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a b s t r a c t

Small-world networks provide an excellent balance of efficiency and robustness that is not available with
other network topologies. These characteristics are exhibited in theMemristiveNanowireNeuralNetwork
(MN3), a novel neuromorphic hardware architecture. This architecture is composed of an electrode array
connected by stochastically deposited core–shell nanowires. We simulate the stochastic behavior of the
nanowires by making various assumptions on their paths. First, we assume that the nanowires follow
straight paths. Next, we assume that they follow arc paths with varying radii. Last, we assume that they
follow paths generated by pink noise. For each of the threemethods, we present amethod to findwhether
a nanowire passes over an electrode, allowing us to represent the architecture as a bipartite graph. We
find that the small-worldness coefficient increases logarithmically and is consistently greater than one,
which is indicative of a small-world network.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Neuromorphic hardware architectures, much like biological
neural networks, are subject to constraints that are not present
in traditional software-based simulations of artificial neural net-
works (ANNs) (Yu, Zhang, Chen, & Xie, 2018). For example, the
weights of a neural network must be physically linked to the two
neurons the weights connect. This introduces the wiring cost of
a network, which is a measure of how much wiring is needed to
connect all the neurons in the network. In both biological neural
networks and neuromorphic hardware architectures, this wiring
between the neurons consumes the vast majority of the available
space (Raj & Chen, 2011). Therefore, minimizing this wiring cost is
extremely important.

In biological neural networks, another important parameter is
the global efficiency of the network, which is the inverse of the
mean shortest path length between two random neurons (Achard
& Bullmore, 2007). This value determines how efficiently the net-
work can process and transmit information. For fully connected
networks, the value of this parameter is maximal, while for lo-
cally connected networks, it is low. Thus, for example, biological
brains are the result of a delicate balance between the competing
objectives of creating a well-connected network with a high global
efficiency, while simultaneously minimizing the amount of wiring
needed to connect the network (Achard & Bullmore, 2007).
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Similarly, any scalable neuromorphic architecturemust balance
these two cost functions. In biological neural networks, as well as
other complex networks, the optimization of balancing these two
objectives (wiring cost and global efficiency) results in a small-
world network topology. Small-world networks have mostly local
connectivity, with a nontrivial number of random, long-range con-
nections added to the network. These small-world networks have
been shown to achieve an efficient balance between wiring cost
and global efficiency, allowing small-world networks to scale far
more efficiently than fully or locally connected networks (Klein-
berg, 2000).

In addition to the small-world property, biological neural net-
works display many other characteristics of complex networks,
such as stochasticity, a diverse degree distribution (scale-free
structure), and modularity (Holden, 1983; Martinello, Hidalgo,
Maritan, & di Santo, 2017; Rodriguez, Izquierdo, & Ahn, 2017).

Despite the advantages of these complex network topologies,
to date, most neuromorphic hardware architectures continue to
use fully or locally connected crossbar arrays (Schuman, Potok, &
Patton, 2017). This is likely due to the simplicity with which these
arrays can be fabricated and integrated into conventional hard-
ware. However, there are merits to exploring alternative methods
of fabricatingmore complex network topologies, given the benefits
of small-world connectivity, specifically, with respect to the scala-
bility of the networks.

Here, we show that a novel method for fabricating complex
networks based on memristive nanowires developed by Kendall &
Nino (2015) has an extremely high density of trainable parameters
(∼400 million tunable synapses per square centimeter) and more
importantly, it exhibits small-world characteristics.
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Neuron Array

(a)

(b)

(c)

Equivalent Circuit Diagram

Fig. 1. (a) Each red–green pair corresponds to the input and output of a single neuron, tiled across the entire chip. The MN3 is connected with a nanowire mesh overlaid on

the neuron grid. (b) Each electrode forms a memristive synapse with the neurons below. (c) The equivalent circuit diagram of Fig. 1b. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Network specifications.

Description Value

Nanowire diameter d = 100 nm

Neuron width/length (square) l = 4 µm

Neuron spacing a = 1 µm

Nanowire mat thickness s = 1 µm

Wire packing fraction p = 0.25

1.1. Network architecture

The network we describe is based on a network of core–shell

memristive nanowires, or nanofibers, with a conductive core and

a memristive shell. The architecture, which we dub theMemristive

Nanowire Neural Network, or MN3, is shown in Fig. 1. The wires

serve as the interconnect layer in an array of CMOS neurons tiled in

a square array. Each red–green pair corresponds to a single neuron.

