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ABSTRACT

We present a modified approach for simulating electronically nonadiabatic dynamics based on the Nakajima-Zwanzig general-
ized quantum master equation (GQME). The modified approach utilizes the fact that the Nakajima-Zwanzig formalism does not
require casting the overall Hamiltonian in system-bath form, which is arguably neither natural nor convenient in the case of the
Hamiltonian that governs nonadiabatic dynamics. Within the modified approach, the effect of the nuclear degrees of freedom on
the time evolution of the electronic reduced density operator is fully captured by a memory kernel super-operator. A method-
ology for calculating the memory kernel from projection-free inputs is developed. Simulating the electronic dynamics via the
modified approach, with a memory kernel obtained using exact or approximate methods, can be more cost effective and /or lead
to more accurate results than direct application of those methods. The modified approach is compared to previously proposed
GQME-based approaches, and its robustness and accuracy are demonstrated on a benchmark spin-boson model with a memory
kernel which is calculated within the Ehrenfest method.

Published under license by AIP Publishing.

I. INTRODUCTION

Quantum dynamical effects play a central role in a vari-
ety of important processes that take place in molecular
condensed phase systems, including vibrational and elec-
tronic relaxation, charge transfer, optical response, and pho-
tovoltaics.'* As a result, the simulation of quantum dynam-
ics in such systems remains one of the most important
challenges facing computational chemistry. However, the
exponential scaling of the computational cost with sys-
tem dimensionality makes the numerically exact simula-
tion of quantum dynamics in complex molecular systems
non-feasible, with the important exception of a subclass of

Hamiltonians whose form makes such an exact simulation
possible.

Nonadiabatic dynamics corresponds to an important class
of inherently quantum-mechanical dynamical processes that
plays a central role in a variety of important chemical pro-
cesses, ranging from redox reactions to photovoltaics. A
variety of mixed quantum-classical and semiclassical approx-
imate methods for simulating nonadiabatic dynamics have
been proposed over the years, including Ehrenfest,?* surface
hopping, mixed quantum-classical Liouville (MQCL),
and the symmetrical quasiclassical (SQC) method. What
those methods have in common is that the dynamics of the
nuclear degrees of freedom (DOF) is described in terms of
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classical-like trajectories. However, the classical-like nature
of the dynamics of the nuclear DOF within those approximate
methods often causes their accuracy to decrease and/or their
computational cost to increase with increasing simulation
time.

Another approach for simulating nonadiabatic dynamics
in complex condensed phase systems is based on the fact
that the dynamics of the electronic populations and coher-
ences can be expressed in terms of quantities like corre-
lation functions and memory kernels.'>496° An advantage
of describing the dynamics in terms of such quantities is
that they are much simpler than the overall system density
operator. Furthermore, for many complex condensed-phase
systems of interest, such quantities are often found to be
characterized by finite memory times. This implies that one
should be able to follow a multi-scale approach, where
the finite-lifetime input quantities necessary for simulat-
ing the dynamics of experimentally relevant observables on
longer time scales are obtained via exact or mixed quantum-
classical /semiclassical approximations.

Methods based on Fermi’s golden rule (FGR) and the
Redfield equation are examples of the aforementioned
approach.’6578 In those methods, the impact of the nuclear
DOF on the electronic DOF is given in terms of typically short-
lived two-time correlation functions. However, those meth-
ods are based on treating the coupling between electronic
states or between the electronic and nuclear DOF as a small
perturbation. By contrast, methods based on the generalized
quantum master equation (GQME)>0526479-84 can describe
coupling of any strength, making the memory kernel of the
GQME arguably the most general and rigorous form of such a
short-time input quantity.

In this paper, we focus on the case where the memory
kernel captures the impact of the nuclear DOF on the elec-
tronic DOF, for a system whose overall Hamiltonian has the
following general form (in what follows, vector quantities are
boldfaced, e.g., R, and a hat over a symbol, e.g., A, indicates an
operator quantity):

M M
H= 3 A+ ) Vielidkl )
j=1 Jﬁ:jl

~ ~2 N
Here, Hj = P /2 + V]-(R) is the nuclear Hamiltonian when the
system is in the electronic state |j), R = (ﬁl,...,f{N) and
P= (131, ey ISN) are the mass-weighted position and momen-

tum operators of the N nuclear DOF, and {%k =V; (ﬁ)} couple
electronic states to each other.

We restrict ourselves to the case where the electronic
states, {|j)}, are independent of R (e.g., the so-called crude
adiabatic basis®?). The index j in Eq. (1) runs over the M
electronic states. For example, a two-state donor-acceptor
system would correspond to M = 2. Many processes involv-
ing nonadiabatic dynamics in condensed phase systems are
described in terms of a Hamiltonian of the form of Eq. ().
Furthermore, describing nonadiabatic dynamics in terms of
a crude adiabatic representation, rather than in terms of
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Born-Oppenheimer representation, is not an approximation
since the dynamics is independent of the representation
employed.®>

Importantly, {R, P} are meant to correspond to the Carte-
sian positions and momenta of the individual atoms in a
complex molecular system that would typically consist of
a large number (>10%) of atoms. Thus, Vj(ﬁ) would typ-
ically correspond to the electronic-state-specific potential
energy surface (PES) that describes the interaction between
the atoms in electronic state |j). Similarly, the electronic
coupling terms, {V] (f{)}, can be R-dependent (assuming
that they are R-independent corresponds to the Condon
approximation). Our working hypothesis is that {Vj(ﬁ)} and

{V] (ﬁ)} can be obtained from on-the-fly electronic struc-
ture calculations and/or semi-empirical force fields (e.g., see
Ref. 69).

In most cases of practical importance, the initial state of
the overall (nuclear + electronic) system would be given by a
density operator of the following form:

p(0) = pn(0) ® 57(0). @)

Here, pn(0) = Tre{p(0)} is the reduced density operator that
describes the initial state of the nuclear DOF, where Tr.{-}
stands for partially tracing over the electronic Hilbert space.
Similarly, the reduced density operator that describes the ini-
tial state of the electronic DOF is obtained by partially tracing
over the nuclear Hilbert space,

M
&(0) = Tralp(0)} = > oje(0) kI, 3)
jk=1

The state of the overall system at a later time t would then
be given by

p(t) = e lt/5(0) ® G-(0)e/ = e=iLt/15, (0) ® 6-(0).  (4)

Here, H is the overall Hamiltonian, Eq. (1), and £(-) = [H, -] is
the corresponding Liouvillian (calligraphic font, e.g., £, indi-
cates that the quantity is a super-operator). The nuclear and
electronic states at time t are described by the corresponding
reduced density operators,

lsn(t) =Tre {ﬁ(t)}v

. . o . ®)
&(t) = Tra(p(0) = ), o(®)[)RI.
jR=1

Importantly, knowledge of 5-(t) would allow for the evaluation
of both the electronic populations, {ojj(t)}, and coherences,
{0l # k)

It should be pointed out that extending the methodology
to non-single-product overall system initial states is rather
straightforward. For example, given that 5(0) = pp%(0) ® 5-%(0)+
(1-p)AL(0) ® 61(0), with 0 < p < 1, the reduced density operator
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at time t would be given by
&) = pTrofe 753(0) @ (0)e /")
+(1=p)Traf e 1751(0) © G(0)e 7}

= pa(t) + (1~ p)3(). (6)

Thus, each of the two reduced density operators, o-%(t) and
&P(t), can be propagated independently of the other starting
at its own single-product overall system initial state, and the
overall reduced density operator, &-(t), can be obtained from
the linear combination. The same procedure can be applied
to other forms of the initial state. To this end, it should be
noted that any initial state of the overall system, p(0), can be
expressed as ;. pjr(0) [j)(kI, with $;(0) = (jloj(0)[k). Thus, the
computational cost scales linearly with respect to the num-
ber of product terms with independent p3,(0), which is rather
favorable.

