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TROPICAL DYNAMICS OF AREA-PRESERVING MAPS

SIMION FILIP

Dedicated to the memory of Bill Veech

ABSTRACT. We consider a class of area-preserving, piecewise affine maps on
the 2-sphere. These maps encode degenerating families of K3 surface au-
tomorphisms and are profitably studied using techniques from tropical and
Berkovich geometries.

1. INTRODUCTION

To study a family of objects that depend on a small parameter, it is convenient
to first understand the behavior of the smallest-order terms. Tropical geometry
is a technique for doing this systematically for families of algebraic varieties and
our goal in this paper is to apply some of these techniques in the context of
dynamical systems.

A more sophisticated way to approach this question is via Berkovich geome-
try, as it encodes more of the information available in an algebraic family. The
application of Berkovich geometry in dynamics is a well-established area, with
many contributions, a partial list of authors including Baker, DeMarco, Favre,
Jonsson, Rivera–Letelier, Rumely [2, 1, 16, 15, 7] and many more. Perhaps one of
the first direct applications to dynamics was by Einsiedler, Kapranov, and Lind
[13] though it is of a different flavor than the topic of this paper.

We are concerned with area-preserving maps on compact surfaces. In the
algebraic setting, this immediately restricts to abelian or K3 surfaces, and we
further restrict here to K3 surfaces as dynamics on abelian surfaces is better-
understood in the context of linear actions on tori. In the complex-analytic
setting this study was initiated by Cantat [8], who constructed a measure of
maximal entropy and certain stable and unstable currents, corresponding to the
equidistribution of stable and unstable leaves of the dynamics. Examples with
non-trivial Fatou components, specifically Siegel disks, were first constructed
by McMullen [34].

We consider the same situation in the tropical setting. That such a situation
should be considered was suggested first by Kontsevich–Soibelman [29, §6.8].
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Concretely, a tropical K3 surface is a sphere, realized as the boundary of a con-
vex polyhedron cut out by rather special linear planes. The tropical automor-
phisms preserve not only the area but also a piecewise integral-affine structure.
See Figure 1 for some illustrations of the induced dynamics. One sees familiar
pictures of elliptic islands and stochastic seas. Note that because the derivatives
of the transformations are in GL2(Z), the structure near an elliptic fixed point is
considerably simpler: the map is always finite order1 in a whole neighborhood
with polygonal boundary.

FIGURE 1. Orbits of a hyperbolic map on three randomly con-
structed tropical K3 surfaces.

A setup as above arises when considering a 1-parameter family of K3 surfaces,
such that the central fiber is maximally degenerate in a precise sense. The real 2-
dimensional sphere corresponding to the tropical K3 approximates much of the
data on the degenerating family of complex surfaces. For example, the Gromov–
Hausdorff limit of the complex surfaces with normalized Ricci-flat metric is
predicted [28] to be the real 2-sphere with a (singular) metric of a special form.
Boucksom–Jonsson [4] proved that this holds at the level of volume forms.

1.1. Context and results. In this text we consider the Berkovich and tropical
pictures in parallel. A direct relationship between the two is given by a theorem
of Payne [36] which says that the Berkovich space can be recovered as the pro-
jective limit of tropicalizations. The interesting dynamical phenomena can be
observed already at the level of the tropicalization.

1.1.1. Main results. Theorem 5.7 and Corollary 5.8 construct currents which are
scaled by the dynamics, and an invariant measure. Specifically, we have:

THEOREM. Let f : X → X be a projective automorphism of a K3 surface over a
complete non-archimedean valued field K of residue characteristic zero. Suppose
that the action of f ∗ on Pic(X ) is hyperbolic, i.e., there exists a unique up to scale

1In fact, the possible orders are 1,2,3,4 or 6.
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FIGURE 2. Pictures of currents in Rubik’s cube example.

v ∈ Pic(X )⊗ZR which is an eigenvector with eigenvalue λ > 1. Let f an : X an →
X an denote the Berkovich analytification of the automorphism and K3 surface.

1. There exist closed positive (1,1)-currents η± on X an such that ( f an)∗η± =
λ±1η±.

2. The measure µan = η+∧η− is f an-invariant and non-zero.
3. The currents satisfy η+∧η+ = 0 = η−∧η−.

1.1.2. Context and motivations. The currents on Berkovich spaces that we con-
struct in §5.6 can be viewed as “non-uniformly hyperbolic measured foliations”.
Indeed, locally in R2 a closed positive current η is determined by a convex
function φ via η = d ′d ′′φ for appropriate operators d ′,d ′′ (see §5.5). When
φ is C 2 the condition that η∧η = 0 becomes det(Hessφ) = 0, where Hessφ ={
∂i , jφ

}
i , j is the Hessian matrix of second derivatives. Assuming for simplicity

that rkHess(φ) = 1, a result of Hartman & Nirenberg [23] (see Foote [20] for a
more extended discussion) implies that there exists locally a foliation of R2 by
lines (defined by kerHess(φ)), and φ restricted to each line is affine. A convex
function restricted to a line segment determines a measure (take second deriva-
tives) and for the foliation described above, two segments which have endpoints
on the same leaves, and are parallel, will have the same induced measure. A
good example to keep in mind is

√
x2 + y2 on R2 à0. For further analogies be-

tween the dynamics on K3 and Riemann surfaces, see the introduction in [17].
When φ is not C 2 the condition η∧η= 0 has meaning using the theory devel-

oped by Lagerberg [31]. The examples in Figure 2, Figure 3 and Figure 4 suggest
that φ is never C 2 except in the case of Kummer examples (see [9] and [18, 19]
for the complex version of this statement).
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FIGURE 3. Stable and unstable currents of a perturbed Kummer
example, viewed from different angles. The perturbed Kummers
exhibit tangency of the stable and unstable manifolds.

FIGURE 4. Stable and unstable currents in the Kummer exam-
ples have smooth potentials and are uniformly hyperbolic.

1.1.3. Relation between non-archimedean and archimedean objects. In future
work we hope to explore the relation between the non-archimedean objects in-
troduced in this work and degenerating families of K3 surface automorphisms.
Specifically, suppose that X is a K3 surface with an automorphism, each de-
fined over K , where K is the field of holomorphic functions on the punctured
unit disc, with poles of bounded order at the origin allowed. Then for every
t 6= 0 and |t | < 1 we have a complex K3 with associated automorphism. The
measure of maximal entropy µt has a Lyapunov exponent λt . There are also
stable/unstable currents η±,t .
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The results of Favre [14] and Boucksom–Jonsson [4] suggest that on the asso-
ciated hybrid space X hy p , which contains both complex and Berkovich points,
the measures µt converge (weakly) to the measure µan , constructed in Corol-
lary 5.8. Furthermore, the Lyapunov exponent of µt should blow up for t → 0 as
log 1

|t | times the Lyapunov exponent of µan . In the case of endomorphisms of Pk ,
this last fact is the main result of [14]. We hope to investigate these questions
on K3 surfaces in future work.

1.2. Paper outline. In Section 2 we introduce the basic definitions and con-
structions, in the tropical and algebraic setting.

In Section 3 we study the simplest case, namely dynamics on tropical ellip-
tic curves. Since these are just circles equipped with a volume form, it is not
surprising that one recovers dynamical systems conjugate to circle rotations.

Section 4 considers some general constructions in the setting of tropical K3
surfaces. The main result is the construction of an unstable potential whose
Laplacian is expected to give the unstable current. It is possible that there is an
elementary way to establish the positivity of the unstable current, the way this
is done in Section 7 in a 1-dimensional context. The approach taken below is
via Berkovich spaces, which is no longer elementary and requires a much bigger
machinery.

