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1 Introduction

Given a theory with a long flat direction in field space, can a local observer access distant

points in that space? Simple arguments suggest that the answer is often no. Consider a

free scalar field undergoing a large excursion ∆ϕ in a spatial region of size R, with typical

field gradients ∼ ∆ϕ/R. Then the energy density can be made arbitrarily small by taking

R large. However, when coupled to gravity, R is less than the Schwarzschild radius of the

experiment when ∆ϕ & Mp, independent of R. In other words, if one tries to set up a

localized transplanckian field excursion, the experiment may collapse into a black hole.1

A more detailed analysis was performed in [4]. It was argued in [4] that the variation

of a massless scalar outside static, spherically symmetric, asymptotically flat, nonsingular

sources in 4d gravity is bounded by a number of order one in Planck units. It is natu-

ral to ask more precisely under what circumstances large excursions in moduli space are

censored,2 and whether the mechanism is always collapse into a black hole.

1This observation has been made a number of times [1], and related observations appear in [2, 3].
2A different variety of censorship was observed in [5], in which it was noted that in some string theory

compactifications, Euclidean wormhole solutions can be found along which moduli undergo a transplanckian

excursion. [5] showed that such wormholes do not contribute to the path integral via duality arguments.

Transplanckian censorship associated with large-f axion excursions around cosmic strings was discussed

in [6]. For infinite strings, large axion excursions are not strictly censored. However, the spacetime becomes

highly dynamical, bearing little resemblance to a cosmic string, and the excursion takes an exponentially

long time to probe. Around finite loops of string, other arguments suggest censorship occurs [6].
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We will show that some of the 4d configurations used in the analysis of [4] can be UV-

completed by static Kaluza-Klein (KK) geometries. These solutions are part of a larger

family of KK bubbles of nothing (BON) based on the Euclidean Kerr solution. All of

the bubble geometries are singularity- and horizon-free in 5d, yet give rise to an infinite

excursion of the KK scalar upon dimensional reduction. These examples thus appear to

weaken the bound on ∆ϕ. Is there still a notion of censorship?

One observation is that curvature scales near the large scalar excursion are of order

the KK radius, so that only the full higher-dimensional description is useful in this region.

In other words, the excursion cannot be resolved without discovering that the theory is five

dimensional. One might conclude that there is not really a transplanckian scalar to censor.

However, there is another property of the static, asymptotically flat KK bubbles that

suggests a stronger form of censorship: they are classically unstable. The instability is

well-known for the Euclidean Schwarzschild bubble [7] and we will show that the entire

Kerr family is unstable. These instabilities may be anticipated by a mechanical analogy.

Tunneling events in flat KK space studied in [8, 9] must occur under a potential barrier.

The static, classical bubbles sit at a stationary point in this potential, which is not a

minimum if the potential has only one extremum along a curve connecting flat space to a

nucleating bubble. A static bubble at such a locus is analogous to a ball at the top of a hill,

and the resulting classical instability effectively censors the large traversal in moduli space.

There is likely some relationship between transplanckian censorship and various con-

jectures about the swampland [10–12] and the Weak Gravity Conjecture (WGC) [13]. The

study of inflationary models with large scalar field excursions in time [14] and the difficul-

ties associated with finding long flat directions in string theory [15] originally motivated

the WGC, and the implications of the WGC for scalar field ranges / large moduli spaces

is an active area of study [16–30]. There is also evidence that the WGC is related to

cosmic censorship [31]. The precise connection with dynamical instances of transplanckian

censorship like those we will discuss remains tantalizing but incompletely understood.

We should emphasize that we are not claiming that large field excursions should always

be censored by gravity. We are only demonstrating that there can be other mechanisms

available apart from collapse to a black hole. Indeed, there are reasons to expect that

large excursions in moduli space are not universally censored by collapse or perturbative

gravitational instability. The general relativistic argument of [4] does not cover cases with

additional matter (e.g. electric fields) in the region of the excursion, and the nonrelativis-

tic argument permits excursions that diverge logarithmically with the size of the source.

Both perturbatively stable charged KK bubble [32] and dilatonic charged black hole [33]

solutions with these properties are known. In both cases it would be interesting to study

stability under the addition of charged matter satisfying the WGC, which we postpone for

future work. In any event, it may be possible establish conditions under which a large

scalar excursion is not censored by any mechanism. It would be of interest to know these

conditions, and in such cases there may still be strong consequences for the effective field

theory, such as the appearance of a tower of light states [20].

This work is organized as follows. In section 2 we review the 4d bound on scalar

traversals obtained in [4]. We show that some of the 4d configurations considered in [4]
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can be identified with smooth KK bubble solutions, and we note that a larger class of KK

spacetimes produces large ∆ϕ upon dimensional reduction. In section 3 we show that all

of these bubbles are classically unstable. We identify a 1-parameter set of 4d Euclidean

Kerr-Newman metrics that provide a family of initial data connecting the static bubbles to

the nucleation point of instantons described in [8, 34]. Within this family, both flat space

and the nucleating bubbles lie at zero energy, while the static bubbles appear at a local

maximum of the energy, indicating mechanical instability. Section 4 provides the technical

argument that “local maximum of the energy ⇒ instability” for the static bubbles, and

outlines a more general set of conditions under which this is true in gravity. In section 5,

we discuss how wound strings probe the local value of the KK scalar, treating the bubbles

as quasistatic backgrounds. In section 6 we summarize and conclude.

Our discussion concerns solutions of classical KK theory. In supersymmetric KK theo-

ries, the radion may remain massless at the quantum level, but the solutions we will discuss

no longer exist due to the fermion boundary conditions. In nonsupersymmetric theories,

Casimir energies lift the radion, and fluxes and other objects are required to stabilize it.

We will assume that the classical solutions with an exact moduli space are reasonable ap-

proximations to solutions in at least some more-complete theories with stabilized radion.3

(If this assumption is false, our discussion can be truncated at the introduction. But in

this case it would appear that large scalar excursions are even more difficult to arrange in

asymptotically flat KK spacetimes.)