The modified GQME-based (M-GQME) scheme pre-
sented herein builds upon the Nakajima-Zwanzig GQME (NZ-
GQME),350.52.55,55:606564 byt it is distinctly different from
previously proposed NZ-GQME-based schemes®+79.56 (see
Appendix B), as will be shown below. The M-GQME scheme
avoids the commonly employed assumption that the overall
Hamiltonian is cast in a system-bath form,

I:IZH5+HB+I:I}3$. (7)

Here, Hg is the system Hamiltonian, Hp is the bath Hamilto-
nian, and Hgg is the coupling between the system and bath. In
the context of the system under consideration here, the sys-
tem would stand for the electronic DOF, the bath would stand
for the nuclear DOF, and the system-bath coupling, Aps, would
stand for the coupling between the nuclear and electronic
DOF.

While casting the overall Hamiltonian in the system-bath
form of Eq. (7) has proven to be extremely useful in many
other contexts, it is neither natural nor convenient when deal-
ing with an overall Hamiltonian of the form of Eq. (1). This
is because the first term in Eq. (1), Zjl:lj|j><j|, associates a
different nuclear Hamiltonian, Flj, with each electronic state,
|j», thereby making it impossible to come up with a uniquely
defined bath Hamiltonian, Hg. It should be noted that while
it is in principle possible to cast the Hamiltonian in Eq. (1) in
the form of Eq. (7), the fact that there is no one unique way
of accomplishing this can complicate the implementation of
a GQME-based approach which is based on the system-bath
form in a number of ways. First, when using an approximate
method to evaluate the memory kernel, different choices of
Ag, Hs, and Hgg may lead to different results without a clear
criterion for choosing between them. Second, the nuclear DOF
are often assumed to start out at equilibrium with respect
to Hg such that $,(0) = Pyl = exp[-BHg]/Zs, where Zg is
the canonical partition function to Hg, which means that the
definition of Hp needs to change whenever the nuclear ini-
tial conditions, i.e., pn(0), do. Third, the system-bath cou-
pling, g, is often defined so that TrB{HBsﬁgq} = 0, which
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implies that the definition of 13135 will also be dependent on the
choice of Hg. Fourth, the projection operator used to derive
the GQME is often defined as P(-) = g3 ® Trg{-} and would
also need to be modified when the definition of Hg changes.
Fifth, the second term in Eq. (1), Xjx ij li)(RI, is purely elec-
tronic in the Condon approximation, ij — Vj, and there-
fore is part of the system Hamiltonian. However, this term
becomes a system-bath coupling term in the non-Condon
case, thereby making it difficult to create a unified computa-
tional framework that can treat both Condon and non-Condon
cases.

In this paper, we pursue a GQME-based approach that is
free of the requirement to cast the overall system Hamiltonian
in system-bath form. The remainder of this paper is orga-
nized as follows. The M-GQME approach for the nonadiabatic
dynamics of the electronic DOF, which does not require an
overall Hamiltonian of system-bath form, is derived in Sec. II.
The methodology for calculating the memory kernel within
the M-GQME approach is developed in Sec. I1I. A protocol for
using the Ehrenfest method for calculating the projection-free
quantities needed for calculating the memory kernel is out-
lined in Sec. IV. Demonstrative applications based on using the
Ehrenfest method for calculating the memory kernel within
the M-GQME approach on benchmark spin-boson systems
are presented and analyzed in Sec. V. The main conclusions
are outlined and discussed in Sec. VI. Technical aspects are
discussed in Appendixes A-D.

Il. THE MODIFIED GENERALIZED QUANTUM MASTER
EQUATION (M-GQME)

We start out with a system whose overall Hamiltonian
is given by Eq. (1), rather than by Eq. (7). As is well known,
the dynamics of the projected state, Pp(t), for any projection

operator P that satisfies idempotence (P = P) is given by the
NZ-GQME' 28788

d ~ ’L A 1 t —i [:T ~
PO = -3 PLPA) - /0 drPLe 2L QLD 1)
_%Pﬁe—igﬁt/h Qﬁ(()) 8)

Here, Q = 1-Pis the complimentary projection operator to P
(i.e., Q projects-in what P projects-out).

Next, we explicitly define the projection operator as fol-
lows:

P() = pr © Tral-). )

Here, pr¢f is a reference nuclear density operator of one’s
choice (as long as Try, {p“,rff} =1, which is required for = P).
Substituting the projection operator in Eq. (9) into Eq. (8)
and tracing over the nuclear Hilbert space then leads to the
following GQME for the reduced electronic density operator
a(t),

%&(t):—%(ﬁ){ff&(t)— /0 dr K(@)o(t —7)+1(t).  (10)
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Here,
(LY = Try | L7 ()

accounts for the Hamiltonian and Markovian dynamics gen-
erated by the Hamiltonian (H)if = Tr,{fpicf}, while the
remaining two terms on the RH.S. account for the non-
Hamiltonian and non-Markovian dynamics generated by the
coupling between the electronic and nuclear DOF. More
specifically, the memory kernel, KC(r), which accounts for the
effect of the nuclear DOF within the time interval (0, t) on the
electronic DOF at time t, is given by

K() = hlzTrn{ﬁ e QLT Q Lyt } (12)

and the inhomogeneous term, I(t), which accounts for the
effect of the initial state of the nuclear DOF on the electronic
DOF at time t, is given by

i(t) = —%Trn{ﬁe-@ﬁt/h Qﬁn(O)}. (13)

It should be noted that both K(r) and i(t) would typically van-
ish at 7, t > 7., where 7. is the characteristic finite correlation
or memory time of the electronic DOF.

As is well known, there is no one unique choice of pref
in Eq. (9) and the specific choice is dictated by the questions
one is asking and convenience.”’?#9°C As a result, different
choices of grf would lead to different versions of the GQME.
In this sense, the equation of motion that governs the dynam-
ics of the electronic DOF is not unique, although the differ-
ent equations of motion must all reproduce the same elec-
tronic dynamics (as long as the quantum-mechanically exact
memory kernel and inhomogeneous term can be obtained).
In practice, it is convenient to choose g€ in a manner that
will simplify the resulting GQME. The assignment g'¢f = 5,(0)
(the initial state of the nuclear DOF) is such a convenient
choice and leads to the following definition of the projection
operator:

P() = pn(0) ® Trn{-}. (14)

This choice is convenient because it leads to the elimination
of the inhomogeneous term from the GQME.”® However, it
should be noted that this choice also implies that the mem-
ory kernel will be explicitly dependent on the initial state of
the nuclear DOF. In other words, changing the state of the
nuclear DOF at the initial time t = 0 [p,(0)] would alter the
equation of motion [see Eq. (15)] that dictates the dynam-
ics of the electronic DOF at later times t > 0. It should also
be noted that the specific form of p,(0) is dictated by how
the system is prepared, which is ultimately dependent on the
experimental setup. Importantly, 0,(0) need not be of the form
ppl = ZglePMs. 1t should be noted that this is also not
required within the Zhang-Ka-Geva (ZKG-NZ) scheme (see
Appendix B).7°

Substituting the projection operator in Eq. (14) into Eq. (10)
leads to the following GQME for the electronic reduced den-
sity operator, o (t):

ARTICLE scitation.org/journalljcp

4

dté—(t):—%(ﬁ)ﬂé—(t)— /0 deK(2)6 (¢ - 7). (15)

Here, (£)? (the overall Liouvillian averaged over the initial
state of the nuclear DOF, resulting in a super-operator in the
electronic Liouville-subspace) and K(7) (the memory kernel
super-operator) are given by

(L) = Tra{pn(0)L} ()
M R M .
= | DIEDNG+ Y (Fon ik, - (16)
j=1 jk=1
kj
and )
K(x) = h—zTrn{Ee’iQ&/" Qﬁﬁn(O)}, (17)
respectively.