It is important to note that unlike conventional architectures, the

neurons are not connected in the CMOS layer (Yu, et al., 2018).

Instead, a layer of nanowires is deposited on the surface of the

silicon, connecting the neurons in a stochastic manner. Metal pil-

lars are grown through the nanowire layer to connect them to the

electrodes below. The cores of the nanowires are conductive to

allow for signal transmission between neurons, while the shell is

made from a memristive material, allowing for the formation of

memristive synapses at the interface between each nanowire and

neuron.

We can approximate the neuron and synapse densities by using

a simple geometric approach. We use the assumptions in Table 1

on the achievable feature sizes in the network. Note that the wire

packing fraction is the density of wires compared to that in a close-

packed structure (Batch, Cumiskey, & Macosko, 2002).

From l and a, we can determine howmany neurons N will fit in

a 1 cm2 area:

N = 1/(l+ a)2 = 1/(0.0004+ 0.0001)2 = 4× 106. (1)

We can now determine how many wires contact each electrode if

the wires are close-packed, wc , and then multiply by the packing

fraction to get the average number of wires contacting each elec-

trode, w. We have

wc = ls/d2 = (0.0004)(0.0001)/(0.00001)2 = 400. (2)

Assuming a packing fraction for the wires of 0.25, i.e. only 1/4 of
the maximum packing density, we arrive at the wire density per
electrode w. This value can be increased at the expense of neuron
density. We have

w = pwc = (0.25)(400) = 100. (3)

Now we can calculate the total number of synapses S in the net-
work. Since a synapse is formed at the intersection of each wire
with each electrode, the total number of synapses is equal to the
number of electrodes multiplied by the average number of wires
per electrode. We have

S = Nw ≈ (4× 106)(100) = 4× 108. (4)

The density of neurons in the MN3 (4 × 106 neurons per cm2)
is several orders of magnitude higher than state-of-the-art values
reported in the literature, including Intel’s Loihi (218,400 neurons
per cm2) (Davies et al., 2018), IBM’s TrueNorth (∼12,157 neurons
per cm2) (Merolla et al., 2014), and Stanford’s Neurogrid (∼39,620
neurons per cm2) (Benjamin et al., 2014). Two factors contribute
to this sharp increase in density: the integration of the synapses
and thewiring into a single compound structure, and the offloading
of the synapses and the wiring from the surface of the CMOS to a
sparsely connected nanowire layer.

By removing the wiring and synapses from the CMOS layer,
the neurons can be close-packed as tightly as possible, drastically
increasing neuron density. Similarly, the stackedmat of nanowires
(connected to the neuron electrodes through vertically grown
metal pillars) has a high density of wires, which are capable
of connecting neurons across long distances, resulting in a high
synapse density. The number of overlap of nanowires is estimated
to be 10 (so the nanowires are stacked approximately 10 high).
This gives enough spacing so that metal deposition techniques,
such as sputtering, can fully penetrate the mesh. Simulations were
conducted to verify that the presented wire density is compatible
with this fabrication process. Regarding polarities, there are no
inhibitory synaptic polarities as all conductances are positive. The
neurons (external nodes) are used as hyperbolic tangent units, so
they can take both positive and negative values. The memristor
polarities themselves are all aligned towards the nanowire nodes
(based on the wire core acting as the bottom electrode).

The sparsity of the resulting connection layer is important in re-
ducing the total amount of wiring needed to connect the network.
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Fig. 2. Physical titanium dioxide electrospun nanowires at a 20 µm scale displaying a high level of stochastic behavior.

Here, we show that the topology of the connections in a random
nanowire network displays small-world characteristics. We also
show that the network has a bipartite structure and supports a
variable degree diversity, with the potential to allow for scale-free
network topologies.

1.2. Bipartite connectivity

We first observe that the nodes of the MN3 can be partitioned
into two groups. The first group of nodes corresponds to the neuron
electrodes. These are the external electrodes of the network, as
they can be connected to an external circuit (i.e. the neurons). The
second group of nodes corresponds to the cores of the nanowires.
Since the nanowire cores are designed and manufactured with a
highly conductive corematerial, we can treat them as single nodes.

