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Abstract (250 words)

Atmospheric oxidation of volatile organic compounds, such as isoprene, and subsequent
condensation or heterogeneous reactions lead to the formation of secondary organic aerosol
(SOA), a ubiquitous component of submicron aerosol. Liquid-liquid phase-separated organic-
inorganic aerosol particles have been observed in the laboratory and field; however, the impacts
of multiphase reactions on aerosol viscosity are not well understood for phase-separated aerosol
particles. In this study, phase-separated aerosol particles were reacted with gaseous isoprene
epoxydiol (IEPOX), an abundant isoprene oxidation product. Acidic sulfate particles (H,SO,4 +
(NH4),SO, at pH = 1.4) were coated with laboratory-generated biogenic SOA (a-pinene + O3) and
anthropogenic SOA (toluene + OH), resulting in a core-shell morphology. After reaction with
IEPOX, the phase-separated aerosol particles no longer displayed characteristics of a liquid core.
Instead, they became irregularly shaped, taller after impaction onto substrates, and had decreased
spreading ratios for both types of SOA, implying an increase in particle viscosity. As the SOA
from a-pinene and toluene was already viscous, this is indicative of a change in phase state for the
core from liquid to viscous state. An example reaction that may be facilitating this phase change
is IEPOX reaction with inorganic sulfate to produce organosulfates, especially after IEPOX
diffuses through the organic coating. The modification of the aerosol physicochemical properties
suggests that phase state is dynamic over the atmospheric lifetime of SOA-containing particles,
with multiphase chemistry between aerosol particles and gaseous species leading to more viscous

aerosol after uptake of isoprene oxidation products (e.g. IEPOX).
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Introduction

Climate-relevant aerosol properties, such as the ability to scatter or absorb solar radiation
and alter cloud or precipitation patterns by acting as cloud condensation nuclei (CCN) and ice
nuclei (IN),'-3 are dependent on individual particle physiochemical properties, including chemical
composition, aerosol phase, and morphology.!>*> These properties are dynamic as the diurnal
cycle of relative humidity (RH) modifies the water content of aerosols and, thus, alters the physical
state of particles, including particle phase state and viscosity. Changes in RH and particle
composition can both lead to transitions of particle phase states,’-!> which range from liquid and
semi-solid to glassy and crystalline state, and can include the separation of phases within individual
aerosol particles.!>!4 Phase-separated particles typically form when inorganic and organic phases
are no longer miscible at higher molar concentrations at lower RH.!! Inorganic particles,
particularly sulfate-containing particles, can react with gas-phase organic species generated by
gas-phase oxidation of biogenic and anthropogenic volatile organic compounds (VOCs).!:11:15.16
For instance, isoprene and o-pinene are major VOCs emitted from vegetation,!”!8 while toluene
is a ubiquitous anthropogenic VOC.!" Oxidation products of VOCs condensing onto existing
inorganic aerosols leads to the formation of secondary organic aerosol (SOA), accounting for more
than 50% of the total organic aerosol mass globally.202!

Isoprene, the most abundant non-methane hydrocarbon emitted into the atmosphere (~600
Tg y!),'7-*2 undergoes oxidation by hydroxyl radicals to form large quantities of gaseous isoprene
epoxydiols (IEPOX) under low-NO, conditions.?3?* The increased molecular functionality and
associated decrease in vapor pressure that occurs from the oxidation of isoprene (0.62 atm at 293
K) to IEPOX (3.4 x 10°¢ atm at 293 K) facilitates uptake into the particle phase via multi-phase

chemical reactions,!%2025-27 particularly under acidic conditions.?®?° TEPOX-derived SOA has
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been shown to contribute up to 40% of submicron organic aerosol mass in isoprene-rich
environments,3%3! contributing to changes in aerosol physiochemical properties.!'3-*> However, to
date, few studies have analyzed changes in SOA physiochemical properties (particle morphology,
viscosity, and phase) after IEPOX uptake. Individual particle measurements are necessary to
provide better understanding of the effect of IEPOX uptake on particle morphology and phase,
which impact how particles participate in light scattering and climate-altering processes.33-34

Phase separation within atmospheric aerosol particles has a wide range of atmospheric
implications, including altering SOA formation by modifying the partitioning of organic species
from the gas to particle phase.’>-37 This includes either inhibition’-12323638 or enhancement of
reactive uptake to particles containing more than one phase’® typically an organic outer layer and
an aqueous-inorganic core.*? Given that these results have primarily been based on thermodynamic
models, further experimental data is needed on the uptake of key oxidation products for phase
separated particles. Phase separations have also been shown to increase solar radiation scattering
and absorption.*! Therefore, determining aerosol phase, phase separations, and morphology (e.g.
core-shell) is necessary to accurately predict atmospheric SOA formation and aerosol impacts on
air quality and radiative forcing.