Importantly, evaluation of the Liouvillian and memory
kernel terms in Egs. (16) and (17), respectively, does not
require casting the Hamiltonian in system-bath form or that
the initial state of the nuclear DOF corresponds to thermal
equilibrium with respect to the bath Hamiltonian. In what
follows, we refer to Eq. (15) as the modified GQME (M-GQME),
in order to distinguish it from versions of the GQME which are
based on casting the overall Hamiltonian in system-bath form
and assuming that the initial state of the nuclear DOF corre-
sponds to equilibrium with respect to the bath Hamiltonian
(see Appendix B).

It should be noted that the expression for the memory
kernel, Eq. (17), can be further simplified by introducing the
Condon approximation, ij — Vi, (see Appendix A for proof),

IC(T) = hl_zTrn {Aczero e—iQ[I-r/h Qﬁzeroﬁn(o)}, (18)

where Lyero(7) = [2%1 I:IJ' al, ] = [Hzero’ ]

I1l. EVALUATION OF THE M-GQME MEMORY KERNEL

Simulating the dynamics of the electronic DOF based
on Eq. (15) requires knowledge of (£)? and K(r). Obtain-
ing (L)Y requires the evaluation of the time-independent
averages over the nuclear DOF at the initial time, (Hp?l

and (\7]4,%)2, which are relatively straightforward to calculate
either fully quantum-mechanically, semiclassically, or fully
classically.”"

Assuming that (£)? can be obtained, the memory kernel
of the M-GQME, Eq. (17), is the key quantity needed for sim-
ulating the dynamics of the electronic DOF based on Eq. (15).
However, unlike (£)?, the evaluation of X(r) is made challeng-
ing by the fact that it is time dependent. Furthermore, the
time-dependence of KC(r) is nontrivial because it is dictated
by the projection-dependent propagator, e"i9£7/% rather than
by the projection-independent propagator, e”L7/h Onpe strat-
egy for overcoming the latter difficulty is by using a scheme
for evaluating K(r) from projection-free inputs, i.e., inputs
that involve e £7/" rather than e~*2£7/h, Combining exact
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or approximate methods for evaluating those projection-free
inputs can then lead to a methodology that can be applied to
complex molecular systems.

A scheme for evaluating /() from projection-free inputs
can be developed by using the following general operator
identity:647°

-iBr/n _ o-iAT/h _ l i 1 o=t AT-T) /R R _ —iBt’ /h 1
e e P /0 dr’e (B-Ae . (19
Substituting A = £ and B = QL into Eq. (19), we obtain
_1Q£-r/h _ e—lﬁr/h / dr'e -iL(r- T’)/hpﬁe—lgl:T n (20)

Substituting Eq. (20) into Eq. (17) then leads to the following
Volterra equation of the second-kind for X(z):

K(z) = ij:(r) - %]-‘(r)(ﬁ)ﬁ +i/0T dr’ Flr - K@), (21)
Here,

Fix) = %Trn{ﬁe ~ile/ng (0)} 22)

Thus, given the projection-free quantity F(r), Eq. (21) can be
solved numerically for the projection-dependent K(r) (see
Appendix D). Hence, the problem of calculating K(r) translates
into that of calculating F{(7) [see Eq. (22)].

It should be noted that F(r) = il(r), where U(z) is the
time evolution operator of the electronic reduced density
operator,

5(7) = U)6(0) = Try { eiLting (0)}0(0) ©23)
Thus, Eq. (21) can be rewritten in the following form:
Kir) = -2le) ~ UKL - / Cdlle - )KE). (24)
0

This implies that the memory kernel of the M-GQME, K(z),
can be obtained directly from the time evolution opera-
tor of the reduced dynamics, U(r). The choice between
F(r) and U(r) as the projection-free input depends on
the trade-off between evaluating the commutator explicitly
[F(x)] and performing higher order time derivatives numer-
ically [U(r)]. In what follows, we choose to proceed with
Fx).

In practice, both K(r) and F(r) are represented by
M? x M? matrices in terms of the electronic basis {|j)[j = 1, . . .,
M} (e.g., 4 x 4 matrices in the case of a system with two elec-
tronic states). The corresponding matrix elements of JF{r) are
given by

ARTICLE scitation.org/journalljcp

Firanl®) = £ Tr{()k D Le 750 upcol

Tr{p (0)[uxwle /A k) i, H]e“H””}

:*Inﬂm‘l»dz*l'ﬂ

Tr{ POn 0)|u>(v|eiHT/h [gj _ Hk] |k><j|e—iﬁr/h}
M

% .Tr {pn(0)|u><v|e”*/ "
=1
<[V

k)L = Vi e e/, (25)

Thus, Fj.uw(r) can be given in terms of expressions of the
following form:

Tr{pu(O) ol /" T(R) ib)ale /7], (26)

where the nuclear operator l'(ft) is either

(i) Vj(R) - Vi(R), witha=jandb =k,
(ii) VJQ( ) with a#j and b = k, or
(iii) ka( ), with a = j and b#k,

and terms with a # j and b # k do not occur.

The number of quantities of the form of Eq. (26) that needs
to be calculated scales rather favorably with the dimensional-
ity of the electronic Hilbert space (~M*). It should be noted
that those quantities only need to be calculated once for a
given initial state and that they can be calculated indepen-
dently in a trivially parallelized manner.

