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Electric flux may be screened by pair nucleation of heavy charges, a process that has a simple

description in terms of a worldline instanton. When flux is wrapped around a small compact

spatial dimension, worldline instantons still induce flux dissipation, but the leading process does

not create real charged pairs. Instead, dissipation can be described in effective field theory as the

production of long-wavelength scalar quanta via parametric resonance. The rate is computed

semiclassically, and comments are made on the related problem of pair creation at finite temperature,

for which differing results appear in the literature. Flux dissipation and the weak gravity conjecture

together imply that the proper distance in field space a homogeneous axion field can traverse is

bounded.
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I. INTRODUCTION

Electric fields can be screened by the spontaneous

creation of electron-positron pairs [1]. In the weak, con-

stant-field limit, eE ≪ m2, the pair production rate can be

computed semiclassically in the worldline formalism.

An instanton, in this case a Euclidean circle of radius

r0 ¼ m=eE, contributes an imaginary part to the effective

action for the electromagnetic field of order e−πmr0 ≪ 1.

Cutting the circle at the moment of time-symmetry and

analytically continuing back to Minkowski space, the

classical solution describes the nucleation of the charged

pair at a separation 2r0 and their subsequent acceleration

away from each other in the background field.

In this paper I revisit Schwinger pair production in the

presence of a compact dimension, either a spatial or thermal

circle. New semiclassical phenomena of lower action arise

when the circumference of the circular dimension is less

than 2r0. The primary focus here will be on the spatial case,

which is the simpler of the two; subsequently I will

comment on the thermal case, which has been a source

of disagreement in recent literature. For spatial circles, the

lowest-action worldline instanton has winding number �1

and has positive fluctuation determinant. At low energies, it

generates a term in the effective action that carries an

Aharonov-Bohm phase. Consequently, the instanton is still

responsible for flux dissipation, proceeding through long-

wavelength parametric resonance rather than production of

heavy charged pairs.

The spatial case was previously discussed in [2]. In terms

of the instantons described here, the worldline studied in [2]

is an instanton-antiistanton event; it carries no phase and

does not contribute to parametric resonance. Pair produc-

tion at finite temperature was studied long ago in [3,4],

which did not rely on the semiclassical approximation and

showed that the thermal correction to pair production

vanishes at one loop order. In [5] it was shown that there

is a finite correction at two loop order in the low temper-

ature regime (where the thermal circle is large). Recently

the thermal case has been revisited in the semiclassical

approximation in the regime where the thermal circle is

smaller than 2r0. References [2,6] reached different

conclusions regarding the relevant semiclassical trajecto-

ries, and the problem was analyzed further in [7–9].

References [2,7,8] reach similar conclusions and in par-

ticular [7] performs a numerical study of the fluctuation

spectrum around their instantons, showing the presence of

the required negative mode. I will argue that the trajectories

considered by [6] in the thermal case are relevant to the

spatial circle, and attempt to clarify the nature of the

negative fluctuation mode around the instantons of [2,7].

In the spatial case, from the low energy point of view, the

parametric resonance process describes the fragmentation

of an axion field moving coherently with some velocity.

Imposing the weak gravity conjecture on the mass of the

charged matter, a bound is obtained on the maximum

distance the axion can travel in field space.
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II. WORLDLINE INSTANTON AMPLITUDE

We consider electrodynamics on R
4 × S

1 with circle

circumference L and a charged scalar of mass m ≫ 1=L,
and focus on the terms in the Euler-Heisenberg action

sensitive to L. Weak coupling is assumed for simplicity,

e ≪ 1, and only constant electric flux in the compact

dimension is turned on. I will also comment on the 1þ 1

dimensional case below.

