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Repairing Multiple Failures for Scalar MDS Codes

Jay Mardia, Burak Bartan, and Mary Wootters

Abstract—1In distributed storage, erasure codes (like Reed—
Solomon Codes) are often employed to provide reliability. In this
setting, it is desirable to be able to repair one or more failed
nodes while minimizing the repair bandwidth. In this paper,
motivated by Reed-Solomon codes, we study the problem of
repairing multiple failed nodes in a scalar MDS code. We extend
the framework of (Guruswami and Wootters, 2017) to give a
framework for constructing repair schemes for multiple failures
in general scalar MDS codes in the centralized repair model.
We then specialize our framework to Reed—Solomon codes, and
also extend and improve upon recent results of (Dau et al., 2017).

Index Terms—Regenerating codes, Reed-Solomon codes,

multiple failures.

I. INTRODUCTION

N CODING for distributed storage, one wishes to store

some data x € X* across n nodes. These nodes will
occasionally fail, and erasure coding is used to allow for the
recovery of x given only a subset of the n nodes. A common
solution is to use a Maximum-Distance Separable (MDS)
code; for example, a Reed-Solomon code. An MDS code
encodes a message x € XX into n symbols ¢ € ", in such
a way that any k symbols of ¢ determine x. By putting the
symbols ¢; of ¢ on different nodes, this gives a distributed
storage scheme which can tolerate n — k node failures.

While this level of worst-case robustness is desirable,
in practice it is much more common for only a few nodes
to fail, rather than n — k of them. To that end, it is desirable
to design codes which are simultaneously MDS and which
also admit cheap repair of a few failures. One important
notion of “cheap” is network bandwidth: the amount of data
downloaded from the surviving nodes. The naive MDS repair
scheme would involve downloading k complete symbols of 7.
Minimum storage regenerating (MSR) codes [7] improve the
situation; these are codes which maintain the MDS property,
while substantially reducing repair bandwidth for a single
failure.

Most of the work in regenerating codes has focused on
this case of a single failure, as in many systems this is the
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most common case, as documented by Rashmi et al. [19].
However, even in [19] it is not uncommon to have multi-
ple failures at once, and some systems employ lazy repair
to encourage this [13]. Motivated by this, many recent
works have considered this case of multiple failures. In this
work, we focus on the question of multiple failures for
scalar MDS codes. Our work is inspired by Reed-Solomon
codes—arguably the most commonly-used code for distributed
storage—but our framework works more broadly for any scalar
MDS code.

A. Previous Work and Our Contributions

There has been a huge amount of work on regenerating
codes, and we refer the reader to the survey [8] for an
excellent introduction. Most of the work has focused on a
single failure, but recently there has been a great deal of work
on multiple failures. Two commonly studied models are the
centralized model (which we study here), and the cooperative
model. In the centralized model, a single repair center is
responsible for the repair of all failed nodes, while in the
cooperative model the replacement nodes may cooperate but
are distinct [12], [14], [22].

We focus on the centralized model. Most of the work in
this model has focused on achieving the cut-set bound for
multiple failures [1], [15], [20], [24], [26]-[30]. This extends
with well-known cut-set bound for the single-failure case [7],
and is only achievable when the sub-packetization (that is,
the number of sub-symbols that each node stores) is reasonably
large; in particular, we (at least) require the subpacketization ¢
to be larger than n — k, otherwise the trivial lower bound of
k 4+t — 1 is larger than the cut-set bound. Most of the works
mentioned above focus on array codes, that is, codes where
the alphabet ¥ = B’ is naturally thought of as a vector space
over a finite field B, and the codes are generally B-linear.

Other recent works [4], [5], [17], [26] focused on Reed-
Solomon codes, and studied multiple failures for scalar codes,
where the alphabet ¥ = F is a finite field, and the codes are
required to be linear over F. In [26], the goal is again the
cut-set bound, and the underlying subpacketization is neces-
sarily exponentially large. In [4] and [5], the sub-packetization
is taken to be smaller, on the order of log(n). This is the
natural parameter regime for Reed-Solomon codes, and in this
regime the cut-set bound is not achievable for high-rate codes.
Our work falls into this second parameter regime. We note that
recent work [16] has studied an intermediate regime, establish-
ing a trade-off between the sub-packetization and bandwidth
when repairing multiple failures for Reed-Solomon codes.

Beginning with the work of Shanmugam et al [21],
the repair properties of scalar MDS codes has been increas-
ingly studied [2]-[6], [9], [11], [16], [21], [23], [25], [26].
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Guruswami and Wootters [11] gave a framework for studying
single-failure repair schemes for scalar MDS codes, and the
works of Dau er al. [4], [5] mentioned above adapt the single-
failure scheme from [11] to handle two or three failures
for Reed-Solomon codes, in several models, including the
centralized model.

In this work, we extend and improve the results of [4], [5].

More precisely, we make the following contributions.

1) Following the setup of [11], we give a general framework
for constructing repair schemes of scalar MDS codes for
multiple failures. Theorem 1 shows that collections of
dual codewords with certain properties naturally give rise
to repair schemes for multiple failures. This framework is
applicable to any scalar MDS code, and for any number
of failures r <n — k.

2) We instantiate Theorem 1 with two different schemes
in Theorems 2 and 3 that both give non-trivial repair
schemes for multiple failures. While the scheme in
Theorem 2 is asympototically better (as n, the length of
the code, tends to infinity), the scheme in Theorem 3 is
better for small 7.

Our schemes are the first in this parameter regime to work

for r > 3, and additionally they improve over previous

work [4], [S] when r = 2, 3. More precisely, we obtain
the following bounds:

e Theorem 3 improves and generalizes the scheme of
Dau et al. for Reed-Solomon codes in the centralized
model [5]. More precisely, in Theorem 3, for any
r < rop, for some ro = O(y/log(n)), we give schemes
for high-rate (say, 1 —¢), length n Reed-Solomon codes
which have repair bandwidth (measured in bits)

((n —r)-r— r(rT—l) (% - 1)) -log, (1/¢).

For comparison, the scheme of Dau et al. worked for
r = 2,3, and had bandwidth (n — r) - r - log,(1/¢).
Thus, for r = 2, 3 Theorem 3 improves the bandwidth
by W—Ell(l/e — 1)log,(1/¢) bits, and for larger r we
give the first non-trivial schemes for Reed-Solomon
Codes with small subpacketization.

When r = 1, this collapses to the scheme of [11],
which is optimal.

Theorem 2 improves over Theorem 3 asymptotically,
but it is not as good for small values of n. For
this theorem we again generalize the constructions
of [6], [11], but we do so in a different way and do
not go the same route as [5]. We obtain repair schemes
for length n Reed-Solomon codes of rate 1 — &, which
have repair bandwidth (in bits) at most

oo oo (55 )

When r = 1, this too collapses to the scheme of [11],
which is optimal. When 1 < r < rp for some
ro = Q(n'7?%), this bound is approximately (n —
r)log, (2r/¢), which is on the order of log,(2r/¢) bits
per surviving node. The bound becomes trivial (that is,
equal to kt) when r > rg.
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Fig. 1. The bound of Theorems 2 and 3, for rate 1/2 Reed-Solomon codes
with n = 27, for t = 8 (top) and ¢ = 20 (bottom). When ¢ is small, Theorem 3
is better (requires less bandwidth); when ¢ is large, Theorem 2 is better. Other
works [4], [5] on multiple failures in this parameter regime corrected up to
two or three failures only.