IV. CALCULATION OF Fj ,,(t) VIA THE EHRENFEST
METHOD

The methodology outlined in Sec. III is general and can
be used for calculating the memory kernel of the M-GQME via
any exact or approximate method of one’s choice.”?:82.9092.95
In this section, we demonstrate this by outlining a protocol for
calculating Fij, .,(7) via the Ehrenfest method. We start out by
noting that Fj, () can be given in terms of expressions of the
form of Eq. (26). The expression in Eq. (26) can be interpreted
as the expectation value of r(ﬁ) |b){a| at time t when the initial
state is given by pn(0)|u)v| and the dynamics is dictated by
the overall Hamiltonian, H [see Eq. (1)]. However, while 5,(0) is
by definition a legitimate nuclear density operator, associating
[u)(v| with an initial electronic density operator, 6(0), is not
possible when u # v, since in this case [u)(v| is not Hermitian,
has zero trace, and does not satisfy the Schwarz inequality
Lol < (o) 1

The fact that |u)(v| is not a legitimate density operator
when u # v can become an obstacle when one attempts to
evaluate Eq. (26) via semiclassical or mixed quantum-classical
methods. In this section, we demonstrate this point in the
context of the Ehrenfest method. Within this method, the
nuclear DOF are treated classically, the electronic DOF are
treated quantum-mechanically, and the impact of the elec-
tronic DOF on the nuclear DOF is treated in a mean-field
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manner. In practice, initial positions and momenta of the
nuclear DOF are sampled based on the Wigner transform of
on(0), ponw(R, P; t = 0), or its classical limit, and expecta-
tion values are obtained by averaging over the corresponding
ensemble of classical trajectories. The effect of the nuclear
DOF on the electronic DOF is accounted for by the fact
that each classical trajectory of the nuclear DOF, R(t), corre-
sponds to a different realization of the time-dependent Hamil-
tonian that governs the dynamics of the electronic density
operator,

M M
Ha(® = Y ViIROIDGI+ . Vi[ROIGXRL  (27)
j=1 jk=1
k#j

The effect of the electronic DOF on the nuclear DOF is
accounted for by propagating the nuclear DOF on the mean-
field PES,

M M
Vini(R) = )" o(O)Vi(R) + > og(t)Vie(R). (28)
j=1 k=1
k#j

Attempting to use the Ehrenfest method when the
initial electronic density operator is non-Hermitian, e.g.,
&(0) = |uxv| when u # v, results in a complex mean-field
PES, which in turn leads to nonphysical complex classical posi-
tions and momenta of the nuclear DOF. This problem can be
bypassed by switching to a basis of the electronic Liouville
space, consisting of operators that satisfy the conditions for
a density operator. The choice of basis is not unique, but a
relatively unbiased choice that satisfies hermiticity, trace one,
and Schwarz inequality corresponds to

~ 1

Ko = 5| o)l + P)w]+ o] + o)cu |,
2 (29)

Yo = §[|u><u| + JuXo] - iy +i|v><u|].

The results reported in this paper were obtained based on
this choice. It should be noted that Montoya-Castillo and
Reichman®? proposed an alternative approach for resolving
the above mentioned discrepancies which is based on the
identity |uyv| + [v)}u| = XrAk|){A| and separately simulat-
ing Ehrenfest dynamics for each |4,){(A;| (here, {|A)} are the
eigenfunctions of |u)(v| + [v){u| and {1, } are the corresponding
eigenvalues).

In practice, one starts with Xuw and Yy, instead of [uy(v)
and |v)(u| as initial electronic states, to obtain the Ehrenfest
approximations of

Tr{n(0)Kuwe ™™/ T(R) Io)ale- /7,
. . (30)
Tr{50(0)Tuoe ™7/ T(R) I)ale~ /7,

The corresponding results for |u)(v| and |v)u| as the initial
electronic states can then be expressed as linear combinations
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of the results in Eq. (30). For example,
Tr{p“n(O)luxvleiHT/h F(ﬁ) |b)(a|e’iHT/"}
= Tr{5n(0)Ruwe! ™/ T(R) I(ale /7
+iTr{ﬁn(0)%emT/h I(R) |b><a|e-i“T/h}
- %(1 + i)Tr{ﬁn(O)luxulem” "1(R) |b><a|e-iﬁ7/h}

1 . A iz /h D —ifir
—§(1+1)Tr{pn(0)|v)(v|eH /" I(R) Ib)ale™™ /”}. (31)

V. ILLUSTRATIVE APPLICATIONS

In this section, we demonstrate the applicability and
robustness of the M-GQME by obtaining the memory ker-
nel via Ehrenfest-based projection-free inputs and applying
the M-GQME to a spin-boson model system with two elec-
tronic states [donor (D) and acceptor (A)], harmonic electronic
PESs which are shifted in equilibrium energy and geometry,
and an electronic coupling coefficient which is assumed to be
constant (Condon approximation). The overall Hamiltonian is
given by

H = ApIDXD| + HalAXA| + Vpa IDXA| + Vap|AXDI,  (32)
where )
N ij 1
R U
HD:6+Zl: 7+§ijj - ¢Ry|,
J:
N [ P2 1 (33)
A, = R TR
HA_—e+Z; 5 +2ijj+c]R s
J:
Vpa =Vap =T.

Here, I is a positive constant, 2e¢ is the shift in equilibrium
energy between the donor and acceptor states (¢ = 0 and
e # 0 correspond to the unbiased and biased cases, respec-
tively), and ch/w].2 is the corresponding shift in equilibrium
geometry along the jth mode coordinate. Since this system
satisfies the Condon approximation, we use the projection-
free inputs Fi(r) and JF»(7) to obtain the memory kernel, as
shown in Appendix A.

We also compare the results obtained based on the M-
GQME scheme to those obtained from GQME-based schemes
that start out with the overall Hamiltonian in a system-bath
form. We used the Shi-Geva®* (SG-NZ) and Zhang-Ka-Geva’®
(ZKG-NZ) system-bath-based schemes (see Appendix B),
which have the form of Eq. (7) with the system, bath, and
system-bath terms given by

Hs = e[IDXD]| - |AXA[]+ T[ID)A| + |AXDI],

N P2

fis = 3 [An+ Ay = D)+ 20?R,

S22 (34)

N
Fgs = = )" GR[IDXD] - |A)(AL].
j=1
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TABLE I. Model and simulation parameters.

Model parameters
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P Cjz N—oco 7h
Jw) =5 Lo(w-w) —> S-éwe /e, (35)
Numerical parameters 2 = wj 2

Model # € I g & o wmx N At Here, ¢ is the Kondo parameter (a measure of the shift in
1 10 1.0 50 01 10 5 400 0.02 equilibrium geometry) and w. is the cutoff frequency. The
2 1.0 1.0 50 01 20 10 400 0.02 discrete set of nuclear mode frequencies, {w;}, and coupling
3 10 10 50 01 75 36 400 0.02 coefficients, {cj}, were obtained from the continuous spec-
4 10 10 50 04 20 10 400 0.02 tral density, Eq. (35), following the procedure described in
5 00 033 30 01 10 5 200 0.02 Appendix C. The initial state of the nuclear DOF was chosen
as
. . e*ﬁI:IB
The values of {w;} and {c¢j} (j = 1, ..., N) are obtained An(0) = ——, (36)
based on an Ohmic spectral density with an exponential Trn{e—ﬁﬁs}
cutoff
0.05 Rea‘l ‘Ima‘gln‘a ry‘ 0.01
0.04} - - SG-NZ 0.00
0.03}
g - - ZKG-NZ -0.01
0.02
< — M-GQME ~0.02
Q 0.01
-0.03
-0.04
—-0.05
0.000
-0.025
—0.050 -
FIG. 1. The real and imaginary parts
of the nonvanishing matrix elements of
—0.075 the memory kernel for model #1 in
Table |. Shown are the memory kernels
obtained via the SG-NZ (dashed red),
0.009 ZKG-NZ (dashed blug), and M-GQME
(solid green) schemes. The memory ker-
0.006 nels of all three schemes perform simi-
larly for this set of parameters, with all
0.003 elements having finite lifetimes.
0.000
-0.003
—0.006
0.00
-0.01
—0.02
-0.03
-0.04
—0.05
0
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XN ‘ ‘ 0.015
Q 0.000
Q -0.015
E —0.030
Q —0.045
—0.060
\ -
A\ Y; N ~ ~ 40.00
3
4-0.08
< -
Q FIG. 2. The real and imaginary parts
1 of the nonvanishing matrix elements of
&2 17916 the memory kemel for model #2 in
Table |. Shown are the memory kernels
—0.24 obtained via the SG-NZ (dashed red),
: ZKG-NZ (dashed blue), and M-GQME
0.030 (solid green) schemes. The memory ker-
nels of all three schemes perform simi-
0.015 larly for this set of parameters, with some
’ elements having slightly more erratic
0.000 behavior than that seen in model #1
' memory kernels given in Fig. 1.
-0.015
—0.030
0.00
-0.02
—0.04
—0.06
—0.08
; . —0.10