Next, we observe that the interface resistance between two
nanowire shells will be several orders of magnitude greater than
the interface resistance between a single nanowire and an elec-
trode. This is due to a combination of several factors. First, the
presence of a double Schottky barrier between the two nanowire
cores means the current is rectified in both directions between
the two nanowires (Jagadesh, 2005). Second, the distance between
two nanowires (through both memristive shells) is twice as long
as between a single nanowire and external electrode. Finally, the
contact area between two nanowires is much smaller than the
contact area between a nanowire and external electrode.

This allows us to conclude that, to a good approximation, the
nanowires are effectively insulated from one another. The conse-
quence of this result is that the MN3 forms a bipartite memristive
network,with the external electrodes only connected to each other
via the nanowire cores, and the nanowire cores only connected to
each other through the external electrodes.

2. Methods

We will refer to our model that comprises electrospun
nanowires (wires for short) and electrodes arranged on a lattice
graph as the geometric model. See Figs. 1 and 3–5 for reference. We
seek to simulate the stochastic connectivity of these wires. Prior to
doing so, we must first simulate the geometric model sufficiently.
Above all else, visual resemblance was the figure of merit in the
simulations. Fig. 2 of Kendall and Nino (2015) is one of many
images of actual nanowires used as a blueprint.

The simulations took place over several iterations, increasing

the realism each time. We did this for greater ease in development

as well as the possibility that a simpler model may suffice. The im-

plications for the latter are significant as generating a less rigorous

model may require a lower computational complexity.

We define re as the electrode radius and a as the distance

between electrodes directly vertical or horizontal to one another.

Both values are fixed at re = 0.4 and a = 1 for the simulations.

Further, ne is the number of electrodes and nw is the number of

wires. Due to the grid structure of the geometric model, ne is a

perfect square. We treat ne as an independent variable and assign

nw by nw = λ
√
ne where λ is the density constant. Specifically, we

use λ = 30. The dimensions of the grid are given by l × l, where

l = a(1+√ne).

2.1. Straight wire model

Initially, wires were assumed to be straight lines. Informally,

wires go from one randomly selected side of the grid at a randomly

picked location to another side with the same qualifications. Fig. 3

is a visualization on a 3 ×3 grid of electrodes (meaning nine total

electrodes).

For each iteration, we must determine whether a wire passes

through an electrode—that is, whether they are connected. While

this is normally easily accomplished visually, it quickly becomes

infeasible for large numbers of wires and electrodes. Hence, we

must derive a function that outputs TRUE if a wire passes through

an electrode and FALSE if it does not.

We must formally define how the wires are laid. This provides

a systematic approach of recreating the model. Let Q be a random

variable following the discrete uniform distribution over the set

{0, 1, 2, 3}. Pick unique q1, q2 ϵ Q . Let T be a random variable

following the continuous uniform distribution over the set [0, l].

Pick x1, y1, x2, y2ϵ T . Let P1 = (x1, y1) and P2 = (x2, y2), with q1 and

q2 corresponding to P1 and P2, respectively. Then, reassign P1 and

P2 according to Table 2. For example, let l = 4. Recall that q1 and

q2 will not be equal by our definition. Assume that we pick q1 = 1,

q2 = 3, x1 = 3.8234, y1 = 1.2818, x2 = 2.7613, and y2 = 3.3237.

Hence, we have P1 = (3.8234, 1.2818) and P2 = (2.7613, 3.3237).

Following the reassignment table, we adjust the two points to P1

= (0, 1.2818) and P2 = (4, 3.3237).

Define the straight wire ws as the line through P1 and P2. For

an electrode centered at Pe = (xe, ye) on the grid, the minimum
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Fig. 3. Straight wire model with ne = 9 electrodes (red) with radii re = 0.4 and

separation a = 1 and nw = λ
√
ne = 30

√
9 = 90wires (blue). (For interpretation of

the references to color in this figure legend, the reader is referred to theweb version

of this article.)

Table 2

Endpoint reassignment values.

Q Reassignment value

0 y = 0

1 x = 0

2 y = l

3 x = l

distance Ds between ws and Pe is given by

Ds =
|xe(y2 − y1)− ye(x2 − x1)+ x2y1 − y2x1|

√

(x2 − x1)2 + (y2 − y1)2
. (5)

See Spain (2007) for a simple proof of (5). Then, for electrode radius
re, we simply return the Boolean value D_s <= r_e.

