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Abstract— With few exceptions, most research in automated
assessment of depression has considered only the patient’s
behavior to the exclusion of the therapist’s behavior. We
investigated the interpersonal coordination (synchrony) of head
movement during patient-therapist clinical interviews. Our
sample consisted of patients diagnosed with major depressive
disorder. They were recorded in clinical interviews (Hamilton
Rating Scale for Depression, HRSD) at 7-week intervals over
a period of 21 weeks. For each session, patient and therapist
3D head movement was tracked from 2D videos. Head angles
in the horizontal (pitch) and vertical (yaw) axes were used to
measure head movement. Interpersonal coordination of head
movement between patients and therapists was measured using
windowed cross-correlation. Patterns of coordination in head
movement were investigated using the peak picking algorithm.
Changes in head movement coordination over the course of
treatment were measured using a hierarchical linear model
(HLM). The results indicated a strong effect for patient-
therapist head movement synchrony. Within-dyad variability
in head movement coordination was found to be higher than
between-dyad variability, meaning that differences over time
in a dyad were higher as compared to the differences between
dyads. Head movement synchrony did not change over the
course of treatment with change in depression severity. To the
best of our knowledge, this study is the first attempt to analyze
the mutual influence of patient-therapist head movement in
relation to depression severity.

I. INTRODUCTION

According to the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5), many symptoms of depression are
observable [1]. Psychomotor symptoms such as gross motor
activity, facial expressiveness, body movements, and speech
timing differ between depressed and normal comparison
groups [1], [2], [3]. Consequently, an automatic and objective
assessment of depression from behavioral signals is of
increasing interest to clinical and computer scientists [4],
[5]. The last ten years have witnessed major strides in the
automated assessment of depression from facial expression
[5], [6], voice quality and timing [7], [8], [9], [10], and to a
lesser extent body movement [11] and head pose [12], [13].

In nearly all previous efforts, assessment focused on the
individual alone, rather than the context in which their
behavior unfolds. In some cases, of course, the individual
is alone. In AVEC (audio-visual emotion challenge) [4],
for instance, patients of varying depression severity were
assessed in a human-machine interaction task. Outside of
such constrained challenges, however, depression is assessed

in a social context by a clinician. This context almost certainly
impacts both the intensity and the quality of interpersonal
behavior of both the clinician and the patient. In social
contexts, behavioral signals are influenced by the dynamics
of interaction as well as social intentions (e.g. wanting to
appear more or less depressed or suicidal than may be the
case) [14]. In this paper, we investigate to what extent this
interpersonal behavior, or coordination, varies with change
in depression severity.

With a few exceptions, most research in automated detec-
tion of depression and depression severity has focused on the
depressed patient rather than the interpersonal influence of
the social context in which depression is assessed (e.g., [4],
[5], [15]). One of these exceptions is the work of Scherer et
al. [16]. The authors analyzed the interpersonal correlation
between the acoustic characteristics of patients and therapists
and between depression severity in clinical interviews [16].
They found that the acoustic characteristics of patients did
not vary with depression severity, whereas those of therapists
varied strongly with depression severity. Accommodation - the
tendency of interactants to adapt their communicative behavior
to each other - between patients and therapists was inversely
related to depression severity. They found that accommodation
of voice quality increased when depression remitted. Their
findings suggest that therapists modify their acoustic features
in response to depressed patients, and depression severity
strongly impacts interpersonal accommodation [16].

Another exception to the singular focus on individual
patients is the study by Yang et al. [17] who investigated
the intra- and interpersonal influence of depression severity
on vocal prosody in depressed patients and their therapists.
They found that for the therapist, but not patient, f0 mean
and variability showed a strong relationship with severity of
depression. Therapists used lower and more variable f0 when
speaking with the patients when the latter were more severely
depressed. Intra-personal pause duration and speaking rate
also changed with depression severity over time. It was found
that switching pause latency for both therapists and patients
became shorter and less variable when depressive symptoms
decreased. These findings for vocal prosody [16], [17] support
an interpersonal perspective that motivates our work.

