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Exact Camera Location Recovery by Least Unsquared Deviations\ast 
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Abstract. We establish exact recovery for the Least Unsquared Deviations (LUD) algorithm of \"Ozye\c sil and
Singer. More precisely, we show that for sufficiently many cameras with given corrupted pairwise
directions, where both camera locations and pairwise directions are generated by a special proba-
bilistic model, the LUD algorithm exactly recovers the camera locations with high probability. A
similar exact recovery guarantee for camera locations was established for the ShapeFit algorithm by
Hand, Lee, and Voroninski, but with typically less corruption.
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1. Introduction. The Structure from Motion (SfM) problem asks to recover the 3D struc-
ture of an object from its 2D images. These images are taken by many cameras at different
orientations and locations. In order to recover the underlying structure, both the orientations
and the locations of the cameras need to be estimated [25].

The common procedure is to first estimate the relative orientations between pairs of cam-
eras from the corresponding essential matrices and then use them to obtain the pairwise
directions between cameras [15]. A pairwise direction between two cameras is the normal-
ized vector of their relative location. The global orientations up to an arbitrary rotation can
be concluded via synchronization from the pairwise orientations [1, 6, 12, 16, 20, 24]. The
locations can be derived from the pairwise directions [1, 2, 10, 11, 12, 14, 22, 23, 24, 29, 30].

This paper mathematically addresses the latter subproblem of estimating global camera
locations when given corrupted pairwise directions with missing values. In doing so, it follows
the corruption model and the mathematical problem of Hand, Lee, and Voroninski (HLV)
[14], which are described next.

The HLV model. Assume n cameras, indexed by [n] = \{ 1, 2, . . . , n\} , with locations
\bfitt \ast 1, . . . , \bfitt 

\ast 
n \subset R3, independently and identically distributed (i.i.d.) from N(0, \bfitI ). Let G([n], E)

be drawn from the Erd\H os--R\'enyi ensemble G(n, p) of n vertices with probability of connection
p. That is, an edge with index ij \in [n]\times [n] is independently drawn between cameras i and j
with probability p. For any i, j \in [n], ij and ji appear at most once in the index set of edges E
so that there is no repetition. For each edge with index ij \in E, a possibly corrupted pairwise
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direction vector \bfitgamma ij \in S2 is assigned. More precisely, E is partitioned into sets of ``good"" and
``bad"" edges, Eg and Eb, respectively, and the pairwise direction vectors are obtained in each
set as follows: If ij \in Eg, then \bfitgamma ij is the ground truth pairwise direction:

(1.1) \bfitgamma \ast 
ij =

\bfitt \ast i  - \bfitt \ast j
\| \bfitt \ast i  - \bfitt \ast j\| 

,

where \| \cdot \| denotes the Euclidean norm. Otherwise, \{ \bfitgamma ij\} ij\in Eb
are arbitrarily assigned in S2.

The level of corruption of the HLV model is quantified by \epsilon b =
1
n(maximal degree of Eb). The

parameters of the HLV model are n, p, and \epsilon b.
The HLV problem and its solutions. Given data sampled from the HLV model and as-

suming a bound on the corruption parameter \epsilon b, the exact recovery problem is to reconstruct,
up to ambiguous translation and scale, \{ \bfitt \ast i \} ni=1 from \{ \bfitgamma ij\} ij\in E . Hand, Lee, and Voroninski

addressed this problem while assuming \epsilon b = O(p5/ log3 n) and using their ShapeFit algorithm
[14]. Here we address this problem with the weaker assumption \epsilon b = O(p7/3/ log9/2 n), while
using the Least Unsquared Deviations algorithm [23].

1.1. Previous works. In the past two decades, a variety of algorithms have been proposed
for estimating global camera locations from corrupted pairwise directions [25]. The earliest
methods use least squares optimization [1, 2, 11] and often result in collapsed solutions. That
is, the camera locations are usually wrongly estimated around few points. Constrained Least
Squares (CLS) [29, 30] utilizes a least squares formulation with an additional constraint to
avoid collapsed solutions. Another least squares solver with anticollapse constraint is semidef-
inite relaxation (SDR) [24]. Its constraint is nonconvex and makes it hard to solve even after
convex relaxation. Other non-least-squares solvers include the L\infty method [22] and the Lie-
algebraic averaging method [12]. However, all of the above methods are sensitive to outliers.

Recently, \"Ozye\c sil and Singer [23] proposed the Least Unsquared Deviations (LUD) algo-
rithm and numerically demonstrated its robustness to outliers and noise. Given the pair-
wise directions \{ \bfitgamma ij\} ij\in E , the LUD algorithm estimates the camera locations \{ \bfitt \ast i \} ni=1 by

\{ \^\bfitt i\} ni=1 \subset R3, which solve the following constrained optimization problem with the additional
parameters \{ \^\alpha ij\} ij\in E \subset R:

(1.2) (\{ \^\bfitt i\} ni=1, \{ \^\alpha ij\} ij\in E) = argmin
\{ \bfitt i\} ni=1

\subset R3

\{ \alpha ij\} ij\in E\subset R

\sum 
ij\in E

\| \bfitt i  - \bfitt j  - \alpha ij\bfitgamma ij\| s.t. \alpha ij \geq 1 and
\sum 
i

\bfitt i = 0.

This formulation is very similar to that of CLS, but uses least absolute deviations instead of
least squares in order to gain robustness to outliers. Numerical results in [23] demonstrate
that LUD can exactly recover the original locations even when some pairwise directions are
maliciously corrupted.

Following \"Ozye\c sil and Singer, Hand, Lee, and Voroninski [14] proposed the ShapeFit al-
gorithm as a theoretically guaranteed solver. Given the pairwise directions \{ \bfitgamma ij\} ij\in E , the
ShapeFit algorithm estimates the locations \{ \bfitt \ast i \} ni=1 by solving the following convex optimiza-
tion problem:

min
\{ \bfitt i\} ni=1\subset R3

\sum 
ij\in E

\| P\bfitgamma \bot 
ij
(\bfitt i  - \bfitt j)\| s.t.

\sum 
ij\in E

\langle \bfitt i  - \bfitt j ,\bfitgamma ij\rangle = 1 and

n\sum 
i=1

\bfitt i = 0,
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Figure 1. Empirical performance of LUD and ShapeFit under corruption and noise for synthetic data.
Both methods are implemented using the CVX-SDPT3 package. Left: Data is generated by the HLV model
with n = 50 and p = 0.5. The corruption level is measured by | Eb| /| E| instead of \epsilon b and takes values in
[0, 1]. Right: The ground truth is generated by the HLV model with n = 50, p = 0.5, and Eb = \emptyset . For each
ij \in E, \bfitgamma ij = (\bfitgamma \ast 

ij + \sigma \bfitv ij)/\| \bfitgamma \ast 
ij + \sigma \bfitv ij\| , where \bfitv ij is uniformly distributed on S2 and 0 \leq \sigma \leq 1 is the

noise level. In both figures the performance is measured by the normalized root mean squared error (NRMSE):
NRMSE 2 =

\sum n
i=1 \| \kappa 

\ast \^\bfitt i  - \bfitt \ast i \| 2/
\sum n

i=1 \| \bfitt 
\ast 
i \| 2, where \kappa \ast = argmin\kappa \in R

\sum 
ij\in E \| \kappa \^\bfitt i  - \bfitt \ast i \| 2.

where P\bfitgamma \bot 
ij
denotes the orthogonal projection onto the orthogonal complement of \bfitgamma ij .

Empirically, for low levels of noise and corruption, ShapeFit is more accurate than LUD.
Figure 1 demonstrates the empirical behavior of ShapeFit and LUD for synthetic data. We
remark that in this case of synthetic data, stability can be measured as the magnitude of the
rate of change of accuracy with respect to corruption or noise. Figures 1 and 2 of Goldstein et
al. [10] demonstrate similar behavior but emphasize exact recovery at lower corruption levels,
where ShapeFit often outperforms LUD. Practical results are demonstrated in [10, 27, 28]
and seem to indicate similar behavior. Most notably, LUD is more stable, where stability for
real data sets is demonstrated by consistent performance of different simulations for the same
data set as well as consistent performance among different data sets.

We are unaware of any thorough explanation of the differences between the performance
of LUD and ShapeFit, which are demonstrated in Figure 1. To address this issue, we note
that the LUD constraints are \alpha ij \geq 1 for all ij \in E, where each \alpha ij is a relaxation of \| \bfitt i - \bfitt j\| .
These constraints force the nearby locations to be sufficiently separated. In other words,
short edges are extended to prevent collapsed solutions. In contrast, since the constraint\sum 

ij\in E\langle \bfitt i - \bfitt j ,\bfitgamma ij\rangle = 1 of ShapeFit only fixes the global scale instead of restricting the length
of each edge, it cannot avoid collapse of the whole graph into several clusters. Therefore, under
high levels of corruption and noise, where a possible collapse is a major concern, LUD is more
accurate and stable. However, under low levels of corruption and noise, the extension of short
edges mentioned above may deform the solution of LUD and result in inaccurate estimation.
We remark that similarly to the extension of short edges, [35] discusses the shrinkage of long
edges by LUD. However, [35], which only experiments with low levels of corruption, wrongly
claims that ShapeFit is generally superior to LUD.

Some recent works seek to further improve or utilize LUD and ShapeFit. Goldstein et
al. [10] present an accelerated version of ShapeFit using the alternating direction method of
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multipliers (ADMM). However, they sacrifice accuracy for speed. Sengupta et al. [27] present
a novel heuristic for estimating the fundamental matrices with rank constraints, which di-
rectly relies on LUD. Zhuang, Cheong, and Lee [35] proposed an angle-based formulation to
address the unreasonably high weights of long-edge terms in LUD and ShapeFit. However,
both [27] and [35] rely on good initializations and lack recovery and convergence guaran-
tees. Other works seek to detect and remove corrupted pairwise directions as a preprocessing
step for common camera location solvers, in particular, for LUD and ShapeFit. Wilson and
Snavely [32] proposed the 1DSfM algorithm for identifying outlying pairwise directions. It
projects the 3D locations and pairwise directions to 1D and solves an ordering problem using
a heuristic method. However, this method suffers from convergence to local minima. Further-
more, the projection to 1D loses information. Shi and Lerman [28] proposed the All-About-
that-Base (AAB) algorithm for separating corrupted and uncorrupted pairwise directions.
They established a near-perfect separation guarantee for a basic version of this algorithm.
They demonstrated state-of-the-art numerical results, where the most competitive procedure
in their real data experiments was LUD preprocessed by AAB.

The mathematical problem discussed in this paper is an example of a convex recovery
problem. Other such problems include, for example, recovering sparse signals, low-dimensional
signals, and underlying subspaces. There seem to be two different kinds of theoretical guar-
antees for convex recovery problems. Guarantees of the first kind construct dual certifi-
cates [3, 4, 5]. Guarantees of the second kind show that the underlying object is the minimizer
of the convex objective function, and it is sufficient to show this in a small local neighbor-
hood [7, 19, 26, 33, 34]. The latter guarantees often require geometric methods. It is evident
from page 33 of [14] that the guarantees of ShapeFit are of the second kind. Nevertheless,
the graph-theoretic approach of [14] is completely innovative and enlightening. In particular,
it clarifies the effect of vertex perturbation on edge deformation.

1.2. This work. The current paper proves exact recovery of LUD under the HLV model
up to ambiguous scale and translation. More precisely, it establishes the following theorem.

Theorem 1.1. There exist absolute constants n0, C0, and C1 such that for n > n0 and for
\{ \bfitt \ast i \} ni=1 \subseteq R3, E \subseteq [n]\times [n], and \{ \bfitgamma ij\} ij\in E \subseteq R3 generated by the HLV model with parameters

n, p, and \epsilon b satisfying C0n
 - 1/3 log1/3 n \leq p \leq 1 and \epsilon b \leq C1p

7/3/ log9/2 n, LUD recovers
\{ \bfitt \ast i \} ni=1 up to translation and scale with probability at least 1 - 1/n4.

To the best of our knowledge this theorem is the first exact recovery result for LUD under
a corrupted model. Theorem 1.2 of Hand, Lee, and Voroninski [14] provides exact recovery
for ShapeFit under the same model. Both theorems restrict the minimal value of p and the
maximal degree of corruption \epsilon b. Typically, Theorem 1.1 tolerates more corruption. Indeed,
the higher the upper bound on \epsilon b, the higher the corruption that the algorithm can tolerate.
Theorem 1.2 of [14] requires a bound of order O(p5/ log3 n), and Theorem 1.1 requires a bound
of order O(p7/3/ log9/2 n). Therefore in sparse settings where p \ll 1, e.g., p \approx n - \alpha , Theorem
1.1 guarantees recovery with more corruption than Theorem 1.2 of [14].

