2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

Replication Can Improve Prior Results:
A GitHub Study of Pull Request Acceptance

Di Chen, Kathryn T. Stolee, Tim Menzies
Computer Science, NC State, USA,
dchen20@ncsu.edu; ktstolee @ncsu.edu; timm@ieee.org

Abstract—Crowdsourcing and data mining can be used to
effectively reduce the effort associated with the partial replication
and enhancement of qualitative studies.

For example, in a primary study, other researchers explored
factors influencing the fate of GitHub pull requests using an
extensive qualitative analysis of 20 pull requests. Guided by
their findings, we mapped some of their qualitative insights
onto quantitative questions. To determine how well their findings
generalize, we collected much more data (170 additional pull
requests from 142 GitHub projects). Using crowdsourcing, that
data was augmented with subjective qualitative human opinions
about how pull requests extended the original issue. The crowd’s
answers were then combined with quantitative features and, using
data mining, used to build a predictor for whether code would
be merged. That predictor was far more accurate than the one
built from the primary study’s qualitative factors (F1=90 vs
68%), illustrating the value of a mixed-methods approach and
replication to improve prior results.

To test the generality of this approach, the next step in future
work is to conduct other studies that extend qualitative studies
with crowdsourcing and data mining.

I. INTRODUCTION

Our ability to generate models from software engineering
data has out-paced our abilities to reflect on those models.
Studies can use thousands of projects, millions of lines of
code, or tens of thousands of programmers [1]. However, when
insights from human experts are overlooked, the conclusions
from the automatically generated models can be both wrong
and misleading [2]. After observing case studies where data
mining in software engineering led to spectacularly wrong
results, Basili and Shull [3] recommend qualitative analysis
to collect and use insights from subject matter experts who
understand software engineering.

The general problem we explore is how partial replication
studies can scale and deepen the insights gained from pri-
mary qualitative studies. That is, after collecting qualitative
insights from an in-depth analysis of a small sample, a
partial replication study is conducted using a subset of the
insights as a guide, but targeting a larger sample and using a
different empirical methodology. To show that a given result
is robust, the ideal case is for a completely independent set
of researchers to replicate a published study using their own
experimental design [4]. In this work, we explore a mixed-
methods approach using a crowdsourced evaluation and data
mining to build on a primary qualitative study from prior
work [5], aimed at the goal of understanding the factors that
govern pull request acceptance.

978-1-7281-1519-1/19/$31.00 ©2019 IEEE

DOI 10.1109/1CPC.2019.00037

179

Crowdsourcing brings advantages of a lower cost com-
pared to professional experts. Micro-task crowdsourcing using
established platforms such as Amazon’s Mechanical Turk
(MTurk) [6] also provides a large worker pool with great
diversity and fast completion times. The main issue with
crowdsourcing is the low quality; an uncontrolled experimental
context often leads to less credible results; however, some
results suggest that crowdsourced workers perform similarly
to student populations [7]. Data mining, on the other hand,
is good at predicting future patterns based on the past. It is
an inexpensive and fast tool to analyze quantitative data from
crowdsourcing results, especially when data is large. However,
data mining is limited in that it looks narrowly at the data.
The starting point of this investigation was a conjecture that
combining crowdsourcing and data mining would lead to better
results that using either separately.

To test this conjecture, we used Tsay, Dabbish, Herbsleb
(hereafter, TDH) [5]. That study explored how GitHub-based
teams debate what new code gets merged through the lens
of pull requests. To do this, they used a labor-intensive
qualitative interview-process of 47 users of GitHub, as well
as in-depth case studies of 20 pull-requests. They found that
the submitter’s level of prior interaction on the project changed
how core and audience members interacted with the submitter
during discussions around contributions. The results provide
many insights into the factors and features that govern pull
request acceptance. The TDH authors were clear about their
methodology and results, making it a good candidate for
partial replication and extension.

This paper extends that primary qualitative study of pull
requests with an independent partial replication study using
a crowdsourced evaluation and data mining. To perform this
independent, partial replication and extension, using the in-
sights from the original study, we design questions that can
be answered by a crowdsourced worker pool and serve to
confirm some of the original findings. The crowd is able to
handle a larger pool of artifacts than the original study, which
tests the external validity of the findings. In addition to the
original 20 pull requests, the crowd in our study analyzes an
additional 170 pull requests. Next, data mining was applied to
the crowd’s responses, resulting in accurate predictors for pull
request acceptance. The predictors based on crowd data were
compared to predictors built using quantitative methods from
the literature (i.e., traditional data mining without crowdsourc-
ing and without insights from the primary study).

Our results show that the crowd can replicate the TDH
results, and that for those factors studied, most results are
stable when scaled to larger data sets. After using data mining
to develop predictors for pull request acceptance, we found
that the predictors based on quantitative factors from the
literature were more accurate than the predictor based on
the TDH features we studied. Even though the predictors
for pull request acceptance based on data mining were more
accurate than predictors based on crowd-generated data alone,
it would be extremely premature to use this one result to
make generalizations about the relative merits of the different
empirical approaches. The primary study revealed insights that
we were not able to scale up; for example, the original study
found that evaluation outcomes of pull request were sometimes
more complex than acceptance or rejection. That is, a rejected
pull request may be followed up with another pull request
from the core team fulfilling the goals of the rejected pull
request [S5]. Such insights would be difficult, if not impossible,
to expose through data mining alone. That said, other insights
can be verified through scaled replication, such as the impact
of different features of a pull request discussion on that pull
request’s acceptance, which we explore in this work.

This paper makes three specific contributions:

o A cost-effective, independent, partial replication and ex-
tension of a primary study of pull request acceptance
factors using a scaled sample of artifacts (RQI).

o Analysis of the external validity of findings from the
original study, demonstrating stability in most of the
results. This has implications for which questions warrant
further analysis (RQ?2).

o Comparison of qualitative and quantitative factors that
impact pull request acceptance from related work (RQ3).

To assist other researchers, a reproduction package with all
our scripts and data is available! and in archival form (with a
DOI)? to simplify all future citations to this material.

II. BACKGROUND

With over 14 million users and 35 million repositories as of
April 2016, GitHub has become the largest and most influential
open source projects hosting sites. Numerous qualitative [5],
[8]-[14], quantitative [1], [15]-[22] and mixed methods stud-
ies [23], [24] have been published about GitHub.

Pull requests are created when contributors want their
changes to be merged to the main repository. After core
members get pull requests, they inspect the changes and decide
whether to accept or reject them. This process usually involves
code inspection, discussion, and inline comments between
contributors and repository owners. Note that core members
have the ability to close the pull requests by either accepting
the code and merging the contribution with the master branch,
or rejecting the pull requests. Core members could also ignore
the pull requests and leave them in an open state.

! github.com/dichen001/IST_17
2doi.org/10.5281/zenodo.802698

Ul changes and modernizr.js for the contacts app.
ghsnayarn -

< Commits 9 =) Files changed 8

mmits into ewncloudimaster from unknown repository

& Conversation 15

g raghunayyar commented or
~,

Member

Modernizr.js and Plac
The input elements n:
Bug http://bugs.own

holder Polyfills library included for the old browser support
float correctly.

d.org/thebuggeniefilesjshow/73 solved

Iy raghunayyar anc

2 update conta
<> P tanghus commented on the diff or

contacts/index, php View full changes

til::addscript(' files', "jquery.fileupload');
:addscript(‘core’, 'jguery.inview');

:addscript(‘contacts®, 'jquery.Jcrop');

i;addscript(‘contacts®, ‘modernizr');

€3 tanghus on Aug 30, 2012 Member
don't think you have to add the unminified version here? It is just for license reasons
that it has to be distributed in the packages.