As a contribution to the previous work on interpersonal
effects of depression on vocal characteristics [16], [17], we
explored whether similar patterns of interpersonal influence
occur for other non-verbal communicative behavior, in partic-978-1-7281-0089-0/19/$31.00 ©2019 IEEE



Fig. 1. Overall data - The x-axis represents the visits (1 to 4) and the y-axis represents the HRSD scores (0 to 35). The bar graphs represent the HRSD
scores of the patients at each visit. The numbers on top of each group (visit) of bars are the patient IDs. Empty bars indicate missing data.

ular head movement. Head movements regulate turn-taking
[18], serve back-channeling functions [19], communicate
messages such as agreement or disagreement in interpersonal
interaction [20], [21], and vary markedly with depression
severity [13]. We investigated the interpersonal coordination
between patients’ and therapists’ head movements over the
course of treatment for depression.

Little is known about the coordination of head movement
between patients and therapists in clinical assessments of
depression severity. We hypothesized that the interpersonal
coordination of head movement (measured as head movement
synchrony) increases as depression severity decreases. Zface
[22] – an automatic, person-independent, generic face tracking
approach – was used to track the three degrees of out-
of-plane rigid head movements (i.e. pitch and yaw) from
synchronized 2D videos of patients and therapists. Windowed
cross-correlation between head angles (pitch and yaw) of
time series of patient and therapist was used to quantify
interpersonal coordination [23]. The peak picking algorithm
[23] was then used to analyze the variation in peak correlation
at each time instant from the cross-correlation matrix and to
measure synchrony. A hierarchical linear model [24], which
accounts for both within-dyad and between-dyad variations,
then was used to compare head movement synchrony across
depression severity scores.

II. OBSERVATIONAL PROCEDURES

Fifty-seven depressed patients (34 women, 23 men) were
recruited from a clinical trial for treatment of depression. They
ranged in age from 19 to 65 years (mean = 39.65yr) and
were Euro- or African-American (46 and 11, respectively).
At the time of the study, all met DSM-IV criteria for Major

Depressive Disorder (MDD) [25]. Data from 49 patients were
available for analyses. Missing data occurred due to missed
appointments or technical problems. The latter included
failure to record audio or video, occurrence of audio or
video artifacts and insufficient data. Patient loss was due
to change in original diagnosis, severe suicidal ideation
and methodological reasons (e.g. missing audio or video).
Symptom severity was evaluated on up to four occasions
at 1, 7, 13, and 21 weeks post diagnosis and intake by ten
clinical therapists (all female). Therapists were not assigned to
specific patients. Four therapists were responsible for the bulk
of the interviews but the number of interviews per therapist
varied. The median number of interviews per therapist was
14.5; four conducted six or fewer.

Structured interviews were conducted using the Hamilton
Rating Scale for Depression (HRSD) [26], which is a clinician-
rated multiple item questionnaire to rate depression severity
and response to treatment. The HRSD rates the severity
of depression by probing mood, feelings of guilt, suicidal
ideation, insomnia, agitation or retardation, anxiety, weight
loss, and somatic symptoms. Each item is scored on a 3- or
5-point Likert type scale, depending on the item, and the total
score is compared to the corresponding descriptor, although
only 17 items count towards the total score. Therapists were
well trained in the HRSD and reliability was maintained
above 0.9. Variation in HRSD scores is used as a guide to
evaluate recovery by detecting ordinal ranges of depression
severity. HRSD scores ≥ 15 are generally considered to
indicate moderate to severe depression; scores between 8
and 14 indicate mild depression; and scores ≤ 7 indicate
remission [27]. There are no healthy controls in this dataset.

Interviews were recorded using four hardware synchronized



Fig. 2. Orientation of the head: pitch and yaw [28]

analogue cameras (video at 30fps) and two microphones
(audio at 48kHz). Two cameras recorded the patient’s face
and shoulders; these cameras were positioned approximately
15 degrees to the patient’s left and right. A third camera
recorded a full-body view of the patient. A fourth camera
recorded the therapist’s shoulders and face from about 15
degrees to their right.

As the data is longitudinal in nature, each patient was seen
on at least one or more occasions, represented in terms of
visit on the x-axis and evaluated on a continuous HRSD
from 0 to 35, represented in terms of hrsd on the y-axis (see
Figure 1). The bar graphs represent the HRSD scores of the
patients at each visit. The numbers on top of each group of
bars are the patient IDs. Empty bars indicate missing data.

