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Abstract—In modern distributed storage systems, space effi-
ciency and system reliability are two major concerns. As a result,
contemporary storage systems often employ data deduplication
and erasure coding to reduce the storage overhead and provide
fault tolerance, respectively. However, little work has been done to
explore the relationship between these two techniques. In this pa-
per, we propose Reference-counter Aware Deduplication (RAD),
which employs the features of deduplication into erasure coding
to improve garbage collection performance when deletion occurs.
RAD wisely encodes the data according to the reference counter,
which is provided by the deduplication level and thus reduces
the encoding overhead when garbage collection is conducted.
Further, since the reference counter also represents the reliability
levels of the data chunks, we additionally made some effort to
explore the trade-offs between storage overhead and reliability
level among different erasure codes. The experiment results
show that RAD can effectively improve the GC performance
by up to 24.8% and the reliability analysis shows that, with
certain data features, RAD can provide both better reliability
and better storage efficiency compared to the traditional Round-
Robin placement.

I. INTRODUCTION

As the size of online digital content grows explosively every
day, the space efficiency and data reliability of storage systems
are attracting more and more attention to researchers. In recent
years, some techniques have been proposed to address these
two concerns. One such method, known as deduplication, is
a well-developed technology that can improve the storage
efficiency of a storage system by identifying and eliminating
duplicate data chunks [1]–[3]. By adopting deduplication, a
storage system can improve storage efficiency by up to 20x
[4]. However, while deduplication improves space efficiency, it
fundamentally changes the reliability of objects. Traditionally,
storage systems such as HDFS [5], GFS [6], and Azure
[7] employ triple replications to ensure data reliability and
availability. However, after deduplication, only unique chunks
are stored, and these are potentially spread across multiple
disks and shared by various objects. As a result, replication
no longer provides fault tolerance to the system. In this case,
erasure coding can be considered. Erasure coding encodes the
original data blocks by adding redundant data blocks, such
that if a certain number of original data blocks fail, we can
always reconstruct the failed data blocks with the encoded
blocks. Erasure coding can improve storage efficiency with
far less storage redundancy, while also achieving the same or
even higher fault tolerance than replication [8], [9]. Several

works have been proposed recently which integrate erasure
coding into deduplication to ensure both high data reliability
and high availability [10]–[13].
Although erasure coding has these attractive features, it also
has its drawbacks. Erasure coding not only suffers from the
low read/write performance when degraded I/O happens, but
it also requires more computation resources since it needs to
perform encoding for all new incoming data and decoding for
reconstructing failed data. Further, in a real storage system,
as many duplications are intended by users and applications
for increased reliability or availability, after deduplication,
the reliability levels of the data blocks actually vary with
each other, which in some degree can be represented by its
reference counter. (The value of the chunk’s reference counter
indicates how many times this chunk is shared among all
the objects in the system.) As dependencies are introduced
between files that share the same chunks, if a chunk with
a high reference counter is lost, a large amount of data
will become inaccessible due to the unavailability of all the
files that share this chunk [14]. Therefore, simply employing
erasure coding into deduplication and encoding the unique data
chunks with no strategy may not be a good choice with respect
to system performance and reliability.
In this paper, we propose RAD, Reference-counter Aware
and erasure-coded Deduplication scheme. To our knowledge,
little work has been done to discover the relationship between
erasure coding and deduplication. In this work, we try to
combine the features of these two techniques to optimize the
storage system by improving garbage collection performance
when a deletion operation occurs and explore the trade-offs
between reliability, space efficiency, and system performance
among different erasure codes in erasure-coded deduplication
storage systems.
We have two major contributions in this paper. First, by
encoding the data chunks according to their reference counters,
we reduce the amount of data that needs to be encoded
when garbage collection occurs, thus reducing the encoding
overhead when data are deleted or updated in the storage
system. Second, since large reference counter values usually
represent high reliability or availability levels, by encoding the
high/low reference counter data with respective fault tolerance
erasure codes, we can provide the system with a demand
reliability level and optimize the storage efficiency.
The rest of the paper is organized as follows. Section II first
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presents the basics of deduplication and erasure coding, two
techniques which are now widely used in distributed storage
systems; then it explains the performance and reliability is-
sues of the naive erasure-coded deduplication systems with
a motivational example. Section III describes our idea and
algorithm. Section IV talks about the evaluation details and
shows the experiment results. Section V gives the reliability
analysis of RAD placement. Section VI presents related work.
Section VII concludes the paper.