There are two additional differences between the theorems, which we find minor. First, in
Theorem 1.2 of [14], the lower bound on p is of order n - 1/2 log1/2 n. While our lower bound
is of order n - 1/3 log1/3 n, it can be modified to be of order n\delta  - 1/2 log1/2 - \delta n for any positive
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\delta sufficiently small; however, the multiplying constant, C0, depends on \delta and explodes as \delta 
approaches zero. The second difference is that Theorem 1.2 of [14] was extended to Euclidean
spaces with sufficiently high dimensions (see Theorem 1.1 of [14]). We can easily extend
Theorem 1.1 to any fixed higher dimension, though we are not sure about the case where both
the dimension and the number of locations increase to infinity. Nevertheless, we would rather
focus on the 3D case because of the motivating problem from computer vision.

We remark that our analysis borrows various ideas from the work of Hand, Lee, and
Voroninski [14]. In fact, we find it interesting to show that their innovative and nontrivial
ideas are not limited to a specific objective function, but can be extended to another one.

The main ideas of the proof of Theorem 1.1 are discussed in section 2, while additional
technical details are left to other sections. The novelties of this work are emphasized in section
2.5.

2. Proof of Theorem 1.1. Figure 2 presents a roadmap for the proof of Theorem 1.1.
The organization of the paper can be described according to a more simplistic version of this
roadmap. Section 2.1 reformulates the LUD problem. Section 2.2 uses the new formulation to
define the ``good-long-dominance condition"" and states that under this condition LUD exactly
recovers \{ \bfitt \ast i \} ni=1. Section 2.3 defines the ``good-shape condition"" and claims that it implies

Exact recovery by LUD with 

high probability conditioned 

on the event

The good-long-dominance condition

implies exact recovery by LUD 

(see sections 2.2 and 3)

The good-shape condition implies 

the good-long-dominance condition

(see sections 2.3 and 4)

The good-shape condition is 

satisfied with high probability 

conditioned on the event 

(see sections 2.4 and 5)

Reformulation of LUD

(see section 2.1)

Case 1: Zero parallel motions on     of (2.5) 

(see section 4.2)

Case 2: Large parallel motions on     of (2.5) 

(see section 4.2)

Case 3: Small non-zero parallel motions on

      of (2.5) (see section 4.2)

Case 1: The constant c* of (2.4) is suffciently 

large (see section 5.1)

Case 2: The constant c* of (2.4) is not 

suffciently large (see sections 5.2 and 5.3)

G([n],E) is parallel rigid with 

high probability (see Appendix A)

Exact recovery by LUD with

high probability conditioned 

on the event

(see Proposition 1 of [23])

The constant c* of (2.4) is unique with high 

probability conditioned on the event 

(see Appendix B)

Exact recovery by LUD 

with high probability

Figure 2. Roadmap for the proof of Theorem 1.1.
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the good-long-dominance condition. Section 2.4 shows that under the HLV model the good-
shape condition is satisfied with high probability and thus concludes the proof of the theorem.
Finally, section 2.5 discusses the novelties in our proof. Details of proofs of the main results
of this section are left to sections 3--5 and Appendices A and B.

We make the above description more precise so that it reflects the roadmap of Figure 2.
Our proof of Theorem 1.1 assumes that | Eb| > 0, where | Eb| denotes the number of elements
in Eb. Under the setting of Theorem 1.1, this assumption is sufficient to conclude the theorem.
Indeed, Proposition 1 of [23] implies that if | Eb| = 0 and the underlying graph is parallel rigid,
then LUD recovers the true solution \{ \bfitt \ast i \} ni=1 up to translation and scale. Appendix A reviews
this notion of parallel rigidity and shows that under the setting of Theorem 1.1, the generated
graph is parallel rigid with high probability. Consequently, exact recovery by LUD occurs
with high probability when | Eb| = 0 and thus it is sufficient to study the case where | Eb| > 0.

A technical notion that is crucial in understanding the roadmap is the scale c\ast obtained
by LUD with respect to the ground truth solution. More precisely, when LUD recovers the
ground truth locations \{ \bfitt \ast i \} ni=1, it outputs the scaled and shifted locations \{ c\ast \bfitt \ast i + \bfitt s\} ni=1. The
constant c\ast is used to define the notion of good and long edges, which is further used to define
the above-mentioned notions of good-long-dominance and good-shape conditions. To make
these notions well-defined, c\ast has to be unique. Appendix B shows that under the setting of
Theorem 1.1 and the sufficient assumption | Eb| > 0, c\ast is unique with high probability. The
three and two cases specified in the left-hand side (LHS) of Figure 2, which use the constant
c\ast and the set of good and long edges, Egl, will be clarified in sections 3--5.

In sections 2.2, 2.3, 3, and 4 and part of Appendix B, the setting is deterministic. It
assumes a graph G([n], E) with distinct ground truth locations \{ \bfitt \ast i \} ni=1. It also assumes
that E is partitioned into Eb and Eg. For ij \in Eg, the pairwise direction \bfitgamma ij is \bfitgamma \ast 

ij of
(1.1), and for ij \in Eb, \bfitgamma ij is arbitrarily assigned. Except for Appendix B, this deterministic
setting also assumes that c\ast is unique. We remark that the latter requirement or other
requirements in these sections and appendix, such as the good-long-dominance condition,
good-shape condition, or non-self-consistency, may restrict the topology of G([n], E), the
vertex locations, and the corrupted edges.

Throughout the paper we pursue the following notation, conventions, and assumptions.
For a, b \in R, the notation a = \Omega (b) is equivalent to b = O(a). For brevity, we say that an
event in our setting holds with overwhelming probability if its probability is at least 1 - e - Cn\alpha 

for some \alpha , C > 0. We remark that while the paper has many probabilistic estimates, p
is reserved for the connection probability of the HLV model. We often refer to ``locations
\{ \bfitt i\} ni=1,"" even though \{ \bfitt i\} ni=1 is the set of locations. Similarly, we write ``pairwise directions
\{ \bfitgamma ij\} ij\in E ."" We sometimes refer to the set of vertex locations by T . Whenever we talk about
ground truth camera locations, we assume they are distinct even if we do not specify this. We
denote vectors by boldface lowercase letters and matrices by boldface uppercase letters.

2.1. Reformulation of the problem. We suggest an equivalent formulation of the LUD
optimization problem, which gets rid of the variables \{ \alpha ij\} ij\in E . We express the optimal \alpha ij

in terms of \{ \^\bfitt i\} ni=1 and \{ \bfitgamma ij\} ij\in E as follows:

(2.1) \^\alpha ij = argmin
\alpha ij\geq 1

\| \^\bfitt i  - \^\bfitt j  - \alpha ij\bfitgamma ij\| .
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0 \bfitgamma ij

\^\bfitt i  - \^\bfitt j

\^\alpha ij\bfitgamma ij

Figure 3. Demonstration of the choice of \^\alpha ij

when \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle > 1. By definition, \^\alpha ij =

\| P\bfitgamma ij
(\^\bfitt i  - \^\bfitt j)\| .

0 \bfitgamma ij = \^\alpha ij\bfitgamma ij

\^\bfitt i  - \^\bfitt j

Figure 4. Demonstration of the choice of \^\alpha ij

when \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle \leq 1. By the constraint \^\alpha ij \geq 1,
\^\alpha ij = 1.

Figures 3 and 4 illustrate the value of \^\alpha ij in two complimentary cases. Note that in both
figures, \^\alpha ij is obtained by minimizing the length of the dashed line. These figures thus
demonstrate the following equivalent expression for \{ \^\alpha ij\} ij\in E :

\^\alpha ij =

\Biggl\{ 
\| P\bfitgamma ij

(\^\bfitt i  - \^\bfitt j)\| if \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle > 1;

1 if \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle \leq 1,

where P\bfitgamma ij
denotes the orthogonal projection onto \bfitgamma ij .

Plugging the above optimal values of \{ \^\alpha ij\} ij\in E into (1.2), we obtain an equivalent LUD
formulation:

(2.2) \{ \^\bfitt i\} ni=1 = argmin
\{ \bfitt i\} ni=1\subset R3

\sum 
ij\in E

fij(\bfitt i , \bfitt j) s.t.
n\sum 

i=1

\bfitt i = 0,

where

fij(\bfitt i, \bfitt j) =

\Biggl\{ 
\| P\bfitgamma \bot 

ij
(\bfitt i  - \bfitt j)\| if \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle > 1;

\| \bfitt i  - \bfitt j  - \bfitgamma ij\| if \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle \leq 1.
(2.3)

Our analysis requires formulating an oracle problem that determines the particular shift
and scale found by LUD. That is, we assume we know the ground truth solution \{ \bfitt \ast i \} ni=1 and
we ask for the scale c\ast and shift \bfitt s such that \{ c\ast \bfitt \ast i + \bfitt s\} ni=1 minimizes the LUD problem. This
oracle problem is formulated as follows:

(c\ast , \bfitt s) = argmin
c\in R,\bfitt \in R3

\sum 
ij\in E

fij(\bfitt i , \bfitt j) s.t.
n\sum 

i=1

\bfitt i = 0 and \bfitt i = c\bfitt \ast i + \bfitt .(2.4)

We later show in Appendix B that c\ast is unique with overwhelming probability under the
setting of Theorem 1.1 and our assumption that Eb \not = \emptyset . The uniqueness of \bfitt s follows from
the LUD constraint

\sum 
i \bfitt i = 0. We will prove Theorem 1.1 by showing that \^\bfitt i = c\ast \bfitt \ast i + \bfitt s for

all i \in [n].
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2.2. Exact recovery under the good-long-dominance condition. We establish the re-
covery of the ground truth locations \{ \bfitt \ast i \} ni=1 by LUD up to translation and scale under a
geometric condition, which we refer to as the good-long-dominance condition. The set of
good and long edges, Egl, and its complement are defined by

(2.5) Egl = \{ ij \in Eg| \| \bfitt \ast i  - \bfitt \ast j\| > 1/c\ast \} and Ec
gl = E \setminus Egl.

The sets Egl and Ec
gl are well-defined if c\ast uniquely solves (2.4). As explained above, in this

and the next section (as well as when providing supplementary details in sections 3 and 4), we
assume a ``deterministic setting,"" where c\ast is unique. On the other hand, when assuming the
setting of Theorem 1.1 and the sufficient condition | Eb| > 0, c\ast is unique with overwhelming
probability.

Definition 2.1 (good-long-dominance condition). We say that \{ \bfitt \ast i \} ni=1, E = Eg \cup Eb \subseteq 
[n] \times [n], and \{ \bfitgamma ij\} ij\in E satisfy the good-long-dominance condition if for any perturbation
vectors \{ \bfitepsilon i\} ni=1 \in R3 such that

\sum n
i=1 \bfitepsilon i = 0 and

\sum n
i=1\langle \bfitepsilon i, \bfitt \ast i \rangle = 0,\sum 

ij\in Egl

\| P\bfitgamma \ast \bot 
ij
(\bfitepsilon i  - \bfitepsilon j)\| \geq 

\sum 
ij\in Ec

gl

\| \bfitepsilon i  - \bfitepsilon j\| .(2.6)

In order to clarify this condition, we assume that the variables \{ \bfitt i\} ni=1 are perturbed by
\{ \bfitepsilon i\} n1=1, respectively, from the ground truth \{ c\ast \bfitt \ast i + \bfitt s\} ni=1. As explained later in (3.3), the
change in the objective function of (2.2), when restricted to the sum over Egl, is the LHS
of (2.6). Furthermore, as explained later in (3.4), the change in the objective function of
(2.2), when restricted to Ec

gl, is bounded above by the right-hand side (RHS) of (2.6). The
condition thus shows that the change in the objective function due to the good and long edges
dominates the change due to all other edges.

Finally, we formulate the following theorem, which is proved in section 3.

Theorem 2.2. If \{ \bfitt \ast i \} ni=1, E = Eg \cup Eb \subseteq [n] \times [n], and \{ \bfitgamma ij\} ij\in E satisfy the good-long-
dominance condition, then LUD exactly recovers the ground truth solution up to translation
and scale. That is, the solution of (2.2) has the form \^\bfitt i = c\ast \bfitt \ast i + \bfitt s for i \in [n], where c\ast and
\bfitt s solve (2.4).

2.3. Exact recovery under the good-shape condition. We show that the good-long-
dominance condition is satisfied when the graph E has certain properties. We first review
the definitions of the following two properties suggested in [14]: a p-typical graph and c-well-
distributed vertices.

Definition 2.3. A graph G([n], E) is p-typical if it satisfies the following propositions:
1. G is connected.
2. Each vertex of G has degree between 1

2np and 2np.
3. Each pair of vertices has codegree between 1

2np
2 and 2np2, where the codegree of a pair

of vertices ij is defined as | \{ k \in [n] : ik, jk \in E\} | .

Definition 2.4. Let G = G([n], E) be a graph and let T = \{ \bfitt i\} ni=1 \subseteq R3 be a set of vertex
locations. For \bfitx , \bfity \in R3, c > 0, and A \subseteq T , we say that A is c-well-distributed with respect
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to (\bfitx ,\bfity ) if the following holds for any \bfith \in R3:

1

| A| 
\sum 
t\in A

\| P\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{ \bfitt  - \bfitx ,\bfitt  - \bfity \} \bot (\bfith )\| \geq c\| P(\bfitx  - \bfity )\bot (\bfith )\| .