SOA species can exist in glassy, highly viscous states that alter acrosol reactivity.!842-44
Multiphase chemistry of IEPOX in the ambient environment leads to the formation of
organosulfates,-4® polyols,?0474950 and oligomers?’#*312 in the condensed phase, thereby
increasing particle viscosity. Viscosity alters mixing timescales and diffusion throughout the
particle, with potential to change the particle phase from homogeneously mixed to phase-
separated.>3 Highly viscous organic phases can kinetically inhibit the transfer of mass and, thus,

inhibit phase transitions and gas-particle partitioning.'8:42-44.34-36 More viscous particles have lower
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gaseous uptake,'®3? reactivity,'®# and limited particle growth,'® impacting particle evolution in
the atmosphere.” However, the relationship between reactive uptake, particle viscosity, and phase
separation is not well characterized for mixed SOA-inorganic particles, the dominant particle type,
by number, in the Southeastern United States.!?

To date, laboratory studies investigating phase separation have primarily been conducted
using inorganic particles coated with organic acids (pimelic,'®7 succinic,'%1257 glutaric®!?),
sucrose,!? and decane.’® Additional laboratory studies have investigated phase separation of more
chemically complex, atmospherically-relevant biogenically-derived SOA, such as a-pinene
SOA. 4383 However, investigations of a-pinene SOA using imaging methods as direct evidence
of phase separation'+>° focused on 8.5 — 30 um particles, a size range that is significantly larger
than the number and mass modes of atmospheric particulate matter (PM),? and therefore might not
be an accurate representation of particle phase at smaller sizes due to the size-dependent kinetic
effects observed in Veghte et al.>’ Virtanen et al.** found laboratory-generated 100 nm a.-pinene
SOA particles exhibited semi-solid behavior based on particle bounce measurements. However,
this study was performed at 30% RH, which is much lower than the 50-90% ambient RH reported
by field studies in the Southeast United States where IEPOX-derived SOA is prevalent,®® and
therefore might influence the particle phase state observed.'* Studies examining a-pinene SOA at
higher RH found particles to have semi-solid behavior up to 90% RH,°! but particle morphology
(homogeneous versus phase-separated) was not investigated across the different RH conditions.
Bertram et al.%> and Ciobanu et al.® systematically studied phase separation as a function of RH
for laboratory-generated SOA and inorganic sulfate mixtures using optical microscopy, though
they used 20-30 pum particles that are much larger than atmospheric SOA particles. Additional

studies have analyzed the phase separation of laboratory-generated SOA from 0-100% RH.3%64
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However, most used SOA in the absence of seed particles so the results are not directly comparable
to the phase states presented herein. Particle coatings in boreal forest regions, where a-pinene SOA
is dominant,% can behave differently than particle coatings in regions where isoprene and a.-pinene
emissions are both abundant, as shown recently by Slade et al.!> Additional insights into
atmospherically relevant sizes of a-pinene and isoprene SOA infer phase separation based on
indirect methods such as an aerosol mass spectrometer (AMS),% scanning mobility particle sizer
(SMPS),%7tandem differential mobility analyzer,%%% and single particle ablation time-of-flight
mass spectrometer (SPLAT),3%¢7 providing information on particle size and phase state at different
RH. Smith et al. found lower efflorescence and deliquescence RHs of isoprene-derived SOA®® and
a-pinene SOA® coated onto sulfate particles compared to pure ammonium sulfate particles,
indicating changes in aerosol hygroscopic phase transitions with addition of SOA material. You et
al.'* showed aerosols can undergo phase separation after extraction of bulk particle organic
material from filters. While informative, bulk measurements are unable to determine the number
and composition of individual phase-separated atmospheric particles, but rather show that in 30
um particles that the bulk SOA phase separates from an aqueous, inorganic phase. Song et al.””
measured the phase state of toluene-derived anthropogenic SOA, obtaining results demonstrating
that pure toluene-derived SOA particles become more viscous at lower RH. While these studies
made important contributions to understanding biogenic and anthropogenic organic aerosol
phases, we lack characterization of the changes in particle phase state after the reactive uptake of
additional gaseous species, particularly for mixed organic-inorganic systems. Microscopic studies
that directly investigate aerosol phase using single particles of atmospherically relevant size,
composition, and RH are necessary to determine the factors influencing phase separation in

particles, and particle phase changes following reaction with gaseous species.