II. BACKGROUND AND MOTIVATIONAL ANALYSIS

In this section, we first present the background details
of the two techniques we consider in this paper, namely
deduplication and erasure coding; then we introduce how
recent works integrate these two techniques; and finally, we
show the motivation.

A. Deduplication

As a space-saving technique, data deduplication has re-
ceived broad attention recently in both academic [15]–[22] and
industry [23]–[25]. Chunk-based deduplication consists of the
following steps: 1) when a data object comes into the system, it
will be divided into several small data chunks and each chunk
will get a hash (fingerprint) by using a particular calculating
algorithm, such as MD5 or SHA-1; 2) for each chunk, the
system will determine whether it is a duplicate by looking it
up in the hash index; 3) the new unique chunks will be stored
in the system; and 4) the fingerprints of the new unique chunks
will be added to the hash table and the redundant data chunks
will be replaced with references to the existing chunks.
For a typical in-line deduplication system, generally we have
three components on disks. 1) There is a fingerprint index,
which maps the fingerprints of each stored chunk to its physi-
cal location. The fingerprint index is used to identify whether
each incoming chunk is unique. 2) In addition, there is a recipe
store, which maintains the logical fingerprint sequences of the
data objects. Thus, when a failure occurs, we can reconstruct
the data in the correct order. 3) Finally, there is a container
store, which is a log-structured storage system.
After the duplicate chunks are eliminated, the unique chunks
will be sealed in fixed-sized containers, which serve as disk
read/write units.

B. Erasure Coding

Erasure codes provide data reliability by adding data redun-
dancy. By combining with various coding schemes, erasure
codes can achieve high data reliability with low storage
overhead. In this paper, we mainly focus on the maximum
distance separable (MDS) codes. These are configured by
two parameters, n and k (where k < n). An (n, k) MDS
code encodes k original data blocks to create n − k parity
blocks, so any k out of the n data and parity blocks can
reconstruct all k original data blocks. The collection of the
n data blocks and parity blocks is called a stripe. Usually, a
stripe is distributed across n data nodes so that we can tolerant
any n − k node failures. Typical MDS erasure codes include

Reed-Solomon codes [26], Cauchy Reed-Solomon codes [27],
Local Reconstruction codes [28], and Regenerating codes [29].
In this work, we use RS-based (6, 2) codes for examples if
not mentioned otherwise.
If some data blocks (no more than n− k) are unavailable due
to node failures, reads to these unavailable data blocks are
called degraded read because they need to retrieve data/parity
blocks from other available nodes for decoding. The high
performance cost of erasure coding during degraded read and
update is its drawback.

C. Integration of Deduplication and Erasure Coding

As we have discussed above, deduplication systems gain
storage efficiency at the cost of system reliability. After elimi-
nating the duplicate chunks, the error resilience of the system
could potentially decrease and the failure rate may increase,
and this is not acceptable in real systems. In Bhagwat’s work
[14], this issue was first mentioned. To solve the problem, they
proposed a replication-based approach, in which more popular
data objects will be replicated on more devices to achieve
higher reliability. Though this approach is easy to implement,
it is not suitable for the recent large-scale distributed storage
systems because it requires a large amount of space.
As an alternative method of replication to provide reliability,
erasure coding has recently received more and more attention
in the deduplication system in both academic [10], [12],
[13] and industry [11]. Although the recovery process is
relatively slow compared to replication, employing erasure
coding can significantly reduce the storage consumption and
achieve reliability.
Figure 1 displays a typical data flow in a deduplication system

with erasure coding employed. Each file in the incoming file
stream will go through the following steps: 1) The data stream
is divided into data chunks (e.g., Rabin fingerprinting [30]).
2) The hash engine will calculate the SHA-1/MD5 digest for
each chunk as its unique identification, which is called its
fingerprint. 3) For each chunk, look up the fingerprint in the
fingerprint index. 4) If we find a match in the fingerprint index,
then the chunk is a duplicate. The chunk will be eliminated
and its fingerprint will be added to the recipe store. 5) If no
match is found, then the chunk is unique. The unique chunks
will be erasure coded and then distributed across the storage
nodes. 6) When a node writes a chunk, it first appends the
chunk to an in-memory container, which will be flushed to
disk when full.