Integrating out the matter field, the Euclidean effective

action is

Seff ¼ S0 − Z1 ð1Þ

where S0 is the classical action, and the trace log correction

can be expressed as a partition function of closed loops,
1

Z1 ¼ −Tr logð−D2 þm2Þ

¼
Z

∞

0

dβ

β
e−βm=2

Z

Dx e−A; ð2Þ

A¼
Z

β

0

dλ

�

1

2
mð∂λx

M∂λxMÞ− ieAM∂λx
M

�

¼
Z

β

0

dλ

�

1

2
mð∂λx

M∂λxMÞ þ eE5x
5∂λτ

�

− ieA5x
5ðλÞ

�

�

�

�

0

β

ð3Þ

Here τ ¼ it is the Euclidean time and x5 ∼ x5 þ L is the

circle coordinate. In the last line, A0 ¼ 0 gauge is taken,

and A5 ¼ A5ðτÞ with field strength E5 ¼ i∂τA5.

The path integral over x can be computed exactly for

constant E5 by expanding around classical solutions

satisfying periodic boundary conditions. The leading L-
dependent terms are obtained from solutions for which

x5ðβÞ − x5ð0Þ ¼ �L. The equations of motion are

−m∂2

λx5 þ eE5∂λτ ¼ 0

−m∂2

λτ − eE5∂λx5 ¼ 0 ð4Þ

The solutions are arcs of circles of angular size
R

dθ ¼�β=2r0. Examples are shown in Fig. 1. For angular

lengths of magnitude greater than 2π, the orbits appear as

closed circles but end at x5ðβÞ ¼ x5ð0Þ � L, indicating

winding number �1 around the fifth dimension.

The instantons are singular, but the classical action is

finite,

A0 ¼
1

4
eE5L

2 cot ðωβÞ; ω ¼ 1=2r0 ¼ eE5=2m: ð5Þ

Since the action is quadratic, the fluctuations are insensitive

to the classical solution,

AðδxÞ ¼
Z

β

0

�

1

2
mð∂λδxM∂λδx

MÞ þ eE5δx
5∂λδτ

�

: ð6Þ

The determinant is then the same as for solutions with zero

winding number,

ðdetOfreeÞ−3=2ðdetOτx5Þ−1=2 ð7Þ

with three powers of the free 1D particle partition function

ðdetOfreeÞ−1=2 → V1

ffiffiffiffiffiffiffiffi

m

2πβ

r

ð8Þ

and

detOτx5 ¼ ðdetOfreeÞ2
Y

n≠0

det

�

1 ðiωβ
πn
Þ

−ðiωβ
πn
Þ 1

�

¼ ðdetOfreeÞ2
Y

n≠0

�

1 −

�

ωβ

πn

�

2
�

¼ ðdetOfreeÞ2
�

sinðωβÞ
ωβ

�

2

: ð9Þ

The leading L-dependent contribution to Z1 is therefore

ZL
1
¼ −2V5

Z

∞

0

dβ

β

�

ωβ

sinðωβÞ

��

m

2πβ

�

5=2

× e−
1

2
mðβþωL2 cot½ωβ�Þ cosðA5LeÞ ð10Þ

with cosðA5Þ dependence arising from the boundary term in

Eq. (3) and the sum over Δx5 ¼ �L.
The contour of integration for β must be chosen to avoid

the singularities at β ¼ πn=ω. For large m the integral can

then be evaluated semiclassically. For small circles and

weak fields, ωL ¼ L=2r0 < 1, the leading stationary point

is real,

FIG. 1. Example Euclidean solutions to Eq. (4) for different

values of β (L ¼ 1, r0 ¼ 1, x5ðβÞ ¼ x5ð0Þ þ L).