III. METHODS

Interpersonal dyadic behavior is analyzed as follows: (i)
automatic detection of head pose of patients and therapists,
(ii) estimation of the time varying correlations between
patients’ and therapists’ head movement using windowed
cross-correlation, (iii) measurement of patterns of change in
a lead-lag relationship between patients’ and therapists’ head
movement using the peak picking algorithm, (iv) measurement
of synchrony as the normalized mean of peaks of correlations
per dyad and per session, and finally (v) analysis of changes
in head movement synchrony across the course of treatment
using hierarchical linear modeling.

A. Automatic head tracking

Zface [22] – an automatic, person-independent, generic
face tracking system – was used to track the 3 degrees of
out-of-plane rigid head movement (i.e. pitch (head nods),
yaw (head turns), and roll (lateral head inclination)) from
2D videos of patients and therapists. The robustness of the
tracker for head pose estimation has been validated in a series
of experiments. In the Boston University dataset [29], which
uses a magnetic flock-of-bird system to measure pose, mean
absolute angular error was 2.66°, 3.93°, and 2.41° for pitch,
yaw, and roll, respectively [22]. Angles of the head in the
horizontal and vertical directions were selected in this paper
to measure head movement coordination across depression
severity scores (see Figure 2).

Using Zface, the head was successfully tracked in 98.3%
of the patients’ and 89.4% of the therapists’ video frames.
Therapists often looked down at their notes, which may
have accounted for the small difference between patients and
therapists in the number of tracked frames. Across therapist-
patient dyads, the percentage of simultaneously tracked frames

was 87.74%. For two sessions, the percentage of tracked
frames was 0% and 0.02%. After excluding these two sessions,
125 sessions from 48 dyads were available for analysis.

B. Data Selection

We considered simultaneously tracked segments of at
least 300 frames (10 seconds) or longer. This choice of
minimum segment length is motivated by the observation of
our data and the concept of “thin-slicing”, which refers to
observing a small selection of an interaction, usually less
than 5 minutes, and still accurately drawing conclusions
about the mutual influence of the interacting partners. It has
been previously shown that a longer exposure time of a thin-
slice (2-, 5-, and 10-second clips of non-verbal behavior)
does not significantly improve the accuracy of judgment
[30]. Motivated by Rosenthal et al. [30], Hammal et al. [20]
for instance used a minimum duration of thin slices of 30
seconds and higher to analyze the interpersonal coordination
of rigid head motion in intimate couples with a history of
interpersonal violence. In another study by Rosenthal et al.
[31], the tone of voice in which therapists spoke about their
alcoholic and/ or drug abusing patients was used to predict
the therapists’ tone of voice when talking to the same patients.
Thin slices of 10 seconds were found to generally capture
the bulk of therapists’ comments to patients.

We only included sessions for which at least 50% of the
video frames were available after segments less than 300
frames long were discarded. Around 90% of the sessions
had sufficient data for analysis. This additional constraint
reduced the number of available sessions by 12 out of the
125 sessions (i.e. 113 remaining sessions). Out of the 12
sessions that were disregarded, 4 were from remission, 3
from mild and 5 from severe categories. Again, 3 sessions
were from visit 4, 5 from visit 2 and 4 from visit 1. Therefore,
missing data was unrelated to depression severity or visit.

The final sample consisted of 113 sessions from 47 patients
(31 female and 16 male). Fifty were moderately to severely
depressed, 32 were mildly depressed, and 31 were remitted.
Figure 3 shows the final distribution of the data used for
analysis. The mean duration of available data per session was
8.397min (std = 3.865min, median = 7.73min).

C. Windowed Cross Correlation

A common assumption in time series analysis is that
signals are stationary. That is, the statistical properties
(e.g. mean, standard deviation, auto-correlation and cross-
correlation) remain stationary, or stable, over time. Social
behavior, however, often is not stationary. Covariation between
social partners can vary markedly over time [23]. Windowed
cross-correlation (WCC) is a method of time-series analysis
appropriate when the relationship between time series varies
over time. WCC estimates time varying correlations between
signals [32] and produces positive and negative correlation
values for each (time, lag) pair of values.

In previous work, WCC has been used to investigate local
correlation between infant and mother smiling over time
[33] and to investigate dynamic changes in head movement



Fig. 3. The bar chart shows the data selection process. The orange bars represent the total duration (in seconds) of valid data used per dyad and the blue
bars represent the smallest valid segment (of at least 10 seconds) per dyad. The first 31 sessions (labelled R) are from the category remission, the next 32
sessions (labelled M) are from category mild and the last 50 sessions (labelled S) are from the category severe.

between intimate partners during episodes intended to elicit
conflict [20]. Guided by these previous studies, WCC was
used to measure time series coordination of head movements
between the patients and therapists over the course of
treatment for depression. So that missing data would not bias
measurements, the WCC for each session were computed for
each consecutive valid segment separately and then combined.

