Fifty-Fifth Annual Allerton Conference
Allerton House, UIUC, lllinois, USA
October 3-6, 2017

Limitations of Piggybacking Codes with Low Substriping*

Reyna Hulett! and Mary Wootters?

Abstract— The piggybacking framework for designing era-
sure codes for distributed storage has empirically proven to be
very useful, and has been used to design codes with desirable
properties, such as low repair bandwidth and complexity.
However, the theoretical properties of this framework remain
largely unexplored. We address this by adapting a general
characterization of repair schemes (previously used for Reed-
Solomon codes) to analyze piggybacking codes with low sub-
striping. With this characterization, we establish a separation
between piggybacking and general erasure codes, and several
impossibility results for subcategories of piggybacking codes;
for certain parameters, we also present explicit, optimal con-
structions of piggybacking codes.

I. INTRODUCTION

The modern world is practically overwhelmed with data,
much of which is kept in large-scale distributed storage
systems. These systems store large files across a number of
servers, or nodes. Due to the scale of such systems, node
failure is an everyday occurrence, and the system must be
robust to such failures. One way to achieve robustness is by
replicating the data. However, this clearly has a high storage
overhead; erasure coding can achieve the same reliability as
replication with far less overhead.

The rapidly developing field of coding for distributed
storage seeks to design erasure codes with desirable prop-
erties in this setting. Two important properties include
an optimal reliability-redundancy trade-off, and bandwidth-
efficient repair of failed nodes. The work of [2] introduced a
new piggybacking design framework which modifies a base
code to improve its repair properties. This framework has
been employed several times to design new codes [2]-[5],
including one code that has been implemented in the Hadoop
Distributed File System [2].

Although the piggybacking framework has clearly been
productive in practice, there has not been much theoretical
analysis of its possibilities and limitations. That is the subject
of this paper.

A. Our Contributions

We build on a framework introduced by [6] for character-
izing and analyzing repair schemes in the context of scalar
MDS codes, and obtain a characterization of piggybacking

*Many details have been omitted from this extended abstract, and can be
found in the full version of the paper [1]

IRH is with the Computer Science Department, Stanford University.
rmhulett@stanford.edu. RH’s research supported in part by an NSF
Graduate Research Fellowship under grant DGE-1656518.

2MW is with the Computer Science and Electrical Engineering Depart-
ments, Stanford University. marykw@stanford.edu. RH and MW’s
research supported in part by NSF grant CCF-1657049.

978-1-5386-3266-6/17/$31.00 ©2017 IEEE

code repair schemes. This allows us to prove impossibility re-
sults for piggybacking schemes, and to design schemes with
optimal repair bandwidth for certain parameters. Specifically,
our contributions are the following.

1) Extension of the framework of [6]. We adapt the
characterization of repair schemes by [6], originally
introduced for Reed-Solomon codes, to our setting.
More precisely, their scheme works for scalar MDS
codes over finite fields, while piggybacking codes
are not scalar. We modify their approach to obtain
a characterization of linear repair schemes for MDS
array codes. We specialize this to piggybacking codes
for our main results, but the general framework may
be of broader interest.

2) Separation between piggybacking and general era-
sure codes. Using this framework, we demonstrate that
for certain parameter regimes, piggybacking cannot
achieve the optimal repair bandwidth achievable by
general erasure codes. Thus piggybacking codes are
strictly less powerful than general erasure codes.

3) Other bounds. We additionally utilize this framework
to give some limited lower bounds for piggybacking
in other settings, as well as upper bounds and ex-
plicit code constructions for some specific parameters.
Some of these bounds suggest approaches to using the
piggybacking design framework which may improve
the attainable repair bandwidth, compared to existing
constructions.

II. SETUP AND PRELIMINARIES

We begin with some notation. In general, we will use
(parenthetical) superscripts to denote different matrices and
subscripts to index within a matrix. For indexing into a
matrix M©, the entry in row ¢, column j will be denoted
my]), the i*" row will be denoted ml(»f.), and the j** column
will be denoted mﬁ‘?. Vectors generated by indexing into
a matrix will be rows or columns corresponding to their
orientation in the matrix (e.g., mgi.) is a row vector but

@)

my, ; is a column vector). Other vectors will be considered

column vectors by default. They will be typeset in bold as
v® = ol T or v = [—vT— —vT— ...]T if we

wish to refer to vector “chunks” within v.

A. Erasure Coding and the Exact Repair Problem

In this paper, we restrict our focus to linear, maximum
distance separable codes with linear repair schemes. We first
briefly recall some definitions. A code C over an alphabet A
is a subset of A™, so each codeword consists of n symbols of

1131

A. If the code has size |C| = | A|*, we say that the dimension
of C is k. We say that such a code has the Maximum Distance
Separable property (MDS property) if any k£ symbols of a
codeword ¢ € C can determine c.

