction between features. CFS also assumes that a “good”

set of features contains features that are highly connected

with the target class, but weakly connected to each other.

To implement this heuristic, each feature subset is scored as

follows according to Hall, et al. [48]:

merits =
krcf

√

k + k(k − 1)rff

The merits value is some subset s containing k features;

rcf is a score describing the connection of that feature set

to the class; and rff is the mean score of the feature to feature

connection between the items in s. Note that for this fraction

to be maximal, rcf must be large and rff must be small, which

means features have to correlate more to the class than each

other.

This equation is used to guide a best-first search with a

horizon of five to select most informative set of features. Such

a search proceeds as follows. The initial frontier is all sets

containing one different feature. The frontier of size n, which

initialized with 1, is sorted according to merit and the best

item is grown to all sets of size n+1 containing the best item

from the last frontier. The search stops when no improvement

have been seen in last five frontiers in merit. Return the best

subset seen so far when stop.

Our experiments assessed three groups of features:

1) After CFS feature selector, the selected quan-

titative features are commits on files touched, re-

quester succ rate, prev pullreqs, which are quite intu-

itive. (The commits on files touched feature indicates

the popularity of the modified files is highly relat-

ing to the final acceptance of the pull request while

requester succ rate and prev pullreqs show the re-

quester’s history interaction with the project also play

an important role for the final acceptance.)

2) Using the same CFS feature selector, the selected crowd-

sourced features are Q3 dis solution,

Q4 dis prob no value. These two selected features

show that the final acceptance has a strong relation to the

opposing voice in the pull requests discussion, especially

for comments saying this pull request has no value for

the project.

3) Combining all quantitative features and crowdsourced

features into combined features and feed that into the

same CFS feature selector, the following features were

selected: Q3 dis solution, commits on files touched,

requester succ rate, and prev pullreqs, which all ap-

peared using the CFS selector on the quantitative and

qualitative features independently.

TABLE IV
QUALITY FOR CROWDSOURCING RESULTS FROM AMAZON MECHANICAL

TURK (RQ1).

Questions Precision Recall F1-Score

Q1 0.769 0.769 0.770
Q2 0.818 0.750 0.783
Q3 0.727 0.667 0.696
Q4 0.778 0.700 0.737
Q5 0.833 0.714 0.770
Total 0.801 0.742 0.770

For each of these three sets of features, we ran a 10x5

cross validation for supervised learning with the three different

groups of features. These generate three models that predicted

if a pull request would get merged/accepted or not. A decision

tree learner was used as our supervised learning algorithm.

This was selected after our initial studies with several other

learners that proved to be less effective in this domain (Naive

Bayes and SVM).

Using the MTurk micro-task crowdsourcing platform, we

collect data for 1) the original 20 pull requests from the

primary study (twice), and 2) 170 additional, independent pull

requests. Of the 190 unique pull requests, 176 pull requests

were evaluated by the crowd with high quality. Of those, 156

are new pull requests (dropping 14 from the sample of 170)

and 34 of them are from the original TDH study (covering each

of the 20 original pull requests at least once). The unqualified

responses were a result of the redundant question format

quality control approach, but an operational error led us to

approve the tasks despite the poor comment quality, leaving

us with a smaller data set for further analysis.

The crowd data includes qualitative information about the

pull request discussion, such as whether there is a comment

showing support, proposing an alternate solution, disapproving

of the solution, and disapproving of the problem being solved.

We refer to the data collected via the crowd as the qualitative

pull request features.

V. RESULTS

The crowd data is substantially larger than the original

data in terms of pull requests analyzed. The benefits of the

larger sample size is two-fold. First, by using similar selection

criteria in the replication study compared to the primary study,

we are able to check the stability and external validity of the

findings in the primary study using a much larger sample

(RQ2). Second, in terms of informativeness, we can extract

features from the crowd’s answers, which is qualitative, and

build models to predict pull request acceptance results. This

allows us to compare the performance of models built with

(a) some features identified as important in the primary study

and (b) the features from related, quantitative works (RQ3).

A. RQ1: Can the crowd reproduce prior results with high

quality?

RQ1 checks if our mapping in Section IV-B correctly

captures the essence of the TDH study. Here, we used the

results from the original 20 pull requests from TDH.