1
For a textbook treatment, see [10].
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β0 ¼
1

ω
sin−1 ðωLÞ ð11Þ

and its contribution to the integral is free from ambiguities

associated with the initial choice of contour. Figure 2 shows

the instanton with β ¼ β0 taken from the family plotted in

Fig. 1. We obtain

ZL
1
=V5 ¼ −Be−

1

2
mLð

ffiffiffiffiffiffiffiffiffiffiffiffi

1−ω2L2
p

þω−1L−1 sin−1ðωLÞÞ cosðA5LeÞ

B ¼ m2ω5=2

2π2L1=2ð1 − ω2L2Þ1=4ðsin−1ðωLÞÞ5=2 : ð12Þ

In the E → 0 limit, this result must reproduce the leading

term in the Wilson line effective potential for the back-

ground A5, for which many exact (non-semiclassical)

computations exist in the literature [11–16]. Expanding

Eq. (12) for ωL ≪ 1 we obtain

ZL
1
=V5 ¼ −

m2

2π2L3
e−mLð1−1

4
L2ω2þOðω4L4ÞÞ

×

�

1þ 1

4
L2ω2 þOðω4L4Þ

�

cosðA5LeÞ: ð13Þ

For ω ¼ 0, Eq. (13) coincides with the leading term in the

effective potential onR4 × S1 generated by a heavy complex

scalar field of charge one, VðA5Þ¼− m2

2π2L3e
−mLcosðA5LeÞ

for mL ≫ 1. Turning on a finite background electric field

reduces the exponential suppression of the amplitude. It

should also be possible to obtain a generalization of Eq. (12)

by non-semiclassical methods. For example, in [17],

Diakonov andOswald compute the contribution of massless

charged fermions to the effective action at finite temperature

allowing for background electric and magnetic fields. The

massless limit is complementary to the semiclassical limit of

largem, and it would be of interest to have a result valid in all

regimes, although we do not pursue this calculation fur-

ther here.

Furthermore, for ωL < 1, the instanton contribution is

real: the leading semiclassical effect does not directly

describe pair production or other decay modes for the

flux. It describes a virtual process before and after which

the flux has the same value. Nonetheless, the amplitude is

connected with a rather different type of flux-reducing

process occurring in the long-distance theory, when the

instanton amplitude is suitably interpreted as a Wilsonian

effective action.

In addition to β0, Eq. (13) exhibits infinitely many saddle

points of higher action. The second saddle above the one

shown in Fig. 2 is given in Fig. 3. This instanton (and all

subsequent even-numbered saddles) has a negative fluc-

tuation eigenvalue corresponding to fluctuations in the β

direction, yielding an imaginary contribution to the effec-

tive action. The real part of the action is of order πmr0 for
small ωL, associated with real pair production.

III. Seff AND PARAMETRIC RESONANCE

It is convenient to work at distances larger than L, where
Seff becomes a Wilsonian action for the four-dimensional

gauge field and the periodic scalar zero mode of A5,

obtained by the substitutions

A5Le → ϕ=fðf ¼ 1=eLÞ E5 → E5

ϕ → E5tþ φðx; tÞ: ð14Þ

FIG. 2. Instanton with β ¼ β0. Parameters the same as in Fig. 1. Right: anti-instanton.

FIG. 3. Instanton with β ¼ β1, the saddle point of the second-

lowest action in Eq. (13) and the first saddle with negative

fluctuations. Parameters the same as in Fig. 1.
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Here E5 is a constant background velocity for ϕ, and ϕ is

referred to as an axion. The meaning of the second line of

Eq. (14) is that E5 dependence already present in Eq. (13)

through ω remains simply E5, without introducing any _φ

terms. This truncation is necessary for the consistency of

the derivative expansion. Furthermore, we will see shortly

that we are interested in Fourier modes of φ with momenta

of order eE5L. Consistently retaining the background E5 ¼
_A5 without computing ∂μφ terms in the effective action

requires eE5Lφ≲ E5 ⇒ φ≲ f. In other words, we must

expand in small fluctuations φ=f.
Thus, at leading order in the derivative and semiclassical

expansions and to quadratic order in φ, the scalar effective

Lagrangian is

Leff;4dðφÞ

¼ 1

2
ð∂φÞ2 − m2

2π2L2

�

ϵ
φ

f
sin ðΩtÞ− 1

2

�

φ

f

�

2

ϵ cos ðΩtÞ
�

;

ð15Þ

where

ϵ≡ e−mLð1−1

4
L2ω2Þ; Ω≡ eE5L; ð16Þ

retaining only the leading term in ωL in the exponent.