2 ∆ϕ and KK bubbles

2.1 4d bounds on ∆ϕ

Ref. [4] obtained a bound on massless, spherically symmetric scalar field excursions in 4d

general relativity. We briefly sketch the argument underlying the bound. A family of static,

spherically symmetric solutions to 4d gravity+minimally coupled scalar was discovered by

Buchdahl [36]:

ds2 = −fβdt2 + f−βdr2 + r2f1−βdθ2 + r2f1−β sin2(θ)dφ2 ,

ϕ =

√

1

16π
(1− β2) log(f) , f ≡ 1− 2m/r . (2.1)

These solutions exhibit naked singularities at r = 2m. If the solutions are cut off before

reaching the singularity, [4] argued that the cutoff should occur before the ADM mass is

saturated by the exterior space,

4π

∫ ∞

R0

ρ(R)R2dR ≤ MADM = βm , (2.2)

working in coordinates R(r) = rf
1−β

2 where the angular part of the metric takes a canonical

form. In these coordinates the singularity is at R = 0 and we place a cutoff at R0. The

3For example, it was observed in [35] that BON instantons persist in the presence of simple stabiliz-

ing potentials.
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scalar energy density is

ρ =
1

2
gRR(∂Rφ)

2 . (2.3)

Eq. (2.2) yields a constraint on the scalar field excursion outside R0, parametrically of order

∆φ . 1 (2.4)

in Planck units [4].

ADM masses of spherically symmetric spacetimes like (2.1) are given by a positive

volume integral over all of space and, in cases where gRR → 0 at R = 0, a negative

contribution at the singularity,

MADM = lim
R0→0

(

4π

∫ ∞

R0

ρ(R)R2dR− R0

gRR(R0)

)

. (2.5)

In the configurations (2.1), the singularity in the integral at small radius is cancelled by

the singularity in the surface term, yielding a finite ADM mass mβ. Therefore, to establish

a bound of the form (2.4), it is important that the 4d curvature singularities imply a finite

cutoff R0, below which is it assumed that gRR(0) is nonzero in the UV completion, so that

the surface term cannot make a (negative) contribution.

2.2 Buchdahl spacetimes from KK bubbles

In some cases, instead of cutting off the curvature singularity with a finite-radius source,

the metric+scalar (2.1) can be smoothly completed in Kaluza-Klein theory. In these cases,

from the point of view of the 5d theory, singularities in the 4d curvatures are canceled by

the KK scalar. Lacking singularities, the KK solutions do not require a cutoff, and so the

bound of [4] cannot be directly applied.

The relevant KK solution was constructed in [37] by adding a Lorentzian time direction

to 4d Euclidean Schwarzschild (ES) gravitational instanton [38]. We refer to this solution

as the ES bubble. The line element is

ds2 = −dt2 + f−1dr2+r2dθ2 + r2 sin2(θ)dφ2 + fdx25 . (2.6)

The radial coordinate runs from rH to ∞, where

rH = 2m . (2.7)

Absence of a conical singularity near rH requires periodicity x5 ∈ [0, 8πm). The spacetime

then ends in a smooth cap at rH , marking the wall of a bubble of nothing.

The metric can be parametrized as

gAB =

(

Gµν 0

0 V

)

= σ−1/3

(

gµν 0

0 σ

)

, (2.8)
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suitable for dimensional reduction along x5. The second form yields the 4d Einstein frame,

S =
1

16π

∫

d4x
√−g

(

−R4 −
1

6
gµν

∂µσ∂νσ

σ2

)

=

∫

d4x
√−g

(

− 1

16π
R4 −

1

2
∂µϕ∂

µϕ

)

(2.9)

where σ = e
√
48πϕ. The ES bubble has the 4d form

gµνdx
µdxν = −f1/2dt2 + f−1/2dr2 + r2f1/2dθ2 + r2f1/2 sin2(θ)dφ2 ,

σ = f3/2 . (2.10)

We see that ϕ ∼ log(1− rH/r) is a canonical, minimally coupled scalar diverging logarith-

mically near rH , matching one of the 4d solutions of eq. (2.1),

ES bubble ⇐⇒ Buchdahl solution, β = 1/2. (2.11)

The ES bubble is thus a nonsingular 5d realization of a 4d scalar with a large, localized,

static ∆ϕ.

Similar relationships of this type have also been noted in the literature. Kastor and

Traschen found that 4D cosmological spacetimes related to the Buchdahl spacetimes may

be obtained from dimensional reduction [39], while Garriga [40] and Brown and Dahlen [41]

have shown the singular Hawking-Turok instanton [42] is related by dimensional reduction

to the nonsingular 5d Witten BON instanton.

2.3 More general KK bubbles

In bubble spacetimes, the KK scalar diverges where the circle radius goes to zero. Such

points are fixed points of the Killing vector generating translations around the circle, and

in general may either be isolated points (nuts) or form surfaces (bolts) [38]. One can thus

obtain more general 4d spacetimes with large, localized excursions of a minimally coupled

scalar modulus by dimensionally reducing KK solutions with nuts and bolts. Nut charge is

associated with KK monopole number [37, 43]. We will consider only asymptotically flat

spacetimes with bolts, in which the large excursion occurs on an extended surface.

The simplest family of this type, which includes the ES bubble, is obtained by adding

a Lorentzian time direction to the 4d Euclidean Kerr (EK) metric. The latter is obtained

by analytic continuation of the Kerr metric (t → ix5, a → ia) and a twisted periodic

identification of coordinates. (These spacetimes were called “KK dipoles” in [37]; we will

refer to them as EK bubbles.) The line element is

ds2 = − dt2 +Σ−1
[

∆(dx5 + a sin2 θdφ)2 + sin2 θ((r2 − a2)dφ− adx5)
2
]

+Σ(dr2/∆+ dθ2) ,

∆ = r2 − 2mr − a2 , Σ = r2 − a2 cos2 θ . (2.12)

There is an apparent singularity at

rH = m+
√

m2 + a2 (2.13)
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which is also a fixed surface of the Killing vector [38]

` = ∂x5
+Ω∂φ , Ω =

a

r2H − a2
. (2.14)

It is convenient to change coordinates to φ̃ = φ− Ωx5, where the Killing vector is simply

` = ∂x5
. (2.15)

Examining the metric near rH , one finds that the conical singularity can be removed with

the periodicity

x5 ∼ x5 + 2πγ , γ =
r2H − a2√
m2 + a2

(2.16)

at fixed φ̃. In the original coordinates, we have

(x5, φ) ∼ (x5 + 2πγ, φ+ 2πΩγ) (2.17)

and r ≥ rH . The spacetime is asymptotically flat with a nonstandard KK identification,

and contains a bubble of nothing with radius rH . In the limit a → 0, Ω → 0 and we recover

the ES bubble of the previous section with the standard periodicities.