We say that T is c-well-distributed along G if for all distinct 1 \leq i, j \leq n, the set Sij = \{ \bfitt k \in 
T : ik, jk \in E(G)\} is c-well-distributed with respect to (\bfitt i, \bfitt j).

Let Kn denote the complete graph with n vertices and let E(Kn) denote the set of edges
of Kn.

Using the above notation and definitions, we formulate a geometric condition on Egl and
G([n], E) that guarantees exact recovery by LUD.

Definition 2.5 (good-shape condition). Let p, \beta , \epsilon 0, \epsilon 1, c1 \in (0, 1], c0 \geq 1, and Egl be the set
of good-long edges defined above. We say that \{ \bfitt \ast i \} ni=1, E = Eg \cup Eb \subseteq [n]\times [n], and \{ \bfitgamma ij\} ij\in E
satisfy the good-shape condition with the parameters p, \beta , \epsilon 0, \epsilon 1, c0, c1 if the following hold:

1. G is p-typical.
2. For any distinct ij \in E(Kn), there exist at least n  - \epsilon 1n indices k \not = i, j such that

1 - \langle \bfitgamma \ast 
ij ,\bfitgamma 

\ast 
ik\rangle \geq \beta 2 and 1 - \langle \bfitgamma \ast 

ij ,\bfitgamma 
\ast 
jk\rangle \geq \beta 2.

3. For any distinct ij \in E(Kn), \| \bfitt \ast i  - \bfitt \ast j\| \leq c0\mu , where

(2.7) \mu =
1

| E(Kn)| 
\sum 

ij\in E(Kn)

\| \bfitt \ast i  - \bfitt \ast j\| .

4. The maximal degree of Ec
gl is \epsilon 0n.

5. T is c1-well-distributed along G and along Kn.
6. For any distinct i, j, k \in [n], \bfitt \ast i , \bfitt 

\ast 
j , and \bfitt \ast k \in V are not collinear.

Last, we claim that under the HLV model the good-shape condition with certain restriction
on its parameters implies exact recovery. The proof verifies that the good-long-dominance
condition holds and then applies Theorem 2.2.

Theorem 2.6. If \{ \bfitt \ast i \} ni=1, E = Eg \cup Eb \subseteq [n] \times [n], and \{ \bfitgamma ij\} ij\in E satisfy the good-shape
condition with respect to the parameters p, \beta , \epsilon 0, \epsilon 1, c1, c0 and if

(2.8) \epsilon 0 \leq min

\biggl\{ 
\beta c1p

222c30
,
\beta c21p

220c0
,
c1p

2

16

\biggr\} 
and \epsilon 1 \leq min

\biggl( 
1

144c0
,
1

96

\biggr) 
,

then the solution \{ \^\bfitt i\} ni=1 of (2.2) has the form \^\bfitt i = c\ast \bfitt \ast i + \bfitt s for i \in [n], where c\ast and \bfitt s solve
(2.4).

2.4. Conclusion of Theorem 1.1. We verify that under the HLV model the good-shape
condition holds with parameters satisfying (2.8) and with high probability. Combining this
observation with Theorem 2.6 results in Theorem 1.1.

We assume the conditions of Theorem 1.1 and set the following parameters:

\beta =
p

218 log n
, c1 =

c\surd 
log n

, \epsilon 1 =
p

192c0
, and c0 = 64

\sqrt{} 
log n,
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where c is a constant used in Lemma 3.10 of [14]. The second inequality of (2.8) is clearly
satisfied with these parameters. We note that establishing the first inequality of (2.8) requires
establishing the inequality \epsilon 0 \leq c\prime p2/ log3 n, where c\prime linearly depends on c, that is, \epsilon 0 =
O(p2/ log3 n). The following theorem, which is proved in section 5, establishes this under the
assumptions of Theorem 1.1.

Theorem 2.7. If the camera locations \{ \bfitt \ast i \} ni=1 and pairwise directions \{ \bfitgamma ij\} ij\in E are gener-

ated by the HLV model with p = \Omega ( 3
\sqrt{} 
log n/n) and \epsilon b = O(p7/3/ log9/2 n), then

(2.9) \epsilon 0 = O
\bigl( 
p2/ log3 n

\bigr) 
with probability (w.p.) 1 - O(n - 5).

Finally, we note that Lemma 3.7 of [14] and the assumption of Theorem 1.1 that p =
\Omega ( 3
\sqrt{} 
log n/n) imply property 1 of Definition 2.5 with probability larger than 1  - O(n - 5).

Lemma 3.10 of [14] and the assumption of Theorem 1.1 that p = \Omega ( 3
\sqrt{} 

log n/n) imply prop-
erties 2, 3, and 5 of Definition 2.5 with probability 1 - O(n - 5) and with the above choice of
parameters. Property 4 of Definition 2.5 is just the definition of \epsilon 0, where the size of \epsilon 0 is
estimated in Theorem 2.7. Furthermore, property 6 of Definition 2.5 holds almost surely since
the vertices are generated by i.i.d. Gaussian distributions.

We have shown that all properties of the good-shape condition and (2.8) hold with prob-
ability 1  - O(n - 5), which can be written as 1  - n - 4 for sufficiently large n. This concludes
the proof of Theorem 1.1.

We remark that the bound on \epsilon b in Theorem 1.1 is chosen so that (2.9) and the first in-
equality of (2.8) hold. Note that the lower bound on p in Theorem 1.1 is sufficient for Theorem
2.7. As mentioned earlier, this lower bound can be modified to be of order n\delta  - 1/2 log1/2 - \delta n
for any positive \delta sufficiently small.

2.5. Novelties of this paper. This work uses ideas and techniques of [14], but considers
LUD instead of ShapeFit and guarantees a stronger rate of corruption. Here we highlight
the main technical differences between the two works and emphasize the novel arguments for
handling these differences in the current work.

Reformulation. The objective function of ShapeFit depends only on \{ \bfitt i\} ni=1, while the
objective function of LUD has the additional variables \{ \alpha ij\} ij\in E , which introduce more degrees
of freedom. To handle this issue, we reformulated the LUD problem in (2.2) as an equivalent
convex optimization problem with objective function depending only on \{ \bfitt i\} ni=1. We also
needed to introduce the oracle problem (2.4) that provided the scale and shift of LUD with
respect to the ground truth. Furthermore, we needed to guarantee uniqueness of the oracle
scale, c\ast , with overwhelming probability. The latter guarantee is restricted to the corrupted
case and thus required us to guarantee parallel rigidity with overwhelming probability in the
uncorrupted case.

Adaptation to the new formulation. The reformulated objective function for LUD is dif-
ferent than that of ShapeFit only in the case where \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle \leq 1. We note that for

ij \in Egl, \langle \bfitgamma ij ,\^\bfitt i  - \^\bfitt j\rangle > 1. Therefore, for ij \in Egl, the objective functions of ShapeFit and
LUD coincide. Our analysis thus tries to follow that of [14], while replacing Eg and Eb in
[14] with Egl and Ec

gl, respectively. Some modifications in the analysis of [14] are needed, in
particular, the two mentioned below.
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More faithful constraint on perturbation. Both works introduce constraints on the per-
turbed solutions \{ c\ast \bfitt \ast i + \bfitt s+ \bfitepsilon i\} ni=1. Even though c\ast is not defined in [14], it can be defined as
the constant satisfying

\sum 
ij\in E\langle c\ast \bfitt \ast i  - c\ast \bfitt \ast j ,\bfitgamma ij\rangle = 1, where the ground truth \{ \bfitt \ast i \} ni=1 is denoted

by \{ \bfitt 0i \} ni=1 in [14]. Hand, Lee, and Voroninski [14] require that

(2.10)
\sum 
ij\in E

\langle \bfitepsilon i  - \bfitepsilon j ,\bfitgamma ij\rangle = 0

so that any perturbed solution \{ \~\bfitt i\} ni=1, where \~\bfitt i = c\ast \bfitt \ast i + \bfitt s + \bfitepsilon i for all i \in [n], satisfies\sum 
ij\in E

\langle \~\bfitt i  - \~\bfitt j ,\bfitgamma ij\rangle = 1.

On the other hand, the good-long-dominance condition of our work assumes the constraints\sum n
i=1\langle \bfitepsilon i , \bfitt \ast i \rangle = 0 and

\sum n
i=1 \bfitepsilon i = 0, which imply that

(2.11)
\sum 

ij\in E(Kn)

\langle \bfitepsilon i  - \bfitepsilon j , \bfitt 
\ast 
ij\rangle = 0.

Any perturbed solution \{ \~\bfitt i\} ni=1 thus needs to satisfy

(2.12)
\sum 

ij\in E(Kn)

\langle \~\bfitt i  - \~\bfitt j , \bfitt 
\ast 
ij\rangle =

\sum 
ij\in E(Kn)

\langle c\ast \bfitt \ast i  - c\ast \bfitt \ast j , \bfitt 
\ast 
ij\rangle = c\ast 

\sum 
ij\in E(Kn)

\| \bfitt \ast ij\| 2.

We emphasize that the perturbation constraints in (2.10) and (2.11) differ in the use of
\bfitgamma ij versus \bfitt \ast ij = \bfitt \ast i  - \bfitt \ast j and E versus E(Kn). We believe that our perturbation constraint is
more faithful to the underlying structure of the problem. First, it uses the correct directions
\bfitt \ast ij instead of the corrupted ones \bfitgamma ij . More importantly, it uses \bfitt \ast ij for any pair of locations,
even if they are not connected by an edge. The latter property results in improved estimates
in comparison to those in [14]. For example, our lower bound in (4.22) is tighter than the one
in [14, page 38], which is multiplied by 2p2 and suffers when p \ll 1.

Effective way of controlling \epsilon 0. A deterministic upper bound on \epsilon b was obtained on page 31
of [14], where \epsilon b is denoted in [14] by \epsilon 0. A direct analogous bound on the maximal degree of
Ec

gl, \epsilon 0, depends on the unknown scale c\ast and is thus not appealing. The proof of Theorem 2.7
shows that with high probability 1/c\ast concentrates around a function of \epsilon b, n, and p and
consequently \epsilon 0 can also be controlled with high probability by a function of \epsilon b, n, and p, as
stated in Theorem 2.7. The proof of this theorem is delicate and does not follow ideas of [14].

3. Proof of Theorem 2.2. We assume without loss of generality (w.l.o.g.) that \bfitt s = 0,
or equivalently,

\sum n
i=1 \bfitt 

\ast 
i = 0. Indeed, the statement of Theorem 2.2, in particular, the good-

long-dominance condition, is independent of any shift of the locations \{ \bfitt \ast i \} ni=1.
Since the objective function in (2.2) is convex, in order to prove that \{ c\ast \bfitt \ast i \} ni=1 solves (2.2),

it is sufficient to prove that for any sufficiently small perturbations \{ \bfitepsilon i\} ni=1 \in R3 such that\sum n
i=1 \bfitepsilon i = 0,

(3.1)
\sum 
ij\in E

fij(c
\ast \bfitt \ast i + \bfitepsilon i , c

\ast \bfitt \ast j + \bfitepsilon j) \geq 
\sum 
ij\in E

fij(c
\ast \bfitt \ast i , c

\ast \bfitt \ast j ).
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We note that there exists \kappa \in R such that for any i \in [n], \bfitepsilon i can be decomposed as \bfitepsilon i =
\bfitepsilon i +\bfitepsilon \bot i , where \bfitepsilon i = \kappa \bfitt \ast i and

\sum n
i=1\langle \bfitepsilon \bot i , \bfitt \ast i \rangle = 0. To clarify this, we stack the elements of \{ \bfitepsilon i\} ni=1,

\{ \bfitepsilon i \} ni=1, \{ \bfitepsilon \bot i \} ni=1, \{ \bfitt \ast i \} ni=1 as columns of the respective matrices \Sigma , \Sigma , \Sigma \bot , and \bfitT \ast so that
\Sigma = \kappa \bfitT \ast , \Sigma = \Sigma + \Sigma \bot , and \langle \Sigma ,\Sigma \bot \rangle = tr(\Sigma \bfitT \Sigma \bot ) = 0. Furthermore, the assumption
\bfitt s = 0 implies that

\sum n
i=1 \bfitepsilon 

\bot 
i =

\sum n
i=1 \bfitepsilon i = 0. Therefore, the perturbations \{ \bfitepsilon \bot i \} ni=1 satisfy the

required assumptions on the perturbations used in the good-long-dominance condition.
Letting c\prime = c\ast + \kappa , the relation \bfitepsilon i = \kappa \bfitt \ast i + \bfitepsilon \bot i implies that

(3.2) c\ast \bfitt \ast i + \bfitepsilon i = c\prime \bfitt \ast i + \bfitepsilon \bot i for all i \in [n].

Since \{ \bfitepsilon i\} ni=1 have sufficiently small norms, we may assume that c\prime is sufficiently close to c\ast .
Next, we obtain useful estimates in two complementary cases.
Case A: ij \in Egl. In this case, \bfitgamma ij = (\bfitt \ast i  - \bfitt \ast j )/\| \bfitt \ast i  - \bfitt \ast j\| = \bfitgamma \ast 

ij and \| P\bfitgamma ij
(c\ast (\bfitt \ast i  - \bfitt \ast j ))\| > 1.