't

I't

where Hp is as in Eq. (34) and the initial nuclear position corresponds to thermal equilibrium with respect to the bath
and momenta are sampled based on the Wigner transform of ~ Hamiltonian, by definition, and to eliminate the inhomoge-

Eq. (36), neous term, respectively. At the same time, it is also important
to emphasize that the M-GQME is designed to accommodate
N tanh(Bhw;/2) 2 tanh(Bhw;/2) arbitrary initial nuclear states of one’s choice.
pnw(R,P;0) = l_[ s exp| - — Calculations were carried out for five different sets of
= J parameter values (see Table I) averaged over 10° trajectories.

The memory kernel and projection-free input elements were
. (37)  found to have the following properties:
(i) Kjjw(r) = Fljuw(r) = Fajjwl(r) =0 and

(ii) ICjk,uv(T) = ICZj,vu(T)v

P2
] 2p2
X(? *3¢9 Rj)

It should be noted that this particular choice is dictated by our

desire to compare the M-GQME scheme with the SG-NZ and Fijean(7) = ‘H’kﬂ'v”“(-r)’
ZKG-NZ schemes, which require that the initial nuclear state F 2kaw(T) = —-Fé,kj,vu(‘f)-
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0.10
0.05
1 0.00

-0.05

-0.10

FIG. 3. The real and imaginary parts of
—0.5 the nonvanishing matrix elements of the
memory kernel for model #3 in Table |.
The SG-NZ memory kernel (dashed red)
has long-time oscillations not seen in the

M-GQME memory kernel (solid green)
and ZKG-NZ memory kernel (dashed

The nonvanishing matrix elements of the memory kernel
super-operators for models #1-5, which were calculated using
the Ehrenfest method, are shown in Figs. 1-5, respectively.
The population difference between donor and acceptor states,
which corresponds to the expectation value of 6, = IDXD| —
|A)A|, for models #1-5 is shown in Figs. 6-10, respectively.
Exact results were adopted from Ref. 93 for models #1-4 and
from Ref. 94 for model #5. The nonvanishing matrix elements
of the projection-free input super-operators Fi(r) and F(z)
for models #2 and #3 are given in Appendix A.

One observation that can be gleamed from Figs. 1-10
is that the M-GQME and ZKG-NZ schemes produce memory
kernels that are better behaved at long time than those

0.15 blue). All three memory kernels show
higher instability compared to the mem-

0.00 ory kernels of models #1 and #2, shown
in Figs. 1 and 2.

-0.15

-0.30

0.15

0.00

-0.15

—0.30

0

produced by the SG-NZ scheme. More specifically, with the
exception of model #1, the memory kernels obtained via the
SG-NZ scheme are observed to oscillate asymptotically, rather
than vanish.

The instabilities of the Ehrenfest-based SG-NZ memory
kernels have been reported in previous studies.®2°3 In one
previous study,”® they were dealt with by truncating the mem-
ory kernel at short times. This indeed reproduces the pop-
ulation dynamics reported in Ref. 93, which also happens to
be in excellent agreement with the exact result (see Fig. 11).
For example, in the case of model #4, this meant truncat-
ing the memory kernel at t = 1.5I"1.2% However, truncating
the memory kernel at t = 1.5I! also causes the M-GQME and
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RS ~\

FIG. 4. The real and imaginary parts of
the nonvanishing matrix elements of the
memory kernel for model #4 in Table |.
The SG-NZ memory kernel (dashed red)
has long-time oscillations not seen in the
M-GQME memory kernel (solid green)

and ZKG-NZ memory kernel (dashed
blue), with some elements of the SG-NZ
memory kernel oscillating around values
other than zero. This behavior leads to

0.24

0.16 varying electronic population difference
dynamics for the SG-NZ scheme with dif-

0.08 ferent memory times, as shown in Figs. 9
and 11.

0.00

—-0.08

0.15

0.00

-0.15

-0.30

ZKG-NZ to disagree with the exact result. A closer inspection
of I'ig. 4 reveals that the memory kernel is actually longer lived
and that truncating it at t = 10.0! would be more reason-
able.?> Indeed, truncating the memory kernel at t = 10.00"!
rather than at t = 1.5I"! significantly improves the agreement
between the population dynamics produced by M-GQME and
ZKG-NZ and the exact result (see Fig. 9). At the same time,
it also causes the population dynamics produced by the SG-
NZ to oscillate asymptotically around the exact result, which
is consistent with a similar observation made in Ref. 93. In
another previous study,?? the memory time was determined

10

by a “plateau of stability” found in the o(t) dynamics with
respect to the memory time. However, as shown in Fig. 12
and acknowledged in Ref. 82, this plateau can be short-lived
or nonexistent. Additionally, determination of the plateau of
stability without knowledge of the exact results can be chal-
lenging. In comparison, o(t) dynamics within the M-GQME
and ZKG-NZ schemes converges smoothly, as seen in Fig. 12,
which makes finding a plateau of stability unnecessary. The
M-GQME and ZKG-NZ convergence are obtained with a mem-
ory time equal to the lifetime of the memory kernel, e.g.,
tmem = 10.0I"1 in the case of model #4.
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Another observation is that the population dynamics pro-
duced by M-GQME, ZKG-NZ, and SG-NZ with memory ker-
nels obtained via the Ehrenfest method are in much better
agreement with the exact result than the population dynam-
ics obtained via direct application of the Ehrenfest method. At
first sight, this is somewhat surprising, given that the memory
time, t = 10.0T"!, is comparable to the population relaxation
time scale. However, it should be noted that within the GQME,
the effect of the density operator at time t — = on its dynamics
at time t decreases with increasing = due to the finite life-
time of the memory kernel. Thus, as the Ehrenfest method
becomes less accurate with increasing time, its contribution
to the dynamics through X(r) diminishes as well. As a result,
using the Ehrenfest method to calculate the memory kernel

ARTICLE scitation.org/journalljcp
0.0060
0.0045
0.0030
] 0.0015
0.0000
—0.0015
0.010
0.005
0.000
FIG. 5. The real and imaginary parts of
—0.005 the nonvanishing matrix elements of the
memory kernel for model #5 in Table |.
The ZKG-NZ memory kernel (dashed
blue) and M-GQME memory kernel (solid
0.015 green) perform similarly while the SG-NZ
memory kernel (dashed red) displays dif-
0.010 ferent behavior, with some elements not
converging to zero.
0.005
0.000
—0.005
-0.010
0.002
0.000
—0.002
-0.004
. —0.006
4 5 6

leads to significantly more accurate results than using the
Ehrenfest method to calculate the population dynamics
directly. It should be noted that the authors of Ref. 82
also argued that the improvement of the GQME over direct
Ehrenfest could be due to the additional information about
the electronic-nuclear coupling gained through the sam-
pling of nuclear operators within the inputs for the memory
kernel.