Section 5 provides a brief summary of some aspects of Berkovich spaces,
which were introduced by Berkovich in [3]. A key tool in our discussion is the
formalism of differential forms on Berkovich spaces, developed by Chambert–
Loir & Ducros [10] based on earlier work of Lagerberg [31]. In §5.6 we construct
the currents in the Berkovich setting, following a strategy similar to the tropical
case. In both situations, the ideas go back to Cantat [8].

Section 6 includes a number of examples and illustrations. It contains, in
particular, uniformly hyperbolic examples that come from the Kummer con-
struction and are thus semiconjugate to Anosov automorphisms of the torus. It
also describes a simple 1-parameter family to which it would be interesting to
apply the methods in earlier sections.

Section 7 concludes the paper with an application of these ideas to the tropi-
calization of rational maps of 1 variable. These have been studied extensively in
the Berkovich setting (see, e.g., [16]) but the treatment here is elementary and
in a slightly different setting. A natural “positive” cone of functions is invariant
under the dynamics in this case and it allows us to construct directly a convex
potential. It would be interesting to see if some of the constructions in Section
7 extend to K3 surfaces, in order to obtain positivity of the stable and unstable
currents.

1.3. Some further questions and remarks. A number of questions for further
investigation are scattered throughout the text. Here we collect some of them.

1. Simple elliptic integrable dynamics arises from the above tropical con-
structions in dimension 1. A question regarding the variation of twist
angle is formulated in Remark 3.2. Next, one sees a coupling of the two
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integrable regimes at the “infinity” of the ambient tropical space. This is
outlined in §4.2.3 and it would be interesting to investigate it further.

2. For the PL dynamical systems on the line, some further questions are for-
mulated in §7.4.3.

3. Following DeMarco [12], one can also study the variation of the currents
associated to the dynamical systems. This is done by constructing the
potential on the entire parameter space and checking its subharmonicity.
In the present case, a similar approach should establish its convexity.

1.3.1. Lozi mappings. Introduced in [32], these are PL analogues of Hénon map-
pings of the form

Ha,b(x, y) = (y +1−a|x|,bx), Ha,b : R2 →R2.

In analogy with the work of Bedford–Lyubich–Smillie [5], it seems natural to con-
struct the stable and unstable currents for Lozi mappings using the techniques
from Section 4. Note that the same observation as in Section 7 (Proposition 7.2)
applied to R4 instead of R2 implies that the constructed currents are positive.

1.3.2. Compatibility between tropical and Berkovich pictures. In future work, we
will discuss the relation between the constructions in Section 4 and Section 5.
The diagram summarizing the relevant maps is the following:

E tr op E tr op |Sk(X tr op )

E an E an |Sk(X an )

X tr op Sk(X tr op )

X an Sk(X an)

Trop Trop

Trop

Given a projective K3 surface X equipped with an automorphism f : X → X , we
can construct a vector bundle E → X and a lift F : E → E of f to E . The bundle
E can be used to establish the positivity properties of the appropriate currents.

The entire picture is compatible with passing to Berkovich analytification,
giving spaces E an → X an and maps f an ,F an . There is a canonical Berkovich
skeleton Sk(X an) ⊂ X an which in the case of a maximally degenerating K3 is
homeomorphic to a 2-sphere. The map f an preserves the Berkovich skeleton.

A choice of embedding of X into a toric variety gives tropicalization maps
Trop. There is an associated tropical skeleton Sk(X tr op ) which under appro-
priate conditions is identified with Sk(X an) (see [6] for a related discussion for
curves). While the map f an does not descend to a map of Trop(X an) =: X tr op ,
it is possible to describe tropically the map on Sk(X tr op ).
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1.3.3. Some conventions. Throughout, we follow the min convention of tropical
geometry as we are viewing the objects as depending on a small parameter, so
εα+εβ ≈ εmin(α,β). This has the notational disadvantage that it leads to concave
functions instead of convex ones, but this is only a matter of convention. For
signs of the potential defining a metric on a line bundle, see Remark 5.2.

2. GENERAL CONSTRUCTIONS

After introducing some basic terminology from tropical geometry we describe
a basic class of Calabi–Yau manifolds to which our discussion will apply. These
are given as degree (2,2, · · · ,2,2) hypersurfaces in (P1)n and are classical exam-
ples with a large automorphism group. The focus will be on n = 2,3, which
leads to elliptic curves and K3 surfaces respectively. We describe their basic
algebraic and tropical properties. An analysis of the dynamics for elliptic curves
is in Section 3, and for K3 surfaces in Section 4.

An introduction to tropical geometry and its techniques is in the monograph
[33] as well as the collection of notes [26].

2.1. Fields and tropicalization.

2.1.1. Fields with a valuation. Recall that a valuation on a field K is a map

v : K × → Γ

from the non-zero elements of K to an ordered abelian group Γ (written addi-
tively), satisfying for all a,b ∈ K ×

v(a ·b) = v(a)+ v(b),

v(a +b) ≥ min(v(a), v(b)).

One can define also v(0) =∞ with ∞> γ,∀γ ∈ Γ.
The basic example used later on will be of fields containing power series in

one complex or real variable. For example, if K = k(t ) is the field of rational
functions, then the order of vanishing at the origin

v : k(t ) →R, v( f ) := ordt=0( f )

provides a valuation.
In all situations below the value group Γ is contained in R, so a valuation also

gives a non-Archimedean norm on K via∥∥ f
∥∥

v := e−v( f )

satisfying
∥∥ f g
∥∥

v = ∥∥ f
∥∥

v

∥∥g
∥∥

v and
∥∥ f + g

∥∥
v ≤ max

(∥∥ f
∥∥

v ,
∥∥g
∥∥

v

)
.

2.1.2. Tropicalization map. Given a field K with a valuation v : K → R, define
the map

Trop: (K ×)n −→Rn , ( f1, . . . , fn) 7→ (v( f1), . . . , v( fn)).
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2.1.3. PL-functions. A monomial m := axi1
1 · · ·xin

n ∈ K [x±1
1 , . . . , x±1

n ] gives an affine
linear function

Trop(m) : Rn −→R, (e1, . . . ,en) 7→ v(a)+ i1 ·e1 +·· ·+ in ·en .

A Laurent polynomial in several variables f = ∑cαxα (with α a multi-index)
gives a PL-function

Trop( f ) : Rn −→R, (e1, . . . ,en) 7→ min
mα

(Trop(mα)),

where mα = cαxα are the individual monomials.

2.1.4. Tropical varieties. A PL-function is affine linear except along a collection
of positive-codimension polyhedra in Rn (possibly infinite in some directions).
The tropical variety V (Trop( f )) associated to a PL-function Trop( f ) is defined to
be the break locus of Trop( f ), i.e. the polyhedra along which two or more of the
defining affine linear functions of Trop( f ) agree, and where they take minimal
values among the other defining functions.

Each component in the complement of a tropical variety is naturally labeled
by a monomial mα, corresponding to the affine linear function Trop(mα) which
agrees with Trop( f ) on that component. If there is a point x ∈ (K ×)n such that
f (x) = 0 then necessarily Trop(x) ∈ V (Trop( f )), since there must be at least
two monomials of lowest valuation in order to have f (x) = 0. Furthermore,
an approximate converse to this holds when K is algebraically closed (see [33,
Thm. 3.2.3]) and is called the “Fundamental Theorem of Tropical Geometry”.

2.1.5. Dual subdivision. The convex hull of the multi-indices α ∈Zn which ap-
pear in the definition of f is called the Newton polytope of f . The valuations
of the coefficients of mα determine a subdivision of the Newton polytope, such
that the tropical variety associated to Trop( f ) is dual to this subdivision (see
[33, Prop. 3.1.10]). Vertices of V (Trop( f )) correspond to cells in the subdivision,
and vice-versa a vertex in the Newton polytope corresponds to a component of
RnàV (Trop( f )) on which the corresponding affine linear function is minimized.
See Figure 5 for an illustration.