Combining the latter inequality, the fact that the perturbations are arbitrarily small and the
proximity of c\prime to c\ast result in \| P\bfitgamma ij

(c\prime (\bfitt \ast i  - \bfitt \ast j )+\bfitepsilon \bot i  - \bfitepsilon \bot j )\| > 1. Applying (3.2), then the latter
inequality and (2.3), and last the assumption ij \in Egl gives that

fij(c
\ast \bfitt \ast i + \bfitepsilon i , c

\ast \bfitt \ast j + \bfitepsilon j) = fij(c
\prime \bfitt \ast i + \bfitepsilon \bot i , c\prime \bfitt \ast j + \bfitepsilon \bot j )

= \| P\bfitgamma \bot 
ij
(c\prime (\bfitt \ast i  - \bfitt \ast j ) + \bfitepsilon \bot i  - \bfitepsilon \bot j )\| = \| P\bfitgamma \bot 

ij
(\bfitepsilon \bot i  - \bfitepsilon \bot j )\| .

This equation and the observation that fij(c
\prime \bfitt \ast i , c

\prime \bfitt \ast j ) = 0 imply that

(3.3)
\sum 

ij\in Egl

\bigl( 
fij(c

\ast \bfitt \ast i + \bfitepsilon i , c
\ast \bfitt \ast j + \bfitepsilon j) - fij(c

\prime \bfitt \ast i , c
\prime \bfitt \ast j )
\bigr) 
=
\sum 

ij\in Egl

\| P\bfitgamma \bot 
ij
(\bfitepsilon \bot i  - \bfitepsilon \bot j )\| .

Case B: ij \in Ec
gl. Following the demonstration in Figures 3 and 4, we note that fij(\bfitt i, \bfitt j)

is the distance between the following two convex sets: \{ \alpha \bfitgamma ij : \alpha \geq 1\} and the singleton
\{ \bfitt i  - \bfitt j\} . Application of (3.2) and then the triangle inequality for a distance between convex
sets of R3 results in

(3.4) | fij(c\ast \bfitt \ast i + \bfitepsilon i , c
\ast \bfitt \ast j + \bfitepsilon j) - fij(c

\prime \bfitt \ast i , c
\prime \bfitt \ast j )| 

= | fij(c\prime \bfitt \ast i + \bfitepsilon \bot i , c\prime \bfitt \ast j + \bfitepsilon \bot j ) - fij(c
\prime \bfitt \ast i , c

\prime \bfitt \ast j )| \leq \| \bfitepsilon \bot i  - \bfitepsilon \bot j \| .

Finally, we combine the above estimates with the good-long-dominance condition to verify
(3.1). We first apply (3.3), then the good-long-dominance condition of (2.6) with \{ \bfitepsilon \bot i \} ni=1 that
satisfy its necessary requirements, and last (3.4), and consequently conclude that\sum 

ij\in Egl

\bigl( 
fij(c

\ast \bfitt \ast i + \bfitepsilon i , c
\ast \bfitt \ast j + \bfitepsilon j) - fij(c

\prime \bfitt \ast i , c
\prime \bfitt \ast j )
\bigr) 

\geq 
\sum 

ij\in Ec
gl

\bigl( 
fij(c

\prime \bfitt \ast i , c
\prime \bfitt \ast j ) - fij(c

\ast \bfitt \ast i + \bfitepsilon i , c
\ast \bfitt \ast j + \bfitepsilon j)

\bigr) 
.

By rearranging terms, this equation becomes\sum 
ij\in E

fij(c
\ast \bfitt \ast i + \bfitepsilon i , c

\ast \bfitt \ast j + \bfitepsilon j) \geq 
\sum 
ij\in E

fij(c
\prime \bfitt \ast i , c

\prime \bfitt \ast j ).

By the definition of c\ast in (2.4) and the assumption \bfitt s = 0, this equation implies (3.1) and
thus concludes the proof.
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4. Proof of Theorem 2.6. We show that under the assumptions of Theorem 2.6, the
good-shape condition implies the good-long-dominance condition, and consequently Theorem
2.6 follows from Theorem 2.2. Section 4.1 reviews notation and auxiliary lemmas, which were
borrowed from [14]. Section 4.2 presents the details of the proof.

While the outline of the proof in this section resembles the outline of the proof of Theorem
3.4 of [14], there are some nontrivial modifications. A main difference between the proofs
appears in the perturbation constraints stated earlier in (2.10) and (2.11).

4.1. Preliminaries. We first review some notation that we mainly borrowed from [14].
We denote \bfitt \ast ij =: \bfitt \ast i  - \bfitt \ast j and for \{ \bfitepsilon i\} ni=1 \subseteq R3, we define \eta ij = \| P\bfitgamma \ast \bot 

ij
(\bfitepsilon i  - \bfitepsilon j)\| and \delta ij\| \bfitt \ast ij\| =

\langle \bfitepsilon i  - \bfitepsilon j ,\bfitgamma 
\ast 
ij\rangle . We note that \bfitepsilon i  - \bfitepsilon j is the motion of relative location \bfitt \ast i  - \bfitt \ast j after perturbing

\bfitt \ast 1, . . . , \bfitt 
\ast 
n respectively by \bfitepsilon \ast 1, . . . , \bfitepsilon 

\ast 
n. Thus for edge ij, \eta ij is the component of the motion that

is orthogonal to \bfitt \ast i  - \bfitt \ast j and is referred to as rotational motion. Similarly, for edge ij, \delta ij\| \bfitt \ast ij\| 
is the component of the motion that is parallel to \bfitt \ast i  - \bfitt \ast j and is referred to as parallel motion.
The function \eta : E(Kn)\times E(Kn) \rightarrow R of [14] is defined as

(4.1) \eta (ij, kl) =
\sum 

m,n\in \{ i,j,k,l\} 
m<n

\eta mn.

That is, if ij and kl do not have common elements, then \eta (ij, kl) = \eta ij+\eta kl+\eta ik+\eta il+\eta jk+\eta jl.
If they have one common element, e.g., i = k, then \eta (ij, kl) = \eta ij + \eta il + \eta jl. We modify the
definition of E\prime 

g in [14] and define E\prime (Kn) as follows:

(4.2) E\prime (Kn) =

\biggl\{ 
ij \in E(Kn) : \| \bfitt \ast ij\| \geq 1

2
\mu 

\biggr\} 
,

where \mu was defined in (2.7). Let B(ij) denote the set of all kl \in E(Kn) for which there exist
distinct a, b, c \in \{ i, j, k, l\} satisfying \{ a, b\} \not = \{ i, j\} and

\sqrt{} 
1 - \langle \bfitgamma ac

\ast ,\bfitgamma \ast 
bc\rangle < \beta .

The following lemmas are from [14]. We remark that Lemma 4.2 was formulated in [14]
for E\prime = Eg as a matter of convenience; however, its formulation below still holds.

Lemma 4.1 (Lemma 2.6 of [14] with \alpha = 1). Let K4 be the complete graph of four vertices
with four distinct vertex locations \{ \bfitt \ast i \} 4i=1 \subset R3, and let \{ \bfitepsilon i\} 4i=1 \subset R3 be perturbation vectors.
Then

(4.3) \eta (12, 34) \geq \beta 0
4
\| \bfitt \ast 12\| | \delta 12  - \delta 34| , where \beta 0 = min

\{ i,j,k\} \in [4]
\{ j,k\} \not =\{ 1,2\} 

\sqrt{} 
1 - \langle \bfitgamma \ast 

ij ,\bfitgamma 
\ast 
ik\rangle .

Lemma 4.2 (Lemmas 2.8 and 2.9 of [14]). Let G([n], E) be a p-typical and c1-well-distributed
graph with n vertices for 0 < p, c1 \leq 1, and let E\prime be a subset of E, where the maximal degree
of its complement, E\prime c, is bounded by \epsilon \prime n. If \epsilon \prime \leq c1p

2/8, then

(4.4)
\sum 
ij\in E\prime 

\eta ij \geq 
c1p

2

8\epsilon \prime 

\sum 
ij\in E\prime c

\eta ij and
\sum 
ij\in E\prime 

\eta ij \geq 
c1p

16

\sum 
ij\in E(Kn)

\eta ij .

Since Kn is 1-typical, the next corollary follows from the first inequality of Lemma 4.2.
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Corollary 4.3. Let Kn be c1-well-distributed, and let E\prime be a subset of E(Kn), where the
maximal degree of its complement, E\prime c, is bounded by \epsilon \prime n. If \epsilon \prime \leq c1/8, then

(4.5)
\sum 
ij\in E\prime 

\eta ij \geq 
c1
8\epsilon \prime 

\sum 
ij\in E\prime c

\eta ij .

Lemma 4.4 (Lemma 3.6 of [14]). For any ij \in E(Kn),

(4.6) | B(ij)| \leq 6\epsilon 1n
2,

where \epsilon 1 is the constant specified in property 2 of Definition 2.5.

4.2. Details of proof. In order to verify the good-long-dominance condition of (2.6), it
is sufficient to prove that the total rotational motion on Egl is greater than or equal to two
times the total parallel motion on Ec

gl. That is,

(4.7)
\sum 

ij\in Egl

\eta ij \geq 2
\sum 

ij\in Ec
gl

| \delta ij | \| \bfitt \ast ij\| .

Indeed, since \epsilon 0 \leq c1p
2/16 we can apply the first inequality of Lemma 4.2 and obtain that\sum 

ij\in Egl

\eta ij \geq 2
\sum 

ij\in Ec
gl

\eta ij .

The combination of the latter inequality with (4.7) and the triangle inequality \| \bfitepsilon i  - \bfitepsilon j\| \leq 
| \delta ij | \| \bfitt \ast ij\| + \eta ij yields (2.6).

Following [14], we prove (4.7) by considering three complementary cases, which depend
on the relative averaged parallel motion on Ec

gl, that is,

\=\delta =
\sum 

ij\in Ec
gl

| \delta ij | \| \bfitt \ast ij\| /
\sum 

ij\in Ec
gl

\| \bfitt \ast ij\| .

These three cases can be simplistically categorized according to zero, large, and small nonzero
parallel motions on Ec

gl.

Case 1: \=\delta = 0 or Ec
gl = \emptyset . Since either Ec

gl = \emptyset or \delta ij = 0 for all ij \in Ec
gl, the RHS of

(4.7) is 0.
Case 2: \=\delta \not = 0, Ec

gl \not = \emptyset , and
\sum 

ij\in E\prime (Kn)
| \delta ij | < \=\delta | E\prime (Kn)| /8. First, we obtain a lower

bound on | E\prime (Kn)| /| E(Kn)| . The definition of E\prime (Kn) and then the definition of \mu in (2.7)
result in \sum 

ij\in E(Kn)\setminus E\prime (Kn)

\| \bfitt \ast ij\| <
1

2
\mu | E(Kn)| =

1

2

\sum 
ij\in E(Kn)

\| \bfitt \ast ij\| .

Consequently,

(4.8)
\sum 

ij\in E\prime (Kn)

\| \bfitt \ast ij\| \geq 1

2

\sum 
ij\in E(Kn)

\| \bfitt \ast ij\| =
1

2
\mu | E(Kn)| .
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Using assumption 3 of the good-shape condition (Definition 2.5) and then (4.8), we obtain
that

c0\mu | E\prime (Kn)| \geq 
\sum 

ij\in E\prime (Kn)

\| \bfitt \ast ij\| \geq 1

2
\mu | E(Kn)| 

and consequently

(4.9) | E\prime (Kn)| \geq 
1

2c0
| E(Kn)| .

We change the definition of Lb in [14] to L = \{ ij \in Ec
gl : | \delta ij | \geq 1

2
\=\delta \} and derive the

following inequality, which is analogous to (14) of [14]:

(4.10)
\sum 
ij\in L

| \delta ij | \| \bfitt \ast ij\| =
\sum 

ij\in Ec
gl

| \delta ij | \| \bfitt \ast ij\|  - 
\sum 

ij\in Ec
gl\setminus L

| \delta ij | \| \bfitt \ast ij\| \geq 1

2

\sum 
ij\in Ec

gl

| \delta ij | \| \bfitt \ast ij\| .

We modify the definition of Fg in [14] to F \prime (Kn) = \{ ij \in E\prime (Kn) : | \delta ij | < 1
4
\=\delta \} and following

[14], while using the last assumption of this case (Case 2), we obtain that

1

8
\=\delta | E\prime (Kn)| >

\sum 
ij\in E\prime (Kn)

| \delta ij | \geq 
\sum 

ij\in E\prime (Kn)\setminus F \prime (Kn)

| \delta ij | \geq 
1

4
\=\delta | E\prime (Kn) \setminus F \prime (Kn)| .

We thus conclude that | F \prime (Kn)| > 1
2 | E

\prime (Kn)| . Combining this inequality with (4.9) we con-
clude that for n \geq 3,

(4.11) | F \prime (Kn)| >
1

4c0
| E(Kn)| =

n(n - 1)

8c0
\geq n2

12c0
.