185

Fig. 2. Stability Checking: p-values for comparing unscaled and
scaled crowd answers with answers from TDH. p-values computed using
scipy.stats.chi2 contingency.

Table IV shows the precision, recall and F1 scores of the

crowd working on the original tasks, using the prior TDH

study as the ground truth. The Questions map to Table III.

As seen in Table IV, the precision and recall of the crowd on

the 20 original tasks is 80% and 74% respectively (so F1 ≈

77%). Based on prior work with data mining from software

engineering data [49], [50], we find that these values represent

a close correspondence between the TDH results and those

from the crowd, hence indicating that the crowd can indeed

perform the tasks with high quality.

We further manually examined the cases where the crowd

disagreed with TDH, finding that sometimes TDH appears

correct, and sometimes the crowd appears correct. For ex-

ample, TDH classifies the 17th pull request they studied as

no support, while the crowd found the comment from the

user drohthlis saying “This is great news!”, which is an

apparent indicator for the supporting this pull request after our

examination. Another two cases are the 16th and 20th pull

requests they studied. Crowd workers found clear suggestions

for alternative solutions (i.e., “What might be better is to ...”,

“No, I think you can just push -f after squashing.”), which

TDH does not find. While we did throw away some data due

to quality, largely the crowd was able to replicate, and extend,

some of the original TDH study.

As to the issues of speed and cost, TDH report that they

required about 47 hours to collect interview data on 47

users within which, they investigated the practices about pull

requests. TDH does not report the subsequent analysis time.

By way of comparison, we spent $200, to buy 77 hours of

crowd time. In that time, 190 (156 new ones and 34 from the

primary study, which covers all 20 original pull requests) out

of 210 published pull requests were validly analyzed.

In summary, we answer RQ1 in the affirmative.

B. RQ2: Are the primary study’s results stable?

One motivation for this work was checking if crowdsourcing

can scale and confirm the external validity of qualitative con-

clusions. This issue is of particular concern for crowdsourcing

studies due to the subjective nature of the opinions from the

crowd. If those opinions increased the variance of the collected

data, then the more data we collect, the less reliable the

conclusions.

To test for this concern, we compare the pull requests

studied by the crowd (excluding the 20 gold tasks) with the

20 pull request studied by TDH. Among the original 20, 15

were merged and 5 were rejected. Given the 156 new pull

requests, we first randomly select 15 merged and 5 rejected

pull requests 100 times, so that we can compare these 2

independent samples at the same scale and with the same

distribution of pull request acceptance outcomes. Then we run

another 100 iteration for randomly selecting 87 merged and 29

rejected pull requests studied by the crowd, which still has the

same distribution but at nearly six times larger scale. p-values

are collected for each sample comparison in the 2 runs. We

analyzed each of the four concepts from Table III separately

(Q1-Q4).

Figure 2 shows the results of comparing pull requests from

TDH and an independent sample with 2 different scales. As

shown, Questions 1, 2, 4 are quite stable for both scales (i.e.,

p-values greater than 0.05 indicate no statistically significant

difference with α = 0.05). Moreover, Question 1 and 4

are becoming more stable when the scale becomes larger,

while Question 2 becomes less stable at a larger scale. For

Question 3, all of the p-values are lower than 0.05 at the

large scale, though the median of its p-value is higher than

0.05 at the same scale as TDH. This may indicate that TDH

did not cover enough pull requests to achieve a representative

sample for the finding, which is mapped into Question 3

about disapproving comments. This may also indicate that

TDH treated disapproving comments in GitHub pull requests

differently than the crowd. As we have shown when answering

RQ1, we have found several cases where the crowd and TDH

disagree and the crowd is correct, though the crowd did have

some wrong answers while TDH are correct. Note that the

results are not to fault TDH, but serves as the evidence why

we need to replicate and scale empirical studies.

Accordingly, we answer RQ2 in the affirmative. The results

for Q1, Q2, and Q4 do not differ significantly between TDH

and independent samples of the same size or of a larger size.

The exception is Q3, for which the results differ significantly

when scaling to a larger data set.

C. RQ3: How well can the qualitative and quantitative fea-

tures predict PR acceptance?

