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Electric flux may be screened by pair nucleation of heavy charges, a process that has a simple
description in terms of a worldline instanton. When flux is wrapped around a small compact
spatial dimension, worldline instantons still induce flux dissipation, but the leading process does
not create real charged pairs. Instead, dissipation can be described in effective field theory as the
production of long-wavelength scalar quanta via parametric resonance. The rate is computed
semiclassically, and comments are made on the related problem of pair creation at finite temperature,
for which differing results appear in the literature. Flux dissipation and the weak gravity conjecture
together imply that the proper distance in field space a homogeneous axion field can traverse is

bounded.
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I. INTRODUCTION

Electric fields can be screened by the spontaneous
creation of electron-positron pairs [1]. In the weak, con-
stant-field limit, eE < m?, the pair production rate can be
computed semiclassically in the worldline formalism.
An instanton, in this case a Euclidean circle of radius
ro = m/eE, contributes an imaginary part to the effective
action for the electromagnetic field of order e "0 <« 1.
Cutting the circle at the moment of time-symmetry and
analytically continuing back to Minkowski space, the
classical solution describes the nucleation of the charged
pair at a separation 2r, and their subsequent acceleration
away from each other in the background field.

In this paper I revisit Schwinger pair production in the
presence of a compact dimension, either a spatial or thermal
circle. New semiclassical phenomena of lower action arise
when the circumference of the circular dimension is less
than 2r,. The primary focus here will be on the spatial case,
which is the simpler of the two; subsequently I will
comment on the thermal case, which has been a source
of disagreement in recent literature. For spatial circles, the
lowest-action worldline instanton has winding number 41
and has positive fluctuation determinant. At low energies, it
generates a term in the effective action that carries an
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Aharonov-Bohm phase. Consequently, the instanton is still
responsible for flux dissipation, proceeding through long-
wavelength parametric resonance rather than production of
heavy charged pairs.

The spatial case was previously discussed in [2]. In terms
of the instantons described here, the worldline studied in [2]
is an instanton-antiistanton event; it carries no phase and
does not contribute to parametric resonance. Pair produc-
tion at finite temperature was studied long ago in [3.4],
which did not rely on the semiclassical approximation and
showed that the thermal correction to pair production
vanishes at one loop order. In [5] it was shown that there
is a finite correction at two loop order in the low temper-
ature regime (where the thermal circle is large). Recently
the thermal case has been revisited in the semiclassical
approximation in the regime where the thermal circle is
smaller than 2ry. References [2,6] reached different
conclusions regarding the relevant semiclassical trajecto-
ries, and the problem was analyzed further in [7-9].
References [2,7,8] reach similar conclusions and in par-
ticular [7] performs a numerical study of the fluctuation
spectrum around their instantons, showing the presence of
the required negative mode. I will argue that the trajectories
considered by [6] in the thermal case are relevant to the
spatial circle, and attempt to clarify the nature of the
negative fluctuation mode around the instantons of [2,7].

In the spatial case, from the low energy point of view, the
parametric resonance process describes the fragmentation
of an axion field moving coherently with some velocity.
Imposing the weak gravity conjecture on the mass of the
charged matter, a bound is obtained on the maximum
distance the axion can travel in field space.
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II. WORLDLINE INSTANTON AMPLITUDE

We consider electrodynamics on R* x S' with circle
circumference L and a charged scalar of mass m > 1/L,
and focus on the terms in the Euler-Heisenberg action
sensitive to L. Weak coupling is assumed for simplicity,
e < 1, and only constant electric flux in the compact
dimension is turned on. I will also comment on the 1 + 1
dimensional case below.

Integrating out the matter field, the Euclidean effective
action is

Seff:SO_Zl (1)

where Sy is the classical action, and the trace log correction
can be expressed as a partition function of closed loops,1
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Here 7 = it is the Euclidean time and x5 ~ x5 + L is the
circle coordinate. In the last line, A’ = 0 gauge is taken,
and As = As(z) with field strength E5 = i0,As.