2.1.6. Balancing and smoothness. (see [33, §3.3]) First, consider the case n = 2,
when V (Trop( f )) is a 1-dimensional polyhedral complex in R2. Consider the
star of a vertex x ∈ V (Trop( f )), i.e. the rays coming out of x. Each component
of the complement (in a small neighborhood of x) is labeled by an affine linear
function with integral slope; the functions all agree at x and pairwise agree along
the rays separating their components. On each of these rays there is a choice of
integral vector vi , and if vi is not primitive, its multiplicity is the positive integer
ki such that 1

ki
vi is primitive. The vectors vi satisfy the balancing condition∑

i
vi = 0.

For a higher-dimensional tropical hypersurface V (Trop( f )), the balancing con-
dition is expressed in terms of codimension 1 faces, by taking the quotient by
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a linear subspace and reducing to dimension 2. The multiplicities are now as-
signed to top-dimensional faces of V (Trop( f )).

A tropical variety is smooth if all its top-dimensional faces have multiplicity 1.

2.1.7. Integral-affine structure on the tropical manifold. Each top-dimensional
face of a tropical manifold V (Trop( f )) is naturally a subset of an affine space
such that the associated vector space contains a Z-lattice. Indeed, the affine
space is the level set of an integral linear function.

Consider now a codimension 1 subset where three top-dimensional faces
δ1,δ2,δ3 intersect along a common face τ; each δi has dimension n−1 and τ has
dimension n −2. Let vi , i = 1,2,3 be integer vectors starting at the intersection
locus and pointing along each of the faces, such that when taking the quotient
by the linear space determined by τ the vi satisfy the balancing condition v1 +
v2 + v3 = 0. Then taking the quotient Rn/R · v3 gives an identification of the
linear spaces determined by δ1 and δ2 and moreover it is compatible with the
Z-lattices contained in the corresponding linear spaces.

Note that the identification of Z-lattices obtained this way depends on the
choice of vi , and the vi are well-defined up to the addition of integer elements
in the space determined by τ. Applying the identifications along a loop in the
tropical manifold (which avoids a codimension 2 set) there can (and typically
will) be monodromy.

The case of interest below is when the tropical manifold will have a skeleton
homeomorphic to the n-sphere and n = 1,2. For n = 1, the above construction
will endow the skeleton (a circle) with charts to R with gluing along translations.
For n = 2, it will give an integral-affine structure on the 2-sphere, with singular
points along certain edges; the singular points are free to move along those
edges (depending on the choice of charts and vectors vi ).

2.2. The basic example of an automorphism. Denote by Gm the invertible el-
ements of K , i.e. K ×. When the background space is Gn

m , also called an n-
dimensional torus, varieties will be considered of the form

0 = h(x1, . . . , xn) = ∑
i•=−1,0,1

ai1,...,in xi1
1 · · ·xin

n .(2.1)

When compactifying, varieties will be considered inside (P1)n ⊃ Gn
m , and the

homogenized equation will be

(2.2) 0 = H(X1 : Y1, . . . , Xn : Yn) = ∑
i•=−1,0,1

ai1,...,in (X 1+i1
1 Y 1−i1

1 ) · · · (X 1+in
n Y 1−in

n )

so that x j = X j

Y j
and equation (2.2) is obtained from equation (2.1) by multiply-

ing by X j Y j for j = 1, . . . ,n. For considerations involving say the first pair of
variables (X1 : Y1) it is convenient to write the equation as

0 = Y 2
1 ·H−1 +X1Y1 ·H0 +X 2

1 ·H1,

where H• are homogeneous degree 2 functions of the remaining variables.
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2.2.1. Holomorphic volume form. Equation (2.2) determines a Calabi–Yau man-
ifold in (P1)n , i.e. there exists a holomorphic nowhere vanishing n-form Ω on
the zero locus of H . An explicit way to write Ω is by the residue construction; in
coordinates on Gn

m it is given by

Ω= Resh=0

(
1

h

d x1

x1
∧·· ·∧ d xn

xn

)
,

where h is defined in equation (2.1).

2.2.2. Vieta involutions. Holding the variables x2, . . . , xn fixed, rewrite the equa-
tion as

0 = 1

x1
·h−1(x2, . . . , xn)+h0(x2, . . . , xn)+x1 ·h1(x2, . . . , xn).

Viewing this as a quadratic equation in x1 (by multiplying out by x1), the invo-
lution σ1 exchanges the two roots:

prxi ◦σ1(x1, . . . , xn) =
{

xi if i ≥ 2
h−1(x2,...,xn )
h1(x2,...,xn ) · 1

x1
if i = 1,

where prxi denotes projection onto the i -th coordinate. The other involutions
σi , i = 2. . .n are defined analogously. Note that one can define equivalently
prx1 ◦σ1(x1, . . . , xn) = −h0(x2,...,xn )

h1(x2,...,xn ) − x1, but in the multiplicative form specified
above it will be easier to compute valuations.

2.2.3. Indeterminacies. The definition of σ1 above is ambiguous since it is given
as a rational function. However, using the principle that σ1 exchanges the two
roots of the quadratic equation with x2, . . . , xn fixed, it is possible to define σ1

in any chart.
Note that the involution will be well-defined when h−1,h0,h1 have no com-

mon zeros. This is the generic situation when n ≤ 3 so we restrict to this case.

2.2.4. Tropicalizing the Vieta involutions. Using the formula from §2.2.2 for σ1,
its tropicalization is naturally

prei ◦Trop(σ1)(e1, . . . ,en) :=
{

ei if i ≥ 2

Trop(h−1)−Trop(h1)−e1 if i = 1

with prei denoting projection to the i -th coordinate. Note that each of Trop(h−1),
Trop(h1) is itself a PL-function (of fewer variables). Similar formulas define in-
volutions Trop(σi ) for i = 2, . . . ,n.

2.2.5. Homogenizing the Vieta involutions. Assume now that n = 3 and for con-
venience denote coordinates by (x, y, z) instead of (x1, x2, x3) in earlier sections.
Homogenizing gives a bundle

(A2 à0)3 → (P1)3

with homogeneous coordinates (X0 : X1,Y0 : Y1, Z0 : Z1) on the total space, and
equation

X 2
0 ·H−1 +X0X1 ·H0 +X 2

1 ·H1 = 0
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following equation (2.2). The involution σx can then be lifted as

prX ◦Σx (X0 : X1) =
(

H1

X0
:

H−1

X1

)
,(2.3)

where prX denotes projection to (X0 : X1) and the other coordinates do not
change; the lifts Σy ,Σz are defined analogously and are themselves involutions
(note that not all possible lifts are involutions). The reason for this particular
choice of homogenization is the validity of Proposition 2.1 below.

2.2.6. The bundles and the space. Denote by X the vanishing locus in (P1)3 of
the homogeneous equation H = 0. Each of the P1-factors carries a natural Gm-
bundle coming from A2 à0 →P1. This Gm-bundle is the total space of the line
bundle O (−1), with the zero section removed.

Denote by E ⊂ (A2à0)3 the locus where H = 0, which is the total space of the
G3

m-bundle over X .

PROPOSITION 2.1 (Lift of the automorphisms). Assume that H−1, H0, H1 have
no common zero except at the origin, and assume the analogous condition for
the Y•, Z• variables. Then the automorphisms Σx ,Σy ,Σz defined in §2.2.5 provide
biregular lifts of σx ,σy ,σz from X to E.