In WCC, the signals are split into overlapping segments
and a matrix of correlation values C is generated. Columns
of C have cross-correlation values up to the maximum lag
(Maxlag). Correlations are calculated within a window of
length Wmax. Time increases linearly across the columns
of C, from left to right and lag increases linearly down
the rows, from −Maxlag to +Maxlag. The number of
rows NRow = (2×Maxlag)+1 and the number of columns
NCol =

(N−Noverlap)
(Wmax−Noverlap)

, where N is the signal length.
Maxlag is the greatest interval of time separating a

behavior from participant X and a behavior from participant Y.
A Maxlag of 45 frames (1.5 seconds) was used. A maximum
window size (Wmax) of 90 frames (3 seconds) was chosen in
order to preserve the assumption of small change in a lead-lag
relationship within the number of samples in the window [23].
Applying this window to a signal with 0% overlap would
result in the analysis signal being almost exactly the same.
Window overlap of 50% reduces the processing time and
does not re-average the same data again. Therefore, window
overlap (Noverlap) of 45 frames (50% overlap) was chosen
for calculating the windowed cross-correlation [34].

A segment from therapist’s pitch (resp., yaw) time series
is represented as vector X and from patient’s pitch (resp.,
yaw) time series as vector Y (see Section III-A). WCC was
calculated on these segments as follows [23]:

(1)
C(Wx,Wy)

=
1

Wmax

Wmax∑
i=1

[Wx,i − µ(Wx)] [Wy,i − µ(Wy)]

SD(Wx)SD(Wy)

For each value of Maxlag from −Maxlag to +Maxlag,
a pair of windows Wx and Wy were selected from the two
data vectors X and Y respectively. µ(Wx) and µ(Wy) are the

means and SD(Wx) and SD(Wy) are the standard deviations
of the windows Wx and Wy, respectively. Figure 4 shows
an example of a WCC correlogram for pitch. Yellow patches
indicate high positive correlation, blue patches indicate high
negative correlation. The area depicting positive lag (i.e.
Lag > 0), represents the therapist leading the patient and
the area depicting negative lag (i.e. Lag < 0) represents the
patient leading the therapist. Lag = 0 indicates that both
patient and therapist are moving their heads simultaneously.

D. Peak Picking
The peak picking algorithm [23] is used to analyze the

patterns of change in the peak cross–correlation between
patients and therapists. The peak picking algorithm obtains
for each elapsed time, an estimate of the maximum association
between two variables (in our case patients and therapists
head movement) with the minimum time lag. The peak is
defined as the maximum value of cross-correlation centred in
a local region in which values are monotonically decreasing
on each side of the peak. To do so, the resulting matrices
from the windowed cross–correlation analysis were submitted
to the peak picking algorithm to calculate peak correlations
nearest a lag of zero and their respective time lags (See Figure
4). Input to the peak picking algorithm is a vector, V of cross-
correlations (one column from the matrix C). The algorithm
requires the definition of a set of parameters: (i) Lsize (local
search region) and (ii) Pspan (degree of smoothing). Lsize is
the size of the local region that defines a peak. It decides how
wide a window we want in order to consider the obtained
peak as a maximum. Lsize should be large enough so that
spurious local noise is rejected but small enough such that
meaningful peaks are not rejected. LOESS smoothing [35]
is a non-parametric form of smoothing that uses a sliding-
window average. Within each “window”, a weighted average
is calculated. The span (Pspan in this case) determines the
width of the moving window when smoothing the data. After
careful analyses of the data [23], the parameter set for the
peak picking algorithm were selected: (i) Lsize (local search
region) = 8 frames, (ii) Pspan (degree of smoothing) = 0.1.
The peak picking algorithm smooths and interpolates the
WCC matrix, so from the output of peak picking, the lag



Fig. 4. Top: Output of windowed cross correlation shown as a correlogram
(Lag vs. T ime). Bottom: Output of peak picking (Lag vs. T ime). Yellow
patches in the correlogram indicate high positive correlation and blue patches
indicate high negative correlation. Changes between subsequent vertical slices
through the graph can be observed. Thus, the lags of the cross-correlational
association between the two interactants’ head movements change with
elapsed time and the peak correlations change between positive and negative
lags. This pattern of association is non-stationary [23] and can be observed
in the peak picking output where orange dots represent positive correlation
peaks and blue dots represent negative correlation peaks. When the lag is
negative, the therapist follows the patient (Patient →Therapist); when the
lag is positive, the patient follows the therapist (Therapist →Patient).

of the selected peak column was divided by 2 (such that
Maxlag ranged from -45 to +45). These are the offsets from
zero lag.