#52 DeepDiver1975 on Aug 30, 2012 Member
As we have the minifiers in place we can skip all minified js - den't we?

€ tanghus on Aug 30, 2012 Member
) & A
You've got a peint there ;)
"-' tanghus commented on Aug 30, 2012 Member
Cool, then just remove the minified versien.
@ B raghunayyar closed this on Aug 31, 2012

Fig. 1. An example GitHub pull request

Figure 1 shows an example of pull requests with reduced
discussion (No.16 of the 20 pull requests TDH studied.?), in-
line code comments and final result (closed). This pull request,
on the topic of Ul changes and moderizrjs for the contacts
app, was submitted by user raghunayyar on August 27, 2012.
The intention of the pull request was to address a bug, which
is linked within the submitter’s first comment. User tanghus
commented on the diff for file contacts/index.php on
August 30, 2012. A discussion ensued between user tanghus
and user DeepDiverl1975. After one more comment from
tanghus, the pull request is closed by the submitter on August
31, 2012. All three people involved with the pull request are
Members, meaning they are developers. From the contributors’
page of this repository, we and the crowd could find the user
tanghus and user DeepDiver1975 are core members, while the
submitter, user raghunayyar, is an external developer. The pull
request was closed without being merged. The crowd worker
who was assigned to analyze this pull requests finds:

1) There are core developers supporting this pull requests.

2) There are alternates proposed by the core members.

3) There are people disapproving the proposed solution .

4) No one disapproves the problem being solved here.

5) The pull requests are rejected but the core team im-
plemented their own solution to the problem in the
contribution.

3www.jsntsay.com/work/FSE2014.html

Note that findings 3 and 4 conflict with the results from TDH.
TDH finds there are disapproving comments for the problems
being proposed due to project appropriateness (but not for the
solutions itself being inconsistent, as found by the crowd).
A small number of such inconsistencies are not unexpected
in qualitative work, and replication can help identify where
ambiguities may be present.

In this paper, crowd workers analyze pull request features
and the conversations within the pull request, as just illustrated,
and answer quantitative questions about the pull request con-
versations and outcomes.

III. RESEARCH QUESTIONS

We evaluate the following research questions:

RQ1: Can the crowd reproduce prior results with high
quality? One challenge with crowdsourcing is quality control;
we employ several strategies to encourage high-quality
responses from the crowd to determine if the crowd can
partially replicate the results from the TDH paper.

RQ2: Does crowdsourcing identify which conclusions from
the primary study are stable? This question is important
for the external validity of the original findings used in the
extension part of the experiment. We collected 170 additional
pull requests using similar sampling criteria to the primary

study, and added these to the original 20. We then tested if
the crowd reaches the same or different conclusions using the
original 20 and using the extended data set.

RQ3: Can the pull request features identified in the primary
study accurately predict pull request acceptance? Given the
larger data set collected and evaluated in this work, there is
now an opportunity to evaluate the performance of prediction
models based on (1) the subset of features identified as
important in the primary study and included in our partial
replication (collected in RQ1 and RQ2), and (2) features
identified as important in previous data mining-only studies
(identified from related work).

IV. METHODOLOGY

To leverage the advantages of crowdsourcing, we perform
a five-step process from exploring prior studies to running the
replication studies using crowdsourcing and then data mining.
Step 1: Related work exploration on GitHub pull requests
studies; extract data, insights, features and results from the
existing work. Quantitative features should also be extracted
from existing work (to answer RQ3).
Step 2: Map insights from qualitative work into questions
that could be answered by crowd workers in micro-tasks.
Map existing quantitative features into questions with known
answers, which are “gold” questions used for quality control.

TABLE I
A SAMPLE OF RELATED QUALITATIVE AND QUANTITATIVE WORK. HERE, BY “QUANTITATIVE”, WE MEAN USING DATA MINING WITH LITTLE TO NO
INTERACTION WITH PROJECT PERSONNEL.

Year Source Method Data Title
2012 [8] CSCW Qualitative Interview 24 GitHub Users. Pull requests | Social coding in GitHub: transparency and collaboration in an open
case study 10. software repository
2013 [11] | CSCW Qualitative Interview 18 GitHub users. Pull requests | Impression Formation in Online Peer Production: Activity Traces
case study 10. and Personal Profiles in GitHub
2014 [5] FSE Qualitative Interview 47 GitHub users. Pull requests | Let’s Talk About It: Evaluating Contributions through Discus-
case study 20. sion in GitHub (TDH)
2015 [9] ICSE Qualitative Online survey 749 integrators. Work Practices and Challenges in Pull-Based Development: The
Integrators Perspective
2016 [10] | ICSE Qualitative Online survey 645 contributors. Work Practices and Challenges in Pull-Based Development: The
Contributors Perspective
2014 [25] | ICSE Quantitative GHTorrent, 166,884 pull requests An Exploratory Study of the Pull-Based Software Development
Model
2014 [15] | ICSE Quantitative GitHub API, GitHub Archive. 659,501 pull | Influence of Social and Technical Factors for Evaluating Contribu-
requests tion in GitHub.
2014 [26] | ICSME Quantitative GHTorrent, 1,000 pull requests. Reviewer Recommender of Pull-Requests in GitHub
2014 [27] | ICSME Quantitative GHTorrent Continuous Integration in a SocialCoding World Empirical Evi-
dence from GitHub
2014 [28] | APSEC Quantitative GHTorrent, 1,000 pull requests. ‘Who Should Review This Pull-Request: Reviewer Recommenda-
tion to Expedite Crowd Collaboration
2014 [19] | CrowdSoft | Quantitative GHTorrent, GitHubArchive. Investigating Social Media in GitHubs Pull-Requests: A Case Study
on Ruby on Rails
2014 [29] | MSR Quantitative GHTorrent A Dataset for Pull-Based Development Research
2014 [20] | MSR Quantitative GHTorrent, 78,955 pull requests. An Insight into the Pull Requests of GitHub
2014 [30] | MSR Quantitative GHTorrent, 54,892 pull requests. Security and emotion sentiment analysis of security discussions on
GitHub
2014 [31] | MSR Quantitative GHTorrent Do developers discuss design
2014 [32] | MSR Quantitative GHTorrent, 75,526 pull requests. A study of external community contribution to opensource projects
on GitHub
2015 [33] | MSR Quantitative GHTorrent Automatically Prioritizing Pull Requests
2015 [18] | MSR Quantitative GHTorrent, 103,284 pull requests. Wait For It: Determinants of Pull Request Evaluation Latency on
GitHub
uantitative & | Quant. : GHTorrent
2014 [23] | MSR 8ualitative Qual. : 240 Survey, 434 projects. The promises and perils of mining GitHub

18}

Step 3: Collect more artifacts using similar sampling pro-
cesses to the primary study. Apply the mapped questions from
Step 2 to the additional data.
Step 4: Using the original data as “gold” queries for quality
control in crowdsourcing, run the crowdsourced study.
Step 5: Extract and analyze features defined in Step 2 from the
crowd answers. Compare those with the findings from Step 1
to discover new insights.