Proof. It is enough to check the claim for Σx , the other involutions being anal-
ogous. Since the Y•, Z•-variables are not moved by the involution, only the
behavior in the X•-variables needs to be considered. From equation (2.3), the
value of Σx (X0 : X1) is not defined when either X0 = 0 or X1 = 0. It suffices to
deal with one case, the other being analogous.

Using the equation of the K3 surface, rewrite

H1

X0
= −1

X 2
1

· (X0 ·H−1 +X1 ·H0)

which can be used on the locus where X0 = 0. Since the point (0 : 0) is excluded
by construction, it follows that the lift Σx is well-defined everywhere.

It remains to check that there is no value of (X0 : X1) in the domain for which
Σx (X0 : X1) = (0 : 0), or equivalently consider the case H1 = 0 = H−1. Since by
assumption in that case H0 6= 0, the locus where H1 = 0 = H−1 intersected with
H = 0 is where X0 = 0 or X1 = 0 but not both. On this locus, using the alternative
expression for H1

X0
from above, it follows that no such (X0 : X1) exists.

2.2.7. A general construction. The above discussion is an instance of a more
general construction, due to Cantat [8, §3.1]. Specifically, if f : X → X is a pro-
jective automorphism of a variety with H 1(X ) = 0 (or: Pic0(X ) = 0) then selecting
L1, . . . ,Ln a basis of the Picard group of line bundles, f ∗ induces a linear map
that can be expressed as an n ×n integral matrix. Take E to be the total space
of L1 ⊕ ·· ·⊕Ln , or in the present case L×

1 ⊕ ·· ·⊕L×
n where L× denotes the bun-

dle without the zero section. Then there is a lift of f : X → X to the bundle as
F : E → E , commuting with the projection E → X .

2.3. The Picard group in the basic example.
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2.3.1. The tautological line bundles. Recall that over P1 there is the tautologi-
cal line bundle O (−1) → P1. Over the product (P1)3 there are therefore three
natural line bundles L1,L2,L3 associated to each factor. Let X := {H = 0} be a
degree (2,2,2) surface as before, and let Cx ,Cy ,Cz be the intersections of X with
the planes {α= const } (with α = x, y, z) in (P1)3. Let [Cx ], [Cy ], [Cz ] ∈ H2(X ;Z)
denote their homology classes.

2.3.2. Intersection theory calculation. It is clear that [Cx ]∩[Cx ] = 0 since [Cx ] is a
fiber in a fibration of X over P1, as the x-coordinate varies. Next, [Cx ]∩ [Cy ] = 2,
since intersecting the surface X to the plane {x = const } gives a degree (2,2)-
surface, and intersecting with the line

{
y = const

}
will have two intersection

points. So for generic values of x, y , the curves [Cx ], [Cy ] intersect at two points.
Using symmetry considerations, it follows that the intersection matrix of the
three divisors Cx ,Cy ,Cz is 0 2 2

2 0 2
2 2 0

 .

2.3.3. The action of involutions. Suppose now that σx is the involution defined
above. Then it is clear that σx (Cy ) = Cy and σx (Cz ) = Cz (note that the invo-
lution does not fix the curves pointwise, but rather restricts to an involution
on each). To determine σx ([Cx ]), we compute its intersections with the other
generators.

First, observe that σx ([Cx ])∩ [Cy ] = [Cx ]∩ [Cy ] = 2 by applying the involution
to both terms in the cap product and recalling that [Cy ] is fixed. For computing
σx ([Cx ])∩ [Cx ], fix say (X ′

0 : X ′
1) ∈P1 and note that the condition

σx (X ′
0 : X ′

1) = (X ′
0 : X ′

1) in P1

becomes the equation H1 · (X ′
1)2 −H−1(X ′

0)2 = 0, which for fixed X•-coordinates,
describes a degree (2,2) curve in P1×P1 with the (Y•, Z•)-coordinates. Imposing
also that the points lie on the surface {H = 0} and in the plane X• = (X ′

0 : X ′
1)

gives another curve of degree (2,2) and the intersection of two (2,2) curves in
P1×P1 has 8 points (by Bezout’s theorem). It follows that σx ([Cx ])∩ [Cx ] = 8. To
combine this with the information on the intersection matrix from §2.3.2, set
σx ([Cx ]) = a[Cx ]+b[Cy ]+ c[Cz ], take intersections with [Cx ], [Cy ], [Cz ] to deter-
mine that

σx ([Cx ]) =−[Cx ]+2([Cy ]+ [Cz ])

so in matrix form, using the basis [Cx ], [Cy ], [Cz ] for the subspace they generate
in H2(X ;Z),

σx =
−1 0 0

2 1 0
2 0 1

(2.4)

and similarly for σy ,σz .
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REMARK 2.2. Note that the homogeneous lift equation (2.3), because it extends
to the ambient space of the direct sum of line bundles, also determines the
action of σx on cohomology. This action can be read off by considering the
homogeneity matrix of Σx relative to the different variables.

That such a homogeneous lift exists in general was established by [8] and
some of his techniques will be useful later on.

2.3.4. Examples of automorphisms. A product of two involutions, say σxσy , will
give an automorphism of the K3 surface which is fixing the fibers of a fibration
to P1 with the z-coordinate. The fibers are elliptic curves, and the automor-
phism will act by translations along the elliptic curve.

However, already the product σxσyσz will give a hyperbolic action in coho-
mology, using equation (2.4). This is the typical kind of automorphism with
interesting dynamics that one would like to understand.

2.4. The core pencil. The expression for the automorphisms σ• never involves
the “central” coefficient of the defining equation {h = 0} ⊂Gn

m .

DEFINITION 2.3 (Core pencil). The pencil whose fiber over t ∈A1 is the hyper-
surface {h = t } ⊂Gn

m (or ⊂ (P1)n) will be called the core pencil.

An advantage of the core pencil is that the same algebraic expressions define
automorphisms for all member of the family.

2.4.1. Tropical core pencil. It is in fact convenient to define the tropical function

Trop(h◦)(e1, . . . ,en) := min
i•∈{−1,0,1}

(i1,...,in )6=(0,...,0)

ci1,...,in + i1e1 +·· ·+ inen(2.5)

so that a tropical Calabi–Yau Xc will be the break locus of

Trop(h) = min(Trop(h◦),c)

for a constant c. The locus Trop(h◦) = c will be called the skeleton of Xc and
denoted Sk(Xc ) (or Sktr (Xc ) when it has to be distinguished from the Berkovich
skeleton). When c is fixed, it will be omitted from the notation.

The different skeletons in the core pencil are the different level sets of the
same function, so they sweep out Rn .

THEOREM 2.4 (The skeleton is preserved). The involutions Trop(σi ) preserve the
skeleton of a tropical Calabi–Yau Xc as defined above.

Proof. It suffices to prove it for Trop(σ1), the other involutions being analogous.
Write the equation for Trop(h◦) in the form

Trop(h◦) = min(−e1 +Trop(h−1),Trop(h◦
0),e1 +Trop(h1)).

Since Trop(σ1)(x1) = Trop(h−1)−Trop(h1)−e1, it is clear that Trop(σ1) preserves
the values of Trop(h◦), hence its level sets. The level sets are, by definition, the
skeletons.
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3. THE ELLIPTIC CURVE CASE

In this section we specialize the discussion from §2.2 to the case n = 2, which
gives a tropical curve in the plane. The objects are the same as in Section 2
but for ease of notation, instead of Trop(h) we use below h and omit Trop from
notation; everything in this section is “tropicalized”. After explaining the geom-
etry of the tropical elliptic curve in §3.1, we consider the dynamics of the two
involutions in §3.2.

3.1. Drawing the curve. The PL-function of interest is of the form

h(e1,e2) = min
i , j∈{−1,0,1}

(ci , j + i ·e1 + j ·e2)

and the locus where two (or more) of the affine linear functions agree and are
smaller than the rest equals the tropical elliptic curve.

