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Development requires precise cell positioning and tissue

organization to generate functional organs and viable

organisms. Plant development depends on precisely oriented

cell divisions, which are typically classified as either

asymmetric or symmetric. Asymmetric (formative) cell divisions

give rise to cells with two distinct fates; resulting daughter cells

often have different sizes or shapes. Symmetric (proliferative)

cell divisions give rise to two identical daughter cells. The

orientation of the division plane in both symmetric and

asymmetric cell divisions is tightly controlled by a combination

of cues both intrinsic, occurring within the cell; and extrinsic,

originating outside the cell.
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There are many inputs into plant cell divisions, for recent

reviews of hormone signaling in asymmetric division see

Pillitteri et al. (2016) [1]; for cell fate specification during

asymmetric divisions see Zhang and Dong (2018) [2],

Kajala et al. (2014) [3], Van Norman (2016) [4], Hepworth

et al. (2018) [5], for an overview of symmetric division

plane orientation see Rasmussen and Bellinger (2018) [6],

and plant cytokinesis see Smertenko et al. (2017) [7] and

Smertenko (2018) [8]. Division plane orientation is estab-

lished before mitosis, and must be maintained throughout

mitosis and cytokinesis. The preprophase band (PPB), a

microtubule and microfilament structure, marks the
www.sciencedirect.com 
division plane before mitosis, although intrinsic and

extrinsic cues including polarized proteins, secreted

ligands and cognate receptors, as well as mechanical

forces all influence the choice of division plane in inter-

phase. This review focuses on cues that influence division

plane orientation in both symmetric and asymmetric cell

division and highlights synergistic genetic interactions

that reveal multiple interconnected pathways.

Cell-cycle regulators as intrinsic factors in cell
division orientation (the right place at the right
time)
Once a cell achieves a minimum size [9], receives a

specific developmental cue, and/or reaches a critical

cell-cycle checkpoint [10], the cell divides. Cell-cycle

regulators such as cyclins, cyclin-dependent kinases,

Retinoma Blastoma Related (RBR) and E2F regulate

the timing of the cell cycle [11,12]. Coordinating cell-

cycle timing with polarity and positional cues is necessary

to establish division plane orientation. Cell fate regulators

and cell-cycle regulators directly interact to balance the

timing of fate acquisition and division. For example, in

the root ground tissue, transcription of a specific cell cycle

regulator, CYCLIND6;1 is directly activated by cell fate-

determining transcription factors [13]. Reciprocally, RBR,

which suppresses cell cycle progression from G1 to S,

physically interacts with transcriptional fate regulators

and regulates cell fate independent of cell cycle

[14,15]. Cell-cycle regulation and cell fate are often

intimately linked [16,17].

Division plane establishment is often thought to occur

when the PPB forms in G2. However, it is likely that

earlier cues feed into the determination of the division

plane. Accelerating the G1/S transition can cause or

enhance division plane defects, suggesting that a division

plane orienting cue is established or perceived in G1.

Overexpression of CYCLIN D isoforms, which promote

G1/S progression, results in increased cell division along

the short plane during stomatal development [18��,19��].
This increase in cell division is distinct from fama or

fourlips mutants, where multiple divisions occur along the

long plane [20,21] (Figure 3b). Further evidence suggest-

ing cues perceived in G1 are important for division plane

orientation comes from analysis of tonneau1 (ton1a)
cyclind2;1 mutants [22�]. TON1a, TON1b, FASS/

TON2/DCD1/ADD1 are part of a protein complex that

organize interphase microtubules and PPB formation in
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G2 [23]. The single ton1a mutant shows misoriented

symmetric division planes [24]. This weak mutant can

be partially rescued by slowing the G1 to S transition, by

generating a ton1a cycd2;1 double mutant or by chemically

blocking DNA synthesis [22�]. Conversely, overexpres-

sing CYCD2;1 speeds up cell-cycle progression and results

in a more severe division plane defect in ton1a. Together

these results suggest that cues perceived in G1, before

PPB formation in G2, influence division plane orientation

(Figure 1).