By Lemma 4.4, | B(ij)| \leq 6\epsilon 1n
2 for all ij \in E(Kn). Combining this with (4.11), we obtain

that for \epsilon 1 \leq 1
144c0

,

(4.12) | F \prime (Kn) \setminus B(ij)| > n2

12c0
 - 6\epsilon 1n

2 \geq n2

24c0
.

The rest of the proof uses the above inequalities to obtain a lower bound on the LHS of
(4.7) and a similar upper bound on the RHS of (4.7). To get the lower bound, we first note
that the second inequality of Lemma 4.2 implies that

(4.13)
\sum 

ij\in Egl

\eta ij \geq 
c1p

16

\sum 
ij\in E(Kn)

\eta ij .

We thus need to find a lower bound for the RHS of (4.13).
We next establish the inequality

(4.14)
\sum 

ij\in Ec
gl

\sum 
kl\in E(Kn)

kl\not =ij

\eta (ij, kl) \leq 
\sum 

ij\in Ec
gl

3n2\eta ij +
\sum 

ij\in E(Kn)

18\epsilon 0n
2\eta ij
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by following a combinatorial argument of [14] (see case 1 in the proof of Theorem 3.4 in [14]).
There are two differences in our cases. First, we replace Eb and Eg, which are used in [14], with
Ec

gl and E(Kn). Second, the sets Ec
gl and E(Kn) have nonempty intersection, unlike Eb and

Eg. The argument is that any fixed ij in the first sum in the LHS of (4.14) appears in at most\bigl( 
n
2

\bigr) 
K4's, where the other two vertices are chosen from the second sum, and in at most n K3's,

where another vertex and either i or j are from the second sum. Therefore, when fixing ij in
the first sum, \eta ij can appear at most 6 \cdot 

\bigl( 
n
2

\bigr) 
+ 3n = 3n2 times. On the other hand, any fixed

kl in the second sum belongs to either K4 or K3 containing ij in the first sum. By applying
assumption 4 of the good-shape condition, kl belongs to at most 2\epsilon 0n(n  - 3) K4's, where ij
is incident to kl, \epsilon 0n

2 K4's, where ij is not incident to kl, and 2\epsilon 0n K3's. Therefore, when
fixing kl in the second sum, \eta kl can appear at most 6 \cdot 2\epsilon 0n(n - 3)+ 6\epsilon 0n

2 +3 \cdot 2\epsilon 0n \leq 18\epsilon 0n
2

times.
We recall that \epsilon 0 \leq c1p

2/8 \leq c1/8 and thus Corollary 4.3 implies that\sum 
ij\in E(Kn)

\eta ij \geq 
\sum 

ij\in E(Kn)\setminus Ec
gl

\eta ij \geq 
c1
8\epsilon 0

\sum 
ij\in Ec

gl

\eta ij .

The above two inequalities yield\sum 
ij\in Ec

gl

\sum 
kl\in E(Kn)

kl\not =ij

\eta (ij, kl) \leq 42\epsilon 0
c1

n2
\sum 

ij\in E(Kn)

\eta ij .(4.15)

The combination of (4.13) and (4.15) results in the following lower bound on the LHS of (4.7):

(4.16)
\sum 

ij\in Egl

\eta ij \geq 
c1p

16

\sum 
ij\in E(Kn)

\eta ij \geq 
c21p

3 \cdot 28\epsilon 0n2

\sum 
ij\in Ec

gl

\sum 
kl\in E(Kn)

kl\not =ij

\eta (ij, kl).

In order to upper bound the RHS of (4.7) we first apply Lemma 4.1, which implies that
for ij \in L and kl \in F \prime (Kn) \setminus B(ij),

\eta (ij, kl) \geq \beta 

4
| \delta kl  - \delta ij | \| \bfitt \ast ij\| .

For ij \in L, | \delta ij | > 1
2
\=\delta and for kl \in F \prime (Kn), | \delta kl| < 1

4
\=\delta . Consequently, for ij \in L and

kl \in F \prime (Kn) \setminus B(ij), | \delta kl| < | \delta ij | /2 and

(4.17) \eta (ij, kl) \geq \beta 

4

\bigm| \bigm| | \delta kl|  - | \delta ij | 
\bigm| \bigm| \| \bfitt \ast ij\| \geq \beta 

8
| \delta ij | \| \bfitt \ast ij\| .

Applying first the inclusions L \subseteq Ec
gl and F \prime (Kn) \subseteq E(Kn), then (4.17), next (4.12), and

finally (4.10), we obtain that

\sum 
ij\in Ec

gl

\sum 
kl\in E(Kn)

kl\not =ij

\eta (ij, kl) \geq 
\sum 
ij\in L

\sum 
kl\in F \prime (Kn)\setminus B(ij)

\eta (ij, kl)

(4.18)

\geq 
\sum 
ij\in L

| F \prime (Kn) \setminus B(ij)| \cdot \beta 
8
| \delta ij | \| \bfitt \ast ij\| >

\beta 

8
\cdot n2

24c0

\sum 
ij\in L

| \delta ij | \| \bfitt \ast ij\| \geq \beta 

16
\cdot n2

24c0

\sum 
ij\in Ec

gl

| \delta ij | \| \bfitt \ast ij\| .
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This equation implies the following upper bound for the RHS of (4.7):

(4.19) 2
\sum 

ij\in Ec
gl

| \delta ij | \| \bfitt \ast ij\| <
3 \cdot 28c0
\beta n2

\sum 
ij\in Ec

gl

\sum 
kl\in E(Kn)

kl\not =ij

\eta (ij, kl).

Note that (2.8) implies that the RHS of (4.19) is less than the RHS of (4.16). This
observation concludes (4.7) and consequently the proof of the current case.

Case 3: \=\delta \not = 0, Ec
gl \not = \emptyset , and

\sum 
ij\in E\prime (Kn)

| \delta ij | \geq \=\delta | E\prime (Kn)| /8. Similarly to Case 2, in order
to prove (4.7), we obtain a lower bound for the LHS of (4.7) and a similar upper bound for
the RHS of (4.7).

Following [14], we define E+ = \{ ij \in E(Kn) : \delta ij \geq 0\} and E - = \{ ij \in E(Kn) : \delta ij < 0\} .
Using this notation, we rewrite the perturbation constraint of (2.11) as\sum 

ij\in E+

\delta ij\| \bfitt \ast ij\| 2 +
\sum 

ij\in E - 

\delta ij\| \bfitt \ast ij\| 2 = 0

and conclude that

(4.20)
\sum 

ij\in E+

| \delta ij | \| \bfitt \ast ij\| 2 =
\sum 

ij\in E - 

| \delta ij | \| \bfitt \ast ij\| 2 =
1

2

\sum 
ij\in E(Kn)

| \delta ij | \| \bfitt \ast ij\| 2.

We first establish an analogue of (4.18) in Case 2. To do this, we upper bound the RHS of
(4.7) by a constant times the term

\sum 
ij\in E - 

\sum 
kl\in E+

\eta (ij, kl). We first lower bound the latter
term by following [14] and applying Lemma 4.1 as follows:\sum 

ij\in E - 

\sum 
kl\in E+

\eta (ij, kl) \geq 
\sum 

ij\in E - 

\sum 
kl\in E+\setminus B(ij)

\beta 

4
| \delta ij | \| \bfitt \ast ij\| \geq \beta 

4
(| E+|  - | B(ij)| )

\sum 
ij\in E - 

| \delta ij | \| \bfitt \ast ij\| .

The successive application of property 3 of the good-shape condition, (4.20), the inclusion
E\prime (Kn) \subseteq E(Kn), the definition of E\prime (Kn) together with the assumption

\sum 
ij\in E\prime (Kn)

| \delta ij | \geq 
1
8
\=\delta | E\prime (Kn)| , and (4.9) results in\sum 

ij\in E - 

| \delta ij | \| \bfitt \ast ij\| \geq 1

c0\mu 

\sum 
ij\in E - 

| \delta ij | \| \bfitt \ast ij\| 2 =
1

2c0\mu 

\sum 
ij\in E(Kn)

| \delta ij | \| \bfitt \ast ij\| 2

\geq 1

2c0\mu 

\sum 
ij\in E\prime (Kn)

| \delta ij | \| \bfitt \ast ij\| 2 \geq 
1

2c0\mu 
\cdot 1
4
\mu 2 \cdot 1

8
\=\delta | E\prime (Kn)| \geq 

\mu \=\delta n2

512c20
.(4.21)

Assuming | E+| \geq | E(Kn)| /2 and combining (4.21), the fact that | E(Kn)| = n(n - 1)/2 \geq 
n2/4 for n \geq 2, and the assumption \epsilon 1 \leq 1/96 gives

\beta 

4
(| E+|  - | B(ij)| )

\sum 
ij\in E - 

| \delta ij | \| \bfitt \ast ij\| \geq \beta \mu \=\delta n2

2048c20

\Bigl( 1
2
| E(Kn)|  - 6\epsilon 1n

2
\Bigr) 
\geq \beta \mu \=\delta n4

215c20
.

Consequently,

(4.22)
\sum 

ij\in E - 

\sum 
kl\in E+

\eta (ij, kl) \geq \beta \mu \=\delta n4

215c20
.



EXACT CAMERA LOCATION RECOVERY BY LUD 2709

Assuming on the contrary that | E - | \geq | E(Kn)| /2 and following the same arguments, while
switching between E+ and E - , also yields (4.22).

We derive the following upper bound on the RHS of (4.7) by first applying the definition
of \=\delta , then condition 3 of Definition 2.5, then condition 4 of Definition 2.5, and last (4.22):

\sum 
ij\in Ec

gl

| \delta ij | \| \bfitt \ast ij\| = \=\delta 
\sum 

ij\in Ec
gl

\| \bfitt \ast ij\| \leq \=\delta c0\mu | Ec
gl| \leq \=\delta c0\mu \epsilon 0n

2 \leq 215c30\epsilon 0
\beta n2

\sum 
ij\in E - 

\sum 
kl\in E+

\eta (ij, kl).(4.23)

In order to obtain a lower bound on the LHS of (4.7), we use the following result from
[14, page 38], which is obtained by counting the number of elements in the sum of \eta 's:

(4.24)
\sum 

ij\in E - 

\sum 
kl\in E+

\eta (ij, kl) \leq 3n2
\sum 

ij\in E(Kn)

\eta ij .

We remark that although we modified the definition of E+ and E - in [14], this result still
holds. We derive a lower bound on the LHS of (4.7) by applying the second inequality of
Lemma 4.2 and then (4.24) as follows:

(4.25)
\sum 

ij\in Egl

\eta ij \geq 
c1p

16

\sum 
ij\in E(Kn)

\eta ij \geq 
c1p

48n2

\sum 
ij\in E - 

\sum 
kl\in E+

\eta (ij, kl).

The combination of (4.23), (4.25), and the assumption \beta c1p
221c30\epsilon 0

\geq 2 verifies (4.7).

5. Proof of Theorem 2.7. It is sufficient to show that

(5.1) \epsilon 0 = O
\Bigl( 
max

\Bigl\{ 
p2/ log4 n , (p1/4 log3/8 n) \cdot \epsilon 3/4b

\Bigr\} \Bigr) 
w.p. 1 - O(n - 5).

Indeed, combining (5.1) with the assumption \epsilon b = O(p7/3/ log9/2 n) of Theorem 2.7 implies
that \epsilon 0 = O(p2/ log3 n), and this concludes Theorem 2.7.

In the following we prove (5.1). Note that Ec
gl \subseteq Eb\cup Es, where Es = \{ ij \in E : \| \bfitt \ast i  - \bfitt \ast j\| <

1/c\ast \} is the set of short edges. Therefore, to conclude the theorem it is enough to estimate
the maximal degree of Es. Our estimate uses the following notation: I denotes the indicator
function, the neighborhood N(\bfitt \ast i ) of \bfitt 

\ast 
i \in V includes all indices j \in [n] such that ij \in E, and

for a, b \in R, a \lesssim b if and only if b = \Omega (a). We will prove that for any fixed \bfitt \ast i \in V

(5.2)
\sum 

j\in N(\bfitt \ast i )

I
\Bigl( 
\| \bfitt \ast i  - \bfitt \ast j\| <

1

c\ast 

\Bigr) 
\lesssim max

\biggl\{ 
np2

log4 n
, p

1
4 \epsilon 

3
4
b n log

3
8 n

\biggr\} 
w.p. 1 - O(n - 6).

Taking a union bound yields

Maximal degree of Es

n
\lesssim max

\biggl\{ 
p2

log4 n
, p

1
4 \epsilon 

3
4
b log

3
8 n

\biggr\} 
w.p. 1 - O(n - 5),

and this implies (5.1) and thus concludes the proof of the theorem.
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We derive (5.2) by using the following function of c\ast , which is defined with respect to a
Gaussian random variable \bfitx \sim N(0, \bfitI ) with probability density function \Phi :

(5.3) g(c\ast ) = Pr
\Bigl( \Bigl\{ 

\| \bfitx \| <
1

c\ast 

\Bigr\} \Bigr) 
=

\int 
B(\bfzero , 1

c\ast )
\Phi (\bfitt )d\bfitt .