Yet another interesting observation is the loss of accu-
racy and stability of the memory kernels with increasing cut-
off frequency, w, (see Figs. 1-3 and 6-8). This can be traced
back to the treatment of the nuclear DOF as classical within
the Ehrenfest method. More specifically, increasing w. cor-
responds to increasing the frequency of the nuclear modes
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FIG. 6. Electronic population difference as a function of time for model #1 in Table .
Shown are the exact result and the results obtained via direct application of the
Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME with the memory kernel
calculated via the Ehrenfest method. Notably, the direct application of Ehrenfest
yields worse results than any of the GQME approaches that use Ehrenfest as
input.

and thereby making the assumption that they can be treated
classically less valid. Along with the increasing instability,
another trend seen in Figs. 1-3 is that with the increas-
ing cutoff frequency, the scale of the memory kernels also
increases.

Finally, it is interesting to contrast the biased case
(e # 0, Figs. 1-4) with the unbiased case (e = 0, Fig. 5). While
direct application of the Ehrenfest method appears to produce
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FIG. 8. Electronic population difference as a function of time for model #3 in Table |.
Shown are the exact result and the results obtained via direct application of the
Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME with the memory kernel
calculated via the Ehrenfest method. While still performing better than the direct
application of Ehrenfest, the GQME approaches show significant departure from
the exact results. The reason for this can be traced back to the breakdown of
the validity of the treatment of the nuclear DOF as classical within the Ehrenfest
method when the frequency of the nuclear modes increases.

rather accurate results in the unbiased case, it is observed
to lead to significant deviations in the biased case. This can
be traced back to the Ehrenfest method’s failure to cap-
ture detailed balance. Interestingly, restricting the use of the
Ehrenfest method to calculating the memory kernel and sim-
ulating the electronic dynamics through the GQME gives rise

1.0

1.0 : ‘ ‘
£=0.1 I'=1
08F tmem = 10 e=1 Exact |
B=5 Ehrenfest
! we =2 SG-NZ
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FIG. 7. Electronic population difference as a function of time for model #2 in Table |.
Shown are the exact result and the results obtained via direct application of the
Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME with the memory kernel
calculated via the Ehrenfest method. While still showing markedly better results
than the direct application of Ehrenfest, the SG-NZ approach deviates from the
exact results at longer times more so than the ZKG-NZ and M-GQME approaches.

=04 T-=1 ‘
P10 e—1 e ¢ Exact
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FIG. 9. Electronic population difference as a function of time for model #4 in Table .
Shown are the exact result and the results obtained via direct application of the
Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME with the memory kernel
calculated via the Ehrenfest method. While initially closer to the exact results, the
SG-NZ GQME approach shows asymptotic oscillations at longer times which are
not seen in the ZKG-NZ and M-GQME approaches.
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FIG. 10. Electronic population difference as a function of time for model #5 in
Table I. Shown are the exact result and the results obtained via direct application
of the Ehrenfest method and via SG-NZ, ZKG-NZ, and M-GQME with the mem-
ory kernel calculated via the Ehrenfest method. For the unbiased case, we see
good agreement between all approaches and the exact results. This is a notable
deviation from the biased cases, where direct application of Ehrenfest is unable to
capture the exact dynamics while the GQME approaches give significantly more
accurate results, particularly for the ZKG-NZ and M-GQME approaches.

to significantly more accurate results in the biased case. It
should be noted that given the quantum-mechanically exact
memory kernel, the GQME is guaranteed to satisfy detailed
balance since it corresponds to the exact equation of motion
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FIG. 11. Electronic population difference as a function of time for model #4 in
Table | with the memory truncated at I't = 1.5. Shown are the exact result and
the results obtained via direct application of the Ehrenfest method and via SG-
NZ, ZKG-NZ, and M-GQME with the memory kernel calculated via the Ehrenfest
method. Here, the SG-NZ approach achieves good agreement with the exact
results while the ZKG-NZ and M-GQME approaches show significant differences.
However, as seen in Fig. 4, a memory time of t = 10.00~ " is more reasonable than
t = 1.5I'"; this leads to the results shown in Fig. 9, where the ZKG-NZ and M-
GQME approaches obtain better agreement with the exact results than the SG-NZ
approach.
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FIG. 12. Electronic population difference as a function of time for model #4 in
Table | with varying memory times for the SG-NZ method and the M-GQME
method in the top graph and bottom graph, respectively. The SG-NZ method shows
changing dynamics with differing memory time while the M-GQME converges to
dynamics that do not change with increasing memory time. The dashed line in
the top graph indicates the memory time used in Ref. 93 (see Fig. 11), and the
dashed line in the bottom graph indicates the memory time used in this paper (see
Fig. 9).

of the electronic DOF. The fact that it still does rather well
even when the memory kernel is calculated via the Ehrenfest
method should be considered as yet another advantage of the
GQME approach.

VI. CONCLUDING REMARKS

Although the system-bath paradigm has been a central
theme in the study of quantum open systems, there are cases
where it is not desirable to cast the overall Hamiltonian in
system-bath form, Eq. (7). A prime example is nonadiabatic
dynamics, where it is neither natural nor convenient to cast
the Hamiltonian in terms of a system Hamiltonian, which
only depends on the electronic DOF, a bath Hamiltonian,
which only depends on the nuclear DOF, and a system-bath
interaction term, which couples them. This is because the
overall Hamiltonian underlying nonadiabatic dynamics asso-
ciates a different nuclear Hamiltonian with each electronic
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state, thereby making the definition of a single bath Hamil-
tonian non-unique and essentially arbitrary. The lack of a
unique system-bath Hamiltonian can be particularly prob-
lematic when approximate methods are used to evaluate the
memory kernel, as would often be the case when dealing
with realistic molecular models, since different choices of
bath Hamiltonian may lead to different results without a clear
criterion for choosing between them.

In this paper, we utilized the fact that the GQME, which
represents the exact equation of motion of the electronic
DOF during nonadiabatic dynamics, does not in fact need
to be based on casting the overall Hamiltonian in system-
bath form.8220.96 We refer to this form of the GQME as the
M-GQME. We also presented a practical scheme for calcu-
lating the memory kernel of the M-GQME, either exactly or
approximately, that does not rely on the system-bath form. In
doing so, we end up with a natural and convenient GQME-
based approach for simulating the dynamics of the electronic
DOF during nonadiabatic dynamics.

It should be noted that unlike other methods for sim-
ulating nonadiabatic dynamics, such as Ehrenfest, surface
hopping, MQCL, and SQC, the approach based on the
M-GQME is focused on the dynamics of the electronic DOF.
The dynamics of the nuclear DOF is only captured to the
extent that it impacts the electronic DOF. The memory ker-
nel represents the minimum input of the nuclear DOF that is
required in order to account for their effect on the dynam-
ics of the electronic DOF. In this respect, the GQME can
be thought of as going beyond approaches based on FGR,
where the coupling between the electronic and nuclear DOF
is assumed weak and the impact of the nuclear DOF on
the electronic DOF is captured by the two-time autocorre-
lation function of the coupling between nuclear and elec-
tronic DOF."65-71 However, unlike FGR-based approaches, the
GQME does not require assuming weak coupling between
electronic states and describes the electronic dynamics in
terms of the full electronic density matrix, rather than in terms
of the electronic populations, which correspond to its diagonal
elements.