The path integral over x can be computed exactly for
constant E5 by expanding around classical solutions
satisfying periodic boundary conditions. The leading L-
dependent terms are obtained from solutions for which
x°(f) — x°(0) = £L. The equations of motion are

(0,xM0,x)) + eE5x58,17> —ieAsx> (1)

—m8%x5 + eEsﬁﬂ =0
—md?t — eEs0)xs = 0 (4)

The solutions are arcs of circles of angular size
fde = +f/2ry. Examples are shown in Fig. 1. For angular
lengths of magnitude greater than 2z, the orbits appear as
closed circles but end at x°(8) = x°(0) £ L, indicating
winding number +1 around the fifth dimension.

The instantons are singular, but the classical action is
finite,

Ay = A—I‘eEst cot (wf), w =1/2ry = eEs/2m. (5)

Since the action is quadratic, the fluctuations are insensitive
to the classical solution,

'For a textbook treatment, see [10].

FIG. 1. Example Euclidean solutions to Eq. (4) for different
values of B (L =1, ro = 1, x°(8) = x>(0) + L).

p
A(8x) —A Bm(@,léxMaﬂéxM) + eEsox’0,6t|.  (6)

The determinant is then the same as for solutions with zero
winding number,

(det Ofee)™/*(det O,5)71/2 (7)

with three powers of the free 1D particle partition function

12 Ly, m. (8)
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The leading L-dependent contribution to Z; is therefore

B © dp p m \5/2
“”5/) ?(sinw)) (ﬂ)

x g~ (B+wL? cotlwp)) Cos(AsLe) (10)

with cos(As) dependence arising from the boundary term in
Eq. (3) and the sum over Ax®> = £L.

The contour of integration for # must be chosen to avoid
the singularities at # = zn/w. For large m the integral can
then be evaluated semiclassically. For small circles and
weak fields, oL = L/2r, < 1, the leading stationary point
1s real,
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FIG. 2. Instanton with 8 = f,. Parameters the same as in Fig. 1. Right: anti-instanton.

1
Bo = asin‘1 (wL) (11)

and its contribution to the integral is free from ambiguities
associated with the initial choice of contour. Figure 2 shows
the instanton with f = f, taken from the family plotted in
Fig. 1. We obtain

Z{‘/VS _ _Be—%mL(\/ 1-0*L*+o~'L7" sin™! (wL)) COS(ASLe)
a2

B = .
22012 (1 — ?L2) VA (sin (L))

(12)

In the £ — O limit, this result must reproduce the leading
term in the Wilson line effective potential for the back-
ground As, for which many exact (non-semiclassical)
computations exist in the literature [11-16]. Expanding
Eq. (12) for oL < 1 we obtain

2

e—mL(l—%szz-&-O(w“L“))
2723

7475 = -
X (1 + %szz + O(w4L4)> cos(AsLe). (13)

For w = 0, Eq. (13) coincides with the leading term in the
effective potential on R* x S' generated by a heavy complex
scalar field of charge one, V(As)=—5 ,:2236‘”“ cos(AsLe)
for mL > 1. Turning on a finite background electric field
reduces the exponential suppression of the amplitude. It
should also be possible to obtain a generalization of Eq. (12)
by non-semiclassical methods. For example, in [17],
Diakonov and Oswald compute the contribution of massless
charged fermions to the effective action at finite temperature
allowing for background electric and magnetic fields. The
massless limit is complementary to the semiclassical limit of
large m, and it would be of interest to have a result valid in all
regimes, although we do not pursue this calculation fur-
ther here.

Furthermore, for wL < 1, the instanton contribution is
real: the leading semiclassical effect does not directly
describe pair production or other decay modes for the
flux. It describes a virtual process before and after which

the flux has the same value. Nonetheless, the amplitude is
connected with a rather different type of flux-reducing
process occurring in the long-distance theory, when the
instanton amplitude is suitably interpreted as a Wilsonian
effective action.

In addition to S, Eq. (13) exhibits infinitely many saddle
points of higher action. The second saddle above the one
shown in Fig. 2 is given in Fig. 3. This instanton (and all
subsequent even-numbered saddles) has a negative fluc-
tuation eigenvalue corresponding to fluctuations in the f
direction, yielding an imaginary contribution to the effec-
tive action. The real part of the action is of order zmr, for
small wL, associated with real pair production.