3.1.1. The tentacles. Fix e1 and assume that it is sufficiently negative, so that
only the affine linear functions of the form c1, j + e1 + j · e2 will matter for the
definition of Trop(h). This implies that the break locus will consist of two hori-
zontal lines, computed as follows. The functions to consider are

c1,−1 +e1 −e2, c1,0 +e1, c1,1 +e1 +e2.

For e2 À 0 the first function will be smallest, for e2 ¿ 0 the last one, and under
a genericity assumption on ci , j the middle function will also be minimal for a
bounded set of values of e2. Setting the appropriate functions to be equal gives
the break points e2 = c1,−1 − c1,0 and e2 = c1,0 − c1,1.

A similar analysis applies to the situations when e1 À 0, e2 ¿ 0, e2 À 0. It
implies that the break locus, outside of a compact set, consists of eight rays, two
going out in each cardinal direction.

3.1.2. The skeleton. Associated to a tropical elliptic curve is its tropical j -invari-
ant (see [27]). When the tropical elliptic curve comes from an algebraic elliptic
curve over a valued field, the tropical j -invariant is the negative of the valuation
of the usual j -invariant. When the j -invariant is strictly positive, the curve has
an interior cycle which we call its skeleton. The skeleton is the boundary of
the region on which the constant function is minimized. From now on, we
assume that the j -invariant is strictly positive and hence that there is a non-
trivial skeleton.

3.1.3. The Z-structure on the edges and the skeleton. Along each point p in the
interior of an edge E , there is a natural choice of Z-lattice Λp ⊂ Tp E in the
tangent space; this Z-lattice is obtained by moving p ∈ E to the origin in R2 and
intersecting the line generated by E with Z2.

At a meeting point of three edges of the tropical curve, there is a balancing
condition

v1 + v2 + v3 = 0

for vectors vi pointing outwards from the vertex along the edges. Moreover,
each vi = (vi ,1, vi ,2) ∈ Z2 is primitive and has to satisfy |vi ,1| + |vi ,2| ≤ 3. The
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FIGURE 5. Left: The monomials that are minimized in each re-
gion of the plane, together with the tropical elliptic curve in
the (e1,e2)-plane. Right: The dual subdivision of the Newton
polytope. The Legendre transform of the function on the left de-
termines the subdivision on the right. In the picture, all affine
linear functions in the definition of h are minimized for some
value of e1,e2.

quotient Z2/(Zv3) is naturally isomorphic to the lattice generated by either of v1

or v2, so there is a natural identification of the lattices along the edges generated
by v1 and v2.

This construction gives a well-defined Z-affine structure on the skeleton. In
the simple case of dimension 1, this is equivalent to a volume form (or a Rie-
mannian metric). The length of the skeleton, for this structure, is equal to the
tropical j -invariant.

3.2. Elliptic dynamics.

3.2.1. The reflections. Recall (see §2.2.4) that a tropical reflection is given by the
formula

σ2(e1,e2) = (e1,h1(e1)−h−1(e1)−e2),

where

h1(e1) = min
(
c1,1 +e1, c0,1, c−1,1 −e1

)
,

h−1(e1) = min
(
c1,−1 +e1, c0,−1, c−1,−1 −e1

)
.

Each of the functions h±1 is PL with two points where it changes slope, and the
slopes are −1,0,1.

The reflection line which is fixed by σ2 will be of the form

(e1,
1

2
(h1(e1)−h−1(e1))

and so will have slopes ranging −1 to 1 with steps of 1
2 . Note that the two infinite

rays of the reflection line will be parallel and pointing in opposite directions,
since the slopes of h1 and h−1 agree “at infinity”, i.e. for e1 À 0 or 0 À e1. The
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values of e1 where the reflection line will change slope correspond to those
where one of h±1 changes slope, so there will be (typically) four of them (the
atypical case is that some of the points can coalesce).

A similar analysis applies to the second reflection σ1.

FIGURE 6. A tropical elliptic curve with the skeleton in bold and
dashed reflection lines. The dotted vertical and horizontal lines
denote the points where the reflection lines change slope.

A tropical reflection will usually not map the tentacles of the elliptic curve
to other tentacles, except for those which are aligned with the reflection line.
However, the skeleton will be preserved by all reflections by Theorem 2.4.

FIGURE 7. The iterate of a segment under the twist map, an
analogue of §6.2 in the present case.
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PROPOSITION 3.1 (Reflections preserve the Z-structure). A tropical reflection of
a tropical elliptic curve preserves the integral structure (in the sense of §3.1.3) on
the skeleton. Equivalently, reflections are measure-preserving for the Lebesgue
measure on the skeleton induced by the integral structure.

Proof. For each reflection, there is a partition of R2 into polyhedral domains
(in fact strips) such that on each of them, the reflection acts as an affine map
with linear part a matrix in GL2(Z). This Z-structure is compatible with the
ambient Z2-structure of R2. The skeleton of the tropical curve breaks up into
segments, on each of which the Z-structure as defined in §3.1.3 is also induced
from the ambient R2, since the segments have rational defining vectors. Since
the GL2(Z)-action preserves the ambient Z-structure, if it takes one segment to
another it will respect their induced Z-structure.

3.2.2. Rotation on the circle. For a circle, the composition of two reflections is
a rotation by twice the angle between the fixed points of each reflection. The
action of the two reflections on the skeleton of a tropical elliptic curve is conju-
gated to the action of two reflections on a circle.

To find the angle of reflection, one must first compute the total Lebesgue vol-
ume of the skeleton of the elliptic curve. Then, one computes the total Lebesgue
measure between two fixed points of the reflections. The ratio of the two vol-
umes is one half of the rotation angle.

3.2.3. Rotation on the disc. The two reflections of a tropical elliptic curve pre-
serve not just the skeleton, but also the interior of the skeleton. Moreover, it
is clear that the natural Lebesgue volume form is also conserved. The two re-
flections will preserve a foliation of the interior by PL-curves, each of which is
isomorphic to the skeleton of a tropical elliptic curve (the foliation will have a
segment in the center which is fixed by each rotation).

3.2.4. The scaffolding in the skeleton. Recall (§2.4) that the curves which are
invariant by both reflections are in fact level sets of a natural function

h◦(e1,e2) := min
i , j∈{−1,0,1}
(i , j )6=(0,0)

ci , j + i ·e1 + j ·e2

which is the same as the function defining the tropical elliptic curve, except
that the constant function is omitted from the minimization. Equivalently, the
invariant curves can be viewed as a 1-parameter family of tropical elliptic curves,
whose defining equations have varying c0,0 term.

The function h◦ is PL and concave, with derivative constant on some convex
domains. The jump set of the derivative gives a 1-dimensional complex in R2

(see Figure 8).

REMARK 3.2. At the level set which is a maximum of the function h◦, the com-
position σ1σ2 acts by a finite-order automorphism (of order at most 2). On
the level set h◦ = c with c → −∞, the composition σ1σ2 again approaches a
finite-order automorphism. The reason is that most of the mass of the skeleton
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FIGURE 8. Left: The invariant curves of the rotation and the
lines of reflection for the involutions. Right: The break lines of
the function h◦ which determines the core pencil.

is concentrated on segments with slopes ±π
4 , which are almost exchanged by

the involutions. It would be interesting to investigate the variation of angle of
rotation of σ1σ2 from the maximum of h◦ to −∞.