Next, we apply these methods to the primary TDH study [5].

A. Step 1: Literature Overview and Data Extraction

We first identified TDH as our primary study after finding
its data source is publicly available and some of its insights
about GitHub pull requests could be mapped into quantitative
questions for the crowd to answer. Next, we explored prior
work related to GitHub pull requests in the literature.

For the literature exploration, we searched for keywords
‘pull’, ‘request’ and ‘GitHub’ on Google Scholar from 2008
to 2016 and also obtained a dataset from 16 top software
engineering conferences, 1992 to 2016 [34], filtering out the
work unrelated to GitHub pull requests. Table I lists the
remaining research papers that have studied pull requests
in GitHub using either qualitative or quantitative methods.

Here, we distinguish qualitative and quantitative methods by
whether or not there is human involvement during the data col-
lection process. Qualitative studies have human involvement
and include interviews, controlled human experiments, and
surveys. We observe that all previous studies on pull request
in GitHub, except for one, use either qualitative or quantitative
methods. The remaining study combines both with a very time
consuming manual analysis for the qualitative part [23], which
starts from the very beginning with no previous knowledge.
This is quite different from ours; we leverage prior work and
apply crowdsourcing directly on the results extracted from
primary qualitative studies.

Table II summarizes the features found to be relevant in
determining pull request acceptance. This includes all quan-
titative papers from Table I that use features to predict the
outcomes of pull requests, and the features explored in at
least one of those papers. Fewer papers are listed here some
predicted for other thing such as sentiment or best reviewers
for pull request. In Table II:

« White boxes [denote that a paper examined that feature;
o Black boxes M denote when that paper concluded that
feature was important;

TABLE Il
FEATURES USED IN RELATED WORK. [] INDICATES THAT A FEATURE IS USED; Bl INDICATED THE FEATURE IS FOUND TO BE HEAVILY RELATED TO THE

RESULTS OF PULL REQUESTS IN THE CORRESPONDING PAPER.

Category Fetures Description [29] [25] [15] [18] Ours
Pull Request | lifetime_minites Minutes between opening and closing [m]
Pull Request | mergetime_minutes Minutes between opening and merging]
Pull Request | num_commits Number of commits] O 0 | |]
Pull Request | src_churn Number of lines changed (added + deleted) O]] O
Pull Request | test_churn Number of test lines changed O [m]
Pull Request | files_added Number of files added]
Pull Request | files_deleted Number of files deleted O
Pull Request | files_modified Number of files modified O
Pull Request | files_changed Number of files touched (sum of the above) O [m] O
Pull Request | src_files Number of source code files touched by the pull request O
Pull Request | doc_files Number of documentation (markup) files touched]
Pull Request | other_files Number of non-source, non-documentation files touched]
Pull Request | num_commit_comments Total number of code review comments O
Pull Request | num_issue_comments Total number of discussion comments O
Pull Request | num_comments Total number of discussion and code review] O | | | |]
Pull Request | num_participants Number of participants in the discussion O [m]
Pull Request | test_inclusion Whether or not the pull request included test cases O [m]
Pull Request | prior_interaction Number of events the submitter has participated previously [m]
Pull Request | social_distance ‘Whether the submitter follows the user who closes the PR | | O]
Pull Request | strength of social connection Fraction of members interacted with the submitter in T [m]

(the last 3 months prior to creation)
Pull Request | description complexity Total number of words in the pull request title and description [m]
Pull Request | first human response Interval from PR creation to first response by reviewers u [m]
Pull Request | total CI latency: Interval from PR creation to the last commit tested by CI | [m]
Pull Request | CI result: Presence of errors and test failures while running Travis-CI || [m]
Pull Request | mention-@ Weather there exist an @-mention in the comments
Repository sloc Executable lines of code at creation time. [m] [] [m]
Repository team_size Number of active cores in Ty] | |] [m] [m]
Repository perc_external_contribs Ratio of commits from externals over cores in Tp [m] | | O
Repository commits_on_files_touched Number of total commits on files touched by the PR in Ty O [] O |]
Repository test_lines_per_kloc Executable lines of test code per 1,000 lines of source code O [] O
Repository test_cases_per_kloc Number of test cases per 1,000 lines of source code]
Repository asserts_per_kloc Number of assert statements per 1,000 lines of source code O
Repository watchers Project watchers (stars) at creation]] [m]
Repository repo_age Life of a project since the time of data collection O O
Repository workload Total number of PRs still open at current PR creation time [m]
Repository integrator availability Minimal hours until either of the top 2 integrators are active [m]
Repository project maturity Number of forked projects as an estimate of project maturity [m]
Developer prev_pullregs Number of PRs previously submitted by the submitter] [] []
Developer requester_succ_rate Percentage of the submitters PRs got merged previously. O | | [m] n
Developer followers Followers to the developer at creation [m] O [m]
Developer collaborator_status The user’s collaborator status within the project n]]
Developer experience Developers working experience with the project O
Other Friday effect True if the pull request arrives Friday [m]

1

The last column in Table II shows what lessons we took
from these prior studies for the data mining analysis (RQ3).
If any other column marked a feature as important, then we
added it into the set of features we examined. Such features
are denoted with a white box [J in the last column. If, in
RQ3, we determine the feature is informative for pull request
acceptance, it is marked with a black box W

B. Step 2: Map Insights into Questions and Features

The tasks performed by the crowd were designed to collect
quantitative information about the pull requests, which could
be checked against a ground truth extracted programmatically
(e.g., was the pull request accepted?), and also collect infor-
mation related to the pull request discussion, which cannot be
easily extracted programmatically, described next.

The primary study [5] concluded, among other things, that:

Methods to affect the decision making process for
pull requests are mainly by offering support (QI)
from either external developers or core members.

Issues raised around code contributions are mostly
disapproval for the problems being solved — (Q4),
disapproval for the solutions (03) and
suggestion for alternate solutions (Q2).

These are the insights we use to derive quantitative questions
for the crowd, which are mapped to the question in Table III
(including Q5 regarding pull request acceptance).

In order to use crowdsourcing to do a case study for pull
requests, our tasks contained questions related to the four
concepts underlined above and shown explicitly in Table III
in the Concepts column. This is followed by the Questions
related to each concept. For example, in Q2, the worker would
answer Yes or No depending on whether alternate solutions
were proposed at all (Q2_alternate_solution), were proposed
by core members (Q2_alt_soln_core), or were propose by
other developers (Q2_alt_soln_other). These four concepts
reference important findings from TDH’s work and were
selected because they could be easily converted into micro
questions for crowd workers to answer, though we note that

not all the TDH findings were converted into questions for the
crowd. The full version of our questions are available on-line
(tiny.cc/mt_questions).

Per Step 2 in our methods (Section IV), we use quantitative
questions over the original pull requests from the TDH study
as gold standard rasks. After extracting answers from the TDH
results, we compare the crowd’s performance on those pull
requests to ensure the crowd is qualified to perform the tasks.