We compare our two bounds, along with the trivial bound

of bandwidth kr and the optimal bound for r = 1,

in Figure 1.
We emphasize that the codes in Theorems 2 and 3 are simply
Reed-Solomon codes that use all their evaluation points;
that is, our results imply that this one classical code can be
repaired from a growing number of failures with non-trivial
bandwidth, and the repair behavior degrades gracefully as the
number of failures increases to n — k. However, we do not
have a matching lower bound for larger r, and we suspect
that further improvements are possible.

B. Organization

In Section II we set up notation and give formal defini-
tions for the problems we consider. In Section III, we give
Theorem 1, which provides a framework for constructing
repair schemes for multiple failures for general scalar MDS
codes. In Section IV, we give Theorems 2 and 3, which
specialize Theorem 1 to Reed-Solomon codes, and gives the
results advertised above.

II. PRELIMINARIES

In this section, we set up notation, and formally introduce
the definitions that we will work with throughout the paper.

A. Notation
We use the notation [n] to mean the set of inte-
gers {1,...,n}, and for vectors v = (v1,02,...,04),
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w = (v, wy,...,w,) € F", we use (v, w) = Zie[n] 0; W;
to denote the standard inner product.

1) Matrix and Vector Notation: Unless otherwise noted,
vectors v are treated as column vectors; the i’th entry of a
vector v is denoted v;. For a vector v € F" and a set I C [n],
with I = {iy,...,i;} and i} < i < --- < iy, 07 denotes
the (column) vector (v;,, iy, ..., 0;, ). For a vector v € F™,
we will use set (v) to denote the set set (v) = {v; : i € [m]}.

For a matrix M, we use M[:,i] to refer to the i’th column
and M[i, :] to refer to the i th row of M. For sets I, J, we will
use M[I, J] to refer to the submatrix of M containing the
rows indexed by / and the columns indexed by J; and we
will extend this to M[I, :] and M[:, J] to mean the submatrix
formed by the rows in / or columns in J, respectively. Our
notation is 1-indexed.

2) Finite Field Notation: Throughout this paper, F' denotes
a finite field, and B C F denotes a subfield of F. We use F*
and B* to denote the group of units in F and B respectively,
and F*/B* to denote the quotient group. For a set of elements
S C F, we will use spang(S) to denote the linear span over
B of S:

spang(S) = [Zax -X I day € B}.

xesS

We will similarly use dimp to refer to the dimension over B.
Finally, for a field F with a subfield B, so that F" has degree ¢
over B, the field trace trp g : FF — B is defined by

i—1
trp/p(x) == Zx'Bll.
i=0
The function trp/p is a B-linear function from F to B.
We refer the reader to, for example, [10] for a primer/refresher
on finite fields.

B. Definitions

Let C C X" be a code of block length n over an alphabet X.
As described in the introduction, we imagine the n symbols of
a codeword ¢ = (c1,¢2,...,cn) € C are distributed between
n different nodes, so that node i stores the symbol c;.

1) The Exact Repair Problem: In the exact repair problem,
one node, Node i, is unavailable, and the goal is to repair it
(that is, recover ¢;) using only information from the remain-
ing nodes. Of course, any MDS code can achieve this: by
definition, all of ¢ is determined by any k symbols, and so
any k surviving nodes determine all of ¢ and in particular the
missing information c;. But, as described in the introduction,
we hope to do better than this, in terms of the amount of data
downloaded.

Formally, suppose that £ >~ B’ is a vector space over some
base field B. Thus, the contents of a node (a symbol ¢; € X)
are ¢ sub-symbols from B. When a node fails, a replacement
node or repair center can contact a surviving node, which
may do some computation and return some number—possibly
fewer than +—sub-symbols from B. The parameter ¢ is called
the sub-packetization. Formally, we define an exact repair
scheme as follows.
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Definition 1: An exact repair scheme for a code C C X" is
defined as follows. For each i € [n], there is a collection of
functions

{gij = j e\ {i}},
so that
8iji X — Bbii

for some non-negative integer b; j. and so that for all ¢ € C,
¢; is determined from {gi,j (cj):jeln]\ {i}}. The bandwidth
of this scheme (measured relative to B) is the total number of
elements of B required to repair any node:

bandwidth = max > b; .

i€[n]

JE\{i}

Remark 1 (Variants): The definition above is not the only
definition of regenerating codes, and is missing several para-
meters often considered. For example, we may also limit
number of nodes contacted, requiring the repair scheme to
only contact d out of the surviving nodes. We may also allow
for the nodes to store more elements of B than the original
data blocks to (in the lingo of regenerating codes, to move
away from the MSR setting and toward the MBR setting).
However, the goal of the current work is to study multiple
failures in scalar MDS codes.

2) Multiple Failures: In this work, we will focus on the
centralized model of multiple repair [1]. In this model, a repair
center is in charge of the repair for all the nodes. We count as
bandwidth the information downloaded by this repair center,
but not between the center and any of the replacement nodes.
Formally, we have the following definition.

Definition 2: An exact centralized repair scheme for r fail-
ures for a code C C X" is defined as follows. For each set
I C [n] of size at most r, there is a collection of functions

{grj - jeln\1},

so that
gLj X — BPLi

for some non-negative integer by j, and so that for all c € C,
and all i € 1, c; is determined from {g[,j(cj) 1 j € [n]\ I}.
The bandwidth of this scheme (measured relative to B) is the
total number of elements of B required to repair the nodes in

any set I:
2. bui
JE\{i}

Definition 2 is perhaps the simplest possible definition of the
exact repair problem for multiple failures. As per Remark 1,
we could spice up the definition of the exact repair problem
in many ways; and beyond that following the work of [5]
for Reed-Solomon codes in other models, we could include
in our measure of bandwidth some way to capture the cost
of communication between the multiple replacement nodes.
However, addressing even this simplest case is interesting and
much is unknown, so we will focus on this case for the current
work, and we hope that the insights of this work may be
extended to more complicated models.

bandwidth = max

IC[n],|I]=r
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3) Linear Repair Schemes and Scalar MDS Codes: As men-
tioned in the introduction, most of the work on regenerating
codes explicitly views the alphabet ¥ as a vector space over
some field B. However, for many codes commonly used in
distributed storage—notably Reed-Solomon codes—it is more
common to view the alphabet X as a finite field F'. Such codes
are termed “scalar” MDS codes [21]. However, if B C F is
a subfield so that the degree of F' over B is ¢, then F is in
fact a vector space of dimension ¢ over B, and so the set-up
above makes sense. We focus on this setting for the rest of
the paper: that is, C C F" is a linear subspace which has the
property that any k symbols of a codeword ¢ € C determine c.