Twisted periodicities are associated with magnetic flux in the reduced theory [44, 45].

Reducing on x5 at fixed φ̃, the magnetic field in cylindrical coordinates (ρ, φ̃, z) behaves at

large z as

B(ρ = 0, z � rH) = 2Ωẑ ,

B(ρ � rH , z � rH) → 0 . (2.18)

At large distances, the proper radius of the KK circle grows linearly as a result of the

twisted identification. In cylindrical coordinates,

g55 ∼ 1 + Ω2ρ2 , r � rH . (2.19)

For the purposes of KK reduction, spacetimes with twisted identifications should therefore

be thought of as an approximation with a long-distance cutoff, ρ � 1/Ω. This point of

view was emphasized in [34], with which we will make further contact below.

Furthermore, since the surface r = rH is a spherical bolt for `, dimensional reduction

gives rise to a divergence in the KK scalar on the bubble. Reducing on x5 in the φ̃

coordinates and expanding near rH , we obtain

σ ∼ (r − rH)3/2 , r − rH � 1 (2.20)

leading again to a logarithmically divergence of the canonically normalized, minimally

coupled scalar ϕ.
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3 Instabilities

In the dimensionally reduced bubble spacetimes, the KK scalar only becomes large in

a region close to rH . In this region, curvatures are of order m2. Therefore, although

formally we can perform the reduction, the 5d description in terms of the smooth cap is

more appropriate.4 The large ∆ϕ could be interpreted as an artifact of the choice of field

space coordinates.

However, a form of censorship is still at work: although the 5d geometries are smooth,

the bubbles are unstable against classical perturbations. For the ES bubble, the unstable

mode was first found numerically in the study of black hole nucleation at finite tempera-

ture [7] and is related by analytic continuation to the Gregory-Laflamme instability of the

black string [47]. It can be shown that larger bubbles expand [48].

A more intuitive way to understand static bubble instabilities is by analogy. In 4d

scalar field theories with metastable vacua, O(4)-symmetric bounce solutions mediate vac-

uum decay. The theories also exhibit static, O(3)-symmetric “sphaleron” solutions. The

static bubble sits at the top of the energy barrier under which the bounce solution tun-

nels. This can be easily visualized in the thin-wall limit, where the tunneling process can

be studied in terms of a collective coordinate for the bubble radius R with a potential

V (R) ∼ R2 − R3 (or similar.) The tunneling bubble nucleates at the finite value of R

where V (R) vanishes. In this picture, the “sphaleron” is the static, massive solution at the

value of R where V (R) has its local maximum. It is unstable against perturbations in R.

In KK theory, the ES bubble has a similar relationship to a bounce solution, the

semiclassical BON instability of flat KK spacetime [8]. The ES bubble may be thought

of as the static, massive solution sitting at the top of the energy barrier through which

Witten’s instanton tunnels to a zero-energy BON [9, 49]. It is therefore not surprising that

it is classically unstable. We will provide an analogous construction for the EK bubbles,

and give a general argument that the “energy barrier” picture indeed implies instability

for the static solution at the local maximum.

Although the ES bubble is a member of the EK bubble family, because the asymptotic

behavior is different, it is convenient to discuss the cases separately. We start with the

simpler case of the ES bubble.

3.1 ES bubble

Initial data were constructed in [9, 49] exhibiting the instanton-sphaleron relationship for

the ES bubble. These data describe spherical, zero-momentum bubbles interpolating from

flat KK space, to the static ES bubble, to the Witten bubble, and onward to configurations

of arbitrarily negative energy. In fact, the data are simply a 1-parameter family of 4d

4Relatedly, varying the asymptotic values of fields between distant points in moduli space causes the set

of light states to undergo a large change, leading to a breakdown of effective field theory [10, 19, 46]. Since

the excursions that we study are localized, this breakdown does not arise directly, but the need for a 5d

description near the bubbles is similar.

– 7 –
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Euclidean Reissner-Nordstrom geometries,

ds2 = r2(dθ2 + sin2 θdφ2) + (r2/∆)dr2 + (∆/r2)dx25

∆ = r2 − 2mr +Q2 . (3.1)

These metrics are valid zero-momentum initial data for KK theory because the constraint

equations reduce to R4 = 0, which is satisfied by (3.1). The x5 periodicity can be chosen

so that the spacetime ends smoothly on a bubble of nothing at a finite value of r,

r ≥ rH = m+
√

m2 −Q2 ,

x5 ∼ x5 + 2πγ , γ =
r2H

√

m2 −Q2
. (3.2)

The relevant 1-parameter family is then determined by fixing the size of the asymptotic

KK circle, which is just the x5 periodicity γ in eq. (3.2) since g55 → 1 at large distances.

In terms of the bubble radius rH and fixed γ,

m = rH − r2H/γ

Q2 = r2H − 2r3H/γ . (3.3)

The parameters (m,Q2) of an example family of configurations are shown in figure 1. For

fixed γ, the energy is proportional to m, which has zeros at

rH = 0 (flat KK space)

rH = γ (nucleating BON) . (3.4)

The latter coincides with the 4d bubble that nucleates after the standard BON tunneling

process [8]. The static ES bubble appears where Q2 = 0 and coincides with the maximum

of the energy curve. The classical instability of the static bubble is a consequence of sitting

at the top of the hill, and may be shown manifestly by perturbative analysis [7, 50]. The

solution also controls nucleation of bubbles of nothing at finite temperature [51].