Page 6 of 33

ACS Paragon Plus Environment

Page 6 of 40



Page 7 of 40

oNOYTULT D WN =

ACS Earth and Space Chemistry

In this study, we analyzed changes in particle phase state and viscosity after uptake of gas-
phase IEPOX onto phase-separated o-pinene and toluene SOA-coated inorganic particles.
Particles were characterized using atomic force microscopy (AFM), scanning electron microscopy
coupled with energy dispersive x-ray spectroscopy (SEM-EDX), and Raman microspectroscopy
to study the particle phase, morphology, and composition before and after IEPOX reactive uptake.
Phase separation was influenced by particle size, with most small SOA particles (< 100 nm)
remaining homogeneous and particles > 100 nm showing distinct phase-separated core-shell
morphology, as confirmed by microscopic images and compositional differences between particle
core and shell. Significant changes to particle core phase and morphology were observed after
IEPOX reactive uptake, suggesting IEPOX diffusion through the outer organic shell to react with
the inorganic core and modification of its physiochemical properties. Overall particle viscosity
increased after IEPOX uptake, as shown by measurements of particle heights and spreading ratios,
likely driven by a more viscous core. These changes to phase and morphology have important
implications for further multi-phase chemical reactions and SOA formation.

Materials and Methods

Aerosol Generation

The system for generating SOA-coated sulfate particles was previously described in detail
in Zhang et al.’?> and shown in Figure S1. Briefly, acidic ammonium sulfate particles (pH = 1.4 +
0.2) were generated by atomizing a solution of 0.06 M ammonium sulfate ((NH,),SO,4, Sigma
Aldrich, >99% purity) and 0.06 M sulfuric acid (H,SO,, Sigma Aldrich, >98% purity) using a
constant output atomizer (TSI Inc., Model 3076) to simulate the pH of ambient aerosol particles
in the southeastern United States.%® Initial particle pH was confirmed using the pH indicator

method described in Craig et al.”! Aerosols passed through a diffusion drier to remove excess water
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resulting in particle RH of 26 +£3%, remaining near the efflorescence point of 34% RH.”> A
differential mobility analyzer (DMA, TSI Inc., Model 3080) was used to size select seed particles
with 100 nm electrical mobility diameter. The DMA operated at a 12:3 sheath:sample flow ratio
over the mobility size range of 10 — 600 nm, resulting in a number size distribution with a mode
at 100 nm and a geometric standard deviation of 1.5 for acidic seed particles.??

A Potential Aerosol Mass (PAM) oxidation flow reactor (OFR; Aerodyne Research Inc.)”3
was used to generate SOA coatings on sulfate seed particles via ozonolysis of 200 ppb a-pinene
or photooxidation of 800 ppb toluene. The OFR was operated in continuous flow mode with a
mean residence time of 2 min. To establish ozonolysis conditions, 40 ppm O; was added at the
inlet of the OFR using an external O3 chamber. To establish photooxidation conditions, the O; was
photolyzed at A of 254 nm inside the OFR to generate O('D) radicals, which reacted with H,O to
continuously produce hydroxyl (OH) radicals ((OH] ~10'° cm3). Recent studies suggest that SOA
particles generated in OFRs have compositions similar to SOA generated in environmental
chambers®%7477 and in the atmosphere.’8-83

The aerosol-laden flow exiting the OFR was passed through two Nafion tubes (Perma Pure,
Model PD-200T-12) to control and vary the RH prior to performing IEPOX uptake in a glass flow
tube (1 m length, 8 cm ID, 40 s residence time) coated with halocarbon wax (Halocarbon Products
Corporation) to minimize wall loss. IEPOX uptake was conducted using authentic trans-B-IEPOX,
which is the predominant [EPOX isomer in the atmosphere,?® and was synthesized following
published procedures.?* At the inlet and outlet of the glass flow tube, aerosols were collected for
microscopy and spectroscopy analysis (details below). Aerosol size distributions were measured
by a SMPS consisting of a DMA and a condensation particle counter (CPC, TSI Inc., Model

3022A) at the end of the flow tube.
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Microscopy and Spectroscopy Analysis