D. Motivation

This is a straightforward approach to integrating erasure
coding into deduplication storage systems and is used in
most of the previously mentioned works. Though simple
to implement, there are two potential issues in this naive
approach. First, there is the issue of reliability. Erasure coding
can provide the system with a certain level of fault-tolerance,
but different files sometimes require different reliability levels.
We can generally measure the reliability level of a file in two
ways. One way is that, after deduplication, if a data chunk is



Fig. 1: Deduplication in an erasure-coded distributed storage
system.

referred to multiple times (this can be represented by a refer-
ence counter, which shows how many times this data chunk
is referenced by the data files), then this chunk should be
provided with a higher fault-tolerance level than data chunks
with a lower reference counter (normally only one), because if
this data chunk fails, multiple files will become inaccessible.
The other way to measure the reliability is to check whether
this data chunk has been given a certain reliability level (by
the user). The second issue is the high encoding overhead
when erasure coding is employed in a deduplication system.
In a deduplication system, once a file is deleted or updated,
the corresponding data chunks that refer to this file may
become invalid (not referenced by any backup) and must be
reclaimed when garbage collection occurs [10]. Recent works
[31], [32] have noticed that in a deduplication system, the
deletion operation is already significantly more complicated
than the traditional system because of the data dependencies.
However, after deploying erasure coding into the deduplication
system, yet another issue arises when deletion occurs. The
problem is that, after erasure coding, though one chunk is
not referenced by other files, we cannot simply reclaim it
because this chunk is also in one encoded data stripe which
provides reliability for other data chunks. Deleting this chunk
may invalidate the fault-tolerance of this data stripe. To ensure
the reliability, after deleting this data chunk, the remaining
chunks in the data stripe need to be encoded again. We use
an example in Figure 2 to illustrate this issue.
Figure 2(a) shows an example of one incoming data stream

that includes 6 data files, each of which is divided into 6
data chunks. The letter on each data chunk represents the

(a) An example of incoming data streams.

A(5) B C D P1 Q1

E F(3) G(2) P2 Q2 H(4)

I J P3 Q3 K L

M P4 Q4 N O P

P5 Q5 Q R S T

Q6 U V W X P6

Y Z ... .. P7 Q7

disk0 disk1 disk2 disk3 disk4 disk5

(b) An example of encoded chunks.

Fig. 2: An example of baseline erasure coding in a dedupli-
cation system.

content of that chunk. Thus, for example, the 2 A data chunks
in File 1 and File 2 are identical. After chunking, the hash
engine will calculate the hash number (fingerprint) of each
chunk and check whether the chunk is a duplicate. If not, the
chunk will be erasure coded and then written to the disks, as
shown in Figure 2(b). The number in the brackets shows how
many times the chunk is referenced by files (the value of the
chunk’s reference counter). Each column shows one coding
stripe. In this example, we use RS-(6, 2) erasure codes, which
means that if any 2 out of these 6 chunks fail, we can always
reconstruct them by decoding. For this baseline example, we
place the chunks into the storage nodes in a simple Round-
Robin manner, as shown in Figure 2(a). If File 1 is going to
be deleted, then chunks B,C,D, and E will be marked as
invalid because they are only referenced by File 1. Chunks A
and F will still remain valid because they are still referenced
by other files. In this case, after chunks B,C, and D get
reclaimed, only one data chunk (chunk A) and two parity
chunks (P1 and Q1) will exist in the first data stripe. The
stripe will no longer provide fault tolerance for the data chunk
because 3 out of 6 chunks of this stripe are unavailable. To
ensure the reliability, we will have to do the encoding again for
data chunk A. This simple example implies that in an erasure
coded deduplication system, the delete/update operation may
trigger a large amount of extra encoding overhead. Further,
this motivates us to exploit the connection between performing
erasure coding and deduplication to more wisely encode these
two layers, thus reducing the encoding overhead and providing
the data with the required reliability.