The output of the peak picking algorithm is a list of local
peaks of cross-correlation with the corresponding time lag.
Figure 4 shows an example for pitch. For each graph, the
area above the midline of the plot (Lag > 0) represents the
relative magnitude of correlations for which head movement
of therapist predicts head movement of the patient; the
corresponding area below the midline (Lag < 0) represents
the opposite. The midline (Lag = 0) indicates that both
participants are changing their head movement at the same
time. Positive correlation (orange dots) indicate that the
direction of head movement of both patient and therapist is the
same, whereas negative correlations (blue dots) indicate that
the direction of head movement of both patient and therapist
is changing out of phase. The visual inspection of the obtained
peaks in Figure 4 shows dynamic changes in the direction of
the peaks correlation with frequent changes in which partner
is leading the other. Peak picking was performed separately
on windowed cross correlation matrix segments of each valid
segment separately and then combined for each session.

The source code for the windowed cross correlation
and peak picking algorithms [23] is available and can be
downloaded1.

E. Synchrony

We used the time series peaks of correlation as defined
above to measure head movement synchrony over time for
each session. At each time point, synchrony between head
movement of patient and therapist is defined as the peak of
correlation greater than or equal to 0.5 (medium to large effect
sizes [36])2. The overall synchrony (sync) during each session
was measured as the sum of detected peak correlation values
greater than or equal to 0.5 and normalized by the duration of
the session (i.e. total number of frames). Thus comparisons
could be made between sessions over the course of treatment
for depression (across different depression severity scores).
Synchrony was calculated for each dyad within each session
separately and for pitch and yaw respectively.

F. Hierarchical Linear Modeling

Windowed cross correlation and peak picking [23] dis-
cussed in sections III-C and III-D were used to quantify
interpersonal coordination between patients and therapists
and investigate patterns of coordination in head movement
(measured using synchrony). Thus, comparisons could be
made between estimates of the overall synchrony between
patients and therapists over the course of treatment. To do so,
we used a variant of hierarchical linear modeling, a mixed
effects model. A mixed effects model [37] is a statistical
model that contains both fixed effects and random effects
predictors [38] and is useful when repeated measurements
are made in the context of a longitudinal study in which
differences are assessed over time, such as in the dataset
used in this study. Variables that vary by group are treated
as random effects. A continuous variable is treated as a fixed
effect as it would be incorrect to measure the variance across
a continuous variable. Also, a categorical (binary) variable
with only two values is a fixed effect as it would be incorrect
to take two measures and then try to estimate variance [24].
If a variable f is treated as fixed then the model estimates
and reports a value for f1, f2, etc. If a variable r is treated as
random, the model estimates values for r1, r2, etc. to control
for them, but only reports the variance of all the effects, rather
than the value of each one. In order to investigate differences
between patients and variability over time in patient-therapist
interpersonal coordination, a mixed effects hierarchical linear
model was built for the purpose of this study. Also, because
of their advantage in dealing with missing values, hierarchical
linear models are preferred over traditional methods such as
repeated measures ANOVA.

HLM is a statistical tool for modeling data with a “nested”
or interdependent structure [39]. In this study, repeated
measurements (i.e. visits) were nested within participants

1http://people.virginia.edu/~smb3u/windcross2011
2Because the choice of peak threshold could influence the findings, we

evaluated thresholds in the range 0.3 to 0.8. The findings were similar for
peaks across this range.