Aerosol particles were collected for microscopy and spectroscopy analysis before and after
IEPOX reactive uptake using a 3-stage microanalysis particle sampler (MPS-3, California
Measurements Inc.). Particles were impacted onto carbon-type-b Formvar coated copper
transmission electron microscopy (TEM) grids (Ted Pella Inc.), silicon wafers (Ted Pella Inc.),
and quartz slides (Ted Pella Inc.) for SEM, AFM, and Raman analysis, respectively. Samples from
stage 3 (aerodynamic diameter (d,) <400 nm) were selected for analysis. Particle morphology was
classified as homogeneous or phase-separated based on the criteria defined in Veghte et al,>” where
non-phase-separated particles were visually homogeneous and phase-separated particles contained
two or more immiscible substances. AFM and Raman measurements were performed at ambient
pressure and RH (30-40%), while SEM was performed under vacuum conditions (10~-10-¢ Torr).
Because the ambient RH at which particles were imaged using AFM (30-40% RH) was lower than
RH when samples were generated (50% RH), samples were re-humidified to 50% RH and imaged
with AFM to investigate possible morphology changes resulting from humidity changes to the
sample. As shown in Figure S2, re-humidified samples did not show significant differences in
morphology compared to samples imaged at ambient RH. Therefore, AFM images and data in this
text were collected at the ambient RH values of 30-40%.

SEM analysis was performed on an FEI Helios 650 Nanolab Dualbeam electron
microscope that operated at an accelerating voltage of 10.0 kV and a current of 0.40 nA. The Helios
microscope was equipped with a high angle annular dark field (HAADF) detector that provided
contrast between areas of different elemental composition.?> EDX spectra were acquired for 20
seconds using an EDAX detector and GENESIS EDX software version 5.10 (EDAX Inc.,

Mahwah, NJ). To investigate trends between particle size and phase separation, SEM images were

Page 9 of 33

ACS Paragon Plus Environment



oNOYTULT D WN =

ACS Earth and Space Chemistry

analyzed with image processing software (ImagelJ, version 1.501, National Institutes of Health,
USA) to determine individual particle projected area diameters (diameter of particles after
impaction onto substrate). Projected area diameters were then converted to volume equivalent
diameters (d,.) to simulate particle diameter before impaction and spreading onto substrate.’¢
Volume equivalent diameters were calculated using particle volume data obtained from AFM
analysis (described below) and the following equation, assuming particles were initially spheres

before impaction:86

* icl \
Volume Equivalent Diameter (d,.) = /M Eq. (1)

AFM was performed with a PicoPlus 5500 AFM (Agilent, Santa Clara, CA) that operated
using 300 kHz resonant frequency and 40 N/m spring constant. Tapping mode was performed
utilizing Aspire CT300R probes (NanoScience, AZ) to obtain phase and height images. Samples
were scanned in 5 um x Sum areas with 0.75 Hz scan rates to obtain 512 pixels per line. Raw data
was processed using SPIP 6.2.6 software (Image Metrology, Hersholm, Denmark) to measure
particle height, radius, and d,.. Spreading ratios of individual particles were then calculated using

the following equation:®’

Particle radius (r)

Spreading Ratio = Particle height () Eq. (2)

T-tests were performed by comparing the mean spreading ratio of each sample to the
mean spreading ratio of the sulfate seed aerosol. SOA-coated particles exposed to [IEPOX were
also statistically analyzed with respect to SOA-coated particles. Spreading ratios were considered
to be statistically different for p values < 0.05.

Raman microspectroscopy was conducted using a Horiba LabRAM HR Evolution Raman

Spectrometer (Horiba Scientific) equipped with a 50mW 532 nm Nd:YAG laser source, CCD

detector and coupled to a confocal optical microscope (Olympus, 100x objective). Raman spectra
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were collected in the range 500-4000 cm™! for 3 accumulations at 10 second acquisition times for
each particle. A diffraction grating of 600 grove/mm with spectral resolution of 1.7 cm! was used.
Results and Discussion