III. REFERENCE-COUNTER AWARE ERASURE CODING

A. Main Idea

From the example in Section II, we find that the traditional
Round-Robin placement of the chunks in a deduplication
system can cause lots of extra encoding overhead. In addition,
by randomly placing and encoding the chunks, the reliability
of the system may not be well ensured. In this paper, we find
that these two problems can both be solved by encoding the
chunks according to their reference counters. In deduplication
systems, each data chunk will have its own reference counter
that indicates how many times this chunk is referenced by
other files; once a file gets deleted, all the chunks it includes
will decrement their own reference counters by 1. If we encode
the chunks with high reference counters together, then it is
very likely that, after reclamation, the coding stripe which
includes these high reference counter chunks will still have all
its chunks marked as valid. As long as the stripe remains intact,
we do not need to do the extra encoding work to maintain
the fault tolerance. In addition, a chunk’s reference counter
also represents its importance to some extent. Intuitively,
we can encode the data chunks according to their reference
counters to provide different levels of reliability by employing
different erasure codes (e.g., we can encode the important
data with high fault-tolerant erasure codes by configuring
the parameters). By doing this, we can exploit the trade-
off between storage efficiency and reliability among different
erasure codes after they are employed in the deduplication
system.
Figure 3 shows the main idea of the reference-counter aware
erasure coding. 1). Files go through the chunking and dedu-
plication process, which is the same as with the traditional
deduplication system. After deduplication, chunks which have
already been stored in the container store (in storage nodes)
will be eliminated. 2). The unique chunks will then go to
the writing buffer and get sorted by their reference counters,
which will determine how they get erasure coded. Chunks
with high/low reference counters will be encoded together
respectively. 3). Chunks are erasure-coded into stripes. 4).
After encoding, chunks will go into the container buffer and
be flushed into the storage nodes when the container is full.

B. Example

In this section, we have an example demonstrating how
this approach would impact the encoding operation of the
system. Again, we use the figures in Section II as an example.
Assume we still have 6 incoming data streams coming as
shown in Figure 2(a), but this time, we encode these data
chunks according to their reference-counters. Thus, chunks
with higher and lower reference-counters are encoded together,
respectively. Figure 4 shows the encoded chunks.
In this figure, we can see that all the chunks with reference
counters higher than 1 (namely chunks A(5), F (3), G(2), and
H(4) ) are encoded in the first stripe; all the other chunks with
lower reference counters (in this example, lower reference-
counters are all one) are encoded together in the following

Fig. 3: Data flow of RAD.
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Fig. 4: Encoding according to the reference-counter.

stripes. Assume File 1 is going to be deleted. As discussed
before, chunk B,C,D, and E will be marked as invalid.
Chunks A and F , however, will still remain valid, as they
will still be referenced by other files. However, in this case,
after chunks B,C,D, and E get reclaimed, there will be no
extra encoding work because stripe 1 will still have all the
data chunks and stripe 2 will be deleted directly.

C. Algorithm Detail

We consider a storage system with N storage nodes and
equipped with (n, k) erasure codes. Algorithm 1 shows the
pseudocode of the reference-counter aware placement algo-
rithm. For each incoming file i, it will first go through the
chunking process (line 2); the number of its chunks is cni.
All these chunks consist of ui unique chunks and di duplicate
chunks, so we have ui + di = cni. For each chunk cj ,
we calculate its fingerprint (line 5) and get its reference
counter rj . One item to note is that the duplicate chunks
here differ from the traditional concept of duplicate chunks
in a deduplication system. Originally, when a duplicate chunk
enters the deduplication system, the chunk will be deleted after
hashing and only the reference will be kept in the system. In
our system, we assume the chunks are written on per-batch
basis, which means we will write a certain number of chunks
into the system every time. Also, the duplicate chunk we talk
about in this algorithm is the chunk which is duplicate in this