3.2 EK bubbles

The EK bubbles (2.12) are also smoothly connected by a family of zero-momentum initial

data to both flat KK space and the nucleation point of a 5d gravitational instanton. The

instanton is obtained by analytic continuation of the 5d Kerr metric [52] and possesses

twisted periodicities similar to (2.17). It was constructed in [34], where it was shown

to mediate both BON decays of flat KK space with twisted periodicities and monopole-

antimonopole pair creation in the background 4d magnetic field induced by the twists.

The family of initial data we require is given by a subset of the 4d Euclidean Kerr-

Newman (EKN) solutions with zero initial momentum. The EKN line element is given by

the spatial part of (2.12) with the replacement

∆ = r2 − 2mr − a2 +Q2 . (3.5)

– 8 –
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plausible by analogy with simple mechanical systems, further analysis is required to estab-

lish the result in general relativity. Our discussion will be somewhat technical, but not

completely rigorous; in one step, for example, we will assume a symmetric operator has a

self-adjoint extension without proof. We will indicate where such assumptions are made.

In brief, we will show that metric perturbations δg around static vacuum solutions

satisfy an equation of the form δ̈g ∼ −S[δg], where S is a linear differential operator, and

for a certain class of perturbations,
∫

δgS[δg] is the second order perturbation of the energy.

S is a symmetric operator with domain given by square-integrable perturbations satisfying

the constraint equations, and S can be shown to annihilate residual infinitesimal gauge

transformations. Therefore, if a perturbation in the class lowers the energy, S must have a

negative eigenvalue. This mode grows exponentially in time, and the instability is physical,

since it cannot be removed by a gauge transformation. Finally, we show that the families

of initial data identified for the KK bubbles generate the relevant type of perturbations

around the static solutions, from which instability follows.

In vacuum, the canonical variables (spatial metric gab and conjugate momentum πab)

satisfy the following equations:

ġab = 2
N√
g

(

πab −
1

D − 1
gab π

)

+ 2∇(aNb), (4.1)

π̇ab = −N
√
g Gab +Qab, (4.2)

where N and Na are the lapse and the shift functions, and D > 1 is the spatial dimension.

All the metric-related quantities — the Ricci and the Einstein tensor Rab and Gab =

Rab−1/2Rgab, the covariant derivative ∇a, and the determinant g in the given coordinates

— are associated with the spatial metric, which is also used for lowering and raising indices.

The form of Qab can be found in [53]. We do not write it explicitly because when we fix

the gauge below it will not contribute to the linearized equation. The Hamiltonian and

momentum constraints are:

H =

(

πabπab −
1

D − 1
π2

)

−√
g R = 0, (4.3)

Ha =
√
g∇b

πab

√
g
= 0. (4.4)

Equation (4.1) can be solved for πab:

πab =

√
g

2N
Kabcd(ġcd − 2∇(cNd)), (4.5)

where

Kabcd =
1

2

(

gacgbd + gadgbc
)

− gabgcd.

Consider a one-parameter family of vacuum solutions that reduces to a static solution at

λ = 0 for which the lapse function is 1 and the shifts are zero:

R̂ab = 0, π̂ab = 0, N̂ = 1, N̂a = 0. (4.6)

– 11 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
8

The hat indicates the static solution and any quantity associated with it. A (first order)

perturbation is defined by δf = ∂λf |λ=0. We consider perturbations only about the static

solution, so whenever we say “perturbation,” it is always meant about the static solution.

The static metric is used to raise and lower the indices of a perturbation of a tensor. We

impose the gauge condition

N = 1, Na = 0. (4.7)

The static spacetime metric is given in Gaussian normal coordinates (N̂ = 1 and N̂a = 0),

and the gauge condition means that the perturbed spacetime metric is also written in such

coordinates. This choice simplifies the analysis. To get the linearized (perturbed) equation

satisfied by δgab, we differentiate eq. (4.2) with respect to λ at λ = 0 and use eq. (4.5).

Qab is the sum of a term linear in ∂aN and a quadratic expression of πab and Na, so by

eq. (4.7) and π̂ab, it does not contribute to the linearized equation. We obtain

√
ĝ

2
K̂abcd δg̈cd = −δ(

√
g Gab) = −

√

ĝ S[δg]ab, (4.8)

where we introduced the linear operator S acting on δgab.

We now show that S is related to the energy, and that it is a symmetric operator in a

suitable scalar product, which will allow us to study the time evolution of its eigenmodes.

We will need the λ-derivative of the Ricci scalar,

∂λ(
√
gR) =

√
g [∇a(∇b∂λgab − gcd∇a∂λgcd)−Gab∂λgab]. (4.9)

Take a two-parameter family of solutions. The parameters are λ1 and λ2, and the

corresponding perturbations are δ1gab and δ2gab. The static solution is at λ1 = λ2 = 0. If we

write eq. (4.8) for δ1gab and contract it with δ2gab, the right hand side is −δ2gab δ1(
√
g Gab),

which using eq. (4.9) is equal to the following expression evaluated at λ1 = λ2 = 0:

√
g Gab∂λ1

∂λ2
gab − ∂λ1

(
√
g Gab∂λ2

gab) =
√
g Gab∂λ1

∂λ2
gab + ∂λ1

∂λ2
(
√
g R)

− ∂λ1

[√
g∇a(∇b∂λ2

gab − gcd∇a∂λ2
gcd)

]

. (4.10)

The first two terms on the right-hand side are manifestly symmetric. So if it was not for the

last term, the spatial integral of δ2gab δ1(
√
g Gab) would take the desired form 〈δ2g, Sδ1g〉

with a symmetric operator S and the usual L2 scalar product of symmetric tensors sab
and tab,

〈t, s〉 =
∫

dDx
√

ĝ tabsab. (4.11)

However, requiring asymptotic flatness (discussed further below), the integral of the

last term in eq. (4.10) is in fact symmetric:
∫

dDx ∂λ1

[√
g∇a(∇b∂λ2

gab − gcd∇a∂λ2
gcd)

]

= lim ∂λ1

∮

dD−1x
√
hna(∇b∂λ2

gab − gcd∇a∂λ2
gcd)

= lim

∮

dD−1x
√
hna(∇b∂λ1

∂λ2
gab − gcd∇a∂λ1

∂λ2
gcd). (4.12)
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Here the limit is taken over an increasing sequence of compact spatial regions that cover

the entire space,
∮

is the integral on the boundary of these regions, na is the outward

unit normal to these boundaries, and h is the determinant of the induced metric. The last

equality holds because there is no contribution from the terms generated by ∂λ1
acting

on metric components in na, h, or the Christoffel symbols of the covariant derivatives.