The results are shown in Figure 3, expressed in terms of

precision, recall, and the F1 score; i.e. the harmonic mean of

precision and recall, for each of three feature sets: quantitative,

crowdsourced, and a combination. Note that the performances

of the predictor using crowdsourced features are not as high

186

Fig. 3. Performance Comparison for Using different feature set to predict
whether a pull requests will be accepted.

or as stable as the one built with quantitative features. We can

see that:

• The selected quantitative features achieved F1 score at

90% with a range of 20%;

• The selected crowdsourced features achieved lower F1

score at 68% with a larger range.

• The combined selected features did better than just using

qualitative; but performed no better than just using only

the quantitative features.

At first glance, the models learned from crowdsourced

features performed worse than using quantitative features

extracted from numerous prior data mining studies, but this

warrants further discussion. While Figure 3 shows the crowd-

sourced features generated from TDH results perform well on

predicting the final acceptance with F1 at 68%, it might be that

considering more of the features from the original study could

lead to even better results. For our study, we performed an

independent partial replication and selected features that could

be easily mapped to micro-questions, as stated in Section IV-B.

That said, the instability observed for Q3 as the sample size

increases (Figure 2) may be present for other features from the

original study; further study is needed to expand the number

of questions asked of the crowd to tease out this phenomenon.

In summary, the quantitative features extracted from dozens

of recent papers on pull requests outperform the selected

qualitative features we studied.

VI. THREATS TO VALIDITY AND LIMITATIONS

As with any empirical study, biases and limitations can

affect the final results. Therefore, any conclusions made from

this work must be considered with the following issues in

mind.

Sampling bias: This threatens the external validity of any

classification experiment. For example, the pull requests used

here are selected using the rules described in IV-C. Only 170

additional highly discussed pull requests from active projects

are sampled and analyzed, so our results may not reflect the

patterns for all the pull requests. That said, we note that one

reason to endorse crowdsourcing is that its sample size can be

much larger than using just qualitative methods. For example,

TDH reported results from just 20 pull requests.

Learner bias: For building the acceptance predictors in this

study, we elected to use a decision tree classifier. We chose

decision trees because it suits for small data samples and its

results were comparable to the more complicated algorithms

like Random Forest and SVM. Classification is a large and

active field and any single study can only use a small subset

of the known classification algorithms. Future work should

repeat this study using other learners.

Evaluation bias: This paper uses precision, recall and F1

score measures of predictor’s performance. Other performance

measures used in software engineering include accuracy and

entropy. Future work should repeat this study using different

evaluation biases.

Order bias: For the performance evaluation part, the order

that the data trained and predicted affects the results. To

mitigate this order bias, we run the 5-bin cross validation 10

times randomly changing the order of the pull requests each

time.

VII. IMPLICATIONS

This paper presents one example in which crowdsourcing

and data mining were used for partial replication and scaling

of an empirical study. In our work, we use the experts to

identify a set of interesting questions, and the crowd to

answer those questions regarding a large data set. Then, data

mining was used to compare the qualitative responses to

quantitative information about the same data set. It is possible

this workflow is indicative of a more general framework for

scaling and replicating qualitative studies using the approach

we used.

In the original qualitative TDH study, the authors found

that 1) supports, 2) alternate solutions, 3) disapproval for

the proposed solutions, and 4) disapproval for the problems

being solved were important factors that guard pull requests’

acceptance. In this scaled, crowdsourced replication, we found

that factors 1, 2 and 4 still hold, but 3 was unstable. As

shown in section V-B, we cannot tell whether the crowd

are correct or TDH are correct, because we have observed

situations where one is correct while the other is not for both

sides. However, the implication here is that the combination of

empirical methods allow us to pinpoint more precisely results

that are steadfast against tests of external validity and the

results that need further investigation.

In the end, the replication via quantitative study would have

been impossible without the primary qualitative work, and

we should make the best use of time-consuming qualitative

work, instead of stopping after we get results from qualitative

results (and vice versa). We find qualitative studies can inspire

quantitative studies by carefully mapping out areas of concern.

Primary qualitative studies can also provide the data needed

to direct replications via quantitative crowdsourcing studies.