To further ensure response quality in a crowdsourced envi-
ronment, for all pull requests, we also added three preliminary
qualification questions that require crowd workers to identify
the submitter, core members and external developers for each
pull request; these are gold standard questions. These extra
questions let a crowd worker grow familiar with analyzing pull
request discussions, and let us reject answers from unqualified
crowd workers since we could programmatically extract the
ground truth from the pull request for comparison. Details on
our quality control used during the study are in Section I'V-D.

C. Step 3: Data Collection and Expansion

To make sure the pull requests are statistically similar to
those of TDH’s work [5], we applied similar selection rules
on 612,207 pull requests that were opened as new in January
2016 from GHTorrent [35], which is a scalable, searchable,
offline mirror of data offered through the GitHub Application
Programmer Interface (API). The selection criteria are stated
as follows. The main difference between our selection and
TDH’s selection is the time requirements for when the pull
requests are created or last updated.

1) Pull requests should be closed.

2) Pull requests should have comments.

3) Pull request comment number should be above eight.

4) Exclude pull requests whose repository is a fork to avoid
counting the same contribution multiple times.

5) Exclude pull requests whose last update is not later than
January, 2016, so that we can make sure the project is
still active.

TABLE III
QUESTIONS FOR EACH PULL REQUEST IN SECONDARY STUDY
Concepts Questions Response | Identifier
QI: Is there a comment showing support for this Support showed . Ye%/NO Q]_%upport
pull request, and from which party? Support from core members Yes/No QI _spt_core
? ’ Support from other developers Yes/No QI _spt_other
Q2: Is there a comment proposing alternate Alternate solutions proposed Yes/No Q2_alternate_solution
solinfons and from WhiCl;)l l;n qg Alternate solution proposed by core members Yes/No Q2_alt_soln_core
? party: Alternate solution proposed by other developers Yes/No Q2_alt_soln_other
Disapproval for the solution proposed Yes/No Q3_dis_solution
: Did anyone disapprove the proposed solution 1sapproval due to bu, es/No _dis_soln_bu;
3: Did anyone disapp! the proposed soluti Disapproval d bug Yes/N 3_di In_bug
in this pull request, and for what reason? Disapproval because code could be improved Yes/No Q3_dis_soln_improve
Disapproval due to consistency issues Yes/No Q3_dis_soln_consistency
. . . Disapproval for the problem being solved Yes/No Q4_dis_probelm
QA} ?ilqdé nyone qigapl)trliJve‘tllle proF)lems b'e‘ 1:1g | Disapproval due to no value for solving this problem | Yes/No Q4_dis_prob_no_value
M; :}T ’ ﬁg’ ques[l(;n 'te va uc.:)r appropriateness Disapproval because the problem being solved Yes/N Q4._di b fit
of this pull request for its repository. does not fit the project well es/No _dis_prob_no_
Q5: Does this pull request get merged/accepted? Pull request got merged into the project Yes/No Q5_merged
P! q 4 g P q & g proj g

6) Retain only pull requests with at least three participants
and where the repository has at least ten forks and ten
stars.

There are 565 pull requests left after applying the selection
criteria stated above. From these pull requests, we sampled
170 such that half were ultimately merged and the other half
were rejected.

The 170 additional pull requests were published on MTurk
for analyzing in two rounds, together with the 20 carefully
studied pull requests from TDH [5] inserted for each round as
“gold” standard tasks. The 1st round has 100 (80 new + 20
TDH) pull requests in total, while 2nd round has 110 (90 new
+ 20 TDH) pull requests in total. So 210 total pull request
were published on for the crowd to complete.

D. Step 4: Crowdsourcing Study

Mechanical Turk is a crowdsourcing platform that connects
workers (i.e., the people performing the tasks) with requesters
(i.e., the people creating the tasks) [6]. MTurk has been used
extensively in software engineering applications [36] and for
the evaluation of software engineering research (e.g., [7], [37],
[38]). It manages recruitment and payment of participants and
hosts the tasks posted by requesters.

1) Tasks: The tasks performed by participants are called
Human Intelligence Tasks (HITs). These represent individual
activities that crowd workers perform and submit. The scope
of a HIT for our study included a single pull request, the ques-
tions outlined in Table III, as well as the following questions
about the pull request that could be checked programmatically
for quality control:

1) What is the submitter GitHub ID?

2) From the contributor page of this repository, who are
the core members of this repository?

Who are the external developers among the participants
of this pull request?

4) Does this pull request get merged/accepted? (Q5)

2) Participants: Workers for our study were required to
have demonstrated high quality in prior tasks on the MTurk
platform and answer simple questions about the pull request
correctly. Quality and experience filters were applied to screen
potential participants; only workers with HIT approval rate
above 90%, and who had completed at least 100 approved
HITs could participate. To make sure the crowd participants
are qualified to analyze the pull requests in our study, we also
require them to be GitHub users.

3) Cost: We want to make sure the cost is low but also
provide a fair payment for the participants. According to
several recent surveys on MTurk [39]-[42], the average hourly
wage is $1.66 and MTurk workers are willing to work at
$1.40/hour. We estimated about 10 minutes needed for each
HIT, and first launched our task with $0.25 per HIT but only
received 1 invalid feedback after 2 days. So we doubled our
payment to $0.50 for each HIT, which requires to analyze one
single pull request. Each round of tasks was completed in one
week. Our final results show that 17 minutes are spent for
each HIT on average, which means $1.76 per hour. In total,

3)

184

27 workers participated in our tasks, and 77 hours of crowd
time were spent to get all the pull requests studied*.

4) Quality Control: A major issue in crowdsourcing is
how to reduce the noise inherent in data collection. This
section describes the three approaches we used to increase
data quality:

o Qualification questions;

« Redundant question formats [44]; and

e “Gold” standard tasks [45], [46].

a) Qualification Questions: A domain-specific screening
process was applied as participants were required to answer
preliminary qualification questions related to identifying the
pull request key players and pull request acceptance on every
pull request analyzed. These are questions for which we can
systematically extract values from the pull requests (i.e., those
in Section IV-D1); if these objective questions are answered
incorrectly, the task was rejected and made available to other
crowd workers.

This is unlike the qualification test which is available on
the MTurk platform to screen participants once for eligibility
to participate in any of our tasks. A qualification test is
administered once. Once participants pass, they can perform
our HITs. Our qualification questions, on the other hand,
were used for every HIT we published. This ensured quality
responses for each and every HIT.

b) Redundant Question Formats: For each question in
the task related to the pull request comment discussion, we
require workers to answer a yes/no question and then copy
the comments supporting their answers from the pull request
into the text area under each question, as suggested in prior
work [44]. Take question 1 for example (Is there a comment
proposing alternate solutions?): if they choose " Yes, from core
members”, then they need to copy the comments within the
pull requests to the text area we provided.

¢) “Gold” Standard Tasks: This study was run in two
phases. In each phase, the original 20 pull requests were added
to the group as “gold” standard tasks. The tasks were randomly
assigned to crowd workers. For those crowd workers who got
one of the 20 previously studied pull requests, we checked
their answers against the ground truth [5]; inaccurate responses
were rejected and those workers were blocked. This acted as
a random quality control mechanism.

We used multiple quality control mechanisms in keeping
with prior work [47], and the result quality was satisfactory.
However, evaluating the effectiveness of each quality control
mechanism we employed is left for future work.