If the alphabet A is a field, A = F,, and if C C IF;L is a
linear subspace of Fy/, then we say C is linear. A linear code
C can always be written as the image of a generator matrix
F e IFZX’“; given a message a € IF’;, the corresponding
codeword is Fa. If C additionally has the MDS property—
equivalently, if its generator matrix F' has the property that
any k rows are linearly independent—we say C is an MDS
code. We say that a code (along with an encoding map from
messages to codewords) is systematic if the k symbols of
the message appear as symbols of the codeword; it is not
hard to see that any linear code has a systematic encoding
map. We study array codes, where the alphabet A is in fact
a vector space A = IFZ. These codes are not linear (indeed,
it does not immediately make sense for a code to be linear
over FZ), but we study codes that are Fy-linear.

Definition 1. An array code with t substripes over an
alphabet F, is a code C C (F%,)™ over ;. We say that C has
linear substripes if C is closed under IFy-linear operations.
That is, for any ¢,¢’ € C and for any A € F,, ¢+ A’ € C.
If C has the MDS property, we say that it is an MDS array
code.

We will often think of codewords of an array code as
matrices C' € F;**, rather than vectors ¢ € (F!)", and we
will write C C Fj*?.

In coding for distributed storage, the message a corre-
sponds to a file to be stored, and the corresponding codeword
¢ € C captures how the data should be stored on the n
nodes: node ¢ holds the symbol ¢;. In this setting, we would
always like to tolerate as many node failures as possible,
which means that we demand that the code C have the
MDS property. Moreover, there are certain operations we
would like to be efficient. First, we would like to be able
to recover the original message (the stored file) efficiently.
This can always be done directly if the code is systematic.
Second, while we would like to be able to recover from
n — k failures in the worst case, a much more common
scenario is a single failure [7]. Thus, we would like to be
able to repair a single failed node as efficiently as possible.
In this work, the measure of efficiency we consider is the
repair bandwidth, which measures how much data must be
downloaded to repair a single failure.

Formally, let C be an MDS array code over IF;, with ¢
substripes. If node ¢* fails, then a repair scheme to repair ¢*
using a repair set S C {0,...,n — 1} \ {i*} is a collection
of functions! g; : Ffl —]FZZ’ so that for all ¢ € C, ¢;« can be
determined from {g;(¢;) | ¢ € S}.If C is a linear MDS array
code, and if the functions g; and the method of determining
c;» is linear, we say that the repair scheme is linear.

The above defines a repair scheme for a particular node

Tn this work, we will only consider repair bandwidth, rather than disk
access, so we allow the nodes to do arbitrary local computation.

*

7* and a particular repair set S. A (linear) repair scheme
with locality d for an MDS array code C over F, consists of
(linear) repair schemes with repair sets S of size d for every
possible failed node ¢*. There are two important regimes. In
the “any d” regime, there must be a valid repair scheme for
any repair set S of size d. On the other hand, in the “some
d” regime, we require only one valid repair set of size d per
possible failed node.

The bandwidth of a repair scheme for an MDS array
code C over I, is the maximum number of symbols of [,
needed to repair any node ¢*. In the language above, it is the
maximum, over all ¢* and all repair sets S in the scheme,
of > .cgbi. The exact repair problem is the problem of
minimizing the repair bandwidth. There have been several
solutions proposed in the literature. In this work, we focus
on the piggybacking framework, which we discuss below.

B. Piggybacking

In this paper, we study the piggybacking framework intro-
duced by [2], (with a few assumptions, discussed below). A
piggybacking code C over IFy with t substripes is constructed
from a “base code” Cy C Fj; and (;) “piggybacking func-
tions” p(i7) :]F’; — F7'. For this work, we assume that the
base code Cy is a (scalar) MDS code over F; in particular, it
is linear, with a generator matrix F' € IE";"X’“. We also assume
that the piggybacking functions p(*7) are linear; in particular,
they can be represented by matrices P(%7) ¢ IFZX’“. With
these assumptions, we define a piggybacking code (with a
scalar MDS base code) over I, as follows.

Definition 2. Let F' € F7*¥ be the generator matrix of an
MDS code Cy, and fix a collection of piggybacking matrices
{PGI) | ie[0,t—2],j € [i+1,t—1]} CF***. Consider
the MDS array code C over F, with ¢ linear substripes,
defined as follows. Given a message a € F’;t given by
a = [—al— -+ —al_,—]T (where each a; € IF’;), we
form a codeword C' € F}** so that the i" substripe (column)
is

Coi = POy + ...+ pli—big. . 4 Fa,.

We say that C is a (n, k) piggybacking code with a scalar
MDS base code (henceforth a piggybacking code) with t
substripes over F,.

We illustrate a piggybacking code formed from F' and
{PG7)} in Fig. 1.

As with all MDS array codes, we will represent codewords
as matrices in]Fg”, so they will have the same layout as
the table in Fig. 1: rows correspond to nodes and columns
to substripes. As noted in [2], piggybacking codes using
an MDS base code remain MDS, but may have improved
repair properties; in particular, they may have reduced repair
bandwidth.

In addition to general piggybacking codes, we will also
consider a subcategory of codes which only piggyback in
the last substripe of each node, inspired by the approach of
[3]. We dub these linebacking codes.

1132

| substripe 0 |

substripe 1 | - -

substripe t-1

node 0 |
Fag P(O’l)ao +FG,1
node n-1 | |

Fig. 1.