In this setting, while more restrictive! than that of Defin-
ition 1, there is additional algebraic structure which, it turns
out, very nicely characterizes exact repair schemes for a scalar
MDS code C C F" (for a single failure) in terms of the
dual code C* := {v € F" : (c,v) = O¥c € C}. More formally,
we define a repair matrix for a symbol i € [n] as follows.

Definition 3: Let C C F" be an MDS code over F, and
suppose that B is a subfield of F, so that F has degree t
over B. Let i € [n]. A repair matrix with bandwidth b for an
index i is a matrix M € F™ ! with the following properties:

1) The columns of M are codewords in the dual code C*.

2) The elements of the i’th row M[i,:] of M have full rank

over B.

3) We have

Z dimp {spanp {set (M[},:])}} = b.
Jeln\{i}

One of the main results of [11] was that repair matrices
precisely characterize linear repair schemes. We say that a
repair scheme as in Definition 1 is /inear if the functions g; ;,
along with the function that determines c;, are all B-linear.
The work of [11] showed that a (scalar) MDS code C admits
a linear repair scheme with bandwidth b if and only if, for
all i € [n], there is a repair matrix with bandwidth at most b
for i.

III. FRAMEWORK

In this section, we extend the framework of [11] to the case
of multiple repairs. We first define an analog of repair matrices
for multiple repair.

Definition 4: Let C C F" be a MDS code over F, and
suppose that B is a subfield of F, so that F has degree t
over B. Let I C [n] have size r. A multiple-repair matrix with
bandwidth b for I is a matrix M € F"™" with the following
properties:

1) The columns of M are codewords in the dual code C*.

2) The submatrix M1, :] has full rank over B, in the sense
that for all nonzero y € B"', M[I,:]-y #0.

3) We have

Z dimp {spang {set (M[},:])}} = b.
Jjeln\I

IThe difference is that an array code with the MDS property need not be
itself a linear code over X (and indeed this may not even make sense if X is
not a field), while a scalar MDS code is by definition linear over X.
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Our main theorem is that an MDS code C admits a (linear)
repair scheme for a set I of failed nodes with bandwidth b if
there exists a multiple-repair matrix with bandwidth b for 1.

Theorem 1: Let C C F" be an MDS code, and let B C F
be a subfield so that F has degree t over B. Suppose that for
all I C [n] of size r, there is a multiple-repair matrix M €
F"™Tt with bandwidth at most b for I. Then C admits an exact
centralized repair scheme for r failures with bandwidth b.

Remark 2: In fact, the other direction of Theorem 1 is true
as well; that is, any exact linear centralized repair scheme
gives rise to a multiple-repair matrix. The proof follows a
similar outline as the proof in [11], and is formally proved as
Theorem 6 in the independent work [17].

Proof: Let I C [n] be any set of r failures, and let M €
F" " be a multiple-repair matrix with bandwidth & for I. For
each j € [n]\ I, we will show how to use M to construct the
functions g7 ; : F — Bb1i .

We will choose by ; (the number of sub-symbols returned
by g1,j) to be by ; = dimp {spanB {set (M[j, :])}}. Then by
Definition 4, Zje[n]\l brj <b.Let Ay,...,4p,; € F be a
basis for the elements of M[],:] over B. (We note that the 4;
depend on the choice of j, but we suppress this for notational
clarity). For x € F, we choose

gr,j(x) = (pyp(1 - x), trp/p(A2 - x), -, wp/B(Ap, ;- X)).

We first observe that, by Property 3 in Definition 4, the total
bandwidth of this scheme is b symbols of B. We next need
to show that this repair scheme works; that is, we need to
show that for all ¢ € C, the values {g;,j(c;) : j € [n]\ I}
determine {c; : i € I}.

By Property 1 in Definition 4, for all £ € [rt], we have
MI[:,£] € Ct. This means that for all ¢ € C, and for all
t e [rt],

0= Zci.M[i,f]

ieln

1
DMl =~ > c¢j-Mj !
jeln]\I

iel

trF/B(Zc,--M[i,f])ztrF/B - > cj-Mlj.1]
J€mNI

iel
D tpplei- MIL ) = — D wryple; - ML, CD).
il jelnI\I
We claim that the right-hand side above can be con-
structed from the values {g;;(c;) : j € [n]\I}. Indeed,

. . by .
write M[j, (] = Zl;{ aj ¢, jA; for some coefficients a; ¢ ; € B.
Then,

— > wrslcj - ML, €)

Jeln\I
bi;
=— > trpp|cic D aicjli
jeln\g i=1
br
= - Z Zai,f,jtrF/B (cj- %)
jeln\ i=1
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and the values trg/p (cj - 4;) are precisely what is returned
by g1,j(c;). Thus, given the returned information, the repair
center can reconstruct the quantities

> tpplei - Mli, €)

iel

Ve € [rt]. (1)

Finally, we invoke Property 2 in Definition 4 to show that
(1) in fact contain enough information to recover {c; : i € I}.
To see this, consider the map ¢ : F" — B’ given by

trr/p((x, M[1, 1]))
trr/p((x, M[1,2]))
px) = :
trr/g({x, M[I,rt]))
We will show that ¢ is invertible. To see this, consider the
map y : B"" — F" given by
w(y)=MII:]-y.

This map is clearly B-linear and Property 2 says that y is
injective. By counting dimensions (over B), w is surjective as
well. To conclude, we will observe that y is the adjoint of ¢,
in the sense that for all y € B"" and for all x € F", we have

(p(x), y) =trp/p ({(x, w(»)),

and hence since y is invertible then ¢ is invertible. Formally,
we compute

(p(), ) = D yj-trryp(ix, MII, j1)

Jjelrt]

D vi- ML D)
Jelrt]
=trr/B (()C, MII,:]- )7))

=trr/p ((x, w(y))) .

= Ur/B

Now, we would like to show that ¢ is injective. Let x € F" be
nonzero. Then there is some z € F” so that trp,p({x, z)) # 0.
Because w is surjective, there is some y € B’ so that
w(y) = z. But then

(p(x), y) =trp/p({x, w(y)) = trp/p({x,2)) #0,

and hence ¢ (x) # 0 as well. This shows that ¢ is injective;
again by dimension counting, we see that ¢ is also surjective
and hence invertible.