On the one hand, the loss of more detailed information on
the dynamics of the nuclear DOF may be viewed as a disadvan-
tage of the GQME-based approach to nonadiabatic dynamics.
On the other hand, focusing on the memory kernel rather than
on a complete description of the nuclear DOF offers several
important advantages. First, it is often the case that the only
interesting aspect of the nuclear dynamics is its impact on
the electronic dynamics. Thus, the compactness of the mem-
ory kernel provides an elegant way for focusing on this aspect
without needing to figure out whether or not a given detail
of the nuclear dynamics impacts the electronic DOF. Second,
the compactness of the memory kernel and its finite memory
time also imply that calculating it via a given method, either
exact or approximate, can be more cost-effective and /or lead
to more accurate results than a direct application of the same
method. Third, it should be remembered that most useful
approximate methods describe nuclear dynamics in terms
of an ensemble of classical-like trajectories and are con-
structed in such a way that only the ensemble average, rather
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than individual trajectories, can be related to physically mean-
ingful measurable quantities like electronic populations and
coherences. The fact that the memory kernel is defined
in terms of a trace over the nuclear DOF implies that it
incorporates this ensemble-averaging automatically and is
therefore directly related to the only relevant measurable
quantities.

In summary, the M-GQME provides a rigorous and
general approach for simulating electronically nonadia-
batic dynamics. Within this approach, the memory ker-
nel super-operator is the key quantity which dictates how
the electronic dynamics is impacted by the nuclear DOF,
regardless of the strength or type of coupling. What makes
this approach particularly appealing is the fact that calculating
the memory kernel via exact or approximate methods can be
more cost-effective and/or accurate than direct application
of those methods. Given the non-uniqueness associated with
the choice of basis in Eqg. (29), which appears to be inherent
to the Ehrenfest method, it would also be highly desirable to
explore calculating the memory kernel via approximate meth-
ods other than the Ehrenfest method and apply the GQME-
based approach to systems other than the spin-boson model.
Work on such extensions is underway and will be reported in
future publications.
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APPENDIX A: THE MEMORY KERNEL OF THE M-GQME
IN THE CONDON APPROXIMATION

In this appendix, we show that within the Condon approx-
imation, \Afjk — Vj, the memory kernel in Eq. (17) can be sim-
plified into that in Eq. (18). To this end, let £ = Lyero + Lint,
where

’C’ZCTO(') = [Hzero, :| =

M A
TR, }
j=1
(A1)

M
Lint(*) = [Fint, 1 = | D" Vilj)kl, -
k=1
k]

[see Eq. ()] and note that L, becomes a purely elec-
tronic super-operator in the Condon approximation. As a
result,
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Try {L‘rinte_igﬁrm QA}

= LincTra{e 257/ QA

= CintTrn{

1-10Lx +_(__)Q£Q£T ‘. ]QA}

i 1 iy A
- LinTry [Q -10L0r+ 5 +]0Loror . ]A}

=£intTrn{ } - Trn{ [.. ]})

= Ling(Tra{[. .. 1} -H=0. (A2)
This implies that one can replace £ by Lyero on the left side of
the exponent in Eq. (17).

L can also be replaced by Lzer, on the right side of the
exponent in Eq. (17) since

Lint (Trn [..
= Tro{[. .

QLintpn(0)5 = Ling Qpn(0)6 = Lint(6n(0) — Ppn(0)5)
= Lint(An(0)5 — pn(0)5) = 0. (A3)
o5 Real Imaginary
0.10 — F(n) | J%°°
8 0.05 1709
< 1-0.06
S ool
[45 ~0.10} 1704
-0.15 : : : -0
4 €: 0 ]. F = 1 ]
E e=1 1%
g‘ 2 ﬁ 9 0.0
E,:h Or 1-15

Q
<
<
Q
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FIG. 13. The real and imaginary parts of the nonvanishing matrix elements of the
projection-free input 7 (7) for model #2 in Table |. The lifetime of the projection-
free input () is more than double the lifetime of the M-GQME memory kernel
for the same set of parameters, as shown in Fig. 2. Also, the DADD imaginary and
DAAD real elements appear to be converging to values other than zero.
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Therefore, in the Condon limit,
K(r) = Trﬂ {Ezeroeiigﬁ‘r/h QCZeroﬁn(O)}- (A4)

From here, substituting Eq. (20) into Eq. (A4) leads to the
following Volterra equation of the second-kind for /C(r) in the
Condon limit:

K(r) = Filr) - %FZ(T)<£zero>2 +i/07d7', Folr = 7)K('). (A5)

Here,

]:1(7') = Trn{Ezeroe_w‘r/hﬁzeroﬁn(o)}7
(A6)
]:2(‘1') —Trn{Lzeroe_wT/hﬁn(O)}'

In contrast to the memory kernel, Fi(r) and F,(r) are not
required to have finite lifetimes. Examples of Fi(r) and F,(r)
for models #2 and #3 in Table [ are given in Figs. 13-16.

Real

Imaginary

F5 pADD

F. DADA

F. pAaAD

Fa.pasA

4 8 12 16 0 5 10 15 20

I't I't

FIG. 14. The real and imaginary parts of the nonvanishing matrix elements of the
projection-free input F»(7) for model #2 in Table |. The lifetime of the projection-
free input F»(7) is more than double the lifetime of the M-GQME memory kernel
for the same set of parameters, as shown in Fig. 2. Also, the DADD real, DAAD
real, and DAAA real elements appear to be converging to values other than
zero.
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FIG. 15. The real and imaginary parts of
the nonvanishing matrix elements of the
projection-free input 73 (7) for model #3
in Table |. The instability seen within the
M-GQME memory kernel for this set of

parameters (Fig. 3) can also be seen in
the projection-free input F1(7). The life-
time of the projection-free input 7i(7) is
closer to the lifetime of the correspond-
ing memory kernel (Fig. 3) compared to
Fi(r) and K(7) of model #2, as seen in

APPENDIX B: DIFFERENT SCHEMES FOR EVALUATING
THE MEMORY KERNEL OF THE GQME WHEN THE
OVERALL HAMILTONIAN IS IN A SYSTEM-BATH FORM

In this appendix, we outline previously proposed schemes
for evaluating the memory kernel of the GQME for a sys-
tem with an overall Hamiltonian in a system-bath form [see
Eq. (7)]. The reader is referred to Refs. 64, 79, and 86 for fur-
ther details. These schemes have also been studied previously
by Markland et al.,°>°¢® Montoya-Castillo and Reichman,?%°0
and Rabani et al.8195.97-99

In those schemes, one often starts with the overall Hamil-
tonian in the system-bath form of Eq. (7) and an initial state

I't

Figs. 13 and 2.
-0.15
-0.30
-0.45
15 20
which is given by Eq. (2),
R n e‘BHB
pn(0) =Pt = — . (B1)
TrB{e—ﬁHB}

It is also often assumed, without loss of generality, that Hps is
defined such that

(Aps)p = Try {ﬁgql:IBs} =0. (B2)
Using a projection operator of the form
P() = py ® Tra{-}, (B3)
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the quantum-mechanically exact dynamics of the system

reduced density operator can be shown to be governed by a
GQME of the following form:

: t
L) = -LLga(t) - / deK(2)6(t - 7). (B4)
dt h 0
Here, —iLs&(t)/h = —i[Hs, 6-(t)]/h and - [ deK(z)6(t-7) corre-
spond to the bath-free and bath-induced contributions to the
system’s reduced dynamics, respectively.