Definition 3. An (n, k) linebacking code with a scalar MDS
base code (henceforth a linebacking code) C over the finite
field F, with ¢ substripes is a (n, k) piggybacking code, with
the additional property that all piggybacking matrices P(%7)
such that j # t — 1 are zero. Thus we drop the index j
indicating which substripe the piggyback is added to and
denote PU-t=1) by P,

III. RELATED WORK AND OUR RESULTS

The piggybacking framework for designing error correct-
ing codes for distributed storage was introduced by [2]. It is
as described in Definition 2, except that we have made the
following assumptions. First, that the piggybacking functions
are linear—in general this is not required—and second, that
the base code is a scalar MDS code—in general, the base
code may itself be an MDS array code. (However, we note
that all piggybacking codes in the literature do use linear
piggybacking functions [2]-[5]. Almost all use scalar MDS
base codes as well, except [3] and one of four construc-
tions in [2], which are specifically designed to improve the
repair properties of parity nodes for existing array codes.)
Furthermore, in [2], an invertible linear tranformation may be
applied to the data stored on each node in order to reduce the
data-read. However, since in this work we are only concerned
with repair bandwidth, this does not matter for us and we
omit it from Definition 2.

The piggybacking design framework has been used to
produce codes with low data-read and bandwidth for re-
pairing individual failed nodes. Initially, [2] introduced and
used the framework to design explicit codes with the lowest
data-read and bandwidth among known solutions for a few
specific settings, including (high-rate) MDS codes with low
substriping, the domain of interest in this paper. Extending
their ideas, [3] showed how to modify codes with optimal
repair bandwidth for systematic nodes to use piggybacking to
obtain asymptotically optimal bandwidth for parity nodes as
well. Interestingly, [3] obtained these results for linebacking
codes (Definition 3), which is more restricted than general
piggybacking. The piggybacking framework was also em-
ployed in [4] to design codes with low repair complexity, and
in [5] as part of a compound design using both piggybacking
and simple parity checks.

However, little is understood about the theoretical pos-
sibilities and limitations of codes designed using the piggy-
backing framework. Nor is much known about how to choose
piggybacking functions to achieve desirable repair properties.
Although [3] takes a more principled approach to choosing
the piggybacking functions, some of the choices—including
piggybacking only in the last substripe and always using all

|
+ P2t Na, 5+ Fag_y
|

P(O»tfl)ao + . e

A piggybacking codeword formed from generator matrix F, piggybacking matrices { P(::7)}, and message a stored on a set of n nodes.

the systematic nodes in repairing a failed parity node—do
not have a rigorous theoretical backing.

Here we explore the theoretical limitations on achievable
repair bandwidth for piggybacking codes with scalar MDS
base codes and with a small number of substripes ¢t < n—k.
As in Definition 1, we do not allow for symbol extension; that
is, we treat the elements of I, as indivisible and measure
bandwidth in units of symbols of F,. We study both the
“any d” and “some d” regimes, though the latter regime is
less restrictive, and the achievable repair bandwidth is less
well characterized. While both regimes have been studied
in the literature [8], the piggybacking design framework has
primarily been employed in the latter, less restrictive regime

[2]-[5].

A. Known Lower Bounds

In any setting, for MDS codes, we have the cut-set bound
on the repair bandwidth, which states that we must download
b> =~ k+1 symbols [10]. Since this is decreasing in d, we
can also set d to the maximum/optimal value n — 1 to get
the bound b > ¢~ 1 . However, if t < n — k—the setting we
consider here—thls is not achievable, since it would require
downloading less than a full symbol from each node. Most
existing MSR codes seek to achieve this bound on bandwidth
and thus focus on the setting where ¢ > n — k. While some
codes, such as that of [11], can also operate with substriping
t < n — k, they often do not achieve the lowest possible
bandwidth. In particular, codes with d = n — 1, i.e., all
remaining nodes participating in repair, must have bandwidth
at least n — 1. But for ¢t < n — k, we can derive and in some
cases achieve a lower bound < n — 1 as shown below.

Starting from the cut-set bound b > +1, we can derive
a different lower bound applicable in the setting considered
here. Since any repair scheme must download at least one
full symbol from every participating node, we can say b > d
which gives

td tb
b> > ,
“d—k+1 " b—k+1

which implies
b>k+1t—1,

matching the trivial lower bound for any MDS code [6]. We
will call b = k + ¢ — 1 perfect bandwidth.?

2Throughout we will assume 2 < t < n — k and 2 < k. Otherwise,
if ¢ = 1, there is no piggybacking and any MDS code achieves perfect
bandwidth; if ¢ > n — k, achieving perfect bandwidth is impossible; and if
k = 1, the straightforward lower bound on bandwidth £ 4+ ¢ — 1 and the
trivially achievable bandwidth for MDS codes kt are equal.

1133

TABLE I
EXISTENCE OF PERFECT BANDWIDTH MDS ARRAY CODES WHEN t < n — k IN THE “ANY d” REGIME.