2.2. Arc wire model

Fig. 2 clearly shows that the actual wires are far from perfectly
linear. So, we then assumed that wire paths resemble circular arcs
with random curvature. Fig. 4 shows a corresponding visualization
on a 3×3 grid of electrodes.

Again, we seek an efficient way to test whether a wire passes
through an electrode. We must alter the method presented in the
previous subsection. First, we must find the minimum distance Dc

between a point P = (x0, y0) and a circle with radius R defined by
x2 + y2 = R2. To do this, draw a line from the origin to P . The line
intersects the circle at the point closest to P . Hence, the minimum
distance between the circle and P is given by the difference of the
radius of the circle and the distance between P from the origin.

Symbolically, we have Dc = |
√

x20 + y20 − R|. More generally, if the

circle is centered at (h, k), we have

D =
⏐

⏐

√

(x0 − h)2 + (y0 − k)2 − R
⏐

⏐ (6)

We pick points P1= (x1, y1) and P2= (x2, y2) according to the algo-
rithm described in Section 2.1. However, q1 and q2 are not unique.
This allows an arc to start and end on the same grid side, which
occurs frequently in the nanowire fabrication process. Thiswas not

Fig. 4. Arc wire model with ne = 9 electrodes (red) with radii re = 0.4 and

separation a = 1 and nw = λ
√
ne = 30

√
9 = 90 wires (blue). Note the increased

realism.

possible for the straightwiremodel. Their Euclidean distance in the

two-dimensional space is d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)
2.

Let A be a continuous random variable on [1/2 * d(P1, P2), U],

where U is an arbitrary upper limit. Define rw as the radius of the

wire’s arc such that rw ϵ A. As U approaches infinity, the model

tends to the former model. For the calculations presented, U =
3d(P1, P2) was used. Suppose an arc-shape wire wa is defined by

the arc through P1 and P2 with radius rw and center Pc = (xc, yc).

Note that Pc is found from P1, P2, and rw by writing (x1 − xc)
2 +

(y1 − yc)
2 = rw

2 and (x2 − xc)
2 + (y2 − yc)

2= rw
2 and solving for

xc and yc . This will give

xc = x1 + xa ±
bya

a
, (7)

yc = y1 + ya ∓
bxa

a
, (8)

where xa = 1/2 * (x2 − x1), ya = 1/2 * (y2 − y1), a =
√

xa2 + ya
2,

and b =
√

rw2 − a2. This clearly produces two possible centers.

Since both fit the aforementioned criteria for the model, we may

randomly pick one. We do not use the other potential arc as it

would give rise to an unwanted correlation and lessen the overall

stochasticity.

Suppose an electrode is centered at Pe = (xe, ye). Let L be the

line formed by points Pc and Pe. Let θs and θf be the starting and

finishing angles of the arc with respect to the x-axis, respectively.

Let θ be the angle formed by L with respect to the x-axis. The

minimum distance Da between wa and Pe is given by

Da =
{

|d (Pc, Pe)− rw| θs ≤ θ ≤ θf
min(d (Pc, P1) , d (Pc, P2)) otherwise

(9)

This is easily seen when breaking down the cases. If L bisects the

arc, then we simply apply (6). If it does not, then the only possible

points are the arc’s endpoints. We choose the one that gives the

smaller distance. The polar representation of a circle formed by

fully extending its arc is given by (xc + rwcos(ψ), yc + rw sin(ψ)),

whereψ ϵ RRR. To find θs, temporarily consider θs,x ϵ [0, π ) and θs,y ϵ
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Table 3

Angle values.

θs,x ϵ θs,y ϵ θs =
[0, π /2) [0, π /2) θs,x
[0, π /2) [−π /2, 0) 2π + θs,y
[π /2, π ) [0, π /2) θs,x
[π /2, π ) [−π /2, 0) π - θs,y

Fig. 5. Pink noise wire model with ne = 9 electrodes (red) with radii re = 0.4 and

separation a = 1 and nw = λ
√
ne = 30

√
9 = 90 wires (blue). Note that the wires

in this model are longer than the previous two. This makes it appear that there are

more wires in this model than the previous two, but that is not the case.