E. Step 5: Data Mining Analysis

In this study, we have two groups of features: (1) all the
quantitative features found important in previous works (see
Table II), and (2) the qualitative features extracted from the
results of studying pull requests in detail by the qualified

4Since the time of this writing, there has been a campaign of “fair wages”
for crowd workers. In future studies, we would set our minimum costs to the
minimum wage [43]

crowd (see Section IV-D). For each group of features, we run
the CFS feature selector [48] to reduce the features to use for
our decision tree classifier. To collect the quantitative features,
we used the GitHub API to extract the features marked in the
ours column of Table II.

CFS evaluates and ranks feature subsets. One reason to use
CFS over, say, correlation, is that CFS returns sets of useful
features while simpler feature selectors do not understand the
interaction between features. CFS also assumes that a “good”
set of features contains features that are highly connected
with the target class, but weakly connected to each other.
To implement this heuristic, each feature subset is scored as
follows according to Hall, et al. [48]:

krep
k+k(k—1rg

The merits value is some subset s containing k features;
T is a score describing the connection of that feature set
to the class; and 7 is the mean score of the feature to feature
connection between the items in s. Note that for this fraction
to be maximal, r.; must be large and r5 must be small, which
means features have to correlate more to the class than each
other.

This equation is used to guide a best-first search with a
horizon of five to select most informative set of features. Such
a search proceeds as follows. The initial frontier is all sets
containing one different feature. The frontier of size n, which
initialized with 1, is sorted according to merit and the best
item is grown to all sets of size n+/ containing the best item
from the last frontier. The search stops when no improvement
have been seen in last five frontiers in merit. Return the best
subset seen so far when stop.

Our experiments assessed three groups of features:

1) After CFS feature selector, the selected quan-
titative features are commits_on_files_touched, re-
quester_succ_rate, prev_pullregs, which are quite intu-
itive. (The commits_on_files_touched feature indicates
the popularity of the modified files is highly relat-
ing to the final acceptance of the pull request while
requester_succ_rate and prev_pullreqs show the re-
quester’s history interaction with the project also play
an important role for the final acceptance.)

Using the same CFS feature selector, the selected crowd-
sourced features are Q3_dis_solution,
Q4_dis_prob_no_value. These two selected features
show that the final acceptance has a strong relation to the
opposing voice in the pull requests discussion, especially
for comments saying this pull request has no value for
the project.

Combining all quantitative features and crowdsourced
features into combined features and feed that into the
same CFS feature selector, the following features were
selected: Q3_dis_solution, commits_on_files_touched,
requester_succ_rate, and prev_pullregs, which all ap-
peared using the CFS selector on the quantitative and
qualitative features independently.

merits =

2

~

3

~

185

TABLE IV
QUALITY FOR CROWDSOURCING RESULTS FROM AMAZON MECHANICAL

TURrK (RQ1).
Questions | Precision | Recall | F1-Score
Q1 0.769 0.769 0.770
Q2 0.818 0.750 0.783
Q3 0.727 0.667 0.696
Q4 0.778 0.700 0.737
Q5 0.833 0.714 0.770
Total 0.801 0.742 0.770

For each of these three sets of features, we ran a 10x5
cross validation for supervised learning with the three different
groups of features. These generate three models that predicted
if a pull request would get merged/accepted or not. A decision
tree learner was used as our supervised learning algorithm.
This was selected after our initial studies with several other
learners that proved to be less effective in this domain (Naive
Bayes and SVM).

Using the MTurk micro-task crowdsourcing platform, we
collect data for 1) the original 20 pull requests from the
primary study (twice), and 2) 170 additional, independent pull
requests. Of the 190 unique pull requests, 176 pull requests
were evaluated by the crowd with high quality. Of those, 156
are new pull requests (dropping 14 from the sample of 170)
and 34 of them are from the original TDH study (covering each
of the 20 original pull requests at least once). The unqualified
responses were a result of the redundant question format
quality control approach, but an operational error led us to
approve the tasks despite the poor comment quality, leaving
us with a smaller data set for further analysis.

The crowd data includes qualitative information about the
pull request discussion, such as whether there is a comment
showing support, proposing an alternate solution, disapproving
of the solution, and disapproving of the problem being solved.
We refer to the data collected via the crowd as the qualitative
pull request features.

V. RESULTS

The crowd data is substantially larger than the original
data in terms of pull requests analyzed. The benefits of the
larger sample size is two-fold. First, by using similar selection
criteria in the replication study compared to the primary study,
we are able to check the stability and external validity of the
findings in the primary study using a much larger sample
(RQ2). Second, in terms of informativeness, we can extract
features from the crowd’s answers, which is qualitative, and
build models to predict pull request acceptance results. This
allows us to compare the performance of models built with
(a) some features identified as important in the primary study
and (b) the features from related, quantitative works (RQ3).

A. RQI: Can the crowd reproduce prior results with high
quality?

RQ1 checks if our mapping in Section IV-B correctly
captures the essence of the TDH study. Here, we used the
results from the original 20 pull requests from TDH.

5Q1 8Q2 5Q3 = Q4
1
I I
0.8 ’:J‘._‘
o 0.6
=
2
= 04
]
0‘2 %
0.05
0
TDH(15:5) vs Crowd(15:5) TDH(15:5) vs Crowd(87:29)
Fig. 2. Stability Checking: p-values for comparing unscaled and

scaled crowd answers with answers from TDH. p-values computed using
scipy.stats.chi2_contingency.

Table IV shows the precision, recall and Fy scores of the
crowd working on the original tasks, using the prior TDH
study as the ground truth. The Questions map to Table III.
As seen in Table IV, the precision and recall of the crowd on
the 20 original tasks is 80% and 74% respectively (so F; ~
77%). Based on prior work with data mining from software
engineering data [49], [50], we find that these values represent
a close correspondence between the TDH results and those
from the crowd, hence indicating that the crowd can indeed
perform the tasks with high quality.

We further manually examined the cases where the crowd
disagreed with TDH, finding that sometimes TDH appears
correct, and sometimes the crowd appears correct. For ex-
ample, TDH classifies the 17th pull request they studied as
no support, while the crowd found the comment from the
user drohthlis saying “This is great news!”, which is an
apparent indicator for the supporting this pull request after our
examination. Another two cases are the 16th and 20th pull
requests they studied. Crowd workers found clear suggestions
for alternative solutions (i.e., “What might be better is to ...”,
“No, I think you can just push -f after squashing.”), which
TDH does not find. While we did throw away some data due
to quality, largely the crowd was able to replicate, and extend,
some of the original TDH study.

As to the issues of speed and cost, TDH report that they
required about 47 hours to collect interview data on 47
users within which, they investigated the practices about pull
requests. TDH does not report the subsequent analysis time.
By way of comparison, we spent $200, to buy 77 hours of
crowd time. In that time, 190 (156 new ones and 34 from the
primary study, which covers all 20 original pull requests) out
of 210 published pull requests were validly analyzed.

In summary, we answer RQ1 in the affirmative.

186

B. RQ2: Are the primary study’s results stable?

One motivation for this work was checking if crowdsourcing
can scale and confirm the external validity of qualitative con-
clusions. This issue is of particular concern for crowdsourcing
studies due to the subjective nature of the opinions from the
crowd. If those opinions increased the variance of the collected
data, then the more data we collect, the less reliable the
conclusions.