The bath-induced component is dictated by the memory
kernel super-operator, K(r), which, under the above men-
tioned conditions, can be written in a variety of different, yet
equivalent, forms

I't

15

1
IC(T) = h—ZTrB

1
= —ZTrB

scitation.org/journalljcp

|
,%
=
e~}
—_—— A —

FIG. 16. The real and imaginary parts
of the nonvanishing matrix elements of
the projection-free input > () for model
#3 in Table |. The instability seen for
model #3 within the M-GQME memory
kernel (Fig. 3) and the projection-free
input 1(7) (Fig. 14) is not as distinct for
projection-free input () shown here.
The lifetime of the projection-free input
Fa(t) is closer to the lifetime of the cor-
responding memory kernel (Fig. 3) com-
pared to F»(7) and () of model #2,
as seen in Figs. 14 and 2.

Lase O QLp |
Lpge L/ Qﬁﬁsﬁgq}
Lpse L/ hﬁBsﬁgq}
Lpse™ 1L/ hﬁBSﬁEq}
Lps Qe 97/ hﬁssﬁgq}
Lyse L9/ hﬁBsﬁgq}
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Here, Lgs(-) = [Hgps, ] and Q = 1- P. Appendixes B 1 and B 2
outline two of the previously proposed schemes for calculating
K(z), which we will be comparing to in this paper. The differ-
ences between the schemes can be generally traced back to
which of the forms of the memory kernel, Eq. (B5), is chosen
as the starting point.

1. The Shi-Geva (SG-NZ) scheme

The original scheme for calculating the memory kernel of
the GQME®* was based on the following expression for the
memory kernel [see Eq. (B5)]:

Kle) = oo Lase EEsPI L) (Bo)
Substituting A = £ and B = L - LpsP into the operator
identity in Eq. (19), one can then obtain

e—i(/:—[:BS'P)T /h_ e—il:‘r /h

+% /T dT’e_iL(T_Tl)/h[zBSPe_i([:_[:BSP)TI/h' (B7)
0

Substituting Eq. (B7) into Eq. (B6) leads to the following expres-
sion for the memory kernel:

K(z) = Ky(7) + i/OT Ki(r =)o (z). (B8)

Here,
1 il .
Kir) = = Tra{ Lase /" Laspy | (B9)

and

1

Ka(r) = > Try{e - LusPrrin Ly (B10)

are auxiliary kernels that are needed in order to calculate the
memory kernel.

It should be noted that unlike /Cy(7), which is projection-
free, KCa(7) is projection-dependent. As such, calculating KCx(7)
involves a similar challenge to that of calculating (r). How-
ever, Ky(r) can be evaluated from the following Volterra
equation, obtained by substituting (B7) into Eq. (B10):

Ko(r) = Ka(r) +1 /OT dv' KCs(7 = 7')Ca(7). (B11)

Here,
1 i Al
K:3(T) = =1 FB{C_IET/h[«BSqu}

is a projection-free auxiliary kernel. Thus, given the projection-
free inputs Ky(7) and KCs(r), the memory kernel, /C(r), can be
obtained via the two coupled integral Egs. (B8) and (B11).

(B12)

2. The Zhang-Ka-Geva (ZKG-NZ) scheme

An alternative scheme for calculating the memory kernel
of the GQME7° was based on writing the memory kernel in the
following form [see Eq. (B5)]:

ARTICLE scitation.org/journalljcp

1 i ~e
’C(T) = h_ZTrB {EBse_lgLT/h Qﬁqu}. (813)

Substituting Eq. (20) into Eq. (B13) then leads to the following
Volterra equation for K(z):

K(r) = () + %‘D(T)ES + [ dr' (7 - )K(). (B14)
0
Here, ®(r) is a projection-free input,
0(r) = 3 Try Lase £/ 5. (B15)

APPENDIX C: BATH DISCRETIZATION PROCEDURE

The discrete set of N nuclear mode frequencies,
{w1, ..., wN}, and coupling coefficients, {c, ..., cx}, for the
Ohmic spectral density with exponential cutoff, Eq. (35), were
obtained following the procedure described in Ref. 100,

wj = —w ]l’l(l —j%), G = \lfha)owj. (Cl)
c

Here,
wo = %(1 — gmwma/ ), (C2)
where wy = wmax is the frequency of the highest frequency
mode.
The value of wmax is determined using the following
procedure. First we define the parameter «,
oo 0 delw) e*wmax/wc(M +1). (3)
Iy dwl(w) we
The parameter a controls the discretized spectral density.
A value close to one yields a spectral density that covers
high frequencies but at the cost of an overall coarse-grained
frequency distribution. This could be compensated by an
increased number of modes at the expense of increased com-
putational costs. In practice, the actual value of « is deter-
mined in a manner that balances accuracy with cost. For the
calculations reported in this paper, the value of @ was set to
0.95.
Given the value of @, wmax can be determined from
Eq. (C3),

Wmax = —[w(l_T") - 1]wc, (C4)

where W(x) is the Lambert W function, W(xe*) = x. W(x)
was calculated numerically using the python library function
scipy.special.lambertw(x, i, tol) with x = (@ — 1)/e, @ = 0.95,
i= -1, and tol = 10~8, with the result rounded to the next whole
integer for wmax.

APPENDIX D: NUMERICAL SOLUTION OF EQ. (21)

In this appendix, we outline the iterative algorithm used
for solving Eq. (21) numerically. It should be noted that Eq. (21)
is a Volterra equation of the second kind and as such has the
following general form:
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f= /t ds h(t, s)f(s) + g(t). (D1)

Given that h(t, s) and g(t) are known, this equation is solved for
f(t). Comparing Eq. (D1) with Eq. (21) shows that in our case, this
is an operator equation with tg — 0,t — 7, s - 7/, f(t) - K(z),
h(t,s) — iF(r - 7'), and g(t) = iF(z) - 1 F) L. The itera-
tive algorithm starts out with f(t) = g(t) as the initial guess.
Substituting this initial guess into Eq. (D1) generates another
estimator of f(t), which is then substituted back into Eq. (D1).
This procedure is repeated until convergence, where the esti-
mators obtained in two subsequent steps are indistinguishable
within a prescribed tolerance.

In practice, f(t) is a matrix and time is discretized, t, = nAt
withn=0,1,2,...,N. Letfjik(nAt) be the value of (j, k)-th matrix
element of f after the ith iteration,

nAt M )
jik(nAt) = /o ds lz hj(nAt, s)fl‘,; 1(s) + gjk(nAt). (D2)
=1

The time integral in Eq. (D2) is calculated via the extended
trapezoidal rule. The results reported in this paper were
obtained using the following criterion for convergence:

b}k(nAt) - f}gl(nAt)| < 10710 (for all time steps n and matrix ele-

ments jR). For the applications reported in this paper, the typ-
ical number of iterations necessary for obtaining converged
results was 4-16.
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