(i.e. dyads). Two-level hierarchical linear model was built
to represent the nested structure of the data (see Figure 5).
Level 1 equation for the hierarchical linear model is as given
below. A dyad i at visit j has synchrony defined as follows:

(2)syncij = β0+β1 ∗dyadj+β2 ∗hrsdij+β3 ∗sexj+eij
sync is the normalized count of positive peak correlation
values ≥ 0.5 (as defined in Section III-D). syncij means the
model has more than one variance component, where i is the
subscript for level 1 unit, i.e. dyad, and j is the subscript
for level 2 unit, i.e. visit. hrsd is the depression severity
of the patient on a continuous HRSD from 0 to 35, sex is
the sex of the patient and visit refers to the four occasions
(week 1, 7, 13, and 21) up to which symptom severity was
evaluated (see Section II). sync is the response variable and
predictors include hrsd, sex, dyad and visit. Based on the
description of fixed and random effects given above, hrsd
and sex were chosen as fixed effects predictors and dyad
and visit as random effects predictors.
β0 is the intercept which is the estimated sync when hrsd

equals 0 and sex is female. The slope β1 is the effect of
dyad on sync. The slope β2 is the effect of hrsd on sync.
The slope β3 is the effect of sex on sync. eij is the residual
error term that encompasses variability that the predictors
can not explain about the response variable.

For each level 1 regression parameter, there is one level 2
regression equation in a two-level hierarchical linear model.
Level 2 regression equations for the hierarchical linear model
are as given below. Level 1 regression parameters are modeled
as response variables in level 2 regression equations:

β0 = γ00 + γ01 ∗ visitj + u0j (3)
β1 = γ10 + u1j (4)
β2 = γ20 + u2j (5)
β3 = γ30 + u3j (6)

Level 2 regression parameters γ00, γ01, γ10, γ20 and γ30
are called hyperparameters of the model [24]. u0j , u1j , u2j
and u3j are the error terms at level 2.

A dyad-wise analysis could be done (i.e. averaging
over visits), which would be disregarding by-visit variation.
Performing a visit-wise analysis would disregard by-dyad
variation. A hierarchical linear model accounts for both
sources of variation in a single model. Between-dyad variation
assesses the differences in interpersonal synchrony when
the severity scores are averaged across time. Within-dyad
variation assesses the variability over time of each interper-
sonal synchrony score. Even if we measured all of these
factors, there could still be other random factors influencing
interpersonal synchrony that we can not control, such as
personality, age, language, dialect, culture or ethnicity [40].
This model is able to capture the existence of these random
factors in the form of residual variance.

IV. RESULTS

Windowed cross correlation and peak picking algorithms
[23] were used to quantify interpersonal synchrony between

Fig. 5. Two level hierarchical linear model

patients and therapists and to investigate patterns of coordi-
nation in head movements. Within-dyad and between-dyad
analysis was done using a hierarchical linear model. The
results of the hierarchical linear model for pitch and yaw
synchrony estimates are explained in this section.

A. Hierarchical Linear Modeling

In order to analyze changes in head movement synchrony
between patients and therapists, a hierarchical linear model
was built. As the response variable sync was found to be
gamma distributed, the function glmer (‘family’ = Gamma,
link = ‘inverse’) of package lme4 [41] using R (R Core
Team, 2017) [42] was used to fit the model. glmer() is used
to fit a generalized linear mixed model, which incorporates
both fixed effects and random effects parameters in a linear
predictor. While lmer() assumes the probability distribution
of data as normal, glmer() allows the choice of distribution of
data through the argument ‘family’ [41]. In this model, hrsd
and sex were chosen as fixed effects predictors and visit
and dyad as random effects predictors. The variable dyad
was entered at level 1. The variable visit was entered at level
2. The results of the hierarchical linear model for pitch and
yaw synchrony estimates from the fixed and random effects
parameters are given in Table I.

1) Fixed and random effects: The estimates for intercept
(i.e. sync for pitch and yaw) were gamma transformed. The
inverse function was used to transform the values back for
ease of interpretation. For both pitch and yaw, the effect of
hrsd and sex was found to be statistically not significant (see
Table I), which means that they did not contribute to explain
the outcome variable sync. This finding was in contrast to
our hypothesis that synchrony increases as depression severity
decreases. The intraclass correlation coefficient (ICC) is a
measure of how much the units in a group resemble one
another. It can be computed as the ratio of group-level error
variance over the total error variance [43]. In case of pitch,
ICC(dyad) was 0.81 and ICC(visit) was 0.08, which means
that 81% of the total variation in sync is explained by dyad
and 8% of the total variation in sync is explained by visit.