The quadratic term in φ captures the leading effect

responsible for the dissipation of flux in the effective

theory. The linear term corrects the classical motion of

the homogeneous mode; it is not important for our purposes

and will subsequently be neglected. Higher-order Euler-

Heisenberg terms are not exponentially-suppressed, but can

also be omitted because they are flux-conserving. Real pair

creation of the original charged fields cannot be described

in the EFT, but has a much larger Oðmr0 ≫ mLÞ classical
action and is therefore exponentially subdominant.

2

In backgrounds of constant E5, the mass term in (15) is

time-dependent, leading to a parametric resonance insta-

bility [18]. Amplitudes for modes of the axion with wave

vectors jkj ∝ E5 grow exponentially in time. The rate of the

energy transfer to these modes may be obtained in several

different ways. For nonzero k, the fluctuation equation of

motion is

φ̈ðk; tÞ þ k2φðk; tÞ þ ϵΛ2 cosðΩtÞφðk; tÞ ¼ 0 ð17Þ

where the scale Λ
2 ≡ m2

2π2f2L2 ¼ e2m2

2π2
is introduced to sim-

plify notation. The ϵ term is a perturbation. Its first-order

effect is to mix waves of frequency ωk ¼ �jkj with waves

of frequency ωk � Ω. For generic jkj, the mixing is small

and the solutions are stable. However, for jkj ≈Ω=2,
degenerate positive and negative frequency modes ωk ≈

�Ω=2 mix with each other, and the mixing has a more

substantial effect. To analyze this case, we can restrict our

attention to deviations of order ϵ around jkj ¼ Ω=2,

k2 → ðΩ=2þ ϵδkÞ2 ð18Þ

and take the ansatz

φ → eiðΩ=2þϵδωkÞt þ c0e
ið−Ω=2þϵδωkÞt

þ ϵcþe
3iΩt=2 þ ϵc−e

−3iΩt=2: ð19Þ

This ansatz allows the waves with zeroth-order frequencies

ωk ¼ �Ω=2 to mix with each other at zeroth order, and

with modes of frequency �3Ω=2 at first order. The

equation of motion can then be solved to OðϵÞ for the

coefficients c0;þ;− and the frequency shift. The result for

the frequency shift is

ϵδωk ¼ � ϵ

2Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Λ4 þ 4Ω2δk2
p

: ð20Þ

In the band jϵδkj < ϵΛ2=2Ω, δωk is imaginary, and some of

the modes grow exponentially with t. For example, in the

center of the band (δk ¼ 0), the mode grows as

φ ∼ eiΩt=2þϵðΛ2=2ΩÞt: ð21Þ

Consequently, the energy in the first band grows approx-

imately as

Efirst band ∼ ωkhjφðk; tÞj2id3k

∼ ðΩÞ2
�

ϵ
Λ
2

Ω

�

hjφðk; 0Þj2ieϵðΛ2=ΩÞt: ð22Þ

At higher orders in ϵ, instabilities appear in frequency

bands centered on every nΩ=2.
These results have a simple general description. In the

absence of charged matter, electric flux is conserved.