To test for this concern, we compare the pull requests
studied by the crowd (excluding the 20 gold tasks) with the
20 pull request studied by TDH. Among the original 20, 15
were merged and 5 were rejected. Given the 156 new pull
requests, we first randomly select 15 merged and 5 rejected
pull requests 100 times, so that we can compare these 2
independent samples at the same scale and with the same
distribution of pull request acceptance outcomes. Then we run
another 100 iteration for randomly selecting 87 merged and 29
rejected pull requests studied by the crowd, which still has the
same distribution but at nearly six times larger scale. p-values
are collected for each sample comparison in the 2 runs. We
analyzed each of the four concepts from Table III separately
(Q1-Q4).

Figure 2 shows the results of comparing pull requests from
TDH and an independent sample with 2 different scales. As
shown, Questions 1, 2, 4 are quite stable for both scales (i.e.,
p-values greater than 0.05 indicate no statistically significant
difference with « 0.05). Moreover, Question 1 and 4
are becoming more stable when the scale becomes larger,
while Question 2 becomes less stable at a larger scale. For
Question 3, all of the p-values are lower than 0.05 at the
large scale, though the median of its p-value is higher than
0.05 at the same scale as TDH. This may indicate that TDH
did not cover enough pull requests to achieve a representative
sample for the finding, which is mapped into Question 3
about disapproving comments. This may also indicate that
TDH treated disapproving comments in GitHub pull requests
differently than the crowd. As we have shown when answering
RQI1, we have found several cases where the crowd and TDH
disagree and the crowd is correct, though the crowd did have
some wrong answers while TDH are correct. Note that the
results are not to fault TDH, but serves as the evidence why
we need to replicate and scale empirical studies.

Accordingly, we answer RQ2 in the affirmative. The results
for Q1, Q2, and Q4 do not differ significantly between TDH
and independent samples of the same size or of a larger size.
The exception is Q3, for which the results differ significantly
when scaling to a larger data set.

C. RQ3: How well can the qualitative and quantitative fea-
tures predict PR acceptance?

The results are shown in Figure 3, expressed in terms of
precision, recall, and the F} score; i.e. the harmonic mean of
precision and recall, for each of three feature sets: quantitative,
crowdsourced, and a combination. Note that the performances
of the predictor using crowdsourced features are not as high

F1 |

1 =
0.8 %

0.6

|D Precision @ Recall

0.4

0.2

Combined Features
(Quan. & Qual.)

Crowdsourced Features
(From MTurk Answers)

Quantitative Features
(From API Mining)

Fig. 3. Performance Comparison for Using different feature set to predict
whether a pull requests will be accepted.

or as stable as the one built with quantitative features. We can
see that:

o The selected quantitative features achieved F) score at
90% with a range of 20%;

e The selected crowdsourced features achieved lower F}
score at 68% with a larger range.

o The combined selected features did better than just using
qualitative; but performed no better than just using only
the quantitative features.

At first glance, the models learned from crowdsourced
features performed worse than using quantitative features
extracted from numerous prior data mining studies, but this
warrants further discussion. While Figure 3 shows the crowd-
sourced features generated from TDH results perform well on
predicting the final acceptance with F at 68%, it might be that
considering more of the features from the original study could
lead to even better results. For our study, we performed an
independent partial replication and selected features that could
be easily mapped to micro-questions, as stated in Section I'V-B.
That said, the instability observed for Q3 as the sample size
increases (Figure 2) may be present for other features from the
original study; further study is needed to expand the number
of questions asked of the crowd to tease out this phenomenon.

In summary, the quantitative features extracted from dozens
of recent papers on pull requests outperform the selected
qualitative features we studied.

VI. THREATS TO VALIDITY AND LIMITATIONS

As with any empirical study, biases and limitations can
affect the final results. Therefore, any conclusions made from
this work must be considered with the following issues in
mind.

Sampling bias: This threatens the external validity of any
classification experiment. For example, the pull requests used
here are selected using the rules described in IV-C. Only 170
additional highly discussed pull requests from active projects

187

are sampled and analyzed, so our results may not reflect the
patterns for all the pull requests. That said, we note that one
reason to endorse crowdsourcing is that its sample size can be
much larger than using just qualitative methods. For example,
TDH reported results from just 20 pull requests.

Learner bias: For building the acceptance predictors in this
study, we elected to use a decision tree classifier. We chose
decision trees because it suits for small data samples and its
results were comparable to the more complicated algorithms
like Random Forest and SVM. Classification is a large and
active field and any single study can only use a small subset
of the known classification algorithms. Future work should
repeat this study using other learners.

Evaluation bias: This paper uses precision, recall and F;
score measures of predictor’s performance. Other performance
measures used in software engineering include accuracy and
entropy. Future work should repeat this study using different
evaluation biases.

Order bias: For the performance evaluation part, the order
that the data trained and predicted affects the results. To
mitigate this order bias, we run the 5-bin cross validation 10
times randomly changing the order of the pull requests each
time.

VII. IMPLICATIONS

This paper presents one example in which crowdsourcing
and data mining were used for partial replication and scaling
of an empirical study. In our work, we use the experts to
identify a set of interesting questions, and the crowd to
answer those questions regarding a large data set. Then, data
mining was used to compare the qualitative responses to
quantitative information about the same data set. It is possible
this workflow is indicative of a more general framework for
scaling and replicating qualitative studies using the approach
we used.

In the original qualitative TDH study, the authors found
that 1) supports, 2) alternate solutions, 3) disapproval for
the proposed solutions, and 4) disapproval for the problems
being solved were important factors that guard pull requests’
acceptance. In this scaled, crowdsourced replication, we found
that factors 1, 2 and 4 still hold, but 3 was unstable. As
shown in section V-B, we cannot tell whether the crowd
are correct or TDH are correct, because we have observed
situations where one is correct while the other is not for both
sides. However, the implication here is that the combination of
empirical methods allow us to pinpoint more precisely results
that are steadfast against tests of external validity and the
results that need further investigation.

In the end, the replication via quantitative study would have
been impossible without the primary qualitative work, and
we should make the best use of time-consuming qualitative
work, instead of stopping after we get results from qualitative
results (and vice versa). We find qualitative studies can inspire
quantitative studies by carefully mapping out areas of concern.
Primary qualitative studies can also provide the data needed
to direct replications via quantitative crowdsourcing studies.

We also find a single primary qualitative study can direct the
work of many quantitative studies, and our work is just one
example of a partial replication study after TDH’s qualitative
work.

VIII. RELATED WORK

There are many ways to categorize empirical studies in
software engineering. Sjoberg, et al. [51] identify two general
groups, primary research and secondary research. The most
common primary research usually involves the collection and
analysis of original data, utilizing methods such as experimen-
tation, surveys, case studies, and action research. Secondary
studies involve synthesis and aggregation of primary studies.
According to Cohen [52], secondary studies can identify
crucial areas and questions that have not been addressed
adequately with previous empirical research.