TABLE I
HIERARCHICAL LINEAR MODEL FOR PITCH AND YAW SYNCHRONY ESTIMATES

Fixed Effects Random Effects
Model out-
come

Model parameter Estimate Standard
error

Wald statistic p value Variance Standard devia-
tion

ICC

sync (pitch) Intercept 0.238 0.279 15.070 <2e-16 ***
hrsd 0.01 0.015 0.691 0.490
sex 0.105 0.259 0.407 0.684
dyad 0.213 0.461 0.81
visit 0.021 0.145 0.08
residual 0.029 0.170

Observations
= 113

Groups: dyad = 47,
visit = 4

AIC = -386.9 BIC = -370.6 logLik = 199.5 Deviance = -398.9 df.resid = 107

sync (yaw) Intercept 0.205 0.273 17.910 <2e-16 ***
hrsd 0.003 0.015 0.178 0.859
sex 0.399 0.268 1.488 0.137
dyad 0.232 0.481 0.865
visit 0.017 0.131 0.064
residual 0.019 0.138

Observations
= 113

Groups: dyad = 47,
visit = 4

AIC = -458.1 BIC = -441.7 logLik = 235.1 Deviance = -470.1 df.resid = 107

In case of yaw, ICC(dyad) was 0.865 and ICC(visit) was
0.064, which means that 86.5% of the total variation in sync
is explained by dyad and 6.4% of the total variation in sync
is explained by visit (See Table I). For both pitch and yaw,
ICC for dyad was found to be very strong, but ICC for visit
was poor, which means that within-dyad variability in sync
was found to be much higher than between-dyad variability.
This indicates that the differences over time in dyads were
higher as compared to the differences between dyads. As
hrsd and visit were highly correlated and the effect of hrsd
on sync was not significant, it can be explained why the ICC
for visit was poor.

2) Goodness-of-fit Criteria, model diagnostics and infer-
ence [44]: According to the goodness of fit criteria, the yaw
model fits the data better than the pitch model (see Table
I). Deviance is defined as a measure of lack of fit between
model and data. In general, the smaller the deviance, the
better the fit to the data. Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) are
information-based criteria that assess model fit. Both are
based on deviance. When comparing the AIC and BIC
values of two models, the model with the smaller value is
considered better [44]. The residual plots of both models did
not indicate any deviations from a linear form. They showed
relatively constant variance across the fitted range. There
were no evident patterns/ clusters, hence the assumption of
homoscedasticity of residuals was met. Also, the quantile-
quantile plots did not raise any significant concerns with the
distribution of the weighted residuals. Overall, both pitch and
yaw models were good fits.

V. DISCUSSION

Motor mimicry and emotion contagion [45] would suggest
that interpersonal effects for depression would mirror intra-
individual effects of depression. Contrary to this hypothesis,
synchrony failed to vary with depression severity. Several
factors may have accounted for this null finding.

One, we measured synchrony in the time domain using
cross-correlation and peak picking. Alternatively, one could
measure coherence [46] in the frequency domain. Using
coherence, we could have considered differences among high
frequencies (rapid head movements) and low frequencies
(slow head movements). For example, one would expect
more coherence/similarity in slow head movements for
severe depression as compared to remission. Two, therapists
rotated among patients over the course of treatment. 25%
of patients saw the same therapist in their sessions. Another
21% of patients saw the same therapist for at least two
of their sessions but other therapists for the other sessions.
The remainder saw different therapists for each session.
The same patient could have seen one to four different
therapists. This lack of consistency may have impacted on
the display of synchrony over the course of visits. Three,
when patients were severely depressed, the therapists may
have worked harder to achieve or maintain synchrony. When
patients became less depressed, they may have taken more
of the responsibility for achieving synchrony. Synchrony,
thus, became more co-constructed. To test this hypothesis,
time series modeling would be needed. And four, we only
examined head movement synchrony. Synchrony in other
nonverbal modalities may be more affected by depression.

VI. CONCLUSIONS

We analyzed interpersonal coordination of patient-therapist
head movement during clinical interviews for depression
severity assessment. Windowed cross-correlation was used
to quantify interpersonal coordination between patients’ and
therapists’ head movement. Peak picking was used to analyze
the variation in peak correlation and to measure synchrony.
Both within-dyad and between-dyad variation were accounted
for in the hierarchical linear model analysis. For both pitch
and yaw, within-dyad variation was found to be higher than
between-dyad variation. Head movement synchrony did not
change over the course of treatment with change in depression
severity. Future work will use time-frequency analysis to



further investigate possible changes in high frequencies and
low frequencies (rapid vs. slow head movements).
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