187

We also find a single primary qualitative study can direct the

work of many quantitative studies, and our work is just one

example of a partial replication study after TDH’s qualitative

work.

VIII. RELATED WORK

There are many ways to categorize empirical studies in

software engineering. Sjoberg, et al. [51] identify two general

groups, primary research and secondary research. The most

common primary research usually involves the collection and

analysis of original data, utilizing methods such as experimen-

tation, surveys, case studies, and action research. Secondary

studies involve synthesis and aggregation of primary studies.

According to Cohen [52], secondary studies can identify

crucial areas and questions that have not been addressed

adequately with previous empirical research.

Our paper falls into primary research that uses data from

previously published studies. Using independent, partial repli-

cation, we check the external validity of some of the TDH

results. That is, we explore whether claims for generality are

justified, and whether our study yields the same results if

we partially replicate it [53]. Our data collection applies the

coding method, which is commonly used to extract values

for quantitative variables from qualitative data in order to

perform some type of quantitative or statistical analysis, with

crowdsourcing to manage participant recruitment. Most of our

data analysis falls into the category of replication for theory

confirmation as we independently replicate parts of the results

from TDH. However, in the data mining study, we introduce

additional factors not studied in the original TDH study.

In software engineering, crowdsourcing is being used for

many tasks traditionally performed by developers [54] includ-

ing program synthesis [55], program verification [56], LTL

specification creation [47], and testing [57], [58]. According

to Mao, et al. [54], our work falls into the evaluation of SE

research using crowdsourcing as the crowd is not performing

software engineering tasks, but rather is used to evaluate

software artifacts.

There are many reasons to use crowdsourcing in software

engineering, and this space has been studied extensively [54].

Two important issues with crowdsourcing are quality control

and cost control. While the crowd is capable of producing

quality results, systems need to be in place to monitor result

quality. Cost has a dependent relationship on the quality

control measures; a lack of quality control can lead to results

that must be thrown out and repeated, hence increasing the

cost.

Quality control in crowdsourcing has been studied exten-

sively within and beyond software engineering applications

(e.g., [44]–[46], [59]–[61]). One way to address quality control

is to use a golden set of questions [45], [46] for which

the answer is known. Workers that perform poorly on the

golden set are eliminated, which is also one of the strategies

we take in this paper. Alternatively, tasks can be assigned

to multiple workers and their results aggregated (e.g., in

the TURKIT system [62], one task is performed iteratively,

and each worker is asked to improve on the answer of

the former, or in AutoMan [63], each task is performed by

crowd members until statistical consensus is reached). The

tradeoffs are in cost and volatility. The gold questions can be

checked automatically, yielding low cost, but there may be

high volatility in the results from a single individual. When

using multiple people and aggregating the results, volatility

is lower as the crowd is likely to converge [64], but the cost

will be higher due to the required replication per question.

Other quality control techniques include redundant question

formats [44], notifications to workers about the value of their

work [59], answer conflict detectors [60], and random click

detection [61].

Cost control is important as commercial crowdsourcing

platforms are not free. Economic incentives for crowd workers

strongly effect crowd response quality [65]–[72]. To keep the

quality high, payments need to be high enough to entice par-

ticipation [73] but low enough to keep study costs reasonable.

IX. CONCLUSION

Crowdsourcing and data mining can be used to effectively

reduce the effort associated with the partial replication and

enhancement of qualitative studies.

For example, in this paper:

• We presented an empirical study on scaling and extending

a primary study on pull request acceptance. Using the

insights learned from the primary study, we designed a

scaled study with different empirical methodology.

• To scale and extend the results from the original study,

we used crowdsourcing.

• Then, we applied data mining to determine if the qual-

itative features fared better or worse than quantitative

features over the same artifacts. We show that, with

results and data from TDH’s primary study, it is possible

to map some of their insights into micro-questions for

crowd workers and expand the data they studied to a

larger scale.

• Further, in that second study, we could build better

predictors that seen before.

We conjecture that this case study is representative of an

underlying methodology for scaling and extending primary

qualitative studies that require expert opinions. The long-

term goal of this work is to encourage more studies that

replicate parts of primary qualitative studies and use the gained

insights to design subsequent studies. It is through independent

replication with different methodologies that we can move

closer to building software engineering theories. For that task,

collaborators would be welcomed.