Thus, given ¢ (x), x is the solution to an invertible system of
linear equations over the base field B. Thus, we may recover x
by solving this system of linear equations. To complete the
argument, we observe that the quantities (1) in fact give
us ¢(cy), where we recall that ¢; denotes the restriction
of ¢ to I. Thus, given (1), we may invert ¢ and recover
{ci : c €I}, as desired. O

IV. CENTRALIZED REPAIR SCHEMES FOR RS CODES
WITH MULTIPLE FAILURES

In this section we specialize Theorem 1 to Reed-Solomon
codes. The Reed-Solomon Code C of dimension k over F with
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evaluation points a1, ..., a, is the set

flar)

fla2)

C= . f € F[X],deg(f) <k

F ()

The dual C*+ of any Reed-Solomon Code is a generalized
Reed-Solomon Code

21 - g(ar)
22 - g(a2)
. 1 g € FIX],deg(g) <n—ky¢, (2
An - g(0m)
where Ay,..., 1, € F are constants which depend on the
choice of ay, ..., a,. (We refer the reader to [18] for more
details).

Below, we give two constructions instantiating Theorem 1
for Reed-Solomon Codes. Our first scheme, discussed in
Section IV-A, is much better as n — oo. However, for small
values of n, our second scheme, discussed in Section IV-B,
is quantitatively better, and so we include it as it may be of
more practical interest.

Both of our schemes generalize the construction
of [6] and [11] for a single failure. We briefly review this
construction below, as we will need it for our constructions.
The scheme of [11] was as follows:

Proposition 1 [11]: Let n = |F|, and let C C F" be the
Reed-Solomon code of dimension k = n — n/|B|, which uses
all evaluation points F = {a1,...,0,}. Let 0 € F, and let
C1,---5C be a basis for F over B. Then the matrix M =
M@, 1, ..., &) € F™ with

_ 0 tr(lw(aj —ai))

MIj,w] = =" @)
J i

is a repair matrix for index i with bandwith n — 1 symbols
of B.
To see that this is indeed a valid repair matrix for i, observe
that the polynomial
0-trp/B(lw(X — ;)
X —o;
5 (co+ P X — )P 4

t—1 -1
o BT (X — gy B —1)

hw (X)

is indeed a polynomial of degree less than n —k = n/|B| =
|B|”1, and so the column MT[:, j] is an element of ct.
Moreover, we have h,(a;) = 0lw, and so Mli,:] =
(0¢1,002, . .., 0¢y) is full rank. Finally, for all j # i,

hw(aj)e - B,

aj — O
and hence
spang (set (M[}, :1)) = spang {hy(a;) : w € [1]}

has dimension 1 over B, and so the bandwidth of the repair
matrix is n — 1.
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In [6], it was observed that the trace function above can
be replaced with an arbitrary linearized polynomial. More
precisely, let W € F be a subspace of dimension s over B.
The subspace polynomial defined by W is

LyX) =[] X - ).
aeW
It is well-known that Ly is a B-linear map from F to F,
of the form

Lw(X) =D ¢;xBV 4)
j=0

for coefficients cp,...,cs € F. In particular, there is no
constant term; X divides Lw (X). Moreover, the coefficient cg
is nonzero, as

0= Tl #= T[] ##0

aeW peW\{a} LeW\{0}

Since the kernel of Ly is W, the image of Ly is a subspace
of dimension ¢ — s over B.

With this background in place, we proceed to our
constructions.

A. Main Construction

Our main construction for Reed-Solomon codes generalizes
the construction of [6] and [11]. In particular, we will choose
rt different low-degree polynomials of a form similar to (3);
we follow [6] and replace the trace function with a linearized
polynomial. The key is to choose an appropriate modification
so that the requirements of Theorem 1 hold. We will see how
to do this below, but first we state our main result.

Theorem 2: Let B C F be a subfield, and let C C F" be a
Reed-Solomon code of dimension k over F. Choose 1 <r <
n — k. Then C admits an exact centralized repair scheme for
r failures with bandwidth b at most

) , n—k+r —1
) (’ B L“’gB (ﬁ)J) - O

Remark 3 (Quantitative Interpretation): Theorem 2 works
for any value of r between 1 and n — k, is optimal for r = 1,
and gives non-trivial bounds for r < n®, where R = k/n
is the rate of the code. More precisely, using the fact that
t = log g (n) and dropping the minimum, we see that the
right hand side of (5) is at most

| 2r — 1 1
(n—r)o(0g|B|((1_R)+(r—1)/n)+ )

When r <« n®, this is approximately logp (&—’R) subsymbols
per surviving node; thus the number of bits that each node has
to send increases with both R and r, as expected.

Finally, we see that for some value ro = Q(n®), the right
hand side of (5) becomes equal to kt and thus trivial. We do
not know whether this limit r = n® is a fundamental limit or
an artifact of our approach.

The behavior of (5) is shown in Figure 1.

Finally, we address the presence of the minimum in (5). The
reason for the minimum is that without it, the expression 5
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bandwidth t=10, Rate=1/2

8000 '
7000 F 0 rm-——al 1

6000 i,

—— Upper bound of Theorem 2

- - - Upper bound of Theorem 2, without the minimum
Trivial upper bound (kt)

Lower bound for r=1

L L L L L L I
) 20 40 60 80 100

Fig. 2. The bound (5) from Theorem 2, for + = 10 and R = 1/2, along
with the same expression with the minimum ommited. Both bounds become
trivial around r = 10 when the expression without the minimum crosses the
trivial upper bound k¢. The dashed line (without the minimum) will eventually
decrease to meet the trivial bound again at r = 512.

would not be monotonically increasing in r, and so the bound
given would be obviously weak for some r. To illustrate this
non-monotonicity, we plot (5) with and without the minimum
in Figure 2.

Proof of Theorem 2: Let s be a parameter to be chosen
later. Let W C F be a subspace of dimension s over B, and
let Ly be the subspace polynomial

LyX) =[] X - .
aeW

As above, let I C [n] be the set of failed nodes, so |I| = r.
Let Z ={¢1,...,() be a basis for F over B. Define

Fi(X) =[x —an,
iel
and for p € [r], define

Lw (¢ Fr(X)-xP7)

0=

This is a generalization of the construction in [6] and [11] to
multiple failures: if » = 1 and a; is the only failed node, then
the above is

Lw (- (X —ay))
X —ar)

P{,I(X) =

exactly as in [6].

Now, we construct our repair matrix M € F"*'" as follows.
We index the rows of M by j € [n], and the columns by
pairs (¢, i) for ¢ € Z and p € [r]. Then we set

MLj, (& p)] == 4 Py p(aj),

where 4 is as in (2).

We must show that M satisfies the conditions of Theorem 1.
In particular, we will show that M has the form shown
in Figure 3, which as we will see below implies that Theorem 1
applies. First, we compute the bandwidth of M.