II. St AND PARAMETRIC RESONANCE

It is convenient to work at distances larger than L, where
S becomes a Wilsonian action for the four-dimensional
gauge field and the periodic scalar zero mode of As,
obtained by the substitutions

AsLe — ¢/f(f =1/eL)
¢ — Est+ p(x,1).
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FIG. 3. Instanton with # = f;, the saddle point of the second-
lowest action in Eq. (13) and the first saddle with negative
fluctuations. Parameters the same as in Fig. 1.
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Here E5 is a constant background velocity for ¢, and ¢ is
referred to as an axion. The meaning of the second line of
Eq. (14) is that E5 dependence already present in Eq. (13)
through @ remains simply Es, without introducing any ¢
terms. This truncation is necessary for the consistency of
the derivative expansion. Furthermore, we will see shortly
that we are interested in Fourier modes of ¢ with momenta
of order e E5 L. Consistently retaining the background E5 =
AS without computing J,¢ terms in the effective action
requires eEsLp < Es = ¢ < f. In other words, we must
expand in small fluctuations ¢/ f.

Thus, at leading order in the derivative and semiclassical
expansions and to quadratic order in ¢, the scalar effective
Lagrangian is

Lesraa()
= %( p)* — %; <€?sin (Qt) —= (—) 2ec:os (Qt)),
(15)
where
e=e LU= Q= ¢EsL, (16)

retaining only the leading term in wL in the exponent.

The quadratic term in ¢ captures the leading effect
responsible for the dissipation of flux in the effective
theory. The linear term corrects the classical motion of
the homogeneous mode; it is not important for our purposes
and will subsequently be neglected. Higher-order Euler-
Heisenberg terms are not exponentially-suppressed, but can
also be omitted because they are flux-conserving. Real pair
creation of the original charged fields cannot be described
in the EFT, but has a much larger O(mr, > mL) classical
action and is therefore exponentially subdominant.”

In backgrounds of constant E5, the mass term in (15) is
time-dependent, leading to a parametric resonance insta-
bility [18]. Amplitudes for modes of the axion with wave
vectors |k| «x E5 grow exponentially in time. The rate of the
energy transfer to these modes may be obtained in several
different ways. For nonzero k, the fluctuation equation of
motion is

(k1) + Kok, t) + eA* cos(Qt)p(k, 1) =0 (17)

“We also note that it was not necessary to completely dimen-
sionally reduce. The reduction simplifies the analysis and is
sufficient for fields weak compared to the compactification scale,
eEsL? < 1, but in principle it could be extended to include
additional modes. Kaluza-Klein modes of A5 up to level n ~ mL
could be retained in the effective theory below m, and modes up
to n~ eEsL? could play a role in the following discussion of
dissipation.

mz J— Cznlz
222217 T 2A°
plify notation. The e term is a perturbation. Its first-order
effect is to mix waves of frequency w;, = +|k| with waves
of frequency w; £ Q. For generic |k|, the mixing is small
and the solutions are stable. However, for [k|~Q/2,
degenerate positive and negative frequency modes w; =
+Q/2 mix with each other, and the mixing has a more
substantial effect. To analyze this case, we can restrict our
attention to deviations of order € around |k| = Q/2,

where the scale A2 = is introduced to sim-

P - (Q/2+ 65k)2 (18)
and take the ansatz

»— ei(9/2+65wk)t +Coei(—9/2+65wk)t

+ ec, €32 4 ec_e73¥/2, (19)

This ansatz allows the waves with zeroth-order frequencies
w; = 1+Q/2 to mix with each other at zeroth order, and
with modes of frequency +3Q/2 at first order. The
equation of motion can then be solved to O(e) for the
coefficients ¢, _ and the frequency shift. The result for
the frequency shift is

€
dw, = £ —/ —A* + 4Q25k2. 20
€0wy, 20 + ( )

In the band |eSk| < eA?/2Q, 6w, is imaginary, and some of
the modes grow exponentially with 7. For example, in the
center of the band (6k = 0), the mode grows as

@~ eiQt/2+e(/\2/ZQ)t_ (21)

Consequently, the energy in the first band grows approx-
imately as

Efirstband ~ wk<|(p(k’ t)|2>d3k

2
~ @2 (e ) tolk 0PI (22

At higher orders in e, instabilities appear in frequency
bands centered on every n€2/2.