General

Piggybacking Linebacking

t>k—3:existforg>n—k+t
t < k — 3: do not exist [8]

do not exist (Thm. 6)

do not exist (Thm. 6)

k=2 | existforq>n—k+t [8]

exist for some ¢ (Thm. 7)

exist for some ¢ (Thm. 7)

TABLE I
EXISTENCE OF PERFECT BANDWIDTH MDS ARRAY CODES WHEN ¢ < n — k IN THE “SOME d”’ REGIME.

General

Piggybacking

Linebacking

t > k: exist for k < max{ 3,3},

t = n — k: do not exist (Thm. 6)

t = n — k: do not exist (Thm. 6)

k>3 q>2(n—k)[9] | t=2:(6,3) construction for ¢ = 7 (Thm. 8) | ¢ > "*T’“Jrl: do not exist (Thm. 11)
t = 2: (6, 3) construction for ¢ = 7 (Thm. 8)
k2 exist for ¢ > 2(n — k) [9] exist for some ¢ (Thm. 7) exist for some g (Thm. 7)

t = 2: construction for ¢ > k£ + 1 (Thm. 9)

t = 2: construction for ¢ > k£ + 1 (Thm. 9)

Note that this bound cannot be tight for large ¢ > n — k.
However, for t < n — k in the “any d” regime, [8§] demon-
strated that perfect bandwidth is achievable for ¢ > k — 3,
but cannot be achieved by a linear code without symbol
extension for t < k£ — 3. In the less restrictive “some d”
regime, [9] showed that the cut-set bound (and thus perfect
bandwidth) is achievable provided k& < max{%,3} and
d > 2k — 1 which in our setting translates to substriping
t > k, with field size at most 2(n — k). Although the cut-
set bound has been shown to be achievable for large ¢,q
and general n, k [12], [13], to our knowledge the question
of achieving perfect bandwidth when ¢t < n — k in general
remains open.

B. Our Results

We study the ability of piggybacking codes (with scalar
MBDS base codes) to achieve perfect bandwidth when ¢ < n—
k, using linear repair schemes. By adapting the framework
of [6], we are able to completely characterize when perfect
bandwidth is possible in the “any d” regime, and we are able
to give partial results in the “some d” regime. These results
are summarized in Tables I and II.

Our results imply piggybacking codes are strictly weaker
than general erasure codes when k£ > 3 in both regimes—
for “any d” there is separation with ¢ > k — 3 and for
“some d” with t = n — k. While the “any d” regime is
well characterized, the partial “some d” results include an
explicit construction for £k = 2,¢ = 2 with small field
size, an example construction for k¥ = 3 showing that
piggybacking codes are more powerful in that regime, and a
few impossibility results for the restricted case of linebacking
codes. We do not know whether piggybacking is strictly more
powerful than linebacking, but these impossibility results
present a possible method of establishing this separation.

IV. CHARACTERIZATION OF REPAIR SCHEMES

The work of [6] provides a characterization of linear
repair schemes for scalar MDS codes. Their framework
relies on the fact that a scalar MDS code C is linear over
its alphabet. In our case, piggybacking codes—and more
generally MDS array codes with linear substripes—are linear

over [Fy, but not over Fg. (Indeed, linearity over IE"; does not
immediately make sense, as IF‘; does not have a natural notion
of multiplication.) However, the approach of [6] still makes
sense in this context. The main reason linearity was important
to the approach of [6] was because their characterization
involved the dual code, Ct. We may introduce a similar
notion for MDS array codes.

Definition 4. Let C C IE‘Z“ be an MDS array code with
t linear substripes over F,. The dual code of C is C*+ :=
{X e Fp*" | (X,C) =0 VC € C}, where (-,-) denotes the
Frobenius inner product.

Theorem 1. Let C C F}*" be a (n, k) MDS array code with
t linear substripes over F,. For a fixed node i* and set of
nodes S % i*, the following are equivalent.

1) There is a linear repair scheme for node i* from S
with bandwidth b.

2) There exists a set of t dual codewords, the repair
matrices, {W© WO . WE=DY ¢ ¢t such that
the only non-zero rows of each W) are i* and S, and
furthermore that

dim({w?, | j € [0,t —1]}) =t,
and

S dim({w) | j € [0,t—1]}) <b.
Qi
See Fig. 2 for an illustration of a set of repair matrices.
The proof of Theorem 1 follows very similar to the approach
in [6]. The full proof (and those of all following results) may
be found in the full version of this paper, but we sketch one
direction in Fig. 3, showing how a set of repair matrices
yields a repair scheme.
Henceforth we will refer interchangeably to a linear repair
scheme for * from a set S, and a set of ¢ repair matrices
for i*, S as defined above.

A. Piggybacking Code Repair Schemes

Now that we have characterized repair schemes as sets of
dual codewords, we can analyze the repair schemes of pig-
gybacking codes, and those that achieve perfect bandwidth

1134

100 0 010 0
222-.-2 111---1
10-1---1 20-2---2
1-10---1 2-20---2
000 0 000---0
000 0 000---0
w (0) w)

000 1 Row ¢* has full dimension ¢
2222
20-2---2 Rows ¢ € S have low dimension
000---0
8 8 8 8 All other rows are 07

w -1

Fig. 2. An example illustrating the structure of a linear repair scheme with ¢ = 3.

a linear repair scheme as follows.