ACKNOWLEDGEMENTS

The work is partially funded by NSF awards #1506586,

#1302169, #1749936, and #1645136.

188

REFERENCES

[1] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of

the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2014, pp. 155–165.
[2] C. O’Neil, Weapons of Math Destruction: How Big Data Increases

Inequality and Threatens Democracy. Crown Publishing Group (NY),
2016.

[3] F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H. Travassos,
M. Mendonça, and S. Fabbri, “Replicating Software Engineering Ex-
periments: Addressing the Tacit Knowledge Problem,” in ISESE ’02:

Proceedings of the 2002 International Symposium on Empirical Software

Engineering. Washington, DC, USA: IEEE Computer Society, 2002,
p. 7.

[4] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” Empirical Softw. Engg.,
vol. 13, no. 2, pp. 211–218, Apr. 2008.

[5] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in github,” in Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, 2014, pp. 144–154.
[6] “Amazon Mechanical Turk,” www.mturk.com/mturk/welcome, June

2010. [Online]. Available: www.mturk.com/mturk/welcome
[7] K. T. Stolee and S. Elbaum, “On the use of input/output queries for

code search,” in International Symposium. on Empirical Soft. Eng. and

Measurement, October 2013.
[8] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in

github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported

Cooperative Work. ACM, 2012, pp. 1277–1286.
[9] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work

practices and challenges in pull-based development: the integrator’s
perspective,” in Proceedings of the 37th International Conference on

Software Engineering-Volume 1. IEEE Press, 2015, pp. 358–368.
[10] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and

challenges in pull-based development: the contributor’s perspective,” in
Proceedings of the 38th International Conference on Software Engineer-

ing. ACM, 2016, pp. 285–296.
[11] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online

peer production: activity traces and personal profiles in github,” in
Proceedings of the 2013 conference on Computer supported cooperative

work. ACM, 2013, pp. 117–128.
[12] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software

development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, pp. 52–66, 2013.

[13] N. McDonald and S. Goggins, “Performance and participation in open
source software on github,” in CHI’13 Extended Abstracts on Human

Factors in Computing Systems. ACM, 2013, pp. 139–144.
[14] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,

“Creating a shared understanding of testing culture on a social coding
site,” in 2013 35th International Conference on Software Engineering

(ICSE). IEEE, 2013, pp. 112–121.
[15] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical

factors for evaluating contribution in github,” in Proceedings of the 36th

international conference on Software engineering. ACM, 2014, pp.
356–366.

[16] G. Gousios, M. Pinzger, and A. van Deursen, “An exploration of the
pull-based software development model.” ICSE, 2013.

[17] J. T. Tsay, L. Dabbish, and J. Herbsleb, “Social media and success in
open source projects,” in Proceedings of the ACM 2012 conference on

computer supported cooperative work companion. ACM, 2012, pp.
223–226.

[18] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, 2015, pp. 367–371.

[19] Y. Zhang, G. Yin, Y. Yu, and H. Wang, “Investigating social media in
github’s pull-requests: a case study on ruby on rails,” in Proceedings of

the 1st International Workshop on Crowd-based Software Development

Methods and Technologies. ACM, 2014, pp. 37–41.
[20] M. M. Rahman and C. K. Roy, “An insight into the pull requests of

github,” in Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM, 2014, pp. 364–367.

[21] Y. Takhteyev and A. Hilts, “Investigating the geography of open source
software through github,” 2010.

[22] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in Software maintenance and reengineering

(csmr), 2013 17th european conference on. IEEE, 2013, pp. 323–326.
[23] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and

D. Damian, “The promises and perils of mining github,” in Proceedings

of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[24] K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian,
“Understanding the popular users: Following, affiliation influence and
leadership on github,” Information and Software Technology, vol. 70,
pp. 30–39, 2016.

[25] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th

International Conference on Software Engineering. ACM, 2014, pp.
345–355.

[26] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender of
pull-requests in github.” ICSME, vol. 14, pp. 610–613, 2014.