Electric fields along a compact direction are constant as

a result of improper gauge transformations, a global shift

symmetry acting as A5 → A5 þ c=L, c ∼ cþ 2π. Charged

matter breaks the global symmetry, so some flux non-

conserving processes are expected to survive in a long-

distance effective theory. The leading process is parametric

resonance, driven by the ordinary Wilson line effective

potential terms ∼e−mL cosðnA5Þ. This result could be

obtained without the detailed semiclassical calculation of

the previous section; however, the worldline instanton

2
We also note that it was not necessary to completely dimen-

sionally reduce. The reduction simplifies the analysis and is
sufficient for fields weak compared to the compactification scale,
eE5L

2 < 1, but in principle it could be extended to include
additional modes. Kaluza-Klein modes of A5 up to level n ∼mL
could be retained in the effective theory below m, and modes up
to n ∼ eE5L

2 could play a role in the following discussion of
dissipation.
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captures electric-flux-dependent corrections to the expo-

nent that reduce the suppression of the rate. This reduction

was also noted in [2], although the instanton and anti-

instanton in Fig. 2 were treated as a single event, and so the

result did not contain the harmonic terms in A5 that are

critical to flux dissipation. It was also suggested in [2] that

the instanton describes annihilation of virtual electrons into

photons, a process which is not captured by the leading

semiclassical approximation. Instead, dissipation arises in

the EFT by production of scalar quanta.

The discussion above is relevant in d > 1 spatial

dimensions. The 1þ 1 dimensional case is somewhat

different, but also of interest. Here the electric field acts

as a θ-term [19], and Schwinger pair production describes

tunneling between different metastable branches, analo-

gous to phenomena arising in various 4d gauge theories

[20]. Dissipation by parametric resonance, however, does

not occur when space is compactified on a small circle.

In this case the effective theory at distances long compared

to L is the quantum mechanics of a 1D rotor ϕðtÞ. Flux/
angular momentum ∼ _ϕ is quantized and conserved at

Oðϵ0Þ. The contribution to the Hamiltonian at OðϵÞ does
not commute with the angular momentum and describes

mixing of different flux states.

IV. FINITE TEMPERATURE

The instantons studied above in the case of a spatial

dimension have also been suggested to be relevant at finite

temperature [6]. Here I will comment briefly on the relation

of the finite temperature and spatial circle instantons,

without attempting a complete discussion of the thermal

problem.

Schwinger pair production at finite temperature was

studied in 3þ 1 dimensions in [3,4], where it was found

that corrections vanish at one loop order. Subsequently it

was shown in [5] that the two loop correction is non-

vanishing. These analyses do not rely on the semiclassical

approximation. However, the analysis of [5] holds for low

temperatures, and does not apply when the thermal circle is

smaller than twice the Schwinger radius r0. Recently a

number of works have studied this regime semiclassically

[2,6–9]. In particular, [6,9] analyze trajectories very similar

to those studied above in the spatial case, related by a

simple exchange of x5 and τ coordinates.

Locally, arcs of the critical circle still solve the Euclidean

equations of motion, regardless of the boundary conditions.

However, with thermal boundary conditions τ ∼ τ þ L and

electric flux pointing in a noncompact spatial direction z,
trajectories of nonzero winding number are no longer

stationary points of the Euclidean action. This includes

worldlines analogous to Figs. 2 and 3, swapping x5 → τ,

τ → z, as studied in [6,9]. The β action is a linear function

of a collective coordinate z0 describing the starting and

ending point of the worldline in the noncompact flux

direction. For example, the action of a trajectory analogous

to Fig. 2 would be

A0 ¼ eEzLz0 þ
1

4
eEzL

2 cot ðωβÞ ð23Þ

and is not stationary under variation of z0.
In [2], it was argued that a worldline corresponding to the

fusing of the instanton and anti-instanton in Fig. 2 describes

thermally-assisted pair creation. It was shown that this

“lemon instanton” trajectory reproduces the exponential

suppression obtained by minimizing the sum of Boltzmann

and Wentzel-Kramers-Brillouin tunneling exponents, treat-

ing the tunneling process as a relativistic barrier penetration

problem with linear potential. A detailed analytical and

numerical study of the problem was undertaken in 3þ 1

dimensions in [7,8], including the role of short-distance

interactions in modifying the worldline. Reference [7]

found that the lemon instanton is indeed relevant in 3þ
1 dimensions, arising as a weak coupling limit of their

instantons when the thermal circle is smaller than twice the

Schwinger radius.