4. GENERAL PROPERTIES OF TROPICAL K3 AUTOMORPHISMS

In this section we continue the study of the basic example from §2.2 in the
case n = 3, leading to K3 surfaces. Our focus will now be on the dynamics of
an automorphism which acts hyperbolically on the Picard group, where the
action on the group is determined by the matrices from equation (2.4). We
will construct a potential for the dynamics, analogous to classical constructions
in complex dynamics, e.g., those of Hubbard–Papadopol [25]. This standard
construction uses homogeneous variables, discussed in §4.1, and yields the cor-
responding potential as an application of the contraction mapping principle in
Theorem 4.3. However, to understand the positivity properties of the potential
will require Berkovich spaces, studied in Section 5.

For notation, we continue to write h,h◦ instead of Trop(h),Trop(h◦) and gen-
erally omit Trop from notation, as all concepts are tropical. For convenience of
notation, we switch to variables x, y, z ∈R instead of e1,e2,e3.

4.1. Homogenizations.

4.1.1. Some conventions. For discussing below the homogenization of a tropical
automorphism, we will replace the inhomogeneous variable x ∈ R by the pair
(X0 : X1) ∈ R2 with the quotient map x = X1 − X0 (and similarly for y, z). For

convenience, let V :=
[

1
1

]
denote a vector in the kernel of this quotient map, and

write X for

[
X1

X0

]
.
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When passing to tropical functions, homogeneity will be additive and not
multiplicative. Specifically, a function φ : R2 →R will be called homogeneous of
degrees α (for α ∈R) if φ(X+V · t ) =φ(X)+ t ·α for all t ∈R.

More generally, view (R2)3 =R2×3 as 2×3 matrices. For a column vector α ∈R3,
a function φ : (R2)3 →R will be called homogeneous of degree α if

φ(p +V · t ) =φ(p)+ t ·α
for every row vector t ∈R3 and 2×3 matrix p.

Yet more generally, a transformation Φ : (R2)3 → (R2)3 will be called homoge-
neous of degree MΦ, where MΦ is a 3×3 matrix, if

Φ(p +V · t ) =Φ(p)+V · t ·MΦ.

Instead of “homogeneous of degree •” we will also say “•-homogeneous”.
A direct calculation shows that if φ : (R2)3 → R is α-homogeneous and Φ is

MΦ-homogeneous, then the pulled-back function Φ∗φ is (MΦ·α)-homogeneous.

4.1.2. The basic example. Recall from §2.2 that we have the tropical “rational
function”

h◦(x, y, z) := min
i , j ,k∈{−1,0,1}
(i , j ,k)6=(0,0,0)

i x + j y +kz + ci , j ,k

and that the level sets of h◦ in R3 are the skeletons of a family of K3 surfaces (see
§2.4). Fix a value c of h◦ and let Sk(X ) := {h◦ = c

}
be the corresponding level set,

which is the skeleton of the tropical K3 surface associated to h = min(h◦,c).
Recall that to describe an involution that preserves Sk(X ), the x terms in the

minimization for h◦ are grouped as:

h◦(x, y, z) = min
(−x +hx,−1(y, z), hx,0(y, z), x +hx,1(y, z)

)
,

where hx,• are themselves tropical rational functions of y, z written using min-
imizations in ±y,±z. Then the following involution preserves the level sets of
h,

σx (x, y, z) = (x ′, y, z), where x ′ = hx,−1(y, z)−hx,1(y, z)−x(4.1)

Indeed, the fixed point of the involution is x0 = 1
2 (hx,−1 −hx,1), which is the x-

value where −x +hx,−1 = x +hx,1, and the reflected point can be expressed as
x ′ = −(x − x0)+ x0. The formulas hold for all values of y, z, which are implicit
and have been omitted in the last sentence.

4.1.3. Homogenizing the equations. The natural bundle over R3 to which the
tropical automorphism lifts is

R2 ×R2 ×R2 →R3

(X0 : X1)× (Y0 : Y1)× (Z0 : Z1) → (X1 −X0,Y1 −Y0, Z1 −Z0).

The homogenization of h◦ then becomes

H◦(X,Y,Z) = min
i , j ,k∈{−1,0,1}
(i , j ,k)6=(0,0,0)

Pi (X0 : X1)+P j (Y0 : Y1)+Pk (Z0 : Z1)+ ci , j ,k ,
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where

P−1(A0 : A1) = 2A0, P0(A0 : A1) = A0 + A1, P1(A0 : A1) = 2A1.

Note that each P• is homogeneous of degree 2 (see §4.1.1), so H◦ is homoge-
neous of degree (2,2,2).

The equation
{
h◦ = c

}
gives the skeleton Sk(X ) and its lift now becomes

H◦(X,Y,Z) = c + (X0 +X1)+ (Y0 +Y1)+ (Z0 +Z1).

Define E ⊂ (R2)3 to be the locus of (X,Y,Z) where the above equation holds.
Then E is the total space of an R3-bundle over Sk(X ),

E → Sk(X )

and the lift of the automorphisms of Sk(X ) to E will be the basic object of study
below.

4.1.4. Homogenizing the automorphisms. Group again the terms in H◦ accord-
ing to the X -variable

H◦(X,Y,Z) = min
(
2X0 +HX ,−1(Y,Z), X0 +X1 +HX ,0(Y,Z),2X1 +HX ,1(Y,Z)

)
so that the lifted automorphism (see equation (4.1)) can be written as

ΣX (X0 : X1) = (HX ,1(Y,Z)−X0 : HX ,−1(Y,Z)−X1
)
.(4.2)

An alternative lift of σx which removes the negative signs would be given by
adding (X1 +X0) · (1 : 1) to the X -coordinate

Σ
pos
X (X0, X1) = (X1 +HX ,1(Y,Z) : X0 +HX ,−1(Y,Z)

)
.(4.3)

REMARK 4.1. The advantage of Σpos
X is that it only involves positive slopes, while

the advantage of ΣX is that it is a genuine involution: (ΣX )2 = i d .
The homogeneity matrices of ΣX and Σ

neg
X are

MΣX =
−1 0 0

2 1 0
2 0 1

 , MΣ
pos
X

=
1 0 0

2 1 0
2 0 1

 .

Comparing with equation (2.4), it is clear that ΣX is the right choice of lift. How-
ever, it is tempting to use Σ

pos
X since the methods of Section 7 below would

imply that the potential constructed in Theorem 4.3 would be, in fact, convex
(and with controlled derivatives).

4.2. Constructing a potential.

4.2.1. Eigen-homogenizations. Given an automorphism f : Sk(X ) → Sk(X ) writ-
ten as a product of the involutions σ•, there are many possible lifts F : E → E
to the total space of the bundle. Each lift has a homogeneity matrix MF and
determines possible eigen-homogenizations vF (column vector), with eigenva-
lue λF , satisfying MF vF = λF vF . In particular, the class of vF -homogeneous
functions on E (or more generally (R2)3) will be invariant under pullback by F
and rescaling by λF . The interesting case is when λF > 1, or 1 >λF in which one
applies the arguments to F−1.
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DEFINITION 4.2 (Potentials). A potential for the action of F on E is a vF -homoge-
neous function G : E →R satisfying

G(F (p)) =λF ·G(p).

4.2.2. Cocycles. Fix a linear section of the projection (R2)3 →R3, for example

σ(x, y, z) =
[

x/2 y/2 z/2
−x/2 −y/2 −z/2

]
.

In order to relate the potentials on E to the dynamics on the base, one can pull
the potentials back using the section. The dynamics will determine a cocycle

F (σ(p))−σ( f (p)) =: V · cF (p),

where cF (p) is row 3-vector and V =
[

1
1

]
. Defining g (p) :=G(σ(p)) for a potential

G : E →R, this gives the functional equation

g ( f (p)) =λF · g (p)+ (cF (p) · vF ),

where vF is, as above, the homogeneity of G (hence a column vector).