specific writing-batch. Thus, the next step is to check whether
the current chunk is a duplicate. If it is, then we need to
know whether it has already been stored in the container store
by checking the fingerprint index. If it is already stored in
the storage system, then this chunk will be eliminated as the
traditional deduplication system will do. If not, that means this
chunk is only duplicate in this specific batch, so we increase its
reference counter by 1 and later encode it with chunks which
have high reference counters. If the chunk is unique, we will
simply set the reference counter as 1. After this chunking and
placement process, we will encode these chunks with (n, k)
erasure codes and distribute them. Finally, we need to update
all of the chunks’ metadata to maintain the integrity of the
system.
From the example we gave above, we can see that the key to
decreasing the encoding overhead is to try to avoid encoding
duplicate chunks and unique chunks together. In this bad case,
once a file gets deleted, the unique chunks will be marked as
invalid and all the duplicate chunks in the same stripe will
have to be encoded again. In our scheme, the chunks in the
batch will first go to the write buffer, where all the chunks will
be sorted according to the value of their reference-counters.
We then encode them in descending order, after which we
distribute them to the storage nodes.

Algorithm 1 Reference-counter aware placement

Input: file fi, n, k;
Output: encoded stripes;

1: for each file fi do
2: chunking fi;
3: chunks go to write-buffer (per-batch basis);
4: for each chunk cj in file fi do
5: calculate fingerprint for cj ;
6: if cj is duplicate then
7: if cj is already in container store then
8: update the recipe store;
9: rj = rj + 1;

10: remove cj ;
11: else {cj has not been stored in container store yet}
12: rj = rj + 1;
13: cj goes to write buffer then encode with high

reference-counter chunks;
14: end if
15: else {cj is unique}
16: rj = 1;
17: cj goes to write buffer then encode with low

reference-counter chunks;
18: end if
19: end for
20: end for
21: sort the chunks according to the rc in descending order;
22: encode the chunks with (n, k) RS codes;
23: distribute the chunks across the nodes;
24: update the recipe and fingerprint index.
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Fig. 5: Number of sb in certain scenarios.

D. Optimization Analysis

In this section, we discuss how much better this reference-
counter aware placement is than the traditional Round-Robin
placement in theory. Let’s first consider a scenario where one
file, fi, will be deleted. Then extra encoding will occur if any
of the unique chunks in fi is encoded with duplicate chunks
in fi or with any chunks from other files. In a typical archive
operation, the number of chunks in a file is usually much larger
than the number of storage nodes. Thus, we assume ui > k
and di > k. Then in Round-Robin placement, all the chunks
will be encoded into stripes sequentially. The number of stripes
sn will be (ui + di)/k (to make it simple for discussion here,
we assume there is no remainder). Then the favorable case,
where none of the stripes break when the deletion operation
occurs, only occurs when all the unique chunks are encoded
together and all the duplicate chunks are encoded together.
The possibility of this is:

p =

∏ui
k
n=1 C

k
nk ×

∏ di
k
n=1 C

k
nk∏ ci

k
n=1 C

k
nk

(1)

Then the Expected Value of the broken stripe will be sb =
sn × (1− p). In RAD, since we have arranged the placement
of the chunks, there will ideally only be two broken stripes:
one stripe which is the critical point of the unique chunk and
the duplicate chunk, and the last stripe which may be encoded
with chunks from other files.
The number of sb is difficult to describe in a simple formula;
thus, we have a graph in Figure 5 which shows the number
of sb in certain scenarios when N is fixed and equal to 4.
From this graph, we can find that the Expected Value of the
broken stripe is very close to the number of whole stripes, sn,
and this number increases as the chunk number, cn, increases.
Normally the chunk number of one file might reach into
the hundreds or thousands, which means there exists a high
possibility that we can decrease the encoding overhead by
employing the RAD placement.
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IV. EVALUATION

A. System Simulator

Our evaluation is conducted by simulation and the envi-
ronment is developed based on the distributed storage system
simulator from [10] which realizes both deduplication and
erasure coding. In our simulator, we implemented the RAD
algorithm and added the garbage collection module.
Figure 6 shows the system simulator architecture which in-
cludes three main parts: the client, the metadata server, and
storage nodes. In this paper, we mainly focus on the garbage
collection performance when a deletion operation occurs.
For file uploads, the files are written on a per-batch basis.