[−π /2, π /2). Using the circle’s polar form, we have

x1 = xc + rwcos(θs,x), (10)

y1 = yc + rwsin(θs,y). (11)

Solving for θs,x and θs,y yields

θs,x = arccos

(

x1 − xc

rw

)

, (12)

θs,y = arccos

(

y1 − yc

rw

)

. (13)

Use Table 3 to find the exact value of θs. Repeat this process to find
θf . If θs > θf , swap the two values. To find θ , use the polar form
(xc+d(Pc, Pe)cos(ψ), yc+d(Pc, Pe)sin(ψ)) and follow the previous
approach. Finally, for electrode radius re, we return the Boolean
value D_a <= r_e.

2.3. Pink noise model

Last, we generated 100 points using a pink noise, or 1/f noise,
simulation algorithm. This ensures that the value of a random
variable is correlated with random variables near it (Zanella,
2006). Fig. 5 presents a visualization on a 3× 3 grid of electrodes.
We use the method presented below to simulate pink noise. It is
a simplification of the methods presented in Timmer and Koenig
(1995). Strictly speaking, thismethod approximates pink noise, but
for large sample sizes, this point is negligible.

First, we denote n as the number of points and T as the length
of the sequence. Specifically, n = T = 100 was used. This provides

the spectral space for wave numbers −kmax to kmax, where kmax =
n, and produces frequencies f k = kT /(2π ). Define the magnitude
of the spectral coefficients as Ck = 1/|f k| for non-zero values of k
and C0 = 0. Each spectral coefficient is given a random phase. We
use symmetry in the exponents to prevent complex results. That
is, the sum of the imaginary components of Ck and C−k is zero. Let
Φ be a random variable with a continuous uniform distribution on
[0, 2π ). For k = 1, . . . , kmax, let ϕk ϵ Φ . Set Ck = Ck exp{iϕk} and
C−k = C−k exp{− i ϕk}. Then, find the inverse Fourier transform of
the spectral coefficients, Y = {y1, y2, . . . , y1+2kmax}= F

−1({Ck}).
We will leverage this method to simulate the wires. We scale

Y so that the minimum value is 0 and the maximum value is l. For
index i, update each value element-wise using

yi ←
l(yi −min{Y })

max{Y } −min{Y }
. (14)

Let R be a random variable following a continuous uniform distri-
bution on [0,1]. For each yi ϵ Y , pick r i ϵ R and update each value by
yi← yir i

3. Initially, multiplying yi by r i was used, but r i
3 produced

results more visually similar to the actual nanowires. Next, we
randomly shifted all the points vertically such that all points still
lay in the grid. Let V be a random variable on the continuous
uniformdistribution on [−min{Y }, l−max{Y }]. For each yi ϵ Y , pick
vi ϵ V and update each value by yi← yi + vi. Let X = {x1, x2, . . . ,
x1+2kmax}= {1, 2, . . . , 1+ 2kmax}. Scale X to [0, l] following (14). Let C
= {(x1, y1), (x2, y2), . . . , (x1+2kmax, y1+2kmax)}. The set of coordinates
were then fed through a Gaussian kernel smoother using SciPy’s
Gaussian filter function (Van derWalt, Colbert, & Varoquaux, 2011),
and a quintic polynomial was fitted on top. This last step makes
the upcoming distance formula much more derivable. The choice
of a quintic polynomial wasmade strictly from a visual standpoint.
Any degree lower did not accurately capture the random paths the
wires take, and any degree higher presented toomuch chaos in the
wires’ movements. We then multiply our function by a rotation
matrix to rotate it around an arbitrary point by a random θ . We
chose to rotate about (l/2, l/2).

More formally, let x ϵRRR and f (x) be a polynomial of degree n. Let
W be a random variable with a continuous uniform distribution
on [0, 2π ). Rotating f (x) about point (xr , yr ) by θ ϵ W can be
represented as
[

x′

y′

]

=
[

cos θ − sin θ
sin θ cos θ

][

x− xr
y− yr

]

+
[

xr
yr

]

=
[

(x− xr) cos θ − (f (x)− yr) sin θ + xr
(x− xr) cos θ + (f (x)− yr) sin θ + yr

]

.

(15)

The derivation of the rotation matrix can be found in Familton
(2015). We will now derive a general equation for the minimum
distance between a point and a polynomial. We define D as the
distance between the point and polynomial f . We have D =
√

(x− x0)2 + (f (x)− y0)
2. We seek the minimum of D. Accord-

ingly, we have dD/dx = 1/2 * (2(x − x0) + 2 f ′(x)(f (x) − y0))((x −
x0)

2 + (f (x) − y0)
2)(−1/2). The critical points are given by solving

for the roots of the equation 0= x− x0 + f ′(x)(f (x)− y0). Plugging
these points into D and finding the minimum output value will
provide the minimum distance, Dp.