Single particles were analyzed for phase and composition at three experimental points: 1)
initial acidic ammonium sulfate seed particles with no SOA coating, 2) seed particles coated with
a-pinene or toluene SOA, and 3) seed particles coated with SOA and exposed to IEPOX. Figure
1 is a schematic representing the changes in particle phase and morphology of single particles
obtained at each step in the experiment. Acidic seed particles were expected to be homogeneous,
characterized by a single aqueous phase with spherical morphology. Following the coating stage
of each experiment by either a-pinene or toluene SOA, the particles are expected to experience
phase separation resulting in a core-shell morphology consisting of a viscous organic coating and
aqueous inorganic core. Modeling the properties of the a-pinene or toluene SOA organic layers
predicts viscosities of 103-10° Pa s for a-pinene SOA’# and 102-107 Pa s for toluene SOA at 50%
RH based on O:C measurements from an aerosol chemical speciation monitor (ACSM).”%88 This
range of viscosities corresponds to semi-solid material®®° with mixing times of 2.8 h for a.-pinene
coated SOA and < 1 h for toluene coated SOA at 50% RH for particles < 1 pm diameter.”® Uptake
of IEPOX vapor is expected to induce particle phase processing that changes the phase state of the
inorganic core from aqueous to semi-solid following the diffusion of IEPOX through the SOA
coating.’> The SOA coating inhibited some uptake into the particle, in comparison to an uncoated
acidic aqueous particle.?? Predicted IEPOX diffusion times through the organic coating ranged
from 10'-10* seconds with a reduction in the reactive uptake coefficient (y) of ~50% for a-pinene
SOA compared to an uncoated acidic particle.’> Though IEPOX uptake was reduced, uptake was

sufficient for significant acid-catalyzed particle-phase chemistry to occur. The continuing
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chemistry changed the core of the particles from aqueous to a viscous or semi-solid core. The
phase transitions of the particle core are shown below using a combination of AFM, SEM-EDX,

and Raman microspectroscopy.

Acidic Seed SOA Coating . |IEPOX Uptake
O ac?@/ﬁ«%
Aqueous Viscous Shell Viscous Shell
Homogeneous Aqueous Core Viscous Core
H.SO, + a-pinene + Oy Isoprene Epoxydiols
(NH,4)2S0, Toluene + OH (IEPOX)

Figure 1. Schematic of experimental design showing anticipated particle phase state at each step.
First, homogeneous seed particles were generated with an atomizer using solutions of ammonium
sulfate and sulfuric acid to achieve an initial pH of 1.4. Next, seed particles were coated with o-
pinene or toluene SOA in a Potential Aerosol Mass (PAM) reactor to achieve a coating thickness
of ~10 nm before impaction onto substrates and spreading. SOA-coated seed particles were then
exposed to gaseous isoprene epoxydiol (IEPOX) in a flow tube.

To demonstrate the changes in particle phase after coating and IEPOX uptake, AFM and
SEM images of the three particle types are shown in Figure 2. Acidic ammonium sulfate seed
particles were homogeneous in phase and composition with a circular morphology, indicative of a
spherical shape when suspended, before addition of SOA coatings (Figure 2a). The circular
morphology indicates the particles were still liquid and above the efflorescence point,’? per the
experimental design.’? After coating with SOA, the mixed sulfate-SOA particles exhibited core-
shell morphology?®” with a circular sulfate core and SOA shell (Figure 2b and 2d). These coated
SOA particles were similar to ambient particles observed during the Southern Oxidant and Aerosol
Study (SOAS) in the Southeastern United States during a period of high SOA production (Figure
S3).13 Following IEPOX uptake, particles still exhibited phase separation, but changes to the core

morphology were observed for both a-pinene SOA/sulfate particles and toluene SOA/sulfate

particles (Figure 2¢ and 2e). Particle cores became non-circular with a variety of irregular shapes.
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The less viscous organic coating filled in along the irregular surface created by the viscous core to
leave the overall particle morphology spherical, consistent with the outer spherical morphology
observed before IEPOX uptake. These core morphology changes suggest IEPOX diffused through
the organic shell and reacted with the inorganic core to form viscous IEPOX-derived
organosulfates.**8 AFM showed phase separation after SOA coating and core morphology
changes after IEPOX uptake at ambient temperature and RH. SEM corroborated the phase and
morphology observed by AFM. The images in Figure 2 show a-pinene and toluene SOA-coated
inorganic sulfate particles generated at 50% RH. Additional samples generated at 30% RH show

similar trends with respect to phase and morphology (Figures S4 and S5).

«-Pinene SOA ¢Finene SOA I 15 ene soa  Toluene SOA
+ IEPOX + IEPOX
AFM
height
AFM
phase
SEM