[27] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and M. G.
van den Brand, “Continuous integration in a social-coding world: Em-
pirical evidence from github,” in Software Maintenance and Evolution

(ICSME), 2014 IEEE International Conference on. IEEE, 2014, pp.
401–405.

[28] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Who should review this pull-
request: Reviewer recommendation to expedite crowd collaboration,” in
2014 21st Asia-Pacific Software Engineering Conference, vol. 1. IEEE,
2014, pp. 335–342.

[29] G. Gousios and A. Zaidman, “A dataset for pull-based development
research,” in Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM, 2014, pp. 368–371.
[30] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:

sentiment analysis of security discussions on github,” in Proceedings

of the 11th working conference on mining software repositories. ACM,
2014, pp. 348–351.

[31] J. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey,
“Do developers discuss design?” in Proceedings of the 11th Working

Conference on Mining Software Repositories. ACM, 2014, pp. 340–
343.

[32] R. Padhye, S. Mani, and V. S. Sinha, “A study of external community
contribution to open-source projects on github,” in Proceedings of the

11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 332–335.

[33] E. Van Der Veen, G. Gousios, and A. Zaidman, “Automatically priori-
tizing pull requests,” in Proceedings of the 12th Working Conference on

Mining Software Repositories. IEEE Press, 2015, pp. 357–361.
[34] G. Mathew, A. Agrawal, and T. Menzies, “Trends in topics in software

engineering conferences, 1992 to 2016,” Submitted to IST. Available
from tiny.cc/citemap.

[35] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the

10th Working Conference on Mining Software Repositories, ser. MSR
’13, 2013, pp. 233–236.

[36] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” Tech. Rep., 2015, cS Technical
Report RN/15/01, University College London.

[37] K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing
to support empirical studies in software engineering,” in International

Symposium on Empirical Software Engineering and Measurement, 2010.
[38] Z. P. Fry, B. Landau, and W. Weimer, “A human study of

patch maintainability,” in Proceedings of the 2012 International

Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 177–187. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336775

[39] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s mechanical
turk a new source of inexpensive, yet high-quality, data?” Perspectives

on psychological science, vol. 6, no. 1, pp. 3–5, 2011.
[40] A. J. Berinsky, G. A. Huber, and G. S. Lenz, “Evaluating online labor

markets for experimental research: Amazon. com’s mechanical turk,”
Political Analysis, vol. 20, no. 3, pp. 351–368, 2012.

[41] G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running experiments on
amazon mechanical turk,” Judgment and Decision making, vol. 5, no. 5,
pp. 411–419, 2010.

[42] P. G. Ipeirotis, “Demographics of mechanical turk,” 2010.

189

[43] M. S. Silberman, B. Tomlinson, R. LaPlante, J. Ross, L. Irani, and
A. Zaldivar, “Responsible research with crowds: Pay crowdworkers at
least minimum wage,” Commun. ACM, vol. 61, no. 3, pp. 39–41, Feb.
2018.

[44] K. T. Stolee, J. Saylor, and T. Lund, “Exploring the benefits of using
redundant responses in crowdsourced evaluations,” in Proceedings of

the Second International Workshop on CrowdSourcing in Software

Engineering. IEEE Press, 2015, pp. 38–44.
[45] O. Alonso and R. Baeza-Yates, “Design and implementation of rele-

vance assessments using crowdsourcing,” in European Conference on

Information Retrieval. Springer, 2011, pp. 153–164.
[46] C. Sarasua, E. Simperl, and N. F. Noy, “Crowdmap: Crowdsourcing

ontology alignment with microtasks,” in International Semantic Web

Conference. Springer, 2012, pp. 525–541.
[47] P. Sun, C. Brown, K. T. Stolee, , and I. Beschastnikh, “Back to the future:

specification mining using crowd intelligence,” in International Con-

ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2019.

[48] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, 1999.

[49] C. Bird, T. Menzies, and T. Zimmermann, The Art and Science of

Analyzing Software Data. Elsevier, 2015.
[50] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is

it really necessary?” Information & Software Technology, vol. 76, pp.
135–146, 2016.

[51] D. I. Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical
methods in software engineering research,” in Future of Software Engi-

neering, 2007. FOSE’07. IEEE, 2007, pp. 358–378.
[52] B. P. Cohen, Developing sociological knowledge: Theory and method.