Our paper falls into primary research that uses data from
previously published studies. Using independent, partial repli-
cation, we check the external validity of some of the TDH
results. That is, we explore whether claims for generality are
justified, and whether our study yields the same results if
we partially replicate it [53]. Our data collection applies the
coding method, which is commonly used to extract values
for quantitative variables from qualitative data in order to
perform some type of quantitative or statistical analysis, with
crowdsourcing to manage participant recruitment. Most of our
data analysis falls into the category of replication for theory
confirmation as we independently replicate parts of the results
from TDH. However, in the data mining study, we introduce
additional factors not studied in the original TDH study.

In software engineering, crowdsourcing is being used for
many tasks traditionally performed by developers [54] includ-
ing program synthesis [55], program verification [56], LTL
specification creation [47], and testing [57], [58]. According
to Mao, et al. [54], our work falls into the evaluation of SE
research using crowdsourcing as the crowd is not performing
software engineering tasks, but rather is used to evaluate
software artifacts.

There are many reasons to use crowdsourcing in software
engineering, and this space has been studied extensively [54].
Two important issues with crowdsourcing are quality control
and cost control. While the crowd is capable of producing
quality results, systems need to be in place to monitor result
quality. Cost has a dependent relationship on the quality
control measures; a lack of quality control can lead to results
that must be thrown out and repeated, hence increasing the
cost.

Quality control in crowdsourcing has been studied exten-
sively within and beyond software engineering applications
(e.g., [44]-[46], [59]-[61]). One way to address quality control
is to use a golden set of questions [45], [46] for which
the answer is known. Workers that perform poorly on the
golden set are eliminated, which is also one of the strategies
we take in this paper. Alternatively, tasks can be assigned
to multiple workers and their results aggregated (e.g., in
the TURKIT system [62], one task is performed iteratively,

188

and each worker is asked to improve on the answer of
the former, or in AutoMan [63], each task is performed by
crowd members until statistical consensus is reached). The
tradeoffs are in cost and volatility. The gold questions can be
checked automatically, yielding low cost, but there may be
high volatility in the results from a single individual. When
using multiple people and aggregating the results, volatility
is lower as the crowd is likely to converge [64], but the cost
will be higher due to the required replication per question.
Other quality control techniques include redundant question
formats [44], notifications to workers about the value of their
work [59], answer conflict detectors [60], and random click
detection [61].

Cost control is important as commercial crowdsourcing
platforms are not free. Economic incentives for crowd workers
strongly effect crowd response quality [65]-[72]. To keep the
quality high, payments need to be high enough to entice par-
ticipation [73] but low enough to keep study costs reasonable.

IX. CONCLUSION

Crowdsourcing and data mining can be used to effectively
reduce the effort associated with the partial replication and
enhancement of qualitative studies.

For example, in this paper:

« We presented an empirical study on scaling and extending
a primary study on pull request acceptance. Using the
insights learned from the primary study, we designed a
scaled study with different empirical methodology.

o To scale and extend the results from the original study,
we used crowdsourcing.

o Then, we applied data mining to determine if the qual-
itative features fared better or worse than quantitative
features over the same artifacts. We show that, with
results and data from TDH’s primary study, it is possible
to map some of their insights into micro-questions for
crowd workers and expand the data they studied to a
larger scale.

o Further, in that second study, we could build better
predictors that seen before.

We conjecture that this case study is representative of an
underlying methodology for scaling and extending primary
qualitative studies that require expert opinions. The long-
term goal of this work is to encourage more studies that
replicate parts of primary qualitative studies and use the gained
insights to design subsequent studies. It is through independent
replication with different methodologies that we can move
closer to building software engineering theories. For that task,
collaborators would be welcomed.

ACKNOWLEDGEMENTS

The work is partially funded by NSF awards #1506586,
#1302169, #1749936, and #1645136.

[1]

[2]

[3]

[4]

[5]

[6]
[71

[8]

[9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

REFERENCES

B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 155-165.

C. O’Neil, Weapons of Math Destruction: How Big Data Increases
Inequality and Threatens Democracy. Crown Publishing Group (NY),
2016.

F. Shull, V. Basili, J. Carver, J. C. Maldonado, G. H. Travassos,
M. Mendonga, and S. Fabbri, “Replicating Software Engineering Ex-
periments: Addressing the Tacit Knowledge Problem,” in ISESE ’02:
Proceedings of the 2002 International Symposium on Empirical Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2002,
p.- 7.

F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of
replications in empirical software engineering,” Empirical Softw. Engg.,
vol. 13, no. 2, pp. 211-218, Apr. 2008.

J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: evaluating
contributions through discussion in github,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 144—154.

“Amazon Mechanical Turk,” www.mturk.com/mturk/welcome, June
2010. [Online]. Available: www.mturk.com/mturk/welcome

K. T. Stolee and S. Elbaum, “On the use of input/output queries for
code search,” in International Symposium. on Empirical Soft. Eng. and
Measurement, October 2013.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277-1286.

G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work
practices and challenges in pull-based development: the integrator’s
perspective,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. 1EEE Press, 2015, pp. 358-368.

G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: the contributor’s perspective,” in
Proceedings of the 38th International Conference on Software Engineer-
ing. ACM, 2016, pp. 285-296.

J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: activity traces and personal profiles in github,” in
Proceedings of the 2013 conference on Computer supported cooperative
work. ACM, 2013, pp. 117-128.

A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets software
development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, pp. 52-66, 2013.

N. McDonald and S. Goggins, ‘“Performance and participation in open
source software on github,” in CHI’13 Extended Abstracts on Human
Factors in Computing Systems. ACM, 2013, pp. 139-144.

R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social coding
site,” in 2013 35th International Conference on Software Engineering
(ICSE). 1IEEE, 2013, pp. 112-121.

J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
international conference on Software engineering. ~ACM, 2014, pp.
356-366.

G. Gousios, M. Pinzger, and A. van Deursen, “An exploration of the
pull-based software development model.” ICSE, 2013.

J. T. Tsay, L. Dabbish, and J. Herbsleb, “Social media and success in
open source projects,” in Proceedings of the ACM 2012 conference on
computer supported cooperative work companion. ~ACM, 2012, pp.
223-226.

Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, 2015, pp. 367-371.

Y. Zhang, G. Yin, Y. Yu, and H. Wang, “Investigating social media in
github’s pull-requests: a case study on ruby on rails,” in Proceedings of
the st International Workshop on Crowd-based Software Development
Methods and Technologies. ACM, 2014, pp. 37-41.

M. M. Rahman and C. K. Roy, “An insight into the pull requests of
github,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 364-367.

189

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Y. Takhteyev and A. Hilts, “Investigating the geography of open source
software through github,” 2010.

F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in Software maintenance and reengineering
(csmr), 2013 17th european conference on. 1EEE, 2013, pp. 323-326.
E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92-101.

K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian,
“Understanding the popular users: Following, affiliation influence and
leadership on github,” Information and Software Technology, vol. 70,
pp. 30-39, 2016.

G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
345-355.

Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender of
pull-requests in github.” ICSME, vol. 14, pp. 610-613, 2014.

B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and M. G.
van den Brand, “Continuous integration in a social-coding world: Em-
pirical evidence from github,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on. 1EEE, 2014, pp.
401-405.

Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Who should review this pull-
request: Reviewer recommendation to expedite crowd collaboration,” in
2014 21st Asia-Pacific Software Engineering Conference, vol. 1. 1EEE,
2014, pp. 335-342.