2)
symbols of I, are downloaded.

The replacement node can now recover wi?

il
i*,e

3)

repairing the failed node.

Linear repair scheme, given repair matrices. Suppose that {W(O)7 wm
a node ¢* with repair set .S, as in Theorem 1. Let C' € C be a codeword of the MDS array code. Then we can define

1) For every node i # i*, let Q; C F!, be a basis of span({wg.) | 7 €[0,t —1]}). We say that Q; is the query set
for node i. Observe that Q; = () Vi ¢ S so only nodes in the repair set will be queried.
For every query vector g € @);, node i sends q - ¢; o to the replacement node. Since E#i* |Q:] < b, at most b

N Ci*7. - <VI/(J)7 C> - Zl#l* w(J)
implies (W), C) = 0 and wq(j.) - ¢;,6 for i # i* can be recovered from the responses to the query set ();. Since

dim({wgf?. | 7 €[0,t —1]}) = t, this gives ¢ linearly independent equations, and we can solve for ¢;« o, thus

W=D} is a set of repair matrices for

ci.ei for all j, since W) € -+

i,®

Fig. 3.

in particular. In the remainder of Section IV, we present in-
termediate results using this characterization which will lead
to the main theorems of Sections V and VI. Proofs of these
results, as well as additional lemmas establishing notions of
equivalence and a standard form for repair matrices, may
be found in the full version of this paper. The next lemma
specializes the definition of a dual code to piggybacking
codes.

Lemma 2. Let C be an (n, k) piggybacking code over F,
with t substripes, base code Cy with generator matrix F, and
piggybacking matrices {P"7) | i € [0,t —2],j € [i + 1,t —
1]}. A matrix X € Fp*" is in C* if and only if

al,F+al, POTY 4T, PO = 0T v,

We can strengthen this characterization of repair schemes
by adding the requirement of perfect bandwidth, that is, that
b=k+t—-1

Observation 3. Any perfect bandwidth (n, k) MDS code
with ¢ linear substripes must have locality d = k+t—1, and
download a single symbol from each node of the repair set.
This follows from the cut-set bound [10].

In the notation of Theorem 1, the above implies |S| =
k+t—1and dim({w?) | j € [0,t —1]}) = 1 Vi € 8,
for any perfect bandwidth repair scheme. Lemma 2 and
Observation 3 together give a fairly restricted form for
perfect bandwidth piggybacking code repair schemes, which
leads to the remaining results of this paper, such as the

Turning a set of repair matrices into a linear repair scheme (proves one direction of Theorem 1).

following lemma.

Lemma 4. Let C be a perfect bandwidth (n, k) piggybacking
code over F, with t = 2 substripes. Then ¢ > k 4 1.

Proof idea. From Observation 3, we know any repair scheme
for C uses repair sets S of size d = k+t—1 = k+1, and each
row of S has dimension 1, i.e., the rows of one repair matrix
are scalar multiples of those of the other. We use properties
of the dual code C* from Lemma 2 to show that these k + 1
scalars in I, must all be distinct, and thus ¢ > £+ 1. [

V. “ANY d” REGIME

As noted in Observation 3, perfect bandwidth piggyback-
ing codes with low substriping ¢ < n — k must have locality
d = k+t—1. In this section, we consider the regime where,
when a node fails, any set of d other nodes must be able
to repair it with bandwidth b (as opposed to the less strict
“some d” regime, which is treated in Section VI). For general
linear erasure codes in this regime, [14] showed that for
t < k — 3, the cut-set bound is not achievable when only
a single symbol is downloaded from each node of the repair
set (and thus perfect bandwidth is not achievable). However,
they also constructed a code which does achieve the cut-set
bound for any ¢ > k — 3, at least for repairing the systematic
nodes. In this section, we will show that piggybacking codes
cannot achieve perfect bandwidth for £ > 3, and thus are
strictly weaker than general linear codes in this regime.

Our main impossibility result, Theorem 6 below, is a
consequence of the following more general lemma.

1135

Lemma 5. No (n,k) piggybacking code with k > 3 and
t substripes can have two bandwidth b = k +t — 1 repair
schemes for two different failed nodes with the same set of
k + t non-zero rows.

Proof idea. Consider two such repair schemes (sets of repair
matrices), {W(© ... W=D} which repairs node i}y, and
{v©O . VE=D} which repairs node 4},. Using the char-
acterization of Section IV, we show that these repair schemes
can be modified so that the last columns of W) V() are
equal for all j, and the next-to-last columns are equal up to
addition of a multiple x(¥) € IF, of the last column. However,
using the fact that £ > 3, we also establish that the TW’s
and V’s share a non-zero row (in addition to iy, 4},) which
must have dimension 1 in both by Observation 3. This forces
k() = x Vj, but in turn this makes it impossible for row
13 to have full dimension in the W’s but dimension 1 in
the V’s, as would be required for valid, perfect bandwidth
repair schemes. This gives the desired contradiction. O

Theorem 6. No (n, k) piggybacking code with k > 3 and
t substripes can achieve perfect bandwidth in the “any d”
regime.