Figure 2. Representative AFM height images (top row), AFM phase images (middle row), and
SEM images (bottom row) of seed particles (a), a-pinene SOA/sulfate particles (b), a-pinene
SOA/sulfate after IEPOX uptake (c), toluene SOA/sulfate (d), and toluene SOA/sulfate after
IEPOX uptake (e). All particles were generated at 50% RH.
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To quantify the observed changes in particle morphology and phase state shown in Figure
2, AFM height traces from 10 seed particles, SOA-coated particles, and SOA particles exposed to
IEPOX were averaged (Figure 3¢ and 3d). Acidic ammonium sulfate seed particles had average
heights of 70 £ 10 nm, which is in the range of spreading values observed for liquid particles
impacted on silicon previously.3” After coating with a-pinene- or toluene-derived SOA, particle
heights increased, indicating particles spread less upon impaction, as depicted in the cartoon in
Figure 4a. a-Pinene coated core-shell particles were taller (150 £ 10 nm), on average, than toluene
coated core-shell particles (110 £ 10 nm). The increase in particle height after impaction onto
substrates is related to particle viscosity because more viscous particles will spread less and will
therefore remain taller.8”-°! The particle heights observed here are in agreement with predicted
viscosities of the a-pinene (9.3 x 107 Pa s)7# and toluene (7.8 x 10* Pa s)708389 SOA at 50% RH
in previous work 323708892 The results presented here are only applicable at 50% RH, as toluene
SOA has higher viscosity than a-pinene SOA at lower RH.38 After IEPOX uptake, both types of
mixed sulfate-SOA particles were taller and larger in diameter than SOA coated particles. Average
particle height of a-pinene SOA + acidic seed particles exposed to IEPOX were 170 £ 10 nm (20
nm taller than a-pinene SOA + acidic seed) and toluene SOA + acidic seed particles exposed to
IEPOX were 130 + 10 nm (20 nm taller than toluene SOA + acidic seed). Representative 3-
dimensional AFM images show particle morphology at the three steps in the experiment (Figure
3a and 3b). With the high volume fraction of organic present, the core would not be expected to
effloresce at the 30-40% RH values at which the particles were imaged.6>%® 3D images show
particles coated with SOA become taller on the substrate than seed particles. Particle cores become
taller after IEPOX uptake while the particle shell appeared flat on the substrate, suggesting the

cores are becoming more viscous through IEPOX uptake and core chemistry modification.
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Figure 3. Representative 3D AFM images of a) a-pinene SOA/sulfate and b) toluene SOA/sulfate
particles before and after IEPOX uptake. 3D images show flat shells for phase-separated SOA and
viscous, tall cores. Average height traces of 10 particles composed of ¢) a-pinene SOA/sulfate and

d) toluene SOA/sulfate before and after [IEPOX uptake.

To further investigate changes in particle viscosity and account for differences in particle
diameter, spreading ratios were calculated for individual SOA + acidic seed particles using Eq. 2,
which compares particle radius to particle height. Particle spreading is used as an indirect
measurement of particle viscosity, as more viscous particles will remain taller on the substrate by
spreading less and will thus have a lower spreading ratio compared to more liquid-like particles of
lower viscosity.8” Average spreading ratios for ~30 particles per sample measured at 50% RH are
shown in Figure 4. Seed particles had an average spreading ratio of 6.6 + 0.7. After coating with
a-pinene or toluene SOA, the average spreading ratio decreased to 3.4 £ 0.2 for a-pinene SOA +
acidic seed and 3.9 + 0.4 for toluene SOA + acidic seed particles, and were thus more viscous, in
agreement with predictions by Zhang et al.>? This shift to less spreading upon impaction for phase-
separated particles agrees with qualitative observations in Bondy et al.®’ for liquid-liquid phase-

separated polyethylene glycol and ammonium sulfate particles. After reactive uptake of IEPOX
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leading to altered core morphology, average spreading ratio further decreased to 2.6 + 0.2 for a-
pinene SOA and 3.4 £ 0.7 for toluene SOA particles. Spreading ratios of a-pinene SOA and seed
particles generated at 30% RH are shown in Figure S6 and follow similar trends of decreased

spreading after coating with a-pinene oxidation products and further decrease in spreading

following IEPOX uptake.
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Figure 4. a) Diagrams depicting particle spreading onto substrates. Particle spreading is inversely
related to particle viscosity. Bar charts show average spreading ratio of ~30 particles/sample for
b) a-pinene SOA/sulfate particles before and after IEPOX uptake and c) toluene SOA/sulfate
particles before and after IEPOX uptake. Error bars represent standard error. Single asterisks
denote spreading ratios that are statistically different than seed aerosol (p < 0.05). The double
asterisk denotes spreading ratio that are statistically different than spreading ratio before IEPOX
uptake.