We note that for fixed \bfitt \ast i \in V ,

Pr(\| \bfitt \ast i  - \bfitt \ast j\| < 1/c\ast ) =

\int 
B(\bfitt \ast i ,

1
c\ast )

\Phi (\bfitt )d\bfitt \leq 
\int 
B(0, 1

c\ast )
\Phi (\bfitt )d\bfitt = Pr(\| \bfitt \ast j\| < 1/c\ast ) = g(c\ast ).(5.4)

Furthermore, I(ij \in E and \| \bfitt \ast i  - \bfitt \ast j\| < 1/c\ast ) is a Bernoulli random variable Bern(\mu ) with
\mu = pPr(\| \bfitt \ast i  - \bfitt \ast j\| < 1/c\ast ) \leq pg(c\ast ), where the last inequality follows from (5.4). This
observation and the Chernoff bound can be used to conclude (5.2). It is easily done in section
5.1 when g(c\ast ) \lesssim 1/

\surd 
n, while only using the first term in the RHS of (5.2). The other case,

where g(c\ast ) \gtrsim 1/
\surd 
n, is more complicated and is verified in section 5.2 using the second term

in the RHS of (5.2).

5.1. Proof for the case where \bfitg (\bfitc \ast ) \lesssim 1/
\surd 
\bfitn . In order to verify (5.2), we use the fol-

lowing version of the Chernoff bound [21] for Bernoulli random variables: If X1, X2, . . . , Xn

\sim Bern(\mu ) i.i.d., then

(5.5) Pr

\biggl( 
1

n

n\sum 
i=1

Xi  - \mu > \delta \mu 

\biggr) 
< exp( - \delta n\mu /3) for any \delta \geq 1.

We apply this inequality to

(5.6) Xij = I(ij \in E and \| \bfitt \ast i  - \bfitt \ast j\| < 1/c\ast ), where i \in [n] is fixed and j \in [n] \setminus \{ i\} .

As we explained above, Xij \sim Bern(\mu ), where \mu \leq pg(c\ast ), and thus with probability 1  - 
exp( - \Omega (\delta npg(c\ast )))\sum 

j\in N(\bfitt \ast i )

I
\Bigl( 
\| \bfitt \ast i  - \bfitt \ast j\| <

1

c\ast 

\Bigr) 
=

\sum 
j\in [n]\setminus \{ i\} 

Xij \lesssim (\delta + 1)npg(c\ast ) \approx \delta npg(c\ast ).

Taking \delta = p/(log4 ng(c\ast )) results in

(5.7)
\sum 

j\in N(\bfitt \ast i )

I
\Bigl( 
\| \bfitt \ast i  - \bfitt \ast j\| <

1

c\ast 

\Bigr) 
\lesssim 

np2

log4 n
w.p. 1 - e

 - \Omega 

\biggl( 
np2

\mathrm{l}\mathrm{o}\mathrm{g}4 n

\biggr) 
.

Note that the assumptions g(c\ast ) \lesssim n - 1/2 and p \gtrsim 3
\sqrt{} 
log n/n guarantee that our choice of \delta 

satisfies the constraint \delta \geq 1 in (5.5). Indeed, \delta = p/(log4 ng(c\ast )) = \Omega (n1/6/ log11/3 n) > 1
for n sufficiently large. Also, the assumption p \gtrsim 3

\sqrt{} 
log n/n implies that \Omega (np2/(log4 n)) \gtrsim 

n1/3/ log3/10 n. Therefore, the probability in (5.7) is greater than 1  - O(n - 6) and thus (5.2)
is proved in the current case.
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5.2. Proof for the case where \bfitg (\bfitc \ast ) \gtrsim 1/
\surd 
\bfitn . We use another version of the Chernoff

bound [21] for Bernoulli random variables: If X1, X2, . . . , Xn \sim Bern(\mu ) i.i.d., then

(5.8) Pr

\biggl( \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

i=1

Xi  - \mu 

\bigm| \bigm| \bigm| \bigm| > \delta \mu 

\biggr) 
< 2 \cdot exp( - \delta 2\mu n/3) for all 0 \leq \delta \leq 1.

Applying (5.8) to \{ Xij\} j\in [n]\setminus \{ i\} of (5.6) yields that with probability 1 - exp( - \Omega (npg(c\ast )))\sum 
j\in N(\bfitt \ast i )

I

\biggl( 
\| \bfitt \ast i  - \bfitt \ast j\| <

1

c\ast 

\biggr) 
=

\sum 
j\in [n]\setminus \{ i\} 

Xij \lesssim npg(c\ast ).(5.9)

Note that the probability 1  - exp( - \Omega (npg(c\ast ))) exponentially approaches 1 as n \rightarrow \infty .
Indeed, the assumptions g(c\ast ) \gtrsim 1/

\surd 
n and p \gtrsim n - 1/3 log1/3 n imply that \Omega (npg(c\ast )) =

\Omega (n1/6 log1/3 n).
Our goal is to upper bound the RHS of (5.9) by the second term in the RHS of (5.2). In

order to do this we use the following lemmas, which we prove in section 5.3.

Lemma 5.1. Assuming the setting of Theorem 2.7, there exists an absolute constant M
such that

(5.10)
1

c\ast 
\leq M w.p. 1 - O(n - 6).

Lemma 5.2. Assume the setting of Theorem 2.7. If g(c\ast ) \gtrsim 1/
\surd 
n, then

(5.11)
g(c\ast )

c\ast 
\lesssim 

\epsilon b
\surd 
log n

p
w.p. 1 - O(n - 6).

Given the setting of Theorem 2.7, we claim that there exists \bfitx M \in R3 with \| \bfitx M\| = M
such that

\Phi (\bfitx M )Vol
\Bigl( 1

c\ast 

\Bigr) 
\leq g(c\ast ) \leq \Phi (0)Vol

\Bigl( 1

c\ast 

\Bigr) 
w.p. 1 - O(n - 6),(5.12)

where Vol(r) is the volume of B(0, r). The second inequality of (5.12) is deterministic and
follows from the definition of g in (5.3). The first inequality follows from Lemma 5.1. Indeed,
with the same probability the minimum of \Phi in the closed ball B(0, 1/c\ast ) is greater than the
minimum of \Phi in B(0,M) and it occurs on the boundary of this ball. Equation (5.12) implies
that g(c\ast ) \approx 1/(c\ast )3, and applying this observation to (5.11) results in

(5.13) g(c\ast ) \lesssim 

\biggl( 
\epsilon b
\surd 
log n

p

\biggr) 3
4

w.p. 1 - O(n - 6).

Combining (5.13) with (5.9) yields that with probability 1 - O(n - 6),

\sum 
j\in N(\bfitt \ast i )

I

\biggl( 
\| \bfitt \ast i  - \bfitt \ast j\| <

1

c\ast 

\biggr) 
\lesssim npg(c\ast ) \lesssim np

\biggl( 
\epsilon b
\surd 
log n

p

\biggr) 3
4

= p
1
4 \epsilon 

3
4
b n log

3
8 n.

This concludes Theorem 2.7, though it remains to prove Lemmas 5.1 and 5.2.
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5.3. Proofs of Lemmas 5.1 and 5.2. We first establish the following inequality, which is
necessary for the proofs of both lemmas:

(5.14)
\sum 

ij\in E: \| \bfitt \ast i - \bfitt \ast j\| <
1
c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| \lesssim \epsilon bn
2
\sqrt{} 
log n w.p. 1 - O(n - 6).

We prove (5.14) by establishing an inequality involving the left and right derivatives of
fij(c\bfitt 

\ast 
i , c\bfitt 

\ast 
j ) in c. Since fij(\bfitt i, \bfitt j) only depends on \bfitt i  - \bfitt j and since we assumed that \bfitt s = 0,

c\ast can be defined as follows:

(5.15) c\ast = argmin
c\in R

\sum 
ij\in E

Fij(c),

where Fij(c) = fij(c\bfitt 
\ast 
i , c\bfitt 

\ast 
j ). This expression implies that

(5.16)
\sum 
ij\in E

F \prime 
ij(c

\ast  - ) \leq 0 and
\sum 
ij\in E

F \prime 
ij(c

\ast +) \geq 0.

Indeed, w.l.o.g. if the second inequality in (5.16) is violated and
\sum 

ij\in E F \prime 
ij(c

\ast +) < 0, then there
exists \~c > c\ast such that

\sum 
ij\in E Fij(\~c) <

\sum 
ij\in E Fij(c

\ast ). This contradicts the global optimality
of c\ast .

We estimate F \prime 
ij(c

+) for ij \in E in four complementary cases.
1. For ij \in Eg and c \geq 1/\| \bfitt \ast i  - \bfitt \ast j\| , Fij(c) = 0 and thus F \prime 

ij(c
+) = 0.

2. For ij \in Eg and c < 1/\| \bfitt \ast i  - \bfitt \ast j\| , Fij(c) = 1 - \| \bfitt \ast i  - \bfitt \ast j\| \cdot c and thus F \prime 
ij(c) =  - \| \bfitt \ast i  - \bfitt \ast j\| .

3. For ij \in Eb and c \geq 1/\langle \bfitt \ast i  - \bfitt \ast j ,\bfitgamma ij\rangle , Fij(c) = sin\alpha \cdot \| \bfitt \ast i  - \bfitt \ast j\| \cdot c, where 0 < \alpha \leq \pi /2
and thus F \prime 

ij(c
+) \leq \| \bfitt \ast i  - \bfitt \ast j\| .

4. For ij \in Eb and c < 1/\langle \bfitt \ast i  - \bfitt \ast j ,\bfitgamma ij\rangle , Fij(c) = \| c\bfitt \ast i  - c\bfitt \ast j  - \bfitgamma ij\| and thus by the triangle
inequality

\bigm| \bigm| F \prime 
ij(c

+)
\bigm| \bigm| = lim

h\rightarrow 0+

\bigm| \bigm| \bigm| \bigm| \| (c+ h)\bfitt \ast i  - (c+ h)\bfitt \ast j  - \bfitgamma ij\|  - \| c\bfitt \ast i  - c\bfitt \ast j  - \bfitgamma ij\| 
h

\bigm| \bigm| \bigm| \bigm| 
\leq lim

h\rightarrow 0+

\bigm| \bigm| \bigm| \bigm| \| h\bfitt \ast i  - h\bfitt \ast j\| 
h

\bigm| \bigm| \bigm| \bigm| = \| \bfitt \ast i  - \bfitt \ast j\| .

The combination of the four cases above and the second inequality of (5.16) yields

(5.17)  - 
\sum 

ij\in Eg : \| \bfitt \ast i - \bfitt \ast j\| <
1
c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| +
\sum 
ij\in Eb

F \prime 
ij(c

\ast +) \geq 0.

Combining | F \prime 
ij(c

+)| \leq \| \bfitt \ast i  - \bfitt \ast j\| with (5.17) results in the estimate\sum 
ij\in Eg : \| \bfitt \ast i - \bfitt \ast j\| <

1
c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| \leq 
\sum 
ij\in Eb

F \prime 
ij(c

\ast )

\leq 
\sum 
ij\in Eb

\| \bfitt \ast i  - \bfitt \ast j\| \leq 
\sum 
ij\in Eb

(\| \bfitt \ast i \| + \| \bfitt \ast j\| ) \lesssim \epsilon bn
2 \cdot max

i\in [n]
\| \bfitt \ast i \| .(5.18)
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By the second property of Lemma 3.10 of [14] and its proof,

(5.19) max
i\in [n]

\| \bfitt \ast i \| \lesssim 
\sqrt{} 

log n w.p. 1 - O(n - 6).

This observation and (5.18) result in (5.14).
Using (5.14), we prove Lemma 5.1 and 5.2 in sections 5.3.1 and 5.3.2, respectively.

5.3.1. Proof of Lemma 5.1. We assume on the contrary that 1/c\ast > M and use this
assumption to derive an inequality for the random variables

(5.20) Yij = I(ij \in E and \| \bfitt \ast i  - \bfitt \ast j\| < 1/c\ast ) \cdot \| \bfitt \ast i  - \bfitt \ast j\| for fixed i \in [n] and j \in [n] \setminus \{ i\} .

This inequality uses the constant \mu 0 = inf\| \bfitx \| <5 E[I(\| \bfitx  - \bfity \| < 1/c\ast ) \cdot \| \bfitx  - \bfity \| ], where \bfity \sim 
N(0, \bfitI ), and is formulated as follows:

1

2
n2p\mu 0 \lesssim 

\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Yij \lesssim 
n2p7/3

log4 n
w.p. 1 - O(n - 6).(5.21)

We note that (5.21) results in contradiction and thus concludes the proof. Indeed, it implies
with high probability that \mu 0 \lesssim p4/3/ log4 n \rightarrow 0 as n \rightarrow \infty . Since \mu 0 is monotonically
increasing as a function of 1/c\ast , 1/c\ast \rightarrow 0 as n \rightarrow \infty , which contradicts our assumption.

The rest of this section proves (5.21) under the assumption that 1/c\ast > M . We first
establish the second inequality of (5.21) as follows. We first note that

(5.22)
\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Yij \leq 
\sum 
i\in [n]

\sum 
j\in [n]\setminus \{ i\} 

Yij = 2
\sum 

ij\in E(Kn)

Yij .