Early division plane positioning
Another critical G1 activity is nuclear movement towards

the future division site. Nuclear movement in G1 is

driven by actin and actin-binding motor proteins (myo-

sins) and their interactions with nuclear envelope pro-

teins [25–30]. Mechanical stimulation [31] and light [32]

also promote nuclear movement. A minus-end directed

kinesin is required for both nuclear positioning and

timely cell-cycle progression [33,34�]. While nuclear

movement is an obvious PPB-independent factor impor-

tant for division-plane orientation (Figure 1), other as yet
Figure 1
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unknown mechanisms acting in G1 or S also likely

influence the final position of the division plane. Tying

extrinsic and intrinsic cues directly to these G1 activities

is critical for understanding division plane choice.

In many land plants, the PPB is formed in late G2 and

demarcates the precise location where the future cell wall

will meet the existing cell walls after cytokinesis (Figure 1).

The cell membrane underlying the PPB or cortical division

zone (CDZ) [7], accumulates endocytotic vesicles [35] and

many specific proteins, as recently reviewed [6,36,37]. A

complex composed of a protein phosphatase type 2A

(PP2A), centrin-like proteins, and microtubule-binding

proteins are required for PPB formation and organization

of the interphase microtubule array [23,24,38–43]. Whether

fully developed PPBs are required for division plane spec-

ification is under debate due to two mutants that do not

make obvious PPBs, but grow well and have relatively

minor division plane defects (Zhang et al. [24]; Schaefer

et al. [38]). In addition, there are examples of properly

oriented, but PPB-independent divisions. During pollen

mitosis I, a PPB-independent asymmetric cell division
t
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rized growth may promote specific division plane orientation. Nuclear

ion plane in asymmetric (row 1) and symmetric (row 2) divisions. Local

4]. Symmetric cell divisions often occur along one of the shortest

g axis of the cell (row 3), such as observed in symmetric division of
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Figure 2
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Division plane defects that occur after the PPB disassembles result in

placement of the new cell wall outside of the PPB-specified division

site.

The PPB coalesces in G2 around the nucleus (left panel). The division

site (demarcated with arrowheads throughout mitosis until the cell

plate fuses with the mother cell) is labeled by proteins that accumulate

before PPB breakdown, or later in mitosis [43,98,99,100�,101,103,105–
107,118]. In mutants with division plane defects, the phragmoplast

fails to return to the division site, promoting development of the new

cell wall in a different location than the division site (see phragmoplast

and cell wall panels).

Box 1 After preprophase band disassembly, cell division plane

orientation is maintained to position the new cell wall at the

specified division site

In some division plane orientation mutants, the new cell wall forms

outside the PPB-specified division site, which is described as

defective phragmoplast guidance or division plane maintenance

[98,99,100�,101,102�], (Figure 2). Some of the corresponding pro-

teins localize to the future division site during PPB formation and are

maintained at that position even after PPB disassembly

[43,98,99,100�,101,103–107]. Other proteins with yet unknown

functions in division plane orientation also localize to the future

division site after PPB disassembly [103,106,107]. Two related

kinesins, PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and

POK2 localize to the division site, interact with other proteins

required for division plane maintenance, and are themselves required

for division plane maintenance [98,99,104,107,108]. POK2 addition-

ally localizes to the phragmoplast midzone and interacts with several

MAP65 microtubule-associated proteins [109�]. POK1 interacts with

two closely related putative RHO-OF-PLANTS small monomeric

GTPase Activating Proteins (RHO-GAPs) that promote proper divi-

sion plane orientation [98] and with the microtubule-binding protein

TANGLED1 (TAN1) [99,104]. In maize, tan1 mutants have significant

division plane defects and mitotic progression delays [100�,110],
which results in growth defects. Although the tan1 mutant in A.
thaliana has only minor defects division plane orientation [99],

combining tan1 and a mutant with no detectable abnormal pheno-

type, auxin-induced-in-root-cultures 9 (air9) [106], causes a syn-

thetic division plane orientation and root growth defects [102�]. Thus,

the function of TAN1 and AIR9, two unrelated microtubule-binding

proteins, in division plane orientation, suggests multiple pathways

converge on this process in A. thaliana.
forms the small generative and larger vegetative cells. Two

related proteins, SIDECAR POLLEN/LATERAL

ORGAN BOUNDARY 27 (SCP/LBD27) [44] and

LBD10 [45] are required for pollen development and for

maintaining division asymmetry. PPB-independent divi-

sion plane orientation requires microtubulestructures orga-

nized by gamma–tubulin [46] and actin–microtubule inter-

actions mediated by MYOSINVIII [47] in moss. Thus, the

PPB, while important for orienting many cell divisions, is

not required in the presence of other orienting cues. After

PPB disassembly, division plane orientation is maintained

until cytokinesis completes to properly position the new

cell wall (Box 1).