THEOREM 4.3 (Existence of a potential). Suppose that F : E → E is a lift of the
automorphism f : Sk(X ) → Sk(X ) and MF is the homogeneity matrix of F in the
fiber direction of E. If MF has a real eigenvector vF with eigenvalue λF > 1, then
there exists a unique continuous

G : E →R

which is vF -homogeneous and satisfies G(F (p)) =λF ·G(p).

Proof. Let C (E , vF ) denote the space of continuous functions on E , which are
vF -homogeneous and equipped with the distance function

dist(G1,G2) := sup
e∈E

|G1(e)−G2(e)|.

It is a complete metric space, since the base Sk(X ) is compact, and the functions
have the same homogeneity in the fiber direction. Therefore the difference
|G1(e)−G2(e)| is independent of the choice of point in the fiber. Put differently,
C (E , vF ) has a natural structure of affine space2 over C (Sk(X )), the space of
continuous functions on Sk(X ).

The transformation 1
λF

F∗ : C (E , vF ) →C (E , vF ) is contracting distances by a
factor of λF , so it has a unique fixed point – the desired G .

REMARK 4.4 (On compatibility). From the proof it is clear that one can also use
a space of Hölder-continuous functions (with Hölder exponent depending on
λF and a choice of metric on Sk(X )) to find that G is Hölder. In fact, with the
appropriate convexity properties of G , one would expect G to be Lipschitz.

In Section 5 below, we sketch a relation to Berkovich spaces and explain
why one expects further convexity properties of the potential G constructed
in Theorem 4.3, assuming a correct choice of lift of the automorphism to the
vector bundle.

2Its non-emptiness can be checked using a partition of unity on Sk(X ).
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4.2.3. Dynamics at infinity. One can view the tropical projective line as P1,tr =
{−∞}∪R∪ {+∞} with the appropriate topology. Then the action of the involu-
tions σ• extends, in fact to (P1,tr )3 continuously. The action of σx exchanges
the strata {±∞}× (P1,tr )2, and the actions of σy ,σz preserve these two strata
and give elliptic dynamics on each of them, as in Section 3. However, the two
elliptic dynamical systems will not be isomorphic (except for special choices of
the parameters) so the automorphism σxσyσz will mix the two elliptic factors.

It would be interesting to investigate this area-preserving system further. For
example, is there some finite Lebesgue measure set on the two planes that will
be invariant?

5. BERKOVICH SPACES AND K3 DYNAMICS

The theory of Berkovich spaces was started in [3]. An introduction, with a
view towards dynamics in dimension 1, is in the notes of Baker [1].

Our goal in this section is to develop the analogues of the constructions in
Section 4 in the setting of Berkovich spaces, where a more flexible and devel-
oped formalism is available. The basic definitions are contained in §5.1, fol-
lowed by a discussion of the skeleton from the point of view of Berkovich geom-
etry in §5.2. Line bundles, which will be used when constructing the potentials,
are discussed in §5.3. The relation of the previous constructions with tropical
geometry is discussed in §5.4. After recalling the formalism of differential forms
and currents on Berkovich spaces in §5.5, we construct the currents scaled by
the dynamics in §5.6.

Note that the definition of currents and differential forms on Berkovich spaces
makes use of tropicalizations. Thus, many of the implicit constructions in this
section can be made explicit in the setting of Section 4.

Notation. Let K be a field, complete with respect to a non-trivial non-archime-
dean absolute value |− |. The valuation on K is defined by v : K × →R as v(x) :=
− log(|x|). Let R denote the valuation ring, i.e. R = {x : v(x) ≥ 0} and m the max-
imal ideal, defined by m= {x : v(x) > 0}. The residue field is k := R/m. Assume
that K and k have both characteristic zero.

The main example is K =C((t )), so that R =C[[t ]] ⊃ t ·C[[t ]] =m and k =C. It
is often convenient to assume that K is also algebraically closed, in which case
an example is the field of Puiseux series K := ⋃nC((t 1/n)) (the residue field is
still C).

All examples relevant for this paper will start with a quasi-projective variety
X inside a toric variety (e.g. Pn) which simplifies significantly the discussion. In
particular, the relevant line bundles will have a natural algebraic structure.

5.1. The Berkovich analytification. Let A be a finitely generated K -algebra; its
usual spectrum Spec(A) consists of all the prime ideals in A.

DEFINITION 5.1. The Berkovich analytification Spec(A)an is the set of all multi-
plicative seminorms on A extending the fixed norm |− | on K .
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5.1.1. Some associated objects. For x ∈ Spec(A)an with seminorm |−|x , its kernel
px = {a ∈ A : |a|x = 0} is a prime ideal, so there is a natural map Spec(A)an →
Spec(A).

The quotient A/px is an integral domain, equipped now with a genuine norm
also denoted |−|x . The fraction field of A/px is denoted κ(x) and the completion
of κ(x) for the norm |− |x is denoted H (x).

For a general scheme X over K , the above construction glues along local
charts and defines a space X an . The discussion below takes place on a fixed
open set U = Spec(A) and all notions are local.

5.1.2. Topology and functions on the Berkovich spectrum. Every element f ∈ A
determines a function

| f | : U an →R, x 7→ | f |x
and the topology on U an is the smallest one for which the above maps are all
continuous.

There is also a sheaf of “holomorphic functions” on U an . For this, note first
that the algebra A determines “polynomial functions” a(x) ∈H (x) on U an , and
their ratios determine “rational functions”, with poles along closed subsets. The
holomorphic functions OX an are then assignments f (x) ∈ H (x) such that in
some neighborhood of x, f can be uniformly approximated by rational func-
tions.

5.1.3. Models. Suppose that X is a scheme over K . A model of X is an R-scheme
X which is flat and of finite type3 over R, normal and separated, and equipped
with an isomorphism X ×R K → X . The central fiber X0 of the model is defined
to be the reduction X ×R (R/m) which is now a k-scheme. If the model is not
proper over R, the central fiber could be empty.

A model X of X has simple normal crossings, or snc for short, if: X is proper
and regular over R, the reduced central fiber X0,r ed is a union of divisors with
simple normal crossings and irreducible (or empty) intersections.

The model X is semistable if it is proper over R, and the central fiber X0 is re-
duced and snc. Semistable models always exist, after possibly a finite extension
K ⊂ K ′ of the base field.

5.2. Berkovich skeletons. Although Berkovich spaces have a large number of
points, their homotopy type is manageable. Fix a projective K -variety X , and
assume for simplicity that K =C((t )).

5.2.1. Clemens, or dual complex. The following construction is detailed in [29,
Appendix A] or [4, §2.1].

For a simple normal crossings model X , let IX denote the set of irreducible
components of X0,r ed and for i ∈ IX let Di ⊂X0,r ed denote the corresponding
divisor. Assume that X0 =∑i bi Di with bi ∈Z>0 giving the multiplicities.

3One could also require properness.
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For a subset J ⊂ IX define D J := ∩ j∈J D j . The Clemens complex, or dual
complex ∆(X ) is defined to be the simplicial complex determined by the set
IX with a simplex ∆J for every J ⊂ IX such that D J 6= ;. The simplex has the
following natural geometric realization:

∆J :=
{

w ∈RJ
>0 :
∑
i∈J

bi wi = 1
}

.

5.2.2. Embedding the complex into the analytification. One way to build points
in X an is by constructing valuations on the function field of X which are com-
patible with the valuation on K , in particular they assign valuation 1 to the
uniformizer t ∈ R ⊂ K . Given such a valuation v ′, the associated norm is | f |v ′ :=
e−v ′( f ).