These results have a simple general description. In the
absence of charged matter, electric flux is conserved.
Electric fields along a compact direction are constant as
a result of improper gauge transformations, a global shift
symmetry acting as As - As + ¢/L, ¢ ~ ¢ + 2z. Charged
matter breaks the global symmetry, so some flux non-
conserving processes are expected to survive in a long-
distance effective theory. The leading process is parametric
resonance, driven by the ordinary Wilson line effective
potential terms ~e~™ cos(nAs). This result could be
obtained without the detailed semiclassical calculation of
the previous section; however, the worldline instanton
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captures electric-flux-dependent corrections to the expo-
nent that reduce the suppression of the rate. This reduction
was also noted in [2], although the instanton and anti-
instanton in Fig. 2 were treated as a single event, and so the
result did not contain the harmonic terms in A5 that are
critical to flux dissipation. It was also suggested in [2] that
the instanton describes annihilation of virtual electrons into
photons, a process which is not captured by the leading
semiclassical approximation. Instead, dissipation arises in
the EFT by production of scalar quanta.

The discussion above is relevant in d > 1 spatial
dimensions. The 1+ 1 dimensional case is somewhat
different, but also of interest. Here the electric field acts
as a f-term [19], and Schwinger pair production describes
tunneling between different metastable branches, analo-
gous to phenomena arising in various 4d gauge theories
[20]. Dissipation by parametric resonance, however, does
not occur when space is compactified on a small circle.
In this case the effective theory at distances long compared
to L is the quantum mechanics of a 1D rotor ¢(z). Flux/

angular momentum "’d’ is quantized and conserved at
O(€°). The contribution to the Hamiltonian at O(e) does
not commute with the angular momentum and describes
mixing of different flux states.

IV. FINITE TEMPERATURE

The instantons studied above in the case of a spatial
dimension have also been suggested to be relevant at finite
temperature [6]. Here I will comment briefly on the relation
of the finite temperature and spatial circle instantons,
without attempting a complete discussion of the thermal
problem.

Schwinger pair production at finite temperature was
studied in 3 + 1 dimensions in [3,4], where it was found
that corrections vanish at one loop order. Subsequently it
was shown in [5] that the two loop correction is non-
vanishing. These analyses do not rely on the semiclassical
approximation. However, the analysis of [5] holds for low
temperatures, and does not apply when the thermal circle is
smaller than twice the Schwinger radius r,. Recently a
number of works have studied this regime semiclassically
[2,6-9]. In particular, [6,9] analyze trajectories very similar
to those studied above in the spatial case, related by a
simple exchange of x5 and 7 coordinates.

Locally, arcs of the critical circle still solve the Euclidean
equations of motion, regardless of the boundary conditions.
However, with thermal boundary conditions 7 ~ 7 + L and
electric flux pointing in a noncompact spatial direction g,
trajectories of nonzero winding number are no longer
stationary points of the Euclidean action. This includes
worldlines analogous to Figs. 2 and 3, swapping x5 — 7,
T — z, as studied in [6,9]. The S action is a linear function
of a collective coordinate z, describing the starting and
ending point of the worldline in the noncompact flux

direction. For example, the action of a trajectory analogous
to Fig. 2 would be
1 2
AO = eEZLzo —+ ZeEzL cot (C()ﬂ) (23)
and is not stationary under variation of z.

In [2], it was argued that a worldline corresponding to the
fusing of the instanton and anti-instanton in Fig. 2 describes
thermally-assisted pair creation. It was shown that this
“lemon instanton” trajectory reproduces the exponential
suppression obtained by minimizing the sum of Boltzmann
and Wentzel-Kramers-Brillouin tunneling exponents, treat-
ing the tunneling process as a relativistic barrier penetration
problem with linear potential. A detailed analytical and
numerical study of the problem was undertaken in 3 + 1
dimensions in [7,8], including the role of short-distance
interactions in modifying the worldline. Reference [7]
found that the lemon instanton is indeed relevant in 3 +
1 dimensions, arising as a weak coupling limit of their
instantons when the thermal circle is smaller than twice the
Schwinger radius.