Intrinsic cues informing the timing and
orientation of plant cell division
Intrinsic cues originate within the cell. Proteins can

respond to or act as intrinsic cues. Two dynamically

localized proteins, Breaking Asymmetry in the Stomatal

Lineage (BASL) [48] and POLAR [49], exhibit polar

localization and have roles in the oriented cell divisions

that give rise to the stomata in Arabidopsis thaliana. After

asymmetric division, differential inheritance of BASL

and associated MAPK activity in one daughter cell

reduces expression of a key stomatal lineage transcription

factor, thereby promoting pavement cell fate (Figure 3a)

[50,51]. This suggests that epidermal cell fate may be

determined by inheritance of repressive factors; whether

this type of mechanistic control over daughter cell fate

can be applied to other plant asymmetric cell divisions

remains unknown.

Aurora kinases have conserved eukaryotic functions in

mitosis and appear to function as intrinsic cues. In plants,
www.sciencedirect.com 
a-AURORA kinases are necessary for orientation of many

asymmetric cell divisions, including those that occur in

lateral root initiation, stomatal development, and the root

stem cell niche [52]. Although most AURORA kinase

targets remain unknown, AURORA kinases phosphory-

late MICROTUBULE-ASSOCIATED-PROTEIN 65-1

(MAP65-1) which promotes cell-cycle progression [53].

Puzzlingly, the AUR1-GFP fusion is not asymmetrically

localized. Instead, it co-localizes with MTs around the

nuclear envelope and spindle, but does not strongly

accumulate on the PPB [52,53]. Cell division orientation

and AURORA kinase function may be linked by phos-

phorylation of microtubule-associated proteins that alter

MT organization, but it is not yet clear how AURORA

kinases promote orientation of specific asymmetric

divisions.

Protein degradation and modification has recently

emerged as another type of intrinsic cue necessary for

plant asymmetric cell divisions. In maize, a Meprin-

Associated-Traf-Homolog Bric-à-Brac/Tramtrack/Broad

complex (MATH-BTB) protein, MAB1, is essential for

chromosome segregation and asymmetric cell division

positioning in germ-line and zygotes by a yet unknown

mechanism [54]. MAB1 interacts with an E3 ubiquitin

ligase and likely provides substrate specificity. An E3

ubiquitin ligase, PLANT U-BOX4 (PUB4) [55], has a role

in the timing and orientation of asymmetric cell divisions
Current Opinion in Plant Biology 2019, 47:47–55
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Figure 3
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Examples of oriented asymmetric cell divisions in A. thaliana development and select mutants with defects in those divisions.

(a) In stomatal lineage precursors, BASL is initially nuclear localized, but upon MAPK-mediated phosphorylation BASL becomes polarly localized

[50]. Asymmetric cell division of the stomatal lineage precursor is oriented away from membrane-associated BASL, producing a smaller

meristemoid cell that can divide iteratively or produce a guard mother cell that ultimately forms guard cells [48]. The larger cell that inherits

membrane-associated BASL becomes a pavement cell. (b) In wild-type, stomatal pores form from a single, oriented symmetric division of a guard

mother cell to produce a guard cell pair. In plants overexpressing specific CYCLIN D (CYCD) isoforms, guard cells undergo additional cell divisions

along the shortest path resulting in distorted stomata [18��,19��]. In contrast, fama mutant guard mother cells undergo iterative cell divisions along

the longest path and guard cells are not formed [20]. Interestingly, when CYCD isoforms are overexpressed in a fama mutant background,

divisions also occur along the shortest path. (c) Embryo development begins with an oriented, asymmetric zygotic division, which results in

specification of the apical (shootward) and basal (rootward) cell fates. The dominant negative zar1-1 mutation results in a longer zygote that

divides more symmetrically, failure to specify apical and basal cell fate as signified by altered expression of WOX transcription factors, and,