Reference [7] also studied the low-lying fluctuation

spectrum around their worldline instantons, showing that

the spectrum exhibits a negative mode required in order for

the solutions to have relevance to pair creation. The

properties of this mode were described in the high temper-

ature limit where the transition is entirely thermal: here the

instanton is two straight lines wrapping the thermal circle,

and the negative mode is a fluctuation in the separation of

these lines. It is natural to ask what the negative mode is in

the finite temperature, small coupling limit, where the

lemon instanton provides a good approximation. Moreover,

it should be easiest to understand in the 1þ 1 dimensional

case, where the electromagnetic field is nonpropagating.

The lemon instanton can also be described as (the

boundary of) the overlap region between two circles of

Schwinger radius r0, separated by a distance d ¼ dL so that

the lemon “just fits” inside the thermal circle,

dL=2≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
0
− L2=4

q

: ð24Þ

At first sight, the trajectory appears puzzling: small

variations of d change the action at leading order in the

variation. The only stationary point of the OðeÞ action

appears to be d ¼ 0, where the circles degenerate. At higher

order in e, different parts of the worldlines can interact;

furthermore, with a compact direction, trajectories larger

than L begin to overlap, increasing the effects of inter-

actions. However, it is unclear whether these effects are

important in 1þ 1 dimensions, where the theory is other-

wise simplest, or in an extreme weak-coupling limit in

higher dimensions.

Another feature of the lemon is that it marks a singular

point in configuration space where continuous trajectories,

for example lemons of various d, can first split into
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discontinuous pairs of opposite winding number. A family

of configurations exhibiting this property is sketched in

Fig. 4; among them, the critical lemon with d ¼ dL
maximizes the action. Smaller lemons (larger d) cannot

split; this direction in field space opens up sharply when

d→ dL, allowing the action to lower again. This picture

suggests that in 1þ 1 dimensions the lemon is indeed a

distinguished trajectory, and may be near to a genuine

saddle point with a negative fluctuation eigenvalue once

singularities are smoothed out by ultraviolet effects. Just as

some of the solutions obtained in [7] were found to

approach the lemon instanton in the weak-coupling limit,

it would be interesting to examine whether the negative

fluctuation modes approach Fig. 4 in the same limit.

V. BOUNDS ON FIELD EXCURSIONS

Theories of light axions may be subject to theoretical

constraints including the weak gravity and swampland

conjectures [21–26], and perhaps related to these constraints,

there can be limitations on physically allowed objects and

dynamical processes, particularly involving large excursions

of the scalar in spacetime [27]. For example, large stationary

excursions can collapse into black holes [28] or destabilize

Kaluza-Klein spacetimes [29], while large axion excursions

around cosmic strings cause them to inflate [30–32]. In this

light we can ask whether parametric resonance places

limitations on axion excursions, when the axion arises from

a higher-dimensional U(1).

An axion with action (15) and decay constant f, moving

with initial velocity _ϕ, fragments into inhomogeneous

modes in a timescale of order

logðtÞ ∼ logð1=ϵÞ ∼mL ¼ m=ef: ð25Þ

In comparison, a scalar with zero potential but subject to

Hubble friction decelerates as ϕ̈≲ − _ϕ2=Mp, saturated

when the scalar is the dominant source of energy. In a

time t it moves a proper distance Δϕ≲Mp logðtÞ in field

space. Inserting (25), we can estimate that the slowly

fragmenting scalar can move a distance of order

Δϕ≲
Mpm

ef
ð26Þ

before dissipating. Imposing a weak-gravity relation

m=e < Mp, we obtain

Δϕ≲
M2

p

f
: ð27Þ

Weak gravity also requires f < Mp, so no two distinct

points in the axion field space are separated by a trans-

Planckian distance. But we see that the bound (27) carries

additional information: even with sub-Planckian field

range, the distance physically traversable by a homo-

geneous field is bounded.
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