Each time an upload operation is initiated, the client will
divide the files into chunks and get the fingerprints of these
chunks. Then these fingerprints (metadata) will be sent to the
metadata server, which will conduct the deduplication, run data
placement algorithms (RAD/baseline), and maintain the chunk
metadata in the database. Then the server responds to the client
with the information of the unique chunks and the placement
method. According to this information, the client will encode
the unique chunks and place the chunks in the storage nodes.
For garbage collection, we applied the most widely used
reference count-based GC approach [33]–[35]. As we have
introduced before, the reference counter of a particular chunk
in a deduplication system refers to the number of times that
chunk is used/referenced. A reference count value of 0 implies
that the chunk is no longer shared due to users’ deletion
operations and can be reclaimed for garbage collection. When
the client initiates a deletion operation, it will query the
metadata server for all the reference counter information of
the chunks in the files to be deleted. The metadata server will
operate on the reference counters of these chunks and send
the information back to the client, which will then reclaim

the space and re-encode the chunks with reference counters
greater than 1.

B. Evaluation

In this part, we will compare the GC performance of
our RAD algorithm with the baseline (Round-Robin). The
evaluation is conducted in the simulator introduced in Section
IV.A.

1) Datasets: We divide the datasets into two categories:
directories and archive/compressed files. The directories are
extracted from compressed open-source project codes, such
as Linux kernel codes. The directory-files usually contain
multiple small files and have high similarities among different
versions. The archive/compressed files are single files which
usually have a large size and lower similarities between each
other. The datasets we are using in our evaluation can be clas-
sified and shown in Table I. We compare each two consecutive
versions of every dataset and record the similarity ratio; the
average similarity is the average of all the similarity ratios.
When performing garbage collection, we first upload five
versions of the files, one by one; then we conduct the garbage
collection of each version and compare the GC performance
between the baseline scheme and RAD.

2) Simulations: The simulator builds a storage system with
16 storage nodes and deploys (n, k) = (14, 12) erasure coding.
For the chunking scheme, we use 4KB fixed-size chunking.

a) Directory files: We first run the GC operation on the
five directory-files; Figure 7 displays the results for the GC
operation time under baseline (GCB) and RAD (GCR). From
Table I, we can see that datasets LibreOffice, Linux Kernel,
and Firefox directories share similar features in size (large) and
similarity (high). The simulation results also show that these
directories follow the same trend in their GC performance in
the comparison experiments.
For LibreOffice-4.1.0.1 and 4.2.0.1, GCR shows 17.2% and
11.5% performance gains, respectively; for the other three
versions of LibreOffice, however, there is not much difference.
This happens because our scheme benefits more when the
datasets contain more data chunks with high reference counters
(greater than 1), in which case fewer stripes will be broken
when GC is performed. Among the five LibreOffice datasets,
the two with obvious performance gains have a larger number
of high reference counter chunks than the others.
A similar conclusion can be drawn from the results of the
experiments on Linux kernel and Firefox directories. When
the datasets have a large number of high reference counter
chunks, GCR clearly has better performance than GCB. For
Linux kernel versions 2.6.31-2.6.33, GCR shows 8.6%, 22.0%,
and 13.0% gains, respectively. For Firefox 20.0-50.0, GCR
demonstrates 24.8%, 8.46%, 9.15%, and 13.2% gains, respec-
tively.
For the other two datasets, Ubuntu and GDB, RAD does not
feature better performance than the baseline scheme; however,
this is not unexpected. Ubuntu directories are extracted from
the Ubuntu ISO files, which are archive files instead of
compressed files. Thus, the directories have the same level of