To examine the relationship between particle size, composition, and phase separation,
particle phase state and d,. of ~500 particles per sample were measured and plotted as histograms

(Figure 5). We observed particles under 80 nm (d,.) to have homogeneous composition for all

SOA samples, similar to previously published work.!%37 Before IEPOX uptake, the smallest phase-
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separated particles were 160 = 10 nm (d,.) for a-pinene SOA + acidic seed (mode 570 £+ 20 nm)
and 127 £ 5 nm (d.) for toluene SOA + acidic seed (mode 342 + 5 nm), and most often resulted
in a core-shell morphology. This agrees with Fard et al.”3 who stated the most likely morphology
for phase-separated atmospheric particles greater than 100 nm was core-shell due to kinetically
fast inorganic diffusion, preventing further nucleation after the first inclusion. After IEPOX
uptake, the size of the smallest phase-separated particles decreased to 83 + 3 nm (d,.) for a-pinene
SOA (mode 239 + 3 nm) and 80 + 3 nm (d,) for toluene SOA (mode 259 £+ 3 nm). When the
particle core contains less water and is a more viscous semi-solid, the organic layer becomes less
miscible and can initiate a separate phase at smaller particle sizes.® The transition regime, the size
range where phase-separated and homogeneous particles both exist,'? became wider for both SOA
types after IEPOX uptake, expanding from 150 — 230 nm to 80 — 180 nm after uptake of IEPOX
onto a-pinene SOA + acidic seed and from 130 — 280 nm to 80 — 270 nm for toluene SOA + acidic
seed after [EPOX uptake. The widening of the transition region, due to greater variability in core
composition based on differences in reactive uptake of IEPOX,?? introduces increased difficulty
for predicting phase for particles within these size ranges. Pie chart insets in Figure 5 show the
percent of particles that were phase-separated versus homogeneous. After IEPOX uptake, the
percent of phase-separated particles decreased from 67.9 + 0.6% to 58.8 + 0.2% for a.-pinene SOA

and from 68.2 + 0.2% to 61.6 £ 0.1% for toluene SOA.
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Figure 5. Histograms depicting size-dependent morphology behavior of a) a-pinene SOA/sulfate,
b) a-pinene + IEPOX SOA/sulfate, ¢) toluene SOA/sulfate, and d) toluene + IEPOX SOA/sulfate
particles. Lognormal fits show modes at 570 + 20 nm for phase-separated o.-pinene SOA/sulfate,
239 + 3 nm for phase-separated a-pinene + IEPOX SOA/sulfate, 342 + 5 nm for phase-separated
toluene SOA/sulfate, and 259 + 3 nm for phase-separated toluene SOA/sulfate. After determining
modes, sticks representing phase-separated particles were offset by 25 nm to visualize differences
between homogeneous and phase-separated traces. Pie charts represent the percent of particles that
were phase-separated versus homogeneous.

Chemical composition plays a key role in determining viscosity, so both a-pinene and
toluene SOA-containing particles were analyzed using SEM-EDX for elemental composition and
Raman microspectroscopy for functional group composition. Raman spectra of acidic ammonium
sulfate seed particles do not show evidence for the presence of organic species (Figure S7), as
shown previously.”** Once seed particles were coated with a-pinene or toluene SOA, separate
EDX and Raman spectra were taken for the particle core and shell. EDX showed particle cores
contained sulfur and oxygen, indicative of sulfate, while particle shells contained primarily carbon

and oxygen, indicative of a-pinene or toluene SOA (Figure 6). Sulfur is clearly discernable and

located primarily in the core of particles. Raman spectra show the broad v(N-H) region around
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3200 cm! indicating ammonium and a mode for v¢(SO,4>-) was observed at 976 cm! in the particle
core before IEPOX uptake (Figure 7).%¢-191 Peaks in the v(C-H) region between 2800-3000 cm!
indicate organic materials in the shell of a-pinene and toluene SOA-coated acidic seed particles.
Specifically, methyl v(CH3) and methylene v(CH,) symmetric and anti-symmetric stretches were
detected, along with modes in the organic fingerprint region which are listed in the Supporting
Information (Table S1). Differences in composition between particle core and shell for both SOA
types shows that the coating of a-pinene or toluene SOA creates chemically distinct phases with
a primarily inorganic core and organic shell, instead of homogeneously mixed particles. After
IEPOX uptake, EDX spectra show particle cores contained carbon for both types of SOA,
suggesting IEPOX reaction forming organic species, possibly organosulfur compounds (i.e.,
organosulfates and oligomers thereof), within the particle core. After IEPOX uptake, SOA cores
contained methyl v(CH3) and methylene v(CH;) symmetric and anti-symmetric stretches in the
Raman spectra. Particle cores also showed signs of organosulfate formation with peaks around
1060 cm! in the Raman spectra, indicative of vy(RO-SO5).4 Peaks indicative of organosulfates
were not observed in the shell for either a-pinene and toluene SOA after IEPOX uptake indicating
that the shells did not mix with the core as it solidified. Future work will investigate conditions for