Subsequently applying (5.22), the definition of Yij , (5.14), and the assumption of Theorem

2.7 that \epsilon b = O(p7/3/ log9/2 n), we obtain that\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Yij \leq 2
\sum 

ij\in E: \| \bfitt \ast i - \bfitt \ast j\| <
1
c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| \lesssim \epsilon bn
2
\sqrt{} 
log n \lesssim 

n2p7/3

log4 n
.(5.23)

To prove the first inequality of (5.21), we introduce the following notation: Fix i \in [n]
and assume that \| \bfitt \ast i \| < 5. Assume further that \bfitt \ast 1, . . . , \bfitt 

\ast 
n are i.i.d. from N(0, \bfitI ), and let

Yij be defined in (5.20), \=Yi =
\sum 

j\in [n]\setminus \{ i\} Yij/(n  - 1), and \mu i = E( \=Yi) = p \cdot E[I(\| \bfitt \ast i  - \bfitt \ast j\| <
1/c\ast ) \cdot \| \bfitt \ast i  - \bfitt \ast j\| ]. Applying Hoeffding's inequality [17] to \{ Yij\} j\in [n]\setminus \{ i\} ,

(5.24) \=Yi \geq 
1

2
\mu i w.p. 1 - 2 \cdot exp

\Biggl( 
 - \mu 2

in

2 \cdot max\{ Y 2
ij\} 

\Biggr) 
.

Since \mu i is monotonically increasing with respect to 1/c\ast , the assumption that 1/c\ast > M
implies that \mu i = \Omega (1). Combining this observation with (5.24) and the definitions of \mu i and
\mu 0 results in

(5.25) \=Yi \geq 
1

2
\mu i \geq 

1

2
\mu 0p w.p. 1 - 2 \cdot exp

\Biggl( 
 - \Omega 

\Biggl( 
n

max\{ Y 2
ij\} 

\Biggr) \Biggr) 
.
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Using the definition of \=Yi, we rewrite (5.25) as follows: For fixed i \in [n] with \| \bfitt \ast i \| < 5

(5.26)
\sum 

j\in [n]\setminus \{ i\} 

Yij \gtrsim np\mu 0 w.p. 1 - 2 \cdot exp

\Biggl( 
 - \Omega 

\Biggl( 
n

max\{ Y 2
ij\} 

\Biggr) \Biggr) 
.

A union bound of (5.26) over all i \in [n] with \| \bfitt \ast i \| < 5 has the following form:

(5.27)
\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Yij \gtrsim 
\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

np\mu 0 =
\sum 
i\in [n]

I(\| \bfitt \ast i \| < 5) \cdot np\mu 0

w.p. 1 - 2
\sum 
i\in [n]

I(\| \bfitt \ast i \| < 5) \cdot exp

\Biggl( 
 - \Omega 

\Biggl( 
n

max\{ Y 2
ij\} 

\Biggr) \Biggr) 
.

In order to conclude the first inequality of (5.21) from (5.26), we first note that the
application of (5.8) yields

(5.28)

n\sum 
i=1

I(\| \bfitt \ast i \| < 5) > n/2 w.p. 1 - 2 \cdot exp( - \Omega (n)),

and the application of basic inequalities and (5.19) implies that

(5.29) 0 \leq max
ij\in E

\{ Yij\} \leq max
ij\in E

\{ \| \bfitt \ast i  - \bfitt \ast j\| \} \leq 2 \cdot max
i\in [n]

\{ \| \bfitt \ast i \| \} \lesssim 
\sqrt{} 

log n w.p. 1 - O(n - 6).

Using (5.28), we replace
\sum n

i=1 I(\| \bfitt \ast i \| < 5) with n/2 in (5.27). However, the new probabilistic
estimate is obtained by a union bound that uses the probabilities in (5.28) and (5.27). We
thus obtain that

(5.30)
\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Yij \gtrsim 
1

2
n2p\mu 0 w.p. 1 - n \cdot exp

\Biggl( 
 - \Omega 

\Biggl( 
n

max\{ Y 2
ij\} 

\Biggr) \Biggr) 
 - 2 \cdot exp( - \Omega (n)).

Similarly, using (5.29), we replace max\{ Y 2
ij\} in the probability of (5.30) with log(n), but we

also modify this probability by applying a union bound that uses the probabilities of (5.30)
and (5.29). We thus obtain that\sum 

i\in [n]:
\| \bfitt \ast 

i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Yij \gtrsim 
1

2
n2p\mu 0 w.p. 1 - n \cdot exp

\Bigl( 
 - \Omega 

\Bigl( n

log n

\Bigr) \Bigr) 
 - 2 \cdot exp( - \Omega (n)) - O(n - 6).

Note that this equation immediately implies (5.21) and thus concludes the proof of the lemma.

5.3.2. Proof of Lemma 5.2. To prove the lemma, it suffices to verify w.p. 1  - O(n - 6)
that \sum 

ij\in E: \| \bfitt \ast i - \bfitt \ast j\| <
1
c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| \gtrsim 
1

2c\ast 
\cdot npg(c\ast ) \cdot n

2
.(5.31)
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Indeed, Lemma 5.2 clearly follows by combining (5.14) and (5.31).
We first bound from below the LHS of (5.31) by a sum of random variables, which we

define as follows. We arbitrarily fix i \in [n] such that \| \bfitt \ast i \| < 5 and for all j \in [n] \setminus \{ i\} let
Zij = I(ij \in E and 1/(2c\ast ) < \| \bfitt \ast i  - \bfitt \ast j\| < 1/c\ast ). We note that\sum 

ij\in E: \| \bfitt \ast i - \bfitt \ast j\| <
1
c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| \geq 
\sum 

ij\in E: \| \bfitt \ast 
i
\| <5

1
2c\ast <\| \bfitt \ast 

i
 - \bfitt \ast 

j
\| < 1

c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| =
1

2

\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in N(\bfitt \ast 

i
):

1
2c\ast <\| \bfitt \ast 

i
 - \bfitt \ast 

j
\| < 1

c\ast 

\| \bfitt \ast i  - \bfitt \ast j\| 

=
1

2

\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Zij\| \bfitt \ast i  - \bfitt \ast j\| \geq 1

2
\cdot 1

2c\ast 

\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Zij .(5.32)

It remains to bound the RHS of (5.32) by the RHS of (5.31) with high probability and
conclude the proof. For this purpose, we introduce the following auxiliary function, which
uses the random variable \bfity \sim N(0, \bfitI ):

(5.33) h(c\ast ) = inf
\| \bfitx \| <5

Pr
\Bigl( \Bigl\{ 1

2c\ast 
< \| \bfitx  - \bfity \| <

1

c\ast 

\Bigr\} \Bigr) 
= inf

\| \bfitx \| <5

\int 
B(\bfitx , 1

c\ast )\setminus B(\bfitx , 1
2c\ast )

\Phi (\bfitt )d\bfitt .

In a way somewhat similar to establishing (5.12), we note that there exists \bfitx 0 \in R3 with
\| \bfitx 0\| = 5, such that

C1Vol
\Bigl( 1

2c\ast 

\Bigr) 
\leq h(c\ast ) \leq C2Vol

\Bigl( 1

c\ast 

\Bigr) 
w.p. 1 - O(n - 6),(5.34)

where C1 = inf\| \bfitx  - \bfitx 0\| <M \Phi (\bfitx ), C2 = sup\| \bfitx  - \bfitx 0\| <M \Phi (\bfitx ). Thus, (5.12) and (5.34) imply that

(5.35) g(c\ast ) \approx h(c\ast ) \approx 1

c\ast 3
w.p. 1 - O(n - 6).

We further note that Zij \sim Bern(\mu i), where \mu i \geq ph(c\ast ). Combining this observation with
(5.8) yields that

(5.36)
\sum 

j\in [n]\setminus \{ i\} 

Zij \gtrsim nph(c\ast ) w.p. 1 - 2 \cdot exp( - \Omega (nph(c\ast ))).

We conclude the proof of (5.31) as follows. Applying a union bound for (5.36) over all i
such that \| \bfitt \ast i \| < 5 yields

\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Zij \gtrsim nph(c\ast ) \cdot 
n\sum 

i=1

I(\| \bfitt \ast i \| < 5) w.p. 1 - 2
n\sum 

i=1

I(\| \bfitt \ast i \| < 5) \cdot exp( - \Omega (nph(c\ast ))).

(5.37)

Using (5.28), we replace
\sum n

i=1 I(\| \bfitt \ast i \| < 5) with n/2 in (5.37) and also modify the probabilistic
estimate by a union bound that uses the probabilities in (5.28) and (5.37) as follows:\sum 

i\in [n]:
\| \bfitt \ast 

i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Zij \gtrsim 
n2

2
ph(c\ast ) w.p. 1 - n \cdot exp( - \Omega (nph(c\ast ))) - 2 \cdot exp( - \Omega (n)).(5.38)
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Finally, by combining (5.35) and (5.38) and applying a union bound, we obtain that

\sum 
i\in [n]:

\| \bfitt \ast 
i
\| <5

\sum 
j\in [n]\setminus \{ i\} 

Zij \gtrsim 
n2

2
pg(c\ast ) w.p. P1 = 1 - n exp( - \Omega (npg(c\ast ))) - 2 exp( - \Omega (n)) - O(n - 6).

(5.39)

The assumptions p \gtrsim 3
\sqrt{} 
log n/n and g(c\ast ) \gtrsim 1/

\surd 
n imply that \Omega (npg(c\ast )) \gtrsim \Omega (n1/6 log1/3 n).

Therefore, P1 = 1 - O(n - 6). Equation (5.31), and thus the lemma, follow by combining (5.32)
and (5.39).

Appendix A. Parallel rigidity under the setting of Theorem 1.1. A graph G([n], E)
with distinct vertex locations \{ \bfitt \ast i \} ni=1 \subseteq R3 and true edge directions \{ \bfitgamma \ast 

ij\} ij\in E \in S2 is parallel
rigid if its vertex locations can be uniquely recovered, up to scale and shift, from its edge
directions. Parallel rigidity was studied in graph theory [8, 9, 18, 31] and depends only on
the graph G([n], E) and the embedding dimension, which is 3 in our case. \"Ozye\c sil, Singer,
and Basri [24] noted its relevance for well-posedness of the camera location recovery problem.
\"Ozye\c sil and Singer [23] showed that it is sufficient for uniqueness of LUD when | Eb| = 0
(see Proposition 1 of [23]). Next, we show that parallel rigidity holds with overwhelming
probability under the setting of Theorem 1.1.

Proposition A.1. A graph G([n], E) generated according to the setting of Theorem 1.1 is
parallel rigid with overwhelming probability.

Proof. We use the following notation. For S \subseteq [n], E(S) = \{ ij \in E : i, j \in S\} and for
i \in [n], deg(i, S) =

\sum 
j\in S I(ij \in E). For E\prime \subseteq E and i \in [n] denote deg(i, E\prime ) =

\sum 
j\in [n] I(ij \in 

E\prime ). Note that for i \in S, deg(i, E(S)) = deg(i, S). For a node k \in [n], Nk denotes the set of
neighbors of k. That is, Nk includes all nodes that are connected to node k by an edge.

Since G([n], E) is p-typical, we may pick a node k such that 1
2np \leq deg(k,E) \leq 2np

and consequently 1
2np \leq | Nk| \leq 2np. We first prove that G(Nk, E(Nk)) is connected with

overwhelming probability. The subgraph G(Nk, E(Nk)) is a realization of an Erd\H os--R\'enyi
random graph G(| Nk| , p) and it is connected with overwhelming probability. Indeed, for
1 \leq m \leq | Nk| /2,

Pr(\exists m nodes that are isolated from the remaining nodes)(A.1)

\leq 
| Nk| /2\sum 
m=1

\biggl( 
| Nk| 
m

\biggr) 
(1 - p)m(| Nk|  - m) \leq 

| Nk| /2\sum 
m=1

\biggl( 
e| Nk| 
m

\biggr) m

e - pm(| Nk|  - m)

\leq | Nk| 
2

sup
1\leq m\leq | Nk| /2

\biggl( 
e| Nk| 

ep(| Nk|  - m)

\biggr) m

\leq | Nk| 
2

sup
1\leq m\leq | Nk| /2

\biggl( 
e| Nk| 
ep| Nk| /2

\biggr) m

\leq np sup
1\leq m\leq np

\biggl( 
2enp

enp2/4

\biggr) m

\lesssim n4/3 exp( - \Omega (n1/3 log2/3 n)).

Note that the first inequality in (A.1) uses a basic counting argument, where there arem(| Nk|  - 
m) possible edges between m fixed elements and the remaining | Nk|  - m elements. The second
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inequality in (A.1) follows from Stirling's approximation and the inequality 1 - p \leq e - p. The
last inequality in (A.1) uses the assumption p = \Omega (n - 1/3 log1/3 n).