We seek the minimum distance from the parametric equation
given above to center of the electrode Pe= (xe, ye). Per the previous
derivation, this amounts to finding the roots of an equation of the
form

g(x) = x+ α + f ′(x)(f (x)+ β), (16)

where function g is a polynomial and α = (xr − xe)cos(θ ) + (yr −
ye)sin(θ )− xr and β = (yr − ye)cos(θ )+ (xr − xe)sin(θ )− yr .

We then solve for the real roots using a computer algebra
package, such as NumPy’s Polynomial module (Van der Walt et
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Fig. 6. (a) We present a simple straight wire example with ne = 4. We pick a small number of wires, nw = 2, strictly for demonstration purposes. The wire colors and

electrode numbers are also used for demonstration purposes. (b) This is corresponding bipartite representation of (a). Electrodes 1 and 4 map to the green wire as they pass

over it in (a), and electrodes 2 and 4 map to the blue wire as they pass over it in (a).

al., 2011). This gives several coordinates.We plug these values into
(15) to find the corresponding rotated points. Then, we plug these
candidate points into the standard distance formula and call the
minimum value Dp. Just as we did above, we return D_p <= r_e.

3. Analysis

3.1. Bipartite graphs

As previously mentioned, the geometric model can be rep-
resented as a bipartite graph, which allows us to calculate
various graph metrics. We will use the structure displayed in
Figs. 6 and 7 as an example. Doing so enables us to write the graph
as an adjacency matrix A. We have

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 1 1
0 1 0 1 0 0
1 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (17)

Note that, because our graph is bipartite, we can construct the
adjacency matrix from its sub-matrix on rows {1, 2, . . . , ne} and
columns {ne + 1, . . . , ne + nw}. This is because none of the vertices
in the two groups are interconnected and the graph is undirected,
implying symmetry. For this example, the sub-matrix ω is

ω =

⎡

⎢

⎣

0 1
1 0
0 0
1 1

⎤

⎥

⎦
. (18)

The values in rows {1, 2, . . . , ne} and columns {1, 2, . . . , ne} equal 0,
as do the values in rows {ne + 1, . . . , ne + nw} and columns {ne + 1,
. . . , ne + nw}. The values in rows {ne + 1, . . . , ne+ nw} and columns {1,
2, . . . , ne} equal ω

T . This is due to the unique structure of bipartite
graphs. Hence, A can be coded solely by ω. This may be fruitful for
memory storage purposes.

Representing our graph as an adjacency matrix allows us to
apply a barrage of graph algorithms.Wewill use algorithms for the
shortest path length and square clustering coefficient in the next
section.

Fig. 7. This is a conventional small-world network; the nodes are not densely

connected but each node can be reached in a small number of steps.

3.2. Small-world networks

With the networkmodel in place, it is interesting to calculate its
average clustering coefficient and average shortest path length to
gain a better understanding of its overall structurewhen compared
to a random graph. This can be quantified by the small-world co-
efficient. In a small-world network, most nodes are not neighbors
but can be traveled to in a small number of steps (Newman, 2010).
Fig. 7, which appears to be markedly different from the geometric
model, shows a typical small-world network. We will investigate
the geometric model for small-worldness properties.

For our geometric model, let L and C be the average shortest
path length between any two nodes and our square clustering
coefficient, respectively. For a randomly generated bipartite graph
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Fig. 8. For the straight wire model in Section 2.1, using Eq. (20), we see that small-

worldness is achieved for every value tested. As the number of electrodes increases,

the small-world coefficient increases logarithmically.

with the same number of electrodes, wires, and connections, let Lr
and C r be the average shortest path length and square clustering
coefficient, respectively. The conventional clustering coefficient is
not applicable to bipartite networks; hence, the square clustering
coefficient was used. Specifically, for a given node v, we have

C4 (v) =
∑kv

u=1
∑kv

w=u+1 qv(u, w)
∑kv

u=1
∑kv

w=u+1[av (u, w)+ qv(u, w)]
, (19)

where qv(u, w) is the number of common neighbors between u

and w other than v, and av(u, w) = (ku − (1 + qv(u, w) + θuv))
(kv− (1+qv(u, w)+ θuv)), where θuw = 1 if u andw are connected
and 0 otherwise (Lind, González, & Herrmann, 2005).