Proof. Such a code must have two repair schemes meeting
the conditions of Lemma 5, which is impossible. O

Therefore no piggybacking code for £ > 3 can achieve
perfect bandwidth, even for systematic nodes (in fact, even
for only two nodes), and thus piggybacking codes are strictly
less powerful than general linear codes in the “any d” regime.
However, we are also able to use our characterization to
prove an achievability result for £k = 2, provided the field
size is sufficiently large. Moreover, this holds even if we
only permit linebacking (as in [3]).

Theorem 7. Let Co C Fj; be an MDS code with dimen-
sion k = 2 and generator matrix F € FZXk, let 2 <
t < n — k, and suppose that q is sufficiently large so
thar n(;71) (1- 120 - 1)
linebacking code with base code Cy and t substripes, which
achieves perfect bandwidth (b=k+t—1=1+ 1).

< 1. Then there exists a

Proof idea. The proof of this theorem is non-constructive.
We proceed by choosing the set of piggybacking matrices
{PO | i € [0,t — 2]} C F»** uniformly at random.
Using the characterization of Section IV, we fix a particular
structure for the repair matrices such that given piggybacking
matrices {P(i)}, a failed node i*, and the repair set S,
there is exactly one candidate set of repair matrices which
are guaranteed to be dual codewords and to have perfect
bandwidth. Furthermore, for uniformly random {P(i)}, we
show that row ¢* of the repair matrices is also uniformly
random—except for the last entry of each row ¢* which is
a fixed non-zero in [F,. Thus the probability that row 7* has
full rank, or equivalently that we have a valid repair scheme
for i* from S, is TI'Z1(1 — q%) Union bounding over all
choices of i*,.S gives the desired result. O

VI. “SOME d” REGIME

In this section, we consider the regime where, when a node
fails, there must exist only some single set of d = k+t—1
nodes which can repair it with bandwidth b. As we shall
see, this is less strict than the “any d” regime addressed in
Section V. It is also a popular regime for instantiating the
piggybacking design framework, e.g., in [2]-[5].

Some results immediately transfer over from the “any d”
regime to the “some d” regime. For example, since perfect
bandwidth linebacking codes for £k = 2 exist in the “any
d” regime, then they exist in the “some d” regime as well.
Additionally, whent =n—kandd=k+t—1=n—1, the
two regimes coincide, and so all of the results of Section V
still hold if ¢t = n — k. This implies perfect bandwidth
piggybacking codes for t = n — k are impossible in the
“some d” regime, and since the constructions of [8], [9] give
perfect bandwidth MDS codes for ¢t = n — k, this implies
piggybacking codes are strictly weaker than general MDS
codes in this regime as well.

However, the two regimes are not equivalent; in Theorem 8
below, we note the existence an example piggybacking code
achieving perfect bandwidth for £ = 3, which is impossible
in the “any d” regime. Additionally, although piggybacking
codes exist for k = 2 even in the “any d” regime, we can
strengthen Theorem 7 in the “some d” regime, and even give
an explicit construction of a perfect bandwidth piggybacking
code for k = 2,t = 2 in Theorem 9 below.

Finally, while we are so far unable to prove impossibility
results for piggybacking codes in general in the “some
d” regime, we are able to prove impossibility results for
linebacking codes. In Theorem 11 we show that perfect
bandwidth linebacking codes do not exist for £ > 3 and
t> n=htl

We begin with our positive results. In the full version of the
paper, we give an example (the parameters of which are given
below in Theorem 8) of a perfect bandwidth piggybacking
code for k£ = 3 in the “some d” regime. This establishes a
separation between the “some d” and “any d” regimes, since
Theorem 6 shows that there is no such scheme in the “any
d” regime.

Theorem 8. There is a piggybacking code with n = 6,k =
3,t = 2,q = 7 which achieves perfect bandwidth in the
“some d” regime.

We can also improve Theorem 7 in the “some d” regime.
Trivially, since only some set of d nodes must be able
to repair a given failed node, we need only union bound
over choices of * (not sets of d nodes), and thus ¢ must
only satisfy n (1 — H’;;i (1 — q—ll)) < 1. However, we can
additionally improve on this non-constructive result by giving
an explicit construction for optimal piggybacking codes with
k=2,1=2.

Theorem 9. Let Cy C IFZ" be an MDS code with dimension
k = 2 and generator matrix F € F[;Xk, let t = 2, and
suppose that n > 4, q > 3. Then there is an explicit
construction of a piggybacking code C with base code Cy

1136

and with t substripes, which achieves perfect bandwidth
b=k+t—1=3, in the “some d” regime.

Proof idea. For t = 2, there is only one piggybacking
matrix, P(>1) = P. We choose P to be all zero, except
for one position p; o = 1. This allows us to design sparse
repair matrices where the entries in row ¢ are carefully chosen
so that the repair matrices are in C and the zero pattern
ensures low bandwidth. The design for repairing node i* =@
is slightly more complicated; we set up a similar structure
and then argue that one of g—1 non-zero choices for a certain
entry must yield a valid repair scheme. [

While general impossibility results for piggybacking codes
in the “some d” regime remain elusive, we can prove
impossibility results for linebacking codes in this regime.
We note that multiple constructions of piggybacking codes
in the literature are in fact linebacking codes—including
the design of [3] and any piggybacking codes with ¢t = 2
substripes, such as two constructions of [2]—and so such
lower bounds provide useful design insights. Our main
theorems on linebacking codes follow from a more general
lemma.