TABLE I: GC Dataset Description

Dataset Description Average Size Average similarity Size Similarity
Ubuntu(D) Ubuntu source codes directory 715.8 MB 0.1444 L(large) L(low)
GDB(D) GDB source codes directory 95.6 MB 0.32245 S(small) H(high)
Firefox(D) Firefox source codes directory 926.8 MB 0.32055 L H
LibreOffice(D) LibreOffice source codes directory 901.2 MB 0.359325 L H
LinuxKernel(D) Linux kernel source codes directory 415.2 MB 0.332275 L H
Ubuntu(F) Compressed Ubuntu ISO file 716.4 MB 0.1449 L L
GDB(F) Compressed GDB tar.gz file 17.2 MB 0.14305 S L
Firefox(F) Compressed Firefox tar.xz/tar.bz2 file 132.8 MB 0.1433 S L
LibreOffice(F) Compressed LibreOffice tar.xz file 126.6 MB 0.1475 S L
LinuxKernel(F) Compressed LinuxKernel tar.gz file 78.2 MB 0.1429 S L

Fig. 7: GC operation time for the directory files.

Fig. 8: GC operation time for the archive/compressed files.



similarityamongtheversions(around16%),andourscheme
worksbetterforfileswithhighsimilarities.ForGDB,the
directories’sizesaremuchsmallercomparedtotheotherfour
datasets,whichmeanstheperformancedegradationcausedby
thesortingprocessmayoffsetthebenefitcomingfromtheGC
performance.

b)Archive/compressedfiles:Wethenconducttheex-
perimentsonthefivecorrespondingarchive/compressedfiles,
andresultsareshowninFigure8.Accordingtoouranalysis
inthelastsection,theseresultsmatchourexpectations.For
LibreOffice,Linuxkernel,andFirefoxcompressedfiles,RAD
runsalittlebitlongerthanthebaselinebecausethesethree
datasetsallsharethesamedatafeatures:smalldatasizes
andlowsimilaritylevels.ForUbuntuISOfiles,theresults
aresimilartotheresultsofUbuntuextracteddirectoryfiles
because,asISOfilesaresimplyarchivefiles,theISOfiles
havethesamedatafeaturesastheextractedfiles.ForGDB
tar.gzfiles,thebaselineclearlyoutperformstheRADbecause
theGDBfilesizeissignificantlysmall(around17MB).Asa
result,theGCcannotbenefitmuchfromrearrangingthedata
chunks,andRAD’ssortingprocesswillmaketherunningtime
muchlongerthanthebaseline.

V.RELIABILITYANALYSIS

Severalrecentworks[14],[36]noticedthat,inadedupli-
cationsystem,chunkswithhigherpopularitiesdeservehigher
reliability,sotheyshouldbecopiedtomaintainmorereplicas.
Inourwork,chunkswithhigh/lowreferencecountersareen-
codedtogetherrespectively;thus,intuitively,thereisachance
toencodethesechunkswithdifferenterasurecodestoprovide
correspondinglevelsofreliabilityandstorageutilization.
Traditionally,Markovmodelshavebeenusedtoevaluatethe
reliabilityoferasure-codedstoragesystems.Figure9showsa
canonicalRAID6Markovmodel[37].State0isthestartstate
withallNnodesrunningproperly.States1and2represent
thesystemwithoneandtwonodefailures,respectively.State
DLensueswhenathirdnodefailureoccurs,i.e.,thedataloss
state.
Thecanonical Markovmodelcanbesolvedanalyticallyfor
MTTDL(meantimetodataloss).Forastoragesystemwith
Nnodesanddeployerasurecodes(N,K),accordingto[38],
wehave

MTTDL=
µN K(K−1)

N!λN K+1
(2)

whereλisthediskfailurerate(equalto1/MTTF)andµis
therepairrate(equalto1/MTTR).
Assumeforthebaselineapproachthatthesystemencodesall
thechunkswitherasurecodes(B,2),andinRADweuse
codes(A,2)and(C,2)toencodethechunkswithlow/high
referencecounters,respectively.Thestorageutilizationof
baselineandRADarenotedbySbandSr,respectively,
andtheMTTDLarenotedbyMbandMr

0 1 2 DL

Nλ (N-1)λ (N-2)λ

μ 

μ 

(expectedvalue),
respectively.Insideallthechunks,thehighreferencecounter

Fig.9:CanonicalRAID6Markovmodel[37].

chunksaccountforαofthetotalnumberofchunks.Thenfor
thestorageutilizationofbaselineandRAD,wehave