We sought the average shortest path between electrodes and
the clustering coefficient of electrodes. Hence, our focus was only
on rows {1, 2, . . . , ne} and columns {1, 2, . . . , ne} in the adjacency
matrix. There are many shortest path algorithms available (Mad-
kour, Aref, Rehman, Rahman, & Basalamah, 2017). Since our graph
is sparse and unweighted, the most economical choice is to use
breadth-first search over the ne electrodes for E connections,which
will provide time complexity O (ne(ne+nw+E ))≈ O (ne(ne+nw))
≈ O (ne

2) (Cormen, Leiserson, Rivest, & Stein, 2001). The average
of the lengths is taken, and this gives L. Similarly, the square
clustering coefficient is taken over v = {1, 2, . . . , ne} and then
averaged. This gives C .

The small-worldness coefficient is defined as

σ =
C
Cr

L
Lr

. (20)

If σ >1, the network is small-world (Humpries & Gurney, 2008).
Typically, L ≈ Lr and C >C r . Note that it is assumed that both the
geometric model and the random model are connected. A given
geometric model is only used if it is connected, and Saltykov’s
(1995) results suggest that the random graph is connected with
extremely high probability (Saltykov, 1995).

3.3. Small-Worldness of the MN3

These results were obtained by generating the three aforemen-
tioned geometric models and calculating their small-world coeffi-
cients for varying grid size while scaling the number of wires by
nw = 30

√
ne and fixing electrode radius re and distance between

electrodes a (see Figs. 8–10).
Notice that all of these models follow the same basic loga-

rithmic curve. This is expected. We clearly have an increase in

Fig. 9. For the arc wire model in Section 2.2, small-worldness is achieved for every

value tested with the exception of the smallest case, ne = 9. The logarithmic

behavior also holds for this model.

Fig. 10. For the pink wire model in Section 2.3, small-worldness is achieved for

all values except ne = 3, 4, and 10. There is a considerable increase in noise in this

model, and that is expectedwith the increase in degrees of freedom. The logarithmic

behavior persists.

wire length, as the models get more complex. This will result
in a shorter average shortest path length as more connections
are added. However, this will cause the clustering coefficient to
decrease as each wire affects more regions. This is why all the
models follow the same basic curve. However, their actual small-
worldness coefficients clearly differ. The straight wire model and
arc wire model roughly possess the same amount of noise, while
the pink noise model is slightly more chaotic.

3.4. Diverse degree distribution by varying radii

Our final claim is that the degree distribution can be manip-
ulated by altering the radii of the electrodes. To test this, we
arbitrarily fix ne and a.We find nw by ne. For varying radii, we count
the number of wires passing through an arbitrary electrode.

Fig. 11 clearly shows an increasing linear relationship between
an electrode’s radius and the number of wires passing through the
electrode. This indicates that the degree distribution is a control-
lable parameter.

4. Conclusion

We have identified several important characteristics concern-
ing the connection topology of a novel memristive neuromorphic
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Fig. 11. The degree of an electrode may be manipulated by adjusting its radius.

Here, we arbitrarily fix ne = 25, a = 5, and nw = λ
√
ne = 30

√
25 = 150. For each

radius in the set {0.01, 0.02, . . . , 5.0}, we count the number of wires passing through

the center electrode.

architecture, the MN3. First, we have shown that the neuron den-
sity possible with an architecture based on the MN3 is several
orders of magnitude higher than current state-of-the-art neuro-
morphic devices, with synapse densities approaching a billion
synapses per square centimeter. Next, we argue based on geomet-
ric and materials science properties that the network possesses
an intrinsic bipartite structure between the two classes of nodes:
external electrodes and nanowire cores. Finally, we investigate the
clustering coefficient and mean shortest path length of a set of
geometric models of the MN3 network.

We determine that MN3 networks display small-world char-
acteristics, with a mean shortest path that scales logarithmically
in the size of the network. While the small-world coefficient σ
also scales logarithmically, we find that this is due to a logarithmic
increase in the clustering coefficient of the network. This could be
improved, for example, by adding nearest-neighbor connections in
the CMOS layer. The ability to control the degree distribution of
the nodes in the network allows for the construction of scale-free
networks.
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