Lemma 10. No (n, k) linebacking code with t substripes and
k > 3 can have two bandwidth b = k+t — 1 repair schemes
for two different failed nodes, where each node participates
in the other’s repair and the respective repair sets overlap
by at least k nodes.

Proof idea. We proceed similarly to the proof of Lemma 5,
but considering only two of the repair matrices. Let the repair
schemes be {W() ... W=D} which repairs node iy,
and {V(© ... VDY which repairs node i},. Using the
characterization of Section IV and the restricted structure
of linebacking codes, we show that these repair schemes
can be modified so that not just the last columns are equal,
but in fact W@ = V(O and WO = V) However, this
makes it impossible for row iy, to have full dimension in
the TW’s but dimension 1 in the V’s, as would be required
for valid, perfect bandwidth repair schemes. This gives the
desired contradiction. O

Theorem 11. No (n,k) linebacking code with k > 3 and
t > % substripes can achieve perfect bandwidth.

Proof. Assume to obtain a contradiction that a perfect band-
width (n, k) linebacking code C with t < 2=E+L substripes
does exist for some k > 3. Observe that there must exist
a pair of nodes each of which participates in repairing the
other. Consider a directed graph where edges go from each
node to the nodes it repairs. Each node has k+¢—1 in-edges
so there are n(k 4+t — 1) edges. However, n(k +t — 1) >
n(k + =kl 1) = 0D S) Bt (2) s the
maximum number of edges a directed graph (with no self-
loops) can have without having a 2-cycle; thus this graph
has a 2-cycle meaning two nodes participate in each others’
repair. Furthermore, these same two nodes must have an
overlap in their repair sets of size at least k: In addition
to repairing each other, they each have £ +¢ — 2 > %’“’3

helper nodes drawn from the remaining n — 2 nodes, so the
overlap is at least 2(“+£=2) — (n — 2) = k. Thus if such
a linebacking code existed, it would necessarily have two
repair schemes meeting the assumptions of Lemma 10, which
is impossible. O

We remark that the constraint on ¢ is tight in the sense
that the example code of Theorem 8 is a perfect bandwidth
linebacking code with t = "’T’““ In fact, for ¢t < ”’Tk“,
it is trivial to construct the repair sets (disregarding whether
they admit valid repair schemes) to avoid any pair satisfying
the assumptions of Lemma 10; for instance, each node can
be repaired by the k + ¢ — 1 nodes immediately following it
(mod n). However, most existing piggybacking codes do not
choose their repair sets this way. Most, including those of [2],
[3] (who use linebacking codes), always use all remaining
systematic nodes in the repair. For linebacking codes, this
further restricts the parameters for which perfect bandwidth
may be achievable.

Theorem 12. No (n, k) linebacking code with k > 3, t >

"‘\}%—1 substripes, and which uses all remaining systematic

nodes to repair a failed node can achieve perfect bandwidth.

Proof. Assume to obtain a contradiction that a perfect band-
width (n, k) linebacking code C with & > 3 and ¢ substripes
where t(t — 1) > % always uses all remaining
systematic nodes to repair a failed node. Consider only the
repair of the systematic nodes. By assumption, for any pair
of systematic nodes, each participates in the other’s repair.
Their repair sets overlap by at least k if and only if there
are at least 2 parity nodes which repair both, and each
systematic node has ¢ parity nodes repairing it. Per [15],
the maximum number of sets of ¢ parity nodes such that no

two sets have 2 parity nodes in common is ((5)) Thus if

2
k> %, two systematic nodes must share 2 helper

parity nodes, and thus have an overlap of size at least & in
their repair sets as well as each participating in the other’s
repair. However, this meets the assumptions of Lemma 10,
which is impossible. O

Theorem 12 suggests that linebacking codes may achieve
better bandwidth if they do not follow the standard practice
of using all remaining systematic nodes in every repair, since
the bound ¢t < ”_7"_1 is more restrictive than ¢t < %
from Theorem 11 as k& grows.

Finally, we end our discussion of the “some d” regime with
a theorem showing that decreasing the number of substripes
in this regime does not make constructing perfect bandwidth
codes any harder. More precisely, if a perfect bandwidth
piggybacking code with ¢ substripes exists, then such codes
also exist with ¢t — 1 substripes.

Theorem 13. Let C be a perfect bandwidth (n, k) piggyback-
ing code over F, with t substripes. Then there exist perfect
bandwidth piggybacking codes for the same n, k,q and any
number of substripes up to t.