ultimately, embryo arrest. In contrast, loss-of-function zar1-2 mutants have minor defects in the zygotic division and in specification of embryonic

axes, however, these defects are non-lethal and embryos typically develop normally [80]. (d) The ground tissue cell types are formed during a

series of oriented asymmetric cell divisions in roots. The cortex/endodermis initial daughter (CEID) cell undergoes a periclinal cell division to

produce endodermis towards the inside and cortex towards the outside. In pub4 mutants, delayed periclinal division of the CEID and later the

endodermis results in apparent initial cell proliferation [56].
in A. thaliana roots [56], (Figure 3d). Additionally, the

calcium-sensing calpain protease DEFECTIVE KER-

NEL1 (DEK1) plays a critical role in division plane

orientation in multiple land-plant lineages, including

cells lacking PPBs [57,58] potentially by activating a

mechanosensitive calcium channel [59]. Division plane

defects may be influenced by alterations in dek1 mutant

cell wall composition [60]. These examples provide evi-

dence that degradation of specific, but yet unknown,
Current Opinion in Plant Biology 2019, 47:47–55 
targets is important for modulating the precise timing

and orientation of various plant cell divisions.

DiSUMO is an unusual form of a ubiquitin-like modifier

that is required for cell cycle progression across multiple

kingdoms [61]. Knocking down DiSUMO results in

female gametophyte lethality where nuclei in the syn-

cytium are not properly positioned or separated and in

hemizygous zygotes the first asymmetric division
www.sciencedirect.com
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undergoes karyokinesis, but not cytokinesis [61,62].

Interestingly, DiSUMO (but not SUMO) was often

polarized in interphase cells and then later localizing

between chromosomes and the cell plate during divi-

sion. DiSUMO is conjugated with cell regulators, cell

plate assembly regulators, and RNA stability factors. A

specific role for DiSUMO in division plane orientation is

masked by severity of the phenotype, but polarized

localization during interphase invites speculation about

its potential role in integrating cell cycle timing and

intrinsic division plane orienting cues [62]. In summary,

unique intrinsic mechanisms-based on protein degrada-

tion or modification may orient plant cell divisions, yet

these modifications  may also amplify or ‘lock-in’ a

program initiated by an extrinsic cue.

Extrinsic mechanical cues informing the
orientation of plant cell division
Extrinsic cues alter the probabilities of division plane

orientation in symmetric divisions and specify the loca-

tion of asymmetric divisions. Extrinsic cues that alter the

division plane are potentially based on altered local or

tissue-level mechanical stresses. Mechanical stresses can

be critical for proper morphogenesis, such as during

lateral root development [63]. What factors perceive

mechanical stresses remain unknown, although dynamic

microtubule responses [64], nuclear positioning [30], or a

combination may be sufficient. Microtubules respond

dynamically to local mechanical stimuli by aligning par-

allel to maximal stress after wounding [65], application of

external pressure [66], plasmolysis [67], or in specific

developmental contexts [68,69]. On a subcellular level,

PPBs shift away from adjacent neighboring cell walls or

cell division structures [70,71] (Figure 1), potentially by

responding to local differences in cell wall stresses.

Mechanosensors also likely play a role in responding to

mechanical cues [59,72–74]; in at least two cases, intact

microtubules are irrelevant for protein polarization in

response to mechanical cues [75,76��]. During stomatal

development, the intrinsic polarity protein BREVIS

RADIX-LIKE2 (BRXL2) responds to local and tissue-

level mechanical stresses, such as ablation, by localizing

towards the ablation site, even without functional micro-

tubule arrays. BRXL2 localization predicts later tissue-

level growth patterns [76��] possibly reflecting the cell

expansion function of its binding partner, BASL [48].

Despite population-level mechanical response, local

extrinsic cues override mechanical cues because proper

stomatal spacing still occurs, as reviewed [77].

Extrinsic peptide cues perceived by receptors
Another essential extrinsic cue in division plane orienta-

tion uses signaling modules composed of a diffusible

signal, often a peptide, generated by one cell (or cell-

type) that is recognized by the extracellular domain of

leucine-rich repeat receptor-like kinases (LRR-RLKs) in

adjacent cells. Perception is followed by activation of
www.sciencedirect.com 
downstream targets. Despite apparent simplicity in pep-

tide-ligand modules, mounting evidence suggests com-

plex genetic and physical interactions within LRR-RLK

mediated signaling pathways, raising questions about how

specificity is achieved [78–80].