Next, we prove that G(\{ k\} \cup Nk, E(\{ k\} \cup Nk)) is parallel rigid. Since k is connected to
all the vertices in Nk, and E(Nk) forms a connected graph, the graph G(\{ k\} \cup Nk, E(\{ k\} \cup 
Nk)) can be generated by the following basic construction, which is similar to the Henneberg
construction [13] that preserves parallel rigidity at all of its steps. We start from a triangle
i1i2k, where i1i2 \in E(Nk). By the connectivity of G(Nk, E(Nk)), there exists at least a
vertex i3 \in Nk that is connected to at least one of i1 and i2. W.l.o.g. we assume that
i2i3 \in E(Nk) and thus i2, i3, k form a triangle. Since the triangles i1i2k and i2i3k share the
common edge i2k, the graph G(\{ i1, i2, i3, k\} , E(\{ i1, i2, i3, k\} )) is parallel rigid. This procedure
repeats by inductively adding vertices i4, i5, . . . , i| Nk| \in Nk to the existing graph. The graph
G(\{ k\} \cup Nk, E(\{ k\} \cup Nk)), as well as each subgraph created in this procedure, is parallel rigid
due to the following basic observation: If G1(V1, E1) and G1(V2, E2) are parallel rigid graphs
and E1 \cap E2 \not = \emptyset , then G(V1 \cup V2, E1 \cup E2) is parallel rigid.

Finally, we prove that G([n], E) is parallel rigid. Let Mk = [n] \setminus (\{ k\} \cup Nk). By applying
Hoeffding's inequality, for any l \in Mk, deg(l, Nk) \geq 1

2p| Nk| \geq 1
4np

2 with probability at least

1 - exp( - \Omega (np2)). By the assumption of Theorem 1.1 that p \gtrsim n - 1/3 log1/3 n and by applying
a union bound over l \in Mk, we obtain that minl\in Mk

deg(l, Nk) \geq 2 with overwhelming proba-
bility. Thus for any l \in Mk there exist i, j \in Nk such that i, j, k, l form a quadrilateral that is
parallel rigid in R3. Following the basic observation mentioned in proving the parallel rigidity
of G(\{ k\} \cup Nk, E(\{ k\} \cup Nk)) and the fact that i, j, k are already contained in the parallel rigid
graph G(\{ k\} \cup Nk, E(\{ k\} \cup Nk)), we conclude that the graph G(\{ k, l\} \cup Nk, E(\{ k, l\} \cup Nk))
is parallel rigid. By inductively adding vertices in Mk in the same way, we obtain that the
graph G([n], E) = G(\{ k\} \cup Nk \cup Mk, E(\{ k\} \cup Nk \cup Mk)) is parallel rigid.

Appendix B. On uniqueness of LUD and \bfitc \ast . In this section we show that under the
setting of Theorem 1.1 with | Eb| > 0, the solution of LUD is unique with overwhelming
probability. Consequently, under this setting c\ast is uniquely determined with overwhelming
probability. Most of the discussion here assumes the deterministic setting mentioned ear-
lier, though without assuming uniqueness of c\ast . The probabilistic setting only appears in
Proposition B.4.

The following definition of self-consistency and non-self-consistency is essential in this
section.

Definition B.1. Given any graph G([n], E), a set of pairwise directions \{ \bfitgamma ij\} ij\in E \in S2 is
self-consistent with respect to G if there exist \bfitt 1, . . . , \bfitt n \in R3 that are not all identical such
that (\bfitt i  - \bfitt j) = \| \bfitt i  - \bfitt j\| \bfitgamma ij for each ij \in E. Otherwise \{ \bfitgamma ij\} ij\in E is non-self-consistent.

Figure 5 demonstrates an example of a graph with three vertices, where the corrupted
pairwise directions are self-consistent and the locations obtained from them are different from
the ground truth locations. This special example demonstrates a general phenomenon, which
follows from the above definition. Whenever the corrupted edges are self-consistent, they
give rise to a set of locations that are different from the ground truth locations. That is,
non-self-consistency is a necessary condition for exact recovery when | Eb| > 0.

We next show that non-self-consistency is a sufficient condition for uniqueness of LUD in
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Figure 5. Demonstration of self-consistency. The figure on the left shows a graph with three vertices, ground
truth locations \bfitt \ast 1, \bfitt 

\ast 
2, \bfitt 

\ast 
3, ground truth pairwise directions \bfitgamma \ast 

21, \bfitgamma 
\ast 
32, \bfitgamma 

\ast 
13, and corrupted pairwise directions \bfitgamma 21,

\bfitgamma 32, \bfitgamma 13. Note that the corrupted pairwise directions are obtained by 90 degree rotations of the ground truth
ones. The figure on the right shows a graph determined by the corrupted pairwise directions and its locations
\bfitt \prime 1, \bfitt 

\prime 
2, \bfitt 

\prime 
3. Clearly, the latter locations are different from the ground truth ones for any arbitrary shift and scale.

the corrupted case.

Theorem B.2. Given a graph G([n], E) with non-self-consistent pairwise directions \{ \bfitgamma ij\} ij\in E,
the solution of LUD is unique.

Proof of Theorem B.2. Assuming that the set \{ \bfitgamma ij\} ij\in E is non-self-consistent, we will

show that any two solutions (\{ \^\bfitt i\} ni=1, \{ \^\alpha ij\} ij\in E) and (\{ \bfitt \prime i\} ni=1, \{ \alpha \prime 
ij\} ij\in E) of (1.2) are the same.

For 0 \leq \lambda \leq 1, define \bfitt \lambda i = (1 - \lambda )\^\bfitt i+\lambda \bfitt \prime i and \alpha \lambda 
ij = (1 - \lambda )\^\alpha ij+\lambda \alpha \prime 

ij . We note that since (1.2)

is a convex optimization problem, for any 0 \leq \lambda \leq 1, (\{ \bfitt \lambda i \} ni=1, \{ \alpha \lambda 
ij\} ij\in E) is also a solution of

(1.2). Therefore, the objective function evaluated at the solution (\{ \bfitt \lambda i \} ni=1, \{ \alpha \lambda 
ij\} ij\in E), namely

F (\lambda ) =
\sum 

ij\in E \| \bfitt \lambda i  - \bfitt \lambda j  - \alpha \lambda 
ij\bfitgamma ij\| , is constant on [0, 1]. We denote \^\bfite ij = \^\bfitt i  - \^\bfitt j  - \^\alpha ij\bfitgamma ij and

\bfite \prime ij = \bfitt \prime i  - \bfitt \prime j  - \alpha \prime 
ij\bfitgamma ij and rewrite F (\lambda ) as

F (\lambda ) =
\sum 
ij\in E

\| \^\bfite ij + \lambda (\bfite \prime ij  - \^\bfite ij)\| =
\sum 
ij\in E

\sqrt{} 
\| \bfite \prime ij  - \^\bfite ij\| 2\lambda 2 + 2\lambda \^\bfite Tij(\bfite 

\prime 
ij  - \^\bfite ij) + \| \^\bfite ij\| 2.

Since F is constant, this equation implies that \^\bfite ij = \bfite \prime ij for all ij \in E. That is,

(B.1) \^\bfitt i  - \^\bfitt j  - \^\alpha ij\bfitgamma ij = \bfitt \prime i  - \bfitt \prime j  - \alpha \prime 
ij\bfitgamma ij for ij \in E.

Let \Delta \bfitt i = \^\bfitt i  - \bfitt \prime i for i \in [n] and \Delta \alpha ij = \^\alpha ij  - \alpha \prime 
ij for ij \in E. We rewrite (B.1) as

(B.2) \Delta \bfitt i  - \Delta \bfitt j = \Delta \alpha ij\bfitgamma ij for ij \in E.

Since \| \bfitgamma ij\| = 1, (B.2) implies that

(B.3) \Delta \bfitt i  - \Delta \bfitt j = \| \Delta \bfitt i  - \Delta \bfitt j\| \bfitgamma ij for ij \in E.

The non-self-consistency of \{ \bfitgamma ij\} ij\in E implies that the elements of the solution \{ \Delta \bfitt i\} ni=1 of

(B.3) are all identical. Consequently, for all i \in [n], \^\bfitt i  - \bfitt \prime i is a constant vector in R3. The
constraint

\sum 
i \bfitt i = 0 of (2.2) implies that the constant vector is zero and thus the solution is

unique.
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Proposition B.4 below guarantees with overwhelming probability the non-self-consistency
of \{ \bfitgamma ij\} ij\in E assuming both corruption and the setting of Theorem 1.1. Combined with The-
orem B.2, it concludes the uniqueness of LUD in the corrupted case. The proof of this result
depends on Lemma B.3 below, which demonstrates a necessary condition for self-consistency.
Before stating and proving these results, we introduce the following notation.

Let G([n], E) be a graph, let T = \{ \bfitt \ast i \} ni=1 be a set of distinct vertex locations, and assume
that the assigned pairwise directions \{ \bfitgamma ij\} ij\in E are self-consistent and \{ \bfitgamma ij\} ij\in E \not = \{ \bfitgamma \ast 

ij\} ij\in E .
As clarified above, \{ \bfitgamma ij\} ij\in E is the set of true pairwise directions of a set of locations T \prime =
\{ \bfitt \prime i\} ni=1 \not = T , and T cannot be obtained from T \prime by scaling and shifting. One may view T \prime 

as perturbed vertices of T , even though the actual perturbation is of \{ \bfitgamma ij\} ij\in E . For S \subset [n],
denote T (S) = \{ \bfitt \ast i \} i\in S and T \prime (S) = \{ \bfitt \prime i\} i\in S . We also use the notation E(S), deg(i, S), and
deg(i, E\prime ) (for E\prime \subseteq E), which was introduced in Appendix A (see proof of Proposition A.1).
We say that i, j \in [n] are undeformed and denote i \sim j if i \not = j and there exists \kappa > 0 such
that \bfitt \ast i  - \bfitt \ast j = \kappa (\bfitt \prime i - \bfitt \prime j). Otherwise, we say that i and j are deformed and denote i � j. Note
that by definition i � i. For each i \in [n], we define the undeformed set Si = \{ j \in [n] : j \sim i\} .
The following lemma shows a critical property of self-consistent corruption. That is, for any
self-consistent corruption of pairwise directions, there exists a vertex such that more than half
of the remaining vertices are deformed with respect to it.

Lemma B.3. Let G([n], E) be a graph, and let T = \{ \bfitt \ast i \} ni=1 be a set of distinct vertex
locations. If the assigned pairwise directions \{ \bfitgamma ij\} ij\in E are self-consistent and \{ \bfitgamma ij\} ij\in E \not =
\{ \bfitgamma \ast 

ij\} ij\in E, then there exists j \in [n] such that | Sj | < n/2.

Proof. Assume on the contrary that for all j \in [n], | Sj | \geq n/2. Since | Eb| \not = 0, there exist
k, l \in [n] such that k � l, which implies that \{ k, l\} \cap (Sk \cup Sl) = \emptyset and | Sk \cup Sl| \leq n  - 2.
Consequently, | Sk \cap Sl| = | Sk| + | Sl|  - | Sk \cup Sl| \geq n/2 + n/2 - (n - 2) = 2. Denote by a and
b two of the elements of Sk \cap Sl, and note that by definition of the undeformed sets Sk and
Sl, a \sim k, b \sim k, a \sim l, and b \sim l. Due to the HLV model, the probability that \{ ak, bk, al, bl\} 
lies on a plane in R3 is zero and thus the graph G(\{ a, b, k, l\} , \{ ak, bk, al, bl\} ) is parallel rigid
in R3 [24, Figure 4(d)]. Therefore, T (\{ a, b, k, l\} ) = T \prime (\{ a, b, k, l\} ) up to scale and shift and
k \sim l, which results in a contradiction.

Proposition B.4. If the setting of Theorem 1.1 holds and | Eb| \not = 0, then \{ \bfitgamma ij\} ij\in E is non-
self-consistent with overwhelming probability.

Proof. We assume on the contrary that \{ \bfitgamma ij\} ij\in E is self-consistent. By Lemma B.3, there
exists j \in [n] such that | Sj | < n/2. Note that deg(j, Eb) = deg(j, E(Sc

j )). Therefore, n\epsilon b =
maxi\in [n] deg(i, Eb) \geq deg(j, E(Sc

j )). For each i \in Sc
j \setminus \{ j\} , I(ij \in E(Sc

j )) is a Bernoulli
random variable Bern(p). Thus, by applying (5.8) with \delta = 1/2, \mu = p, and the number of
terms | Sc

j |  - 1 = n - | Sj |  - 1 > n/2 - 1, we obtain that

(B.4) deg(j, E(Sc
j )) =

\sum 
i\in Sc

j\setminus \{ j\} 

I
\bigl( 
ij \in E(Sc

j )
\bigr) 
>

1

2
\cdot 
\biggl( 
n

2
 - 1

\biggr) 
p w.p. 1 - 2e - 

1
12

(n
2
 - 1)p.

Combining the assumption p = \Omega (n - 1/3 log1/3 n) with (B.4) implies that

n\epsilon b \geq deg(j, E(Sc
j )) = \Omega (np) w.p. 1 - 2 exp( - \Omega (n2/3 log1/3 n)).
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This contradicts the assumption of Theorem 1.1 that n\epsilon b = O(np7/3/ log9/2 n).
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