MARDIA et al.: REPAIRING MULTIPLE FAILURES FOR SCALAR MDS CODES

2667

Ay -co-CT Xij -0y - CT )‘il'co'o‘gl'fr
MII,:] Xiy -co-CT Xig - €0+ @iy - CT Nig - co -0, - (T
)\ig'CO'C_’T >\i3_co_ai3,5]“ /\i3'cola?3.5r
€ Xjy - (Fr(ay,)) ™" - Im(Lw)
€ Njy - (Fi(,)) ™" - Im(Lwy)
M(I¢,:]
€ Njy - (Fr(aj, 4))~ ' Im(Lw)
Fig. 3. The matrix M constructed in the proof of Theorem 2 for r = 3, where we write I = {iy, ip,i3}, and [n]\ I = {ji,..., ju—3}. Here, cq is the

coefficient from (4), and Z =(1,--

Claim 1: The bandwidth of M is at most (n — r)(t — s).
Proof: For j & I, the set of symbols set (M[j,:]) that
appears in row j of M is precisely
set (M[J, 1)
= {4 Peplaj) : ¢ e Z, pelrl)

Lw(¢ - Fi(a))-of™)
_{i] F[(O!]) Cezape[r]
A
c Im(Lw),

Fr(aj)
which is a subspace of dimension ¢t —s. Since there are n — r
such j’s by definition the bandwidth of M is bounded by

(n—r)t—ys),
as desired. O
We next show that M[I, :] has full rank, in the sense that

MI[1,:]y # 0 for all nonzero y € B"'.

Claim 2: M([1,:] has full rank.
Proof: Using (4), we write
Py (- Fr(X)-XP7h
Fr(X)
_ B m
S ocm (¢ Fr(x) - xr=1)P!
Fr(X)

S
= Zcm 1By (X)) B x (=B
m=0

P{,p(X) ==

and hence for i € I, all terms vanish except the m = 0 term,
and we have
-1
Prp(0;) =co- ¢ - af .

To show that M[I,:] has full rank, by definition we must
show that for all nonzero y € B", M[I,:]y # 0. So let y €
B’_’ \ {0}, and write y = (y(U, y@ ... y®)) where each
y(’) € B'. By the above characterization, we have

(Mli, 1, y) =20 3 coaf T {E ),
p=1

., (r) is a vector consisting of the elements of the basis Z.

where E = ({1,...,(1) € F'. Since the ¢; form a basis of
F over B and since y # 0, at least one of the coefficients
(,y(p)> is nonzero. Thus, (M[i,:],y) = 4; - g(a;), where

g(X) = 22:1 o <E, x(‘”)>Xf”_1 is some nonzero polynomial
of degree at most r — 1. This means that M[I,:] -y # 0,
or else this polynomial g(X) would have at least r roots, one
for each i € I. O

Finally, we must choose s. We need for the columns of M
to be elements of C*, which by (2) is the same as requiring the
polynomials Py ,(X) to have degree strictly less than n — k.
That is, we require

IBI* - 2r—1)—r<n—k—1,

which is satisfied by the choice of

n—k+r—1
s = log|B| ﬁ .

Plugging this choice of s into the bandwidth bound of Claim 1
coupled with Observation 1 below finishes the proof of
Theorem 2.

Observation 1: Given r' > r if C admits an exact central-
ized repair scheme for r' failures with bandwidth b then it
also admits an exact centralized repair scheme for r failures
with bandwidth b.

O

B. Alternate Construction for Small Block Sizes

In this section we give another generalization of the one-
failure scheme from Proposition 1. This scheme is worse
asymptotically, but has better performance for small n, so it
may be of practical value. The basic idea directly gener-
alizes (and improves upon) that of [4]; the multiple-repair
matrix M is formed by concatenating r separate repair matri-
ces Mj,..., M, from Proposition 1. In fact, Theorem 1
immediately implies that this is a nontrivial repair scheme,
but we can do better by choosing multipliers d1,...,d, € F,
and using the repair matrix formed by concatenating
o My,...,o,M,. We will show how to choose the
multipliers Jy,...,d, so that (a) the rank of M[I,:] is
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not affected, but (b) the rank of the other rows M][j, :] for
Jj & I is reduced.

We will prove the following theorem.

Theorem 3: Let n = |F|, and let B C F be a subfield
so that F has degree t over B. Let C C F" be the Reed-
Solomon code of dimension k = n — n/|B| with evaluation
points F = {ay,...,an}. Choose r > 2 so that

‘> (;) +log (- (r + (;)(IBI 1) (Bl = 1)+ 1),

Then for all 1 C [n] of size r, there is a matrix M € F"*"!
so that M is a multiple repair matrix for I, with bandwidth

bfm—¢yr—um—r(9.

Remark 4 (Bandwidth Guarantee): Observe that the naive
scheme (which contacts any k remaining nodes) has band-
width kt. Thus, the guarantee thatb < (n—r)-r — (;)(|B| -1
improves this. Moreover, when r = 1, this collapses to the
result of [11] that b < n— 1. For r = 2,3, this improves over
the result b < (n —r) - r of [5]. A comparison of Theorem 3
with Theorem 2 is shown in Figure 1.

Remark 5 (Large r): Notice that Theorem 3 allows r to
grow slightly with n. However, since we have t = logg (n)
since n = |F|, the requirement on t implies that, for the result
to hold, we need

n r
logB(r S+ (;)(|B| —1)-(Bl-1)+ l) > (2)
or r < /log(n).

The rest of this section is devoted to the proof of Theorem 3.
We begin with a lemma which shows that, if the multipliers
J1,...,0, are picked appropriately, then the matrix formed
by concatenating r copies of the single-repair matrices of
Proposition 1 form a good multiple-repair matrix.

Lemma 1: Let n = |F|, and let B C F be a subfield so
that F has degree t over B. Let C C F" be the Reed-Solomon
code of dimension k = n — n/|B| with evaluation points
F =Ao,...,a,}. Suppose2 that I = [r] and the evaluation

points corresponding to the failed nodes are {o, ..., a,}. Let
Cls .-G be any basis for F over B. Choose 0y, ..., 0, so
that for all j = 1,...,r, for all £ > j and for all s > j,
we have
o Og—aj
ung(ﬁ's f)za ©)
5j oj —ar
Let
G & (r
Mi=M(6,=,=,. 2
l ( U5 5i)
be as in Proposition 1. Then the matrix M € F™"™" given by
M = [M\|Mz]- - [M/] (7

is a multiple-repair matrix for I.
Notice that Lemma 1 does not make any claims about the
bandwidth of this scheme; we will show below how to choose

2Since we will never use anything about the ordering of the evaluation
points, this assumption is without loss of generality.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 5, MAY 2019

the J; so that (6) holds, and so that the bandwidth is also small.
Because the columns of M are columns of the M; and we have
already established that these are dual codewords, the only
thing left to prove is that Property 2 of Definition 4 holds;
that is, that the r x rt matrix M[/, :] has a trivial right kernel
over B. We will prove this in Section IV-B1, but first, we will
show how to use Lemma 1 in order to prove Theorem 3.

Before we begin the proof of Theorem 3, we include an
overview. The idea is to choose the paramaters Ji, ..., o,
successively so that Lemma 1 applies, and keep track of the
bandwidth of the resulting repair matrix.

Note that this approach—even without keeping track of the
bandwidth—would immediately imply that M is a multiple-
repair matrix for / with bandwidth at most (n —r) - r; indeed,
for all i € [n]\ I,

dimp {spanp {set (M[i,:])}} <r,

because set (M[i, :]) = UZ;:] set (M¢[i, :]), and for each ¢ we
have

dimp {spanB {set (M,[i, :])}} <1.