Here, we briefly discuss several developmentally impor-

tant asymmetric cell divisions where extrinsic cues play a

prominent role. During vascular development, the pro-

cambium undergoes periclinal divisions to produce xylem

and phloem. These specific periclinal divisions are mod-

ulated by a phloem-produced peptide [81] that directly

binds the LRR-RLK PHLOEM INTERCALATED

WITH XYLEM (PXY) [82] expressed in procambium

cells [83]. Interactions between PXY and other LRR-

RLKs suggest multiple inputs [84–86]. In A. thaliana
embryo development, a cysteine-rich peptide, EMBRYO

SURROUNDING FACTOR 1 (ESF1), is expressed in

embryo-surrounding cells and positively regulates sus-

pensor elongation and subsequent suspensor cell divi-

sions [87]. How the embryo perceives ESF1 is unknown,

but is upstream of YODA, a Mitogen-activated protein

kinase kinase kinase (MAPKKK) required for asymmetric

zygote divisions [88], and has a synergistic phenotype

with another LRR-RLK mutant short suspensor (ssp)
mutants [87]. A recently identified LRR-RLK,

ZYGOTIC ARREST 1 (ZAR1), may perceive ESF1,

however broad ZAR1 expression and unknown protein

localization make it unclear how this putative receptor-

ligand pair would specifically modulate zygotic cell divi-

sions [80]. Mutations in genes encoding the peptide or

ligand components of either of these modules result in

altered patterns of cell division and altered cell fate in the

vasculature or embryo (Figure 3c), respectively.

An elegant, but incomplete, pathway promotes asymmet-

ric divisions of maize subsidiary cells. BRICK (BRK)

proteins regulate branched actin nucleation and are the

earliest required proteins for polarization of the subsidiary

cells before asymmetric division. BRK proteins polarize

during G1, and are required for polar accumulation of the

catalytically inactive LRR-RLKs PANGLOSS2 (PAN2)

and PAN1 at the subsidiary-cell/guard-cell interface

[89�,90,91]. PAN1 activates monomeric GTPase RHO-

OF-PLANTS to promote local actin accumulation [92].

LRR-RLK polar accumulation suggests that perception

of an extrinsic cue may be important for subsidiary cell

division orientation. Subsidiary cell division mutant com-

binations have synergistic phenotypes, suggesting that,

instead of a linear pathway, several parallel or intercon-

nected pathways may converge to promote asymmetric

subsidiary cell divisions.

In an interesting twist, extrinsic control of division plane

orientation control during maize anther development was

demonstrated using the pathogenic fungus Ustilago maydis
to secrete a maize peptide. Fungus-secreted apoplastic
Current Opinion in Plant Biology 2019, 47:47–55
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ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS 1)

rescued periclinal cell divisions and cell fate specification

in the mac1 mutant, demonstrating that MAC1 has lim-

ited movement and is an extrinsic cue [93��] perceived by

a conserved LRR-RLK receptor [93��,94–96]. A similar

‘Trojan Horse’ method is employed to create a nematode

feeding site in A. thaliana: nematodes secrete a peptide

that mimics an endogenous plant peptide hijacking asym-

metric cell division pathways [97]. These results indicate

that extrinsic cues, even those supplied by different

species, can promote oriented plant cell divisions.

Final thoughts
Many mutants have potential division plane defects

(often in specific tissues or cell types), however, a mecha-

nistic understanding of the division plane defect is typi-

cally not intensively pursued. Important insight into these

mechanisms may be obtained by determining whether

the division plane defect reflects a failure to: firstly

properly promote, prevent, or time initiation of cell divi-

sion, secondly position the division plane, thirdly main-

tain division plane orientation, or fourthly properly direct

cell expansion. Advances in methods, such as live-cell

imaging of dividing and differentiating cells, will aid in

obtaining a more complete understanding of existing

mutants. In addition, although recent connections and

breakthroughs have been made, discovering how extrin-

sic and intrinsic cues are coordinated and how they

directly modulate division plane orientation machinery

is far from understood.
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