If the first order variation preserves asymptotic flatness (discussed further below), these

terms decay more rapidly than the surface area of the boundary. In this calculation, we

repeatedly changed the order of differentiations, limits, and integrations. Since we are not

aiming for mathematical rigor, the validity of these steps will not be checked here.

We can get 〈δg, Sδg〉 from the second derivatives along a single family by essentially

the same calculation. To summarize, we have

〈δ2g, Sδ1g〉 =
[

−
∫

dDx ∂λ1
∂λ2

(
√
g R)

+ lim

∮

dD−1x
√
hna(∇b∂λ1

∂λ2
gab − gcd∇a∂λ1

∂λ2
gcd)

]
∣

∣

∣

∣

λ1=λ2=0

, (4.13)

〈δg, Sδg〉 =
[

−
∫

dDx ∂2
λ(
√
g R) + lim

∮

dD−1x
√
hna(∇b∂2

λgab − gcd∇a∂
2
λgcd)

]
∣

∣

∣

∣

λ=0

.

(4.14)

Here we have used that Ĝab = 0 by eq. (4.6).

For an asymptotically flat spacetime, there are coordinates in which the metric com-

ponents approach the components of the D+1 dimensional Minkowski metric in Cartesian

coordinates at least as fast as r2−d, where r is the Euclidean length calculated from the spa-

tial coordinates xi and d ≥ 3 is the number of noncompact dimensions. Furthermore, every

differentiation with respect to a noncompact coordinate contributes an additional factor of

r−1 to the asymptotic scaling. In such coordinates, the (total) energy of an asymptotically

flat spacetime is

E =
1

16πGD+1
lim
r→∞

∮

dD−1x
√

h0
∑

j

xi

r
(∂jgij − ∂igjj), (4.15)

where GD+1 is the D + 1 dimensional Newton constant, and dD−1x
√
h0 is the invariant

measure induced by the D dimensional Euclidean metric on the boundary surface of con-

stant r, over which the integral
∮

is taken. Repeating the argument by which the dropping

of additional terms in the last line of eq. (4.12) is justified, one finds that

〈δg, Sδg〉 = 16πGD+1 δ
2E −

∫

dDx
√

ĝ δ2R , (4.16)

where δ2 is the second derivative with respect to λ at λ = 0.

Asymptotically flat metrics decay rapidly enough for the energy to be finite, but not

too rapidly, so that the energy is typically not zero. The same asymptotic condition on

perturbations in the domain of S would not necessarily imply square-integrability for d ≤ 4.

However, eq. (4.14) already indicates that perturbations satisfy stronger asymptotic condi-

tions. The boundary term depends only on the second order perturbation ∂2
λgab|λ=0, while
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the other terms depend only on first order perturbations. (That this is the case for the

∂2
λ(
√
gR) term follows from the Hamiltonian constraint (4.3) and π̂ab = 0. Then this term

is quadratic in the first order momentum perturbation ∂λπ
ab.) But a one-parameter family

λ 7→ gab(λ) of metrics can always be reparametrized as λ 7→ gab(λ
2/2). The first order

perturbations are zero in the new parametrization, and the second order perturbation is

the same as the first order perturbation in the old parametrization. Eq. (4.14) holds in any

parametrization, and only the boundary term survives in the new parametrization, where

it becomes the first order perturbation δE of the energy in the original parametrization.

Therefore, we conclude that δE = 0 on a static background. This is analogous to the princi-

ple of virtual work in mechanics. It is also a special case of the first law of thermodynamics

of gravitational physics, which takes the simple form of δE = 0 if both the entropy and

the terms related to the change of the angular momentum or the electromagnetic charge

are zero (for a detailed discussion, see [54]).

Now suppose that the families consist of metrics that admit (in coordinates used in

our characterization of asymptotically flat spacetimes) a power series expansion in terms

of r−1, and the subleading term, which behaves as r2−d, is proportional to the energy.

Then δE = 0 implies that the perturbation decays at least as rapidly as r1−d, which is

also fast enough for square-integrability. We will consider only perturbations that have

this property.

Another restriction on the physically relevant perturbations comes from the con-

straints. By equations (4.6) and (4.9), the perturbation of the Hamiltonian con-

straint (4.3) gives

∂λ(
√
gR)|λ=0 =

√

ĝ
(

∇̂a∇̂b − ĝab∇̂c∇̂c

)

δgab = 0. (4.17)

This condition is invariant under S. Actually, (Sδg)ab satisfies an even stronger condition

if the above equation holds for δgab:

∇̂a(Sδg)
ab = ∇̂a

√

ĝ
−1

δ(
√
g Gab) = ∂λ(∇aG

ab)|λ=0 = 0, (4.18)

ĝab(Sδg)
ab =

2−D

2
∂λR|λ=0 = 0. (4.19)

Eqs. (4.18) and (4.19) are obtained by replacing ĝab by the λ dependent metric gab and

moving all terms in front of ∂λ. This step is permissible because when ∂λ acts on a metric

component that was originally a component of ĝab, it produces a linear expression in Ĝab

or R̂, both of which are zero. Once all terms are inside the λ differentiation, we can use

the transversality of the Einstein tensor (true for any metric) and δR = 0 (true for any

perturbation of a static solution) to obtain eqs. (4.18) and (4.19). Therefore (Sδg)ab is

transverse and traceless, from which (∇̂a∇̂b − ĝab∇̂c∇̂c) (Sδg)
ab = 0 immediately follows.