Then, Theorem 1 implies that this gives a repair scheme for /
with bandwidth b < (n — r)r.

The approach above would recover the results of [5] for r =
2,3 and would generalize them to all ». However, in fact this
calculation may be wasteful, and the idea of Theorem 3 is that
by choosing the o; carefully we can improve the bandwidth.
More precisely, we will try to choose J; so that the spans
spanp {set (M[i, :])} collide, meaning that the dimension of
the union is less than the sum of the dimensions.

We first show, in Claim 3, that for any choices of
d1, ..., 0¢—1, there are many choices of J; that will satisfy (6).
Thus, at each step £ we have many choices of J; so that
Lemma 1 will apply. Next, we need to argue that we can also
choose the d; so that there are lots of collisions, in the sense
described above. We do this by induction, choosing the J
sequentially and maintaining the inductive hypothesis that the
number of positions i € [n]\ / that are already “collided on”
is precisely (g)(|B| — 1); that is, there are that many indices i
so that M[i, j] and M[i, m] are linearly dependent over B, for
some j,m < {. Then at the end of the induction, we will use
a counting argument to convert the number of collisions into
a bound on the bandwidth.

Proof of Theorem 3: Suppose without loss of generality
that / = [r] and the evaluation points corresponding to the
set of failed nodes are {ay,...,a,}. Let {1,..., be any
basis of F over B. We will choose the paramaters Jy, ..., o,
successively so that Lemma 1 applies, and keep track of the
bandwidth of the resulting repair matrix. We begin with a
claim that will help us make sure that Lemma 1 applies.

Claim 3: Let ¢ < r and suppose that 01, ...,0¢—1 have
been chosen. Then for at least |B (= (=D rHE=D/2_ 1 chojces
of 6 € F*, setting o < 0 satisfies

0 oy —aj
t °. =0
e (5,- oj —af)

forall j <€ andalls > j.
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Proof: Foreach j < ¢ and s > j, the above gives a linear
requirement on J;. There are at most

t—1
Dr=p==1-r

J=1

(-1
)

such pairs (j,s), so there are that many linear constraints.
Since F' is a vector space over B of dimension ¢, this proves
the claim. U

We briefly recall some algebra. For y € F*, the (multiplica-
tive) coset y - B* is the set

y-B*={y b:beB*}.

We say that y =g« y’ if y € y'B*, and it is not hard to
see that =p+ is an equivalence relation that partitions F* into
|F*|/|B*| cosets of size |B*|. The group of all such cosets
form the quotient group F*/B*. The following observations
follow directly from these definitions, as well as the definition
of the matrix M,.

Observation 2: Suppose that set (M[i, :]) C y1 B*Uy, B*U
- Uy.B* for c different cosets y; B*. Then

dimp {spanB {set (M[i, :])}} <ec.

Observation 3: We have

2
span {set (My[i, :1)} ( ‘ ) B*U(0}.
aj —o¢
Say that (j, ) collide at i if
0 —aj ai —ar
That is, if (J, 0) collide at I then

dimp {spanB {Mg[i,j],Mg[i,f]}} = 1 rather than 2 and
this decreases the bandwidth of downloads from node i
by 1. Hence collisions are good for us and our aim is to
choose d1, d, ..., d SO as to maximize the number of useful
collisions.

Notice that (j, £) collide at i if and only if

o — o
5g€( l f)a,B*.
(Z,‘—(Zj

Se:={ien]\I:3j <m<{s.t (j,m) collide at i}.

Define

Consider choosing d, ..., J, one at a time. Choose 6| = 1,
and we will proceed by induction on £, assuming that we have
chosen dy, ..., d¢, with the inductive hypothesis that

Se| = (g) ~(1B] = D). ®)

Notice that the base case when £ = 1 is trivially satisfied
with J; = 1, because S; = . Now suppose that the inductive
hypothesis (8) holds, and consider choosing d,4+1. For j <
¢ + 1, define

ij’+1 :={i e[n]: (£+1, ) collide at i}.

Notice that Tj“'1 depends on the choice of dpyy, as the
definition of colliding depends on J¢4 1.

2669

Claim 4: Fix j < (+1. For all but at mostr+(§)'(|B|—1)
cosets y B*, the following holds: If d¢+1 € y B¥, then
(a) IT{ ) =|B| -1, and
(b) Tj‘JH NI US) = 0.
Proof: Say y is good if

a; — o
(71 ”1)51- ¢yB* VielUS.
0i — Oj

That is, y is good if and only if choosing d,+1 € y B* would
mean that (£ 4 1, j) do not collide at any i € I U S;. We first
claim that there are at most |/ U S¢| values of y € F that are
not good. This follows from the fact that the map & : z —

[ —a
(=)
fact that |[IUSe| = |I|+1|S¢| = r + (g) -(|B| —1), we conclude
that there are at most r + (g) -(|B| — 1) choices of y that are
not good.

Suppose that y is good, and consider any choice of d;41 €
y B*. Since h as defined above is a bijection, there are |B*| =
|B| — 1 elements a; € F so that

a; — o
(17“_1) dj € y B* = 11 B™,
0 —aj

d; is a bijection from F to F. Given this, and the

and so (¢ + 1, j) collide at i, and by definition Tf“ is this
set. This establishes (a). Now (b) follows from the definition
of good. This completes the proof of Claim 4. O

Claim 4 is for a fixed j, and summing over all j < ¢,
it implies that for all but at most £+ (r+ (3) (|1 B| — 1)) - (I1B| — 1)
choices of d741, we have that for all j = 1,...,¢, the set
Tj“'1 satisfies the conclusions (a) and (b) of Claim 4. We next
claim that for such a choice of d/41, the sets T;H and Tn‘;“
are disjoint for j <m <.

Claim 5: Suppose that ¢+ is chosen so that the conclu-
sion (b) of Claim 4 holds for all j = 1,...,¢. Then for all
j<m=< TN =0,

Proof: Suppose towards a contradiction that i € ij+1 N
T!+1. Then by the definition of Tf“ and TS, (€ + 1, j)
and (€ + 1, m) collide at i, which means that

5 Om

Oi — Oj a; — Oy

Br— Ol g _ B*.

o — 0y

This implies that j and m collide at i. However, since
j,m < {, this implies that i € Sy. But this contradicts the
conclusion (b) of Claim 4, which states that S, N ij+1 =.
O
Now we finish the proof of Theorem 3. Suppose that dpy
is chosen so that the conclusions (a) and (b) of Claim 4 as
well as the conditions of (6) hold for j = 1,...,{. Because
the conditions of (6) hold, Lemma 1 holds, and hence our
construction is indeed a multiple repair matrix.
By definition we have

Sep1=SeurfTurittu. ot/

and by conclusion (b) of Claim 4 and by Claim 5, each of
these sets of disjoint. By induction, |S;| = (5)(|B| — 1) and
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by the conclusion (a) of Claim 4 we have |ij+1| =|B|—1
for all j < ¢. Thus,

14
ISe1l = 1Sel + D 1T/
j=1

= (i)ﬂBl —D+L(B[ -1

_ (‘fl)um—l).