Wadsworth Pub Co, 1989.
[53] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting

empirical methods for software engineering research,” in Guide to

advanced empirical software engineering. Springer, 2008, pp. 285–
311.

[54] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” RN, vol. 15, no. 01, 2015.

[55] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” in Pro-

ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ser. POPL ’15, 2015, pp. 677–
688.

[56] T. W. Schiller and M. D. Ernst, “Reducing the barriers to writing verified
specifications,” SIGPLAN Not., vol. 47, no. 10, pp. 95–112, Oct. 2012.

[57] E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing gui tests,”
in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth

International Conference on, March 2013, pp. 332–341.
[58] M. Nebeling, M. Speicher, and M. C. Norrie, “Crowdstudy: General

toolkit for crowdsourced evaluation of web interfaces,” in Proceedings of

the 5th ACM SIGCHI Symposium on Engineering Interactive Computing

Systems, ser. EICS ’13. New York, NY, USA: ACM, 2013, pp.
255–264. [Online]. Available: doi.acm.org/10.1145/2494603.2480303

[59] J. A. Krosnick, “Response strategies for coping with the cognitive
demands of attitude measures in surveys,” Applied cognitive psychology,
vol. 5, no. 3, pp. 213–236, 1991.

[60] A. Shiel, “Conflict crowdsourcing: Harnessing the power of crowdsourc-
ing for organizations working in conflict,” 2013.

[61] S.-H. Kim, H. Yun, and J. S. Yi, “How to filter out random clickers
in a crowdsourcing-based study?” in Proceedings of the 2012 BELIV

Workshop: Beyond Time and Errors - Novel Evaluation Methods for

Visualization, ser. BELIV ’12, 2012, pp. 15:1–15:7.
[62] G. Little, “Turkit: Tools for iterative tasks on mechanical turk,” in Visual

Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE

Symposium on, Sept 2009, pp. 252–253.
[63] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Automan:

A platform for integrating human-based and digital computation,” SIG-

PLAN Not., vol. 47, no. 10, pp. 639–654, Oct. 2012.
[64] T. Menzies, E. Kocagüneli, L. Minku, F. Peters, and B. Turhan, “Chapter

20 - Ensembles of Learning Machines,” in Sharing Data and Models

in Software Engineering, 2015, pp. 239–265. [Online]. Available:
www.sciencedirect.com/science/article/pii/B9780124172951000205

[65] W. Mason and D. J. Watts, “Financial incentives and the performance
of crowds,” ACM SigKDD Explorations Newsletter, vol. 11, no. 2, pp.
100–108, 2010.

[66] G. Goel, A. Nikzad, and A. Singla, “Mechanism design for crowdsourc-
ing markets with heterogeneous tasks,” in Second AAAI Conference on

Human Computation and Crowdsourcing, 2014.
[67] A. Mao, E. Kamar, Y. Chen, E. Horvitz, M. E. Schwamb, C. J. Lintott,

and A. M. Smith, “Volunteering vs. work for pay: incentives and
tradeoffs in crowdsourcing,” in Conf. on Human Computation, 2013.

[68] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with
mechanical turk,” in Proceedings of the SIGCHI conference on human

factors in computing systems. ACM, 2008, pp. 453–456.
[69] W. A. Mason and S. Suri, “How to use mechanical turk for cognitive

science research,” in Proceedings of the 33rd annual conference of the

cognitive science society, 2011, pp. 66–67.
[70] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing crowdsourcing-based

software development tasks,” in Proceedings of the 2013 International

Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 1205–
1208.

[71] M. Yin, Y. Chen, and Y.-A. Sun, “Monetary interventions in crowdsourc-
ing task switching,” in Second AAAI Conference on Human Computation

and Crowdsourcing, 2014.
[72] J. Wang, P. G. Ipeirotis, and F. Provost, “Quality-based pricing for

crowdsourced workers,” 2013.
[73] R. Vinayak and B. Hassibi, “Clustering by comparison: Stochastic block

model for inference in crowdsourcing,” in Workshop Machine Learning

and Crowdsourcing, 2016.

190