organosulfate formation in various types of SOA across a range of RH conditions.36-43:48,50,102-104
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Figure 6. Representative SEM images and EDX spectra of a) a-pinene SOA/sulfate particles, b)
o-pinene SOA/sulfate + IEPOX particles, c¢) toluene SOA/sulfate particles, and d) toluene
SOA/sulfate + IEPOX particles showing differences between core and shell composition.
Elements with asterisk denote contribution from substrate. Images were colored to easily identify
phase-separated morphology. Unedited images are shown in the Supporting Information (Figure
S8).

Page 20 of 33

ACS Paragon Plus Environment



Page 21 of 40 ACS Earth and Space Chemistry

1
2
3
4
Z <  V(SOg) V(RO-SO) V(CHo/CH3)  v(N-H)
7 i
8 10 < -
9 o S e |\3
N 0
10 — / S
1 \ )
™
12 =
13 SE o~Pinene + IEPOX SOA
— Core
14 /\/\.,\N —— Shell
15 I T
16 > = Ay P P SOA
17 ‘@ ‘%8 & §§ E e
18 S > & 75 | — Shell
..q_.J / ‘ / —— Background
19 o e —n— e
20 ] ) 3119
21 8 <
22 © |
23 o) Toluene + IEPOX SOA
N —— Core
24 —— Shell
25
26 Toluene SOA
27 —— Core
28 —— Shell
29 \ —— Background
30 | | ' | | | |
31 600 800 1000 1200 1400 1600 2800 3000 3200 3400 3600
32 -1
33 Wavenumber (cm )
34 Figure 7. Representative Raman spectra of a-pinene SOA/sulfate particles before and after
35 IEPOX reactive uptake (top) and toluene SOA/sulfate particles before and after IEPOX reactive
36 uptake (bottom) showing differences between core and shell composition.
37
38
39 . e .
40 Atmospheric Implications
41
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56 converted into organosulfates after reaction with IEPOX,'% which are quite viscous. The
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atmospheric implications of the results from this study are that the core of phase-separated
submicron particles can be converted from aqueous-inorganic to viscous organics, such as [EPOX-
derived organosulfates, which can further inhibit SOA formation. This viscous core formation
occurs within acidic inorganic particles coated with both a-pinene (biogenic) and toluene
(anthropogenic) SOA. That the increased core viscosity occurs on the timescale of flowtube
experiments (< 1 min) indicates that the a-pinene and toluene coatings were not sufficiently
viscous at 50% RH to fully inhibit IEPOX uptake and the subsequent rapid formation of viscous
organosulfates in the core. The increase in core viscosity and thus diffusion and mixing timescales
likely limits additional reactive uptake of IEPOX, since acidic particles (pH = 1.5) have been
shown to form organosulfates that almost completely shut off IEPOX uptake within 40 hours of
simulated atmospheric aging.! The prevalence of phase separated and viscous particles may
impact atmospheric model predictions of IEPOX-derived SOA, as many of these models do not
consider the kinetic limitations of phase-separated particles on multiphase chemical processes
yielding SOA.!97 Recent modeling has shown that a-pinene SOA coatings around acidic cores can
decrease SOA formation by 33%, even at 55-80% RH,'%® but the impact of transforming an
aqueous acidic core to a diffusion limited viscous core could have an even larger effect, but has
not yet been evaluated. The increased viscosity and morphologies observed could also impact the
CCN and INP properties of these aerosols.’>1% Therefore, further studies are needed to improve
understanding of phase separation and viscosity in flowtube, chamber, and ambient particles of
different and more complex compositions and at different atmospheric conditions.

Supporting Information

The Supporting Information is available free of charge via http://pubs.acs.org. Description of

experimental parameters (Text S1), schematic of experimental setup (Figure S1), AFM images of
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a-pinene SOA rehumidified to the RH at which they were generated (Figure S2), SEM images of
ambient particles containing core-shell morphology (Figure S3), SEM and AFM images of a-
pinene SOA generated at 30% RH (Figure S4), SEM images of toluene SOA generated at 30%
RH (Figure S5), spreading ratios of a-pinene SOA generated at 30% RH (Figure S6), SEM image
with EDX and Raman spectra of seed particle (Figure S7), uncolored SEM images of SOA
particles shown in Figure 6 (Figure S8), Raman mode assignments and intensity classification
(Table S1).
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