Now consider gauge transformations, generated by a vector field ξa parametrized as

ξ0 =
α

N
, ξi = βi − α

N
N i. (4.20)

The infinitesimal gauge transformation of the lapse and shift functions generated by ξa is

δξN = ∂0α+ βi∂iN −N i∂iα,

δξN
i = ∂0β

i + gij(α∂jN −N∂jα) + βj∂jN
i −N j∂jβ

i.
(4.21)
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Infinitesimal gauge transformations of the static solution are also perturbations: they are

obtained when the family of metrics is generated by a one-parameter family of diffeomor-

phisms applied to the static solution. In this case N = N̂ and N i = N̂ i on the right-hand

sides of eq. (4.20) and (4.21), so the gauge condition δN = 0 and δNa = 0 is preserved

if and only if α is time independent and βi = x0ĝij∂jα + γi, where γi is also time inde-

pendent. The second time derivative of a transformation δξ ĝab generated by such a vector

field is zero, so they are in the kernel of S by eq. (4.8). This can also be checked by direct

calculation using eq. (4.9) and the specific form of δgab.

We have shown that S is a symmetric operator with respect to the inner product (4.11).

The domain D of S is the linear space of perturbations decaying at least as fast as r1−d, so

they are square integrable. They also satisfy eq. (4.17). This condition is invariant under

S and S[δg]ab decays even faster than r1−d, so S[D] ⊂ D. Therefore S can be thought

of as an operator on the Hilbert space obtained by completing D with respect to the

norm ‖δg‖2 = 〈δg, δg〉. Although S is only symmetric, we assume that it is essentially self-

adjoint. By the spectral theorem applied to its self-adjoint extension S̄, any element of D is

decomposed into eigenvectors of S̄ (where the decomposition may involve integration if the

spectrum of S̄ has a continuous part). Although these eigenvectors may not be as smooth

as the original perturbations in D, we will imagine that they are. Since we do not elaborate

on technical issues hinted at in this paragraph, our analysis remains somewhat heuristic.

Let γab be an eigenvector of S with eigenvalue κ. Since γab is an eigenvector, it satisfies

not only eq. (4.17), but also the stronger conditions (4.18) and (4.19) satisfied by S[γ]ab.

In particular, it is traceless, so Kabcdγcd = γab and

δgab = γab exp(±
√
−2κ t) (4.22)

solves equation (4.8). It also solves eq. (4.17). The perturbation of the momentum con-

straint (4.4) is

∇̂a
δπab

√
ĝ

= 0,

which is also satisfied because δπab =
√
ĝ δġab by the tracelessness of γab and δNa = 0, and

γab is also transverse. If κ < 0, one of the solutions is exponentially growing in the future.

This behavior cannot be due to the choice of coordinates because none of the infinitesimal

gauge transformations allowed by eq. (4.7) change δg̈ab, so adding such a transformation

to our solution will not remove the exponential growth. Therefore, a negative eigenvalue

of S̄ indicates physical instabilities of the static solution.

If we have a family along which the second variation δ2E of the energy is negative and

δ2R = 0, then by eq. (4.16), the decomposition of the corresponding first order perturbation

into eigenvectors of S̄ must have an element with a negative eigenvalue, so the static

solution is unstable. This is analogous to the mechanical instability at a local maximum of

the potential. (By the Hamiltonian constraint, the vanishing of δ2R is analogous to probing

the potential without generating kinetic energy.) It is also a special case of thermodynamic

instability in gravitation, whose condition reduces to the form δ2E < 0 if the entropy and

the work terms associated with the angular momentum and the electromagnetic charge are

zero [54].
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The total energy (4.15) of an EK bubble is E = πγm/G5. Thus δm = 0 at the static

solution in a family of bubble initial data (parametrized by λ = rH) with fixed (Ω, γ). In

fact, as can be seen from eq. (3.7), the static bubble sits at a maximum of m, so δ2E < 0.

The subleading term in the 1/r expansion of the spatial metric is proportional to m/r, so

δm = 0 implies that δgab decays as 1/r
2 and therefore it is square-integrable. Furthermore,

R = 0 for each metric in the family. So the perturbations have all the properties needed

for our analysis, and we can conclude that the static EK bubbles are unstable.

5 Strings on the ES bubble background

It is also interesting to ask what sorts of couplings to other degrees of freedom are diagnostic

of the local value of the KK scalar. (This question is, however, somewhat tangential to

the previous sections.) Closed strings are a natural probe: strings of fixed tension T

wound around the compact direction acquire mass sensitive to the local value of ϕ. In the

asymptotic region the wound strings are stretched and heavy, with masses ∼ mnT .5

Although the static ES bubble is unstable, we can imagine finely-tuned, quasi-static

initial conditions near the energy peak, and introduce closed strings onto this background.

Near the core of the bubble, the size of the extra dimension goes to zero in a smooth cap.

Physically, we expect that the wound string can shrink and slip off the cap, converting

itself to outgoing unwound states of lower mass ∼
√
T .

This intuitive picture can be supported by analyzing a simplified system, retaining

only a subset of the wound string degrees of freedom. We consider a 4d field Φ with action

S =

∫

d4x
√
−G

(

−1

2
Gµν∂µΦ∂νΦ− 1

2
(8πmnT )2V Φ2

)

=

∫

d4x
√−g

(

−1

2

gµν∂µΦ∂νΦ

σ1/3
− 1

2
(8πmnT )2Φ2

)

(5.1)

where in the second line we have made the conformal transformation to Einstein frame,

and the metric and KK scalar were defined in eqs. (2.8) and (2.10). This is a toy model

for wound strings on the ES bubble background; Φ creates particle states corresponding

microscopically to strings of winding number n, with no other excitations.

(We can neglect the additional terms in the string energy of order
√
T by restricting

to large winding numbers n, but in any case we are mainly interested in seeing whether

energies ∼
√
T can emerge given mass-squared terms ∼ T 2, as in (5.1). We also note that

a related analysis was performed in [49], with somewhat different results.)

In the complete system, wound strings should slip off the cap of the extra dimension.