Reference [7] also studied the low-lying fluctuation
spectrum around their worldline instantons, showing that
the spectrum exhibits a negative mode required in order for
the solutions to have relevance to pair creation. The
properties of this mode were described in the high temper-
ature limit where the transition is entirely thermal: here the
instanton is two straight lines wrapping the thermal circle,
and the negative mode is a fluctuation in the separation of
these lines. It is natural to ask what the negative mode is in
the finite temperature, small coupling limit, where the
lemon instanton provides a good approximation. Moreover,
it should be easiest to understand in the 1 + 1 dimensional
case, where the electromagnetic field is nonpropagating.

The lemon instanton can also be described as (the
boundary of) the overlap region between two circles of
Schwinger radius r,, separated by a distance d = d; so that
the lemon “just fits” inside the thermal circle,

dp/2=/r5—L*/4.

At first sight, the trajectory appears puzzling: small
variations of d change the action at leading order in the
variation. The only stationary point of the O(e) action
appears to be d = 0, where the circles degenerate. At higher
order in e, different parts of the worldlines can interact;
furthermore, with a compact direction, trajectories larger
than L begin to overlap, increasing the effects of inter-
actions. However, it is unclear whether these effects are
important in 1 + 1 dimensions, where the theory is other-
wise simplest, or in an extreme weak-coupling limit in
higher dimensions.

Another feature of the lemon is that it marks a singular
point in configuration space where continuous trajectories,
for example lemons of various d, can first split into

(24)
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FIG. 4. A family of trajectories exhibiting the distinguished
nature of the critical lemon worldline (blue). Smaller lemons
(green) locally solve the equations of motion, but they are not true
stationary points because the action rises monotonically in the
direction of the critical lemon. Once the lemon grows to the
critical size, its two sides can split apart, opening a new direction
in configuration space. In this direction the action changes
linearly with separation. These features suggest the presence
of a saddle point with a negative mode near the critical lemon.

discontinuous pairs of opposite winding number. A family
of configurations exhibiting this property is sketched in
Fig. 4; among them, the critical lemon with d = d
maximizes the action. Smaller lemons (larger d) cannot
split; this direction in field space opens up sharply when
d — d;, allowing the action to lower again. This picture
suggests that in 1 + 1 dimensions the lemon is indeed a
distinguished trajectory, and may be near to a genuine
saddle point with a negative fluctuation eigenvalue once
singularities are smoothed out by ultraviolet effects. Just as
some of the solutions obtained in [7] were found to
approach the lemon instanton in the weak-coupling limit,
it would be interesting to examine whether the negative
fluctuation modes approach Fig. 4 in the same limit.

V. BOUNDS ON FIELD EXCURSIONS

Theories of light axions may be subject to theoretical
constraints including the weak gravity and swampland

conjectures [21-26], and perhaps related to these constraints,
there can be limitations on physically allowed objects and
dynamical processes, particularly involving large excursions
of the scalar in spacetime [27]. For example, large stationary
excursions can collapse into black holes [28] or destabilize
Kaluza-Klein spacetimes [29], while large axion excursions
around cosmic strings cause them to inflate [30-32]. In this
light we can ask whether parametric resonance places
limitations on axion excursions, when the axion arises from
a higher-dimensional U(1).

An axion with action (15) and decay constant f, moving
with initial velocity b, fragments into inhomogeneous
modes in a timescale of order

log(7) ~log(1/€) ~mL = m/ef. (25)

In comparison, a scalar with zero potential but subject to
Hubble friction decelerates as ¢ < —(,5’72 /M ,, saturated
when the scalar is the dominant source of energy. In a
time 7 it moves a proper distance A¢ < M, log(t) in field
space. Inserting (25), we can estimate that the slowly
fragmenting scalar can move a distance of order

M, m
A < # (26)

before dissipating. Imposing a weak-gravity relation
mje < M,, we obtain

M2
Ap <—2£. 27
¢ =< 7 (27)

Weak gravity also requires f < M, so no two distinct
points in the axion field space are separated by a trans-
Planckian distance. But we see that the bound (27) carries
additional information: even with sub-Planckian field
range, the distance physically traversable by a homo-
geneous field is bounded.
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