This establishes the inductive hypothesis for ¢ + 1.

Now this means that if for all £ < r, we can choose a d¢+|
so that the conclusions (a) and (b) of Claim 4 as well as the
conditions of (6) hold, then by choosing dy, .. ., d, in this way,
we can conclude by induction that

1S/1 = (;)(|B| - 1.

Since S, is the set of rows i that have any collisions, each
i € S, contributes at most » — 1 to the bandwidth, while
i €[n]\ ({US,) may contribute . Thus, with this choice of
01, ..., 0r, the bandwidth of the resulting scheme is at most

(5)azi=ve =1+ (n=r=(})am1-1) -

=(n_r).r_(;)(|3|_1).

To ensure that for all £ < r we can indeed choose a d¢41
so that the conclusions (a) and (b) of Claim 4 as well as the
conditions of (6) hold, we need, also using Claim 3, that

1BI-Q) 1> . (r+ (;)(IBl - 1)) (Bl -1

or equivalently that 7 is larger than

(;) +log; (r - (r - (;)(IBI - 1)) (1B - 1)+ 1),

which is exactly the condition in the statement of the
Theorem 3. This completes the proof of Theorem 3. O]

1) Proof of Lemma 1: In this Section, we prove Lemma 1.
Because we have made no claims about the bandwidth,
we only need to show that the sub-matrix M[I,:] has full
rank, in the sense that for all nonzero y € B"', M[I, :]y # 0.
To save on notation, for the rest of this proof, let A € F"*'*
denote the matrix M[I, :].

As in the proof of Theorem 1, it suffices to show that the
B-linear map ¢4 : F" — B’ given by

trr/p((x, A[:, 11))
trr/p((x, A[:, 2]))

palx) =

trr/p((x, A[:, rt]))

is invertible, where trz/ p is applied coordinate-wise. Our proof
basically follows from analyzing the LU-decomposition of
this matrix A. That is, we will give an algorithm, consisting of
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row operations, which preserve the invertibility of ¢, and after
which M will become a matrix of the form

4: ¥ k... %
0 (ﬁT * e %

M=0 0 T - x|, )
0 0 0 ... T

where 0 € F' denotes the vector of ¢ zeros and E =
1,82, -5 ()- Recall that ¢q, ..., is the basis chosen in
the statement of the lemma. The matrix M’ as in (9) clearly
has the desired property (@, is invertible), and so this will
finish the proof.

Remark 6 (Picking a Basis): In what follows, we just go
through the LU decomposition of the matrix A, and show that
the assumption (6) implies that the result has the form (9).
Unfortunately, this familiar argument may seem less familiar
because we have not picked a basis for F over B, and
are instead working with the trace functional. If the reader
prefers, they may imagine picking a basis for F over B, and
working with square rt X rt matrices over B. However, for
this exposition we choose to leave things as they are to avoid
the additional level of subscripts that picking a basis would
require.

Given y € F, define the map f, : F — F by

fr(x) =y -trp/B (3) -

Then extend f, to f, : F"" — F’! by acting coordinate-wise.

Observation 4: Fix any i,j € [r]. Let A € F"™", and
suppose that A’ is obtained from A by adding f, (Ali,:]) to
Alj,:] so

A'lj, 1= ALj, D+ f (AL, :1)

and for € # j, we have A'[t,:] = A[{,:]. Then
{pa(x) : x € F'} = {pa(x) : x € F"}. In particular, p4 is
invertible if and only if ¢4 is invertible. (As before, above
trp g is applied coordinatewise).

Proof: Given x € F", consider x" given by (x); = x; +
trrp/g(yx;)/y. Then

Ali, 1]
)

tre/ g ((x, A[;, 1) +xj -y - trr/p(
pa(x) = :
trp/p((x, AL, rt]) + x5 -y ‘”T/B(%))

= pa(x)

Since the map from x to x’ is injective as well as surjective,
we have {pa(x) : x € F'} ={pa(x) : x € F'}. O
Now consider Algorithm 1.
Because of Observation 4, we see that ¢ () is invertible if
and only if ¢4 is invertible. Moreover, we claim that, if (6)
is met, then A®) has the form (9). To see this we proceed
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Algorithm 1 Algorithm LU(A)
A 4
for j=1,...,r —1:

fors=j+1,...,r:

AW[s, ] <

AYILs, T+ f5; jae—ap AUV, D)
end for

end for
return A,

by induction. Write A = [A{|A2]|---|A,], where A; € F™',
and similarly write

Then the inductive hypothesis is that

1) Foralli < j, Alm is equal to A; on the first i rows.

2) Foralli < j, A;j) isequaltoOonrowsi+1,i+2,...,r.
That is, the first j blocks of AU have zeros in the form of 9),
and all nonzero entries are the same as in A. The base case is
immediate for j = 0, with the notational assumption that any
statement about M[{, c] for ¢ < 0 is vacuously true.

Now assuming that this holds for j —1, we establish it for j.
First notice that, because of the inductive hypothesis, the first
Jj — 1 blocks do not change. For block j, and a row s > j,
we update

AV, 7 < AY Vs D+ £ pama)y(AY VL)
= Ajls,: 1+ /5, /(as—aj (AjLJ, D)
again using the inductive hypothesis. By construction, for

all w e [¢],

Ajls,w] = —

S5
r]aj trp(Cw - (a5 — aj)/0)).

Then the update is
Jo/as—ap) (AL, w])

5] Os —Qj
p— rp/g( 5]_ jlj, w]
9j
= —— trp/(lw - (a5 — @j)/5})
Os — Oj
= Ajls, w],

and so Ajls, w] = fs;/(a,—a;)(Ajlj, w]) = 0 for all s > j.
Thus, this operation indeed zeros out all but the first j rows
of Aj.

Next, consider a block £ > j and a row s > j. We need to
show that AE;’ _1)[5, w] does not change in the j’th iteration,
namely that the update is zero. Now we have, by induction
and by definition, respectively, that

AYDL, wl= A, w]=

i
A computation similar to the one above establishes that
fé//(axfaj)(Af[j; w]) is equal to

9j t5/g Cwlaj —ar) s O o5 —a;
o5 — 0 / or / 5j aj—oar)’

which is 0 by (6).

; trp/p(Cw - (0j —ag)/dr).
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This establishes the other part of the inductive hypothesis
(that all other entries remain the same). The only thing
remaining is to show that A") has diagonal entries given by ¢
as in 9. To see this, observe that by our inductive hypothesis
(which we have proved), the diagonal of A is identical
to the diagonal of A, which has the desired property by
construction. This completes the proof.

V. CONCLUSION

In this work, we have extended the framework of [11] to
handle multiple failures, and instantiated this framework in two
ways to give improved results for Reed-Solomon codes with
multiple failures. However, several open problems remain.
We highlight a few promising directions below.