This process cannot be described with Φ alone due the symmetry of the simplified system,

but since Φ becomes light near r = 2m, we can look instead for bound states. Sufficiently

deeply bound states of the simplified system with energies of order
√
T indicate that real

strings can shed their winding number completely by being thrown into the bubble.

5Spacetime fermions must have antiperiodic boundary conditions on BON backgrounds. On ordinary

KK backgrounds, antiperiodic BCs lead to tachyonic string modes in sectors of odd winding number if

the KK radius is smaller than the string scale and slowly varying in space [55], which can catalyze bubble

production [32, 56].
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The Klein-Gordon equation arising from eq. (5.1) is

(�G −m2
X)Φ = 0 , (5.2)

where

m2
X = m2

0V = m2
0f, m0 ≡ 8πmnT . (5.3)

We look for ` = 0 solutions of the form Φ = X(r)eiωt. Expanding eq. (5.2),

f X ′′(r) +

(

1 + 3f

2r

)

X ′(r)−m2
0 f X(r) = −ω2X(r) , (5.4)

In normal form, X = u/
(

rf1/4
)

, eq. (5.4) becomes

−fu′′ + fWu = ω2u , (5.5)

where

W = −3

4

m2

f2r4
+m2

0 . (5.6)

We will not attempt to solve eq. (5.5) exactly. It is much simpler to place bounds on the

ground state energy and see that the expected scaling emerges.

We begin by establishing a simple upper bound on the ground state energy which

exhibits
√
T scaling. We will need the conserved Klein-Gordon scalar product, which on

` = 0 modes is given by the radial integral

I[u∗v] ≡
∫ ∞

2m
dr u∗v/f . (5.7)

This product differs from the ordinary L2 product by a weight function f−1. It may be

obtained from the definition of the Klein-Gordon product, or more simply by inspection of

the eigenvalue problem (5.5). The potential would be hermitian with any weight function

w in the integral defining the scalar product, but the term fu′′ requires w = f−1, leading

to (5.7). The ground state “energy” E0 ≡ ω2 has an upper bound of

E0 ≤
I[u∗(−u′′ +Wu)]

I[|u|2/f ] , (5.8)

where u can be any smooth function satisfying appropriate boundary conditions at r = 2m.

Let ϕ be a nonzero smooth function on R
+ supported within (0, 1) and define u0(r) =

ϕ(m0(r−2m)). Since u0(r) = 0 for r−2m > 1/m0, we have I[|u0|2/f ] > 2mm0 I[|u0|2], so

E0 <
I[u∗0(−u′′0 +Wu0)]

2mm0 I[|u0|2]
<

I[u∗0(−u′′0 +m2
0 u0)]

2mm0 I[|u0|2]
=

m0

2m

∫

R+ ϕ∗(−ϕ′′ + ϕ)
∫

R+ |ϕ|2 ∼ nT. (5.9)

We thus obtain an upper bound on the lowest frequency that scales as ω .
√
nT . This can

be contrasted with the mass of the string ∼ mnT in the asymptotically flat region of the

spacetime; the bound modes are parametrically light. We interpret these light modes of the
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simplified system as reflecting the ability of wound strings to “slip off” the cigar: wound

string states can be converted into unwound states by throwing them into the region where

the KK scalar becomes large.

Note that u0 is supported away from r = 2m, so the upper bound we obtained is

independent of the precise boundary conditions at r = 2m. To rigorously establish the

scaling of the ground state energies, we need lower bounds on the ground state ω that also

scale as
√
nT for large n. It is easiest to proceed by making a coordinate transformation

that removes the singularity at r = 2m. In these coordinates the question of boundary

conditions also becomes more transparent. We give a detailed analysis in appendix A;

here we only show that the properties of the attractive 1/x2 potential in nonrelativistic

quantum mechanics suggest that the ω2 spectrum is at least positive.

Since W (r) > m2
0 − 3/16x2 > −3/16x2 for x = r − 2m > 0,

E0 ≥ inf
I[u∗(−u′′ +Wu)]

I[|u|2/f ] ≥ inf

∫

dxu∗(−u′′ − 3
16x2 u)

∫

dx (1 + 2m
x )|u|2

, (5.10)

where the infimum is taken over smooth functions u satisfying appropriate boundary condi-

tions at x = 0. Thus, if the spectrum of a nonrelativistic particle in the potential −3/16x2

is positive, E0 ≥ 0 follows. This is a somewhat subtle problem in ordinary quantum me-

chanics: the potential −λ/x2 leads to different behaviors depending on the strength of the

coupling λ. For weak attractive coupling, 0 < λ ≤ 1/4, it is possible to proceed in the

ordinary way, identifying regular and irregular solutions to the Schrödinger equation near

the origin and connecting the regular solutions with controlled behavior at large r. One

finds a continuum of scattering states of positive energy and no bound states. For strong

attractive coupling, λ > 1/4, it is no longer possible to label the small-r solutions as regular

and irregular: both behave as sin log r and admit an infinite number of nodes below any

fixed r0. The spectrum is either unbounded from below, or additional physical input is

needed to establish a ground state (see, e.g., [57, 58].) Since λ = 3/16 is close to but safely

below the critical coupling of 1/4 in the nonrelativistic quantum mechanical problem, we

conclude that E0 ≥ 0.

Let us close this section by commenting briefly on the relationship of our results to the

swampland distance conjecture [10, 27], which conjectures that motion over large distances

in moduli space results in a tower of exponentially light states descending below the cutoff

of the EFT. How might this manifest for large localized excursions in space, like those

associated with the KK bubble? In this case the proper distance in moduli space traversed

as one approaches the bubble wall is infinite; however, it is not the case that a tower

of modes localized near the bubble becomes light. Since the KK radius becomes small,

the relevant states would be wound strings, and we have seen that the most deeply bound

states of wound strings behave like ordinary unwound strings. On the other hand, since the

excursion is logarithmic, mapping it requires fine spatial resolution in the radial direction.