1137

Proof idea. We begin with a perfect bandwidth code C, with
base code generator matrix F' and piggybacking matrices
{PG3) | i € [0,t —2],j € [i +1,t — 1]}. We construct a
new code C’ with ¢ — 1 stripes by removing the 0* substripe
of the message and each node, along with the corresponding
piggybacking functions {P(*:7)}. We then establish that any
repair scheme for C can be transformed into a repair scheme
for C' with strictly decreased bandwidth. This is done by
modifying the original repair scheme so that one repair
matrix repairs only the 0‘" substripe and is guaranteed to
contribute at least one unique query to the total bandwidth.
We then delete this matrix, and the 0" columns of the
remaining repair matrices, and prove that this results in a
valid repair scheme for C’. This process can be repeated to
achieve any number of substripes less than . O

Thus, a negative result for any fixed ¢y would imply a
negative result for all ¢ > ty, and a positive result for ¢
would imply a positive result for all ¢ < #.

Additionally, Theorem 13, along with Lemma 4 about the
required alphabet size for t = 2, imply that perfect bandwidth
piggybacking codes must have large alphabets.

Corollary 14. Let C be a perfect bandwidth (n,k) piggy-
backing code over Fy. Then ¢ > k + 1.

VII. CONCLUSION

We adapted the framework of [6] in order to analyze
the achievable bandwidth of piggybacking codes introduced
by [2] with scalar MDS base codes for low substriping
t < n — k. In the regime where any d nodes must be
able to repair a failed node, we showed that for £ > 3
piggybacking codes cannot achieve the lower bound on
bandwidth, and thus are less powerful than general linear
codes. We established by counterexample that this result
does not in general extend to the regime where only some
d nodes repair a failed node, and partially addressed the
question of whether piggybacking codes can achieve the
lower bound on bandwidth in this regime. We additionally
gave impossibility results for linebacking, a subcategory of
piggybacking in the style of [3]. Some questions about the
theoretical capabilities and limitations of piggybacking codes
remain to be addressed, and we conclude with these.

1) When do there exist perfect bandwidth piggybacking
codes for the “some d” regime and k > 3?7 When they
do not exist, how close can piggybacking codes get to
the lower bound on bandwidth?

2) Is linebacking less powerful than piggybacking? We
conjecture that this is so, and note that an example of
a perfect bandwidth piggybacking code in the regime
where Theorem 11 holds would establish this.

3) Adding the (commonly used) assumption that all re-
maining systematic nodes assist in the repair of a

failed node gave us a stronger impossibility result for
linebacking in Theorem 12. Does this assumption actu-
ally worsen the achievable bandwidth for piggybacking
(or general) codes?

4) Our analysis of piggybacking codes was limited com-
pared to the proposal of [2] in a few ways. How does
the analysis change if we permit non-linear piggy-
backing functions, or allow an MDS array base code?
How well can piggybacking codes perform on other
metrics such as data-read and computation as well as
bandwidth?

ACKNOWLEDGMENT

We thank Rashmi Vinayak for introducing us to the
problem, and for very helpful correspondences.

REFERENCES

[1] R. Hulett and M. Wootters, “Limitations on the achievable repair
bandwidth of piggybacking codes with low substriping,” 2017, [arXiv
preprint https://arxiv.org/abs/1707.02337].

[2] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking
design framework for read- and download-efficient distributed storage
codes.” IEEE, 7 2013, pp. 331-335.

[3] B. Yang, X. Tang, and J. Li, “A systematic piggybacking design
for minimum storage regenerating codes,” IEEE Transactions on
Information Theory, vol. 61, no. 11, pp. 5779-5786, 2015.

[4] C. Shangguan and G. Ge, “New piggybacking design for systematic
MDS storage codes,” 2016.

[5] S. Kumar, A. Graell i Amat, I. Andriyanova, and F. Briannstrom, “A
family of erasure correcting codes with low repair bandwidth and low
repair complexity.” IEEE, 12 2015, pp. 1-6.

[6] V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes.”
ACM, 6 2016, pp. 216-226.

[71 K. V. Rashmi, N. B. Shaw, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data
recovery in erasure coded storage systems: A study on the Facebook
warehouse cluster,” UNISEX HotStorage, 2013.

[8] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Interference alignment in regenerating codes for distributed storage:
Necessity and code constructions,” IEEE Transactions on Information
Theory, vol. 58, no. 4, pp. 2134-2158, 2012.

[9]1 C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,” IEEE Transactions on Information
Theory, vol. 57, no. 3, pp. 1425-1442, 2011.

[10] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 56, no. 9, pp. 45394551,
2010.

[11] K. Kralevska, D. Gligoroski, and H. @verby, “General sub-packetized
access-optimal regenerating codes,” IEEE Communications Letters,
vol. 20, no. 7, pp. 1281-1284, 7 2016.

[12] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-
regenerating codes for distributed storage at the MSR and MBR points
via a product-matrix construction,” IEEE Transactions on Information
Theory, vol. 57, no. 8, pp. 5227-5239, 2011.

[13] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Transactions on Informa-
tion Theory, vol. 63, no. 4, pp. 2001-2014, 2017.

[14] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit
codes minimizing repair bandwidth for distributed storage.” IEEE, 1
2010, pp. 1-11.

[15] P. Erdés and H. Hanani, “On a limit theorem in combinatorial
analysis,” Publicationes Mathematicae Debrecen, vol. 10, pp. 10-13,
1963.

1138