G. Gousios and A. Zaidman, “A dataset for pull-based development
research,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 368-371.

D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
sentiment analysis of security discussions on github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 348-351.

J. Brunet, G. C. Murphy, R. Terra, J. Figueiredo, and D. Serey,
“Do developers discuss design?” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 340—
343.

R. Padhye, S. Mani, and V. S. Sinha, “A study of external community
contribution to open-source projects on github,” in Proceedings of the
11th Working Conference on Mining Software Repositories. ~ ACM,
2014, pp. 332-335.

E. Van Der Veen, G. Gousios, and A. Zaidman, “Automatically priori-
tizing pull requests,” in Proceedings of the 12th Working Conference on
Mining Software Repositories. 1EEE Press, 2015, pp. 357-361.

G. Mathew, A. Agrawal, and T. Menzies, “Trends in topics in software
engineering conferences, 1992 to 2016, Submitted to IST. Available
from tiny.cc/citemap.

G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13, 2013, pp. 233-236.

K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” Tech. Rep., 2015, ¢S Technical
Report RN/15/01, University College London.

K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing
to support empirical studies in software engineering,” in International
Symposium on Empirical Software Engineering and Measurement, 2010.
Z. P. Fry, B. Landau, and W. Weimer, “A human study of
patch maintainability,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 177-187. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336775

M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s mechanical
turk a new source of inexpensive, yet high-quality, data?” Perspectives
on psychological science, vol. 6, no. 1, pp. 3-5, 2011.

A. J. Berinsky, G. A. Huber, and G. S. Lenz, “Evaluating online labor
markets for experimental research: Amazon. com’s mechanical turk,”
Political Analysis, vol. 20, no. 3, pp. 351-368, 2012.

G. Paolacci, J. Chandler, and P. G. Ipeirotis, “Running experiments on
amazon mechanical turk,” Judgment and Decision making, vol. 5, no. 5,
pp. 411-419, 2010.

P. G. Ipeirotis, “Demographics of mechanical turk,” 2010.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. S. Silberman, B. Tomlinson, R. LaPlante, J. Ross, L. Irani, and
A. Zaldivar, “Responsible research with crowds: Pay crowdworkers at
least minimum wage,” Commun. ACM, vol. 61, no. 3, pp. 39-41, Feb.
2018.

K. T. Stolee, J. Saylor, and T. Lund, “Exploring the benefits of using
redundant responses in crowdsourced evaluations,” in Proceedings of
the Second International Workshop on CrowdSourcing in Software
Engineering. 1EEE Press, 2015, pp. 38-44.

O. Alonso and R. Baeza-Yates, “Design and implementation of rele-
vance assessments using crowdsourcing,” in European Conference on
Information Retrieval. Springer, 2011, pp. 153-164.

C. Sarasua, E. Simperl, and N. F. Noy, “Crowdmap: Crowdsourcing
ontology alignment with microtasks,” in International Semantic Web
Conference. Springer, 2012, pp. 525-541.

P. Sun, C. Brown, K. T. Stolee, , and I. Beschastnikh, “Back to the future:
specification mining using crowd intelligence,” in International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2019.

M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, 1999.

C. Bird, T. Menzies, and T. Zimmermann, The Art and Science of
Analyzing Software Data. Elsevier, 2015.

W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?” Information & Software Technology, vol. 76, pp.
135-146, 2016.

D. I Sjoberg, T. Dyba, and M. Jorgensen, “The future of empirical
methods in software engineering research,” in Future of Software Engi-
neering, 2007. FOSE’07. 1EEE, 2007, pp. 358-378.

B. P. Cohen, Developing sociological knowledge: Theory and method.
Wadsworth Pub Co, 1989.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285—
311.

K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” RN, vol. 15, no. 01, 2015.

R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” in Pro-
ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’15, 2015, pp. 677—
688.

T. W. Schiller and M. D. Ernst, “Reducing the barriers to writing verified
specifications,” SIGPLAN Not., vol. 47, no. 10, pp. 95-112, Oct. 2012.
E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing gui tests,”
in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, March 2013, pp. 332-341.

M. Nebeling, M. Speicher, and M. C. Norrie, “Crowdstudy: General
toolkit for crowdsourced evaluation of web interfaces,” in Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing

190

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Systems, ser. EICS ’13. New York, NY, USA: ACM, 2013, pp.
255-264. [Online]. Available: doi.acm.org/10.1145/2494603.2480303
J. A. Krosnick, “Response strategies for coping with the cognitive
demands of attitude measures in surveys,” Applied cognitive psychology,
vol. 5, no. 3, pp. 213-236, 1991.

A. Shiel, “Conflict crowdsourcing: Harnessing the power of crowdsourc-
ing for organizations working in conflict,” 2013.

S.-H. Kim, H. Yun, and J. S. Yi, “How to filter out random clickers
in a crowdsourcing-based study?” in Proceedings of the 2012 BELIV
Workshop: Beyond Time and Errors - Novel Evaluation Methods for
Visualization, ser. BELIV ’12, 2012, pp. 15:1-15:7.

G. Little, “Turkit: Tools for iterative tasks on mechanical turk,” in Visual
Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE
Symposium on, Sept 2009, pp. 252-253.

D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Automan:
A platform for integrating human-based and digital computation,” SIG-
PLAN Not., vol. 47, no. 10, pp. 639-654, Oct. 2012.

T. Menzies, E. Kocagiineli, L. Minku, F. Peters, and B. Turhan, “Chapter
20 - Ensembles of Learning Machines,” in Sharing Data and Models
in Software Engineering, 2015, pp. 239-265. [Online]. Available:
www.sciencedirect.com/science/article/pii/B9780124172951000205

W. Mason and D. J. Watts, “Financial incentives and the performance
of crowds,” ACM SigKDD Explorations Newsletter, vol. 11, no. 2, pp.
100-108, 2010.

G. Goel, A. Nikzad, and A. Singla, “Mechanism design for crowdsourc-
ing markets with heterogeneous tasks,” in Second AAAI Conference on
Human Computation and Crowdsourcing, 2014.

A. Mao, E. Kamar, Y. Chen, E. Horvitz, M. E. Schwamb, C. J. Lintott,
and A. M. Smith, “Volunteering vs. work for pay: incentives and
tradeoffs in crowdsourcing,” in Conf. on Human Computation, 2013.
A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with
mechanical turk,” in Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, 2008, pp. 453-456.

W. A. Mason and S. Suri, “How to use mechanical turk for cognitive
science research,” in Proceedings of the 33rd annual conference of the
cognitive science society, 2011, pp. 66-67.

K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing crowdsourcing-based
software development tasks,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE °13, 2013, pp. 1205-
1208.

M. Yin, Y. Chen, and Y.-A. Sun, “Monetary interventions in crowdsourc-
ing task switching,” in Second AAAI Conference on Human Computation
and Crowdsourcing, 2014.

J. Wang, P. G. Ipeirotis, and F. Provost, “Quality-based pricing for
crowdsourced workers,” 2013.

R. Vinayak and B. Hassibi, “Clustering by comparison: Stochastic block
model for inference in crowdsourcing,” in Workshop Machine Learning
and Crowdsourcing, 2016.