1) We have no reason to believe that the bound in Theorem 2
is asymptotically tight. We leave it as an open question
to either obtain an improved construction or a matching
lower bound. As a concrete question, we may ask if it is
possible to repair full-length Reed-Solomon codes from
r = w(n®) failures with nontrivial bandwidth.

2) Our work is restricted to the centralized model for repair
of multiple nodes. On the other hand, the work of [5]
obtains results for Reed-Solomon codes for r = 2,3
in other models where the communication between the
nodes is taken into account when measuring the band-
width; our framework does not apply there. Could our
techniques be adapted to apply to this model as well?

3) Finally, we have instantiated our framework for full-
length RS codes, but it may be interesting in other
parameter regimes as well. Recently, Ye and Barg have
given a construction of a Reed-Solomon code which
achieves the cut-set bound for multiple failures [26];
however, the subpacketization is (necessarily) extremely
large. Can we instantiate our framework to obtain RS
codes (or other scalar MDS codes) with repair bandwidth
that improves over our scheme, but which still have small
(sublinear in n) subpacketization?

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for helpful comments and suggestions.

REFERENCES

[1] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and
C. Suh, “Asymptotic interference alignment for optimal repair of MDS
codes in distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp- 2974-2987, May 2013.

[2] A. Chowdhury and A. Vardy, “Improved schemes for asymptotically
optimal repair of MDS codes,” in Proc. 55th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Oct. 2017, pp. 950-957.

[3] H. Dau, 1. Duursma, and H. Chu. (2018). “On the I/O costs of
some repair schemes for full-length Reed-Solomon codes.” [Online].
Available: https://arxiv.org/abs/1801.05101

[4] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic. (2017). “Repair-
ing Reed-Solomon codes with two erasures.” [Online]. Available:
https://arxiv.org/abs/1701.07118

[5] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-
Solomon codes with multiple erasures,” IEEE Trans. Inf. Theory, vol. 64,
no. 10, pp. 6567-6582, Oct. 2018.

[6] H. Dau and O. Milenkovic. (2017). “Optimal repair schemes for
some families of full-length Reed-Solomon codes.” [Online]. Available:
https://arxiv.org/abs/1701.04120



2672

[7]

[8]

[9]

[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 45394551, Sep. 2010.

A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3,
pp. 476489, Mar. 2011.

I. Duursma and H. Dau, “Low bandwidth repair of the RS(10,4) Reed-
Solomon code,” in Proc. Inf. Theory Appl. Workshop (ITA), Feb. 2017,
pp. 1-10.

J. B. Fraleigh, A First Course in Abstract Algebra. Bengaluru, India:
Pearson, 2003.

V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5684-5698, Sep. 2017.
A.-M. Kermarrec, N. L. Scouarnec, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Proc. Int.
Symp. Netw. Coding (NetCod), Jul. 2011, pp. 1-6.

R. B. Kiran, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: System support for automated availability management,” in Proc.
NSDI, 2004, p. 25.

J. Li and B. Li, “Cooperative repair with minimum-storage regenerating
codes for distributed storage,” in Proc. IEEE INFOCOM, Apr. 2014,
pp. 316-324.

R. Li, J. Lin, and P. P. C. Lee, “Enabling concurrent failure recovery
for regenerating-coding-based storage systems: From theory to practice,”
IEEE Trans. Comput., vol. 64, no. 7, pp. 1898-1911, Jul. 2015.

W. Li, Z. Wang, and H. Jafarkhani, “A tradeoff between the sub-
packetization size and the repair bandwidth for Reed-Solomon code,” in
Proc. 55th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Oct. 2017, pp. 942-949.

W. Li, Z. Wang, and H. Jafarkhani. (2018). “A tradeoff between the sub-
packetization size and the repair bandwidth for Reed-Solomon codes.”
[Online]. Available: https://arxiv.org/abs/1806.00496

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting
Codes. Amsterdam, The Netherlands: Elsevier, 1977.

K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” in Proc. HotStorage, 2013, pp. 1-67.

A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. (2016). “Central-
ized repair of multiple node failures with applications to communi-
cation efficient secret sharing.” [Online]. Available: https://arxiv.org/
abs/1603.04822

K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire,
“A repair framework for scalar MDS codes,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 998-1007, May 2014.

K. W. Shum and Y. Hu, “Cooperative regenerating codes,” IEEE Trans.
Inf. Theory, vol. 59, no. 11, pp. 7229-7258, Nov. 2013.

I. Tamo, M. Ye, and A. Barg. (2017). “Optimal repair of Reed-Solomon
codes: Achieving the cut-set bound.” [Online]. Available: https://arxiv.
org/abs/1706.00112

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 5, MAY 2019

[24] Z. Wang, 1. Tamo, and J. Bruck, “Optimal rebuilding of multiple erasures
in MDS codes,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1084-1101,
Feb. 2017.

M. Ye and A. Barg, “Explicit constructions of MDS array codes and
RS codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2016, pp. 1202-1206.

M. Ye and A. Barg. (2017). “Repairing Reed-Solomon codes: Univer-
sally achieving the cut-set bound for any number of erasures.” [Online].
Available: https://arxiv.org/abs/1710.07216

M. Ye and A. Barg. (2018). “Optimal MDS codes for cooperative repair.”
[Online]. Available: https://arxiv.org/abs/1801.09665

M. Zorgui and Z. Wang, “Centralized multi-node repair in distributed
storage,” in Proc. 54th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2016, pp. 617-624.

M. Zorgui and Z. Wang, “Centralized multi-node repair for minimum
storage regenerating codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2213-2217.

M. Zorgui and Z. Wang. (2017). “Centralized multi-node repair regen-
erating codes.” [Online]. Available: https://arxiv.org/abs/1706.05431

[25]

[26]

[27]

(28]

[29]

(30]

Jay Mardia is a PhD student in Electrical Engineering at Stanford University,
where he is a Stanford Graduate Fellow for the years 2017-2020. He received
a B. Tech in Electrical Engineering from the Indian Institute of Technology—
Bombay in 2017, where he also minored in math.

Burak Bartan is a PhD student at Electrical Engineering Department at
Stanford University. He received an MS degree in electrical engineering from
Stanford University in 2018 and a BS degree in electrical and electronics
engineering from Bilkent University in 2016. During his undergraduate studies
at Bilkent University, he worked on applying fractional Fourier, and linear
canonical transforms to image compression and discrete linear canonical
transforms. His current academic interests include machine learning, and
coding theory.

Mary Wootters is an assistant professor of Computer Science and Electrical
Engineering at Stanford University. She received a PhD in mathematics from
the University of Michigan in 2014, and a BA in math and computer science
from Swarthmore College in 2008; she was an NSF postdoctoral fellow
at Carnegie Mellon University from 2014 to 2016. Her research interests
include randomized algorithms, coding theory, dimension reduction, matrix
completion, and sparse signal processing.