In some sense, if one can measure a traversal ∆ϕ, one must have experimental access to

distance scales of order e−|∆ϕ|/Mp , and therefore to an exponentially large number of KK

modes in the asymptotic spacetime. Of course, to establish the presence of the infinite

excursion in one pass merely requires throwing in a wound string.
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6 Discussion

In 4d gravity with a light scalar, attempts to set up a large variation of the scalar can

result in collapse to a black hole, even if energy densities are kept small. However, vacuum

solutions of Kaluza-Klein theory are known in which the KK scalar diverges in local re-

gions. These regions have a different fate: they are unstable bubbles of nothing which may

either collapse or expand. The instability is well-known for the bubble derived from the Eu-

clidean Schwarzschild solution, and we have shown that it is also present for Euclidean Kerr

bubbles, which we find can be interpreted as static relatives of bubble nucleation events

in KK magnetic fields. An exterior observer can in principle detect the field excursion,

for example by throwing a wound string into an approximate KK bubble geometry and

watching it emerge as states of zero winding number. However, realizing an exactly static

bubble is impossible, and for a finely-tuned quasistatic bubble, in general this experiment

will perturb it along the unstable direction.

These observations add to the collection of explicit examples in which general rela-

tivity dynamically censors large scalar field excursions. It would be interesting to explore

further whether there is any sharp relationship with more existential conjectures about the

admissible types of scalar potentials.
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A Lower bound on ω

The transformation ρ(r) that brings the spatial metric into a function times the Euclidean

metric satisfies:

dρ

dr
=

ρ

r
f−1/2. (A.1)

Choosing the solution for which ρ(r0) = r0, where r0 = 2m, we find

ρ = 2r − r0 + 2
√

r(r − r0) , (A.2)

and the metric in the new coordinates is the Euclidean metric times Ω2(ρ) = (ρ+r0)
4/16ρ4.

In the new coordinates, the normal form of eq. (5.4) is obtained by the substitution

X(r(ρ)) = v(ρ)/(ρ
√

Ω(ρ)):

− 16ρ4

(ρ+ r0)4
v′′ +m2

0

(

ρ− r0
ρ+ r0

)2

v = ω2v (A.3)

The Klein-Gordon product on radial functions v(ρ) takes the form

I[v∗1v2] =
∫ ∞

r0

dρ

(

ρ+ r0
2ρ

)4

v∗1v2 . (A.4)
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The ground state frequency ω2 is given by

r20ω
2 = inf

∫∞
1 ds

[

−v∗v′′ + Λ(1− 1
s2
)2|v|2

]

∫∞
1 ds

(

s+1
2s

)4 |v|2
(A.5)

Here we have made the substitutions ρ → r0s, (m0r0/4)
2 → Λ. Note that s ≥ 1, and for

the purposes of establishing a lower bound, we can replace the function
(

s+1
2s

)4 → 1 in the

denominator of eq. (A.5).

Now let us define a square well potential U which is zero for all s < s0 for some s0,

and U = U0 = Λ(1 − 1
s2
0

)2 for s ≥ s0. This potential is everywhere less than or equal to

that of eq. (A.5), so r20ω
2 is bounded by the ground state energy of the square well,

r20ω
2 ≥ inf

∫∞
1 ds

[

−v∗v′′ + U |v|2
]

∫∞
1 ds|v|2 (A.6)

The ground state of the square well depends on the boundary condition at s = 1.

The quantum mechanical states of a relativistic scalar particle are obtained from classical

solutions, so it is natural to impose boundary conditions that guarantee the conservation

of the Noether charges associated with the symmetries of the background metric. Using

the stress-energy tensor of a massless scalar field, we can see that this requirement implies

that the following fluxes vanish:
∮

ρ=r0
dxD−1

√
h ∂`Φ ∂ρΦ = 0 , (A.7)

where h is the determinant of the metric induced on the sphere at ρ = r0 and ∂` is

either time derivative or differentiation with respect to the asimuthal angle to ensure the

conservation of energy or angular momentum, respectively. It is sufficient to impose either

the Dirichlet or the Neumann condition: X = 0 or ∂ρX = 0, where Φ(t, ·) = X(·)eiωt.
Therefore we accommodate general mixed boundary conditions by setting

(ξ∂sv + v)|s=1 = 0 (A.8)

for arbitrary parameter ξ, which covers both the Dirichlet (ξ = 0) and the Neumann

(ξ = −2) condition. Since
∫

s≥1
dxD X∗(−∆X) =

∮

s=1
dxD−1

√

h0X
∗∂rX +

∫

s≥1
dxD ∇X∗ · ∇X (A.9)

= −ξ

∮

s=1
dxD−1

√

h0 |∂rX|2 +
∫

s≥1
dxD ∇X∗ · ∇X, (A.10)

where dxD−1
√
h0 is the invariant measure induced by the D dimensional Euclidean metric

on the sphere at s = ρ/r0 = 1. For the relevant values of ξ (ξ = 0,−2), the above expression

is positive, and so is the potential U . Therefore the ground state energy of the square well

is also positive, and we can seek the ground state inside the well in the form eiks+Be−iks,

where k2 ≥ 0 (i.e. k is real). Matching this function and its derivative with exponential

decay Ce−k̃s (k̃ ≡
√
U0 − k2) in the forbidden region, we obtain a constraint,

tan(k(s0 − 1)) =
kk̃ξ − k

k2ξ + k̃
. (A.11)
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As usual, solving this constraint yields a discrete spectrum of energy levels k2 for a given

well size s0.

Since we are interested in large Λ scaling, we will take a convenient choice for s0 and

an ansatz for the behavior in this limit, then show that it yields solutions self-consistently.

Let us take s0 = 1 + β/Λ1/4 for some β. This implies U0 ∼ 4β2
√
Λ for large Λ. We then

try the scaling k → αΛ1/4. For large Λ, the constraint simplifies and becomes Λ- and

ξ-independent,

√

−1 + 4β2/α2 = tan(αβ) . (A.12)

Taking, for example, β = 1, the solution for α is also O(1). The ground state of the full

potential therefore satisfies

r20ω
2 ≥ α2

√
Λ ∼ nT (A.13)

for large Λ.
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