Sb=
B−2

B
(3)

and

Sr=(1−α)
A−2

A
+α
B−2

B
(4)

FortheMTTDLofbaselineandRAD,accordingtoequation
(2),wehave

Mb=
µ2

B(B−1)(B−2)λ3
(5)

Mr=(1−α)
µ2

A(A−1)(A−2)λ3
+

α
µ2

C(C−1)(C−2)λ3

(6)

Assume wehave MTTRas17.8hoursand MTTFas
500,000hours[37]. Wechoosefoursetsoferasurecodes
andshow,inFigure10,thestorageutilizationandMMTDL
ofthesystemwithαrangingin(0,1).Inthefigure,the
solidblueandredlinesrepresentthestorageutilizationof
baselineandRAD,respectively,andthedottedblueand
redlinesrepresentthe MMTDLofthebaselineandRAD,
respectively.Use(A,B,C)=(14,10,6)asanexamplefor
theanalysis.Forthebaseline,thestorageutilizationand
MTTDLareconstantsandequalto80%and 5.48×1011

hours,respectively.ForRAD,thesetwoattributeschangewith
thehighreference-counterchunksratio.Fromthefirstgraph
inFigure10,wefindthatRADhasbetterstorageutilization
thanthebaselinewhenαislessthanaround30%andhas
ahigher MTTDLwhenαisgreaterthanaround13%.So
forthetuple(A,B,C)=(14,10,6),RADwillbehavebetter
inbothstorageutilizationandreliabilitywhenαisinthe
interval(0.13,0.30),whichwecalltheR-interval. Whenwe
changethenumbersofthetuple,asshownintheother3
graphsofFigure10,theR-intervalwillchangebutmostly
stillresidein(0.05,0.65).Ifαofafileisalreadyknown,
thenitwillbeeasytofindatuple(A,B,C)withwhichRAD



Fig. 10: Tradeoff of storage utilization and reliability under different erasure codes.

can outperform the baseline in both storage utilization and
reliability. As we discussed in Section IV, Table I shows that
for the normal directories and archive/compressed files, α is
between (0.14, 0.36), which quite suits the R-interval we get
from the analysis.

VI. RELATED WORK

As a space-saving technique, deduplication improves the
space utilization; however, as a trade-off, the system reliability
decreases due to the elimination of the duplicate chunks.
Works have been done to ensure the reliability in deduplication
system in two directions: replicate the important chunks and
deploy erasure coding.
[14], [36] found that chunks with higher popularities are more
important, and thus the chunks with higher reference counters
should be replicated more to ensure a higher level of reliability.
Some works deploy both deduplication and erasure coding in
the storage system and try to solve the subsequent challenges.
CodePlugin [13] introduces pre-processing steps before the
normal encoding to improve the encoding performance for
the redundant blocks. [39] makes the attempts to address the
problem of achieving efficient and reliable key management
in an erasure-coded deduplication system. [40] studies the
reliability analysis of a distributed deduplication system. R-
ADMAD [12] deploys deduplication with variable-size chunk-

ing over erasure-coding systems. In industry, Hydrastor [1]
has deployed deduplication and erasure coding for commercial
backup storage.

VII. CONCLUSION AND FUTURE WORK

In this work, we target the garbage collection performance
in an erasure-coded deduplication system. We point out that
by rearranging the chunks in the deduplication storage system
according to their reference counters, for most of the large-
size, high-similarity files, the garbage collection performance
would be increased by up to 24.8%. We also notice that after
rearranging the data chunks, chunks of high-importance and
low-importance are encoded together so that the system can
have a customized reliability level as the users demand. Our
future work will focus on deploying different erasure codes to
the data chunks based on their importance level to give the
system more choice in the trade-off between reliability and
storage space.
The work performed is partially sponsored by the U.S.
National Science Foundation grants CCF-1717660, CCF-
1813081, CNS-1702474, the National Science Foundation of
China (NSFC) No. 61628208, and the Shanghai National Sci-
ence Foundation No. 18ZR1418500. Any opinions, findings,
and conclusions or recommendations expressed in this material
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