Recall that t = 0 determines X0 ⊂ X , so the multiplicity bi of a component
Di ⊂X0,r ed is determined from

bi = ordDi (t ),

where ordDi is the valuation determined by the divisor Di ⊂X . It follows that
the valuation vi := 1

bi
ordDi agrees with the valuation on K and determines a

point in X an , called a divisorial point.
In general, to a point p ∈∆(X ) there is associated a monomial valuation and

monomial point as follows (see [35, Prop. 2.4.4] for details). If p ∈∆J ⊂∆(X ), it
determines the subset D J =∩ j∈J D j ⊂X and weights w j on D j . Let x j denote a
defining equation of D j in the local ring of X at D J . A function f on X , regular
near D J , can be expanded in a series

f = ∑
β∈Z|J |

≥0

cβxβ

with cβ non-vanishing on D J , if non-zero. Then the valuation associated to p is
defined as:

vp ( f ) := min
β∈Z|J |

≥0
cβ 6=0

∑
j∈J

w j ·β j .

Note that the valuation is compatible with that on K , since for the power-series
expansion of t , we will have β j = b j so vp (t ) = 1.

5.3. Line bundles on Berkovich spaces. For a more detailed discussion of line
bundles and metrics on Berkovich spaces, see [11, §1].

5.3.1. Line bundles and metrics. One can view a line bundle L over X an as either
a locally free rank 1 sheaf of OX an -modules, or as its total space L → X an with
linear structure on each fiber. Over a point x ∈ X an , the fiber is isomorphic to
A1

H (x).

A metric on L is a function e−φ : L → R such that φ is homogeneous of de-
gree (−1) in the sense of Definition 5.4 (when restricted to L×, the line bundle
without the zero section).
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5.3.2. Weil metric. The basic example is that coming from O (−1) →P1, which is
explicitly A2 à0 →P1. Taking analytifications, the Weil metric is determined by

φ : (A2 à0)an →R, (X0 : X1) 7→ − logmax(|X0|, |X1|) = min(− log |X0|,− log |X1|).

This induces on the dual line bundle O (−1) the Weil metric described in [11,
§1.3.4]. The expression given above for φ in terms of min is made in order to
emphasize the analogy with the corresponding tropical constructions.

REMARK 5.2 (On signs). There are a number of conventions about signs in the
literature, and this paper follows only some of them. For line bundles, it is
customary to take metrics to be functions on the total space of the form e−φ

so that the first Chern class is
p−1
π ∂∂φ. This is compatible with the choice of

tropicalization as x 7→ − log |x| and going from valuations to norms via |x| =
e−v(x).

5.4. Berkovich spaces and tropicalization. For a more thorough treatment of
the constructions below, one can look at [22, §4] or [36, §3].

5.4.1. Basics on tori. Recall that Gm denotes the algebraic group of invertible
elements in a field, i.e. for a field κ one has Gm(κ) = κ×. A torus4 T is a product
of several copies of Gm , i.e. T :=Gn

m . One typically denotes by N := Hom(Gm ,T)
the co-character lattice and by M := Hom(T,Gm) the character lattice. The two
groups are naturally dual and each is isomorphic to Zn , once an isomorphism
Gn

m → T has been chosen. When dependence on T is important, the lattices
will be denoted M(T), N (T), and their extensions of scalars to a ring R ⊃ Z by
MR , NR .

5.4.2. Morphisms, homogeneity, torsors. A group homomorphism between two
tori f : T1 → T2 is equivalent to the data of the induced map on co-character
lattices N f : N (T1) → N (T2), as a morphism of Z-modules. Equivalently, it is
determined by the dual map on character lattices.

Recall now that a torsor S for a group G is an algebraic variety with a G-action
such that the map G × S → S × S given by (g , s) 7→ (g · s, s) is an isomorphism.
Informally, a torsor for G is like G , but without a choice of origin.

Given two torsors S1,S2 for the tori T1,T2, and morphisms f : T1 → T2 and
fS : S1 → S2 such that fS is f -equivariant, call fS homogeneous of degree N f

where N f is the induced map on co-character lattices of Ti .

5.4.3. Torsors and line bundles. The next discussion works in any category (con-
tinuous/algebraic/analytic). For a line bundle L → X let L× → X denote the line
bundle with the zero section removed. Then there is a natural action of Gm on
L× by scaling. For each x ∈ X the action makes the fiber L×

x into a Gm-torsor.
One can check that equivalently, a family of Gm-torsors over X is the same as a
line bundle. To see this, trivialize locally the torsors and use the definition of line
bundles in terms of gluing maps on overlaps of charts by invertible functions.

4Split torus, one should say.
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More generally, a family of T-torsors E → X gives rise to a direct sum of
line bundles. Suppose now that M : T → T is a map of tori, induced by an
endomorphism of the character lattice. Given two families of T-torsors Ei → X
with i = 1,2, a map F : E1 → E2 preserving the fibers will be called homogeneous
of degree M if F (t ·e1) = M(t ) ·F (e1) for all t ∈T,e1 ∈ E1.

Note that the conditions can be expressed in terms of morphisms (i.e. as a
diagram) so it is not necessary to speak of individual elements. In the examples
of interest, when f : X → X will be an automorphism, our torsors will be E and
f ∗E .

5.4.4. Tropicalizations for subvarieties of tori. For a torus T, its analytification
admits a natural tropicalization map

Trop: Tan → N (T)R, (x1, . . . , xn) 7→ (− log |x1|, . . . ,− log |xn |)
which can also be expressed canonically, using the identification N ∼= M∨.

If X ⊂T is a subvariety, then the composition of X an ,→Tan Trop−−−→ NR gives its
tropicalization. The image is a balanced (see §2.1.6) polyhedral complex.

5.4.5. Toric varieties and extended tropicalization. Recall (see, e.g., [21]) that a
toric variety Y is a variety equipped with an action of a torus T and a dense
open orbit isomorphic to T inside Y . The toric variety Y is determined by a fan
σ in the co-character lattice N (T); to denote the dependence of the variety on
the fan, write Yσ for the toric variety.

Associated to the fan σ is a partial compactification N (T)σ ⊃ N (T) and there
is an extended tropicalization map

Trop: Yσ→ N (T)σ

compatible with the tropicalization of the torus T ⊂ Yσ. For example, the ex-
tended tropicalization of P1 is {−∞}∪R∪ {+∞}.

5.4.6. Analytification as a limit of tropicalizations. If X is quasi-projective, Payne
[36] showed that one can recover the Berkovich analytification as a projective
(i.e. inverse) limit of tropicalizations. Specifically, for each embedding into a
toric variety ι : X ,→ Yσ, there is an associated tropical variety Trop(X , ι) ⊂ N (Tι)σ.
Furthermore, for any two such embeddings ι1, ι2, there is a third ι3 that domi-
nates them, as well as corresponding maps of tori that make the diagram equi-
variant. The natural map

X an → lim←−−Trop(X , ι)

is then a homeomorphism, where X an is equipped with the topology from
§5.1.2 and the right-hand side is given the projective limit topology.

REMARK 5.3. One can speak of tropicalizations without introducing Berkovich
analytic spaces. Specifically, any K -valued point of X ⊂ T has a natural tropi-
calization in N (T)R by taking (− log) of its coordinates. By considering all finite
extensions K ′ ⊃ K and K ′-valued points, and taking the closure of the resulting
set in N (T)R gives the same object as tropicalizing the analytification.
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5.5. Differential forms on Berkovich spaces. Lagerberg [31] introduced a no-
tion of super-forms on Rn as a way to mimic the calculus of (p, q)-forms on
Cn . It was taken by Chamber-Loir & Ducros [10] as a basis for a formalism of
differential forms on Berkovich spaces. An expository account of some of those
results is in the notes of Gubler [22].

5.5.1. Super-forms on Rn . Let xi be coordinates on Rn . Super-forms are expres-
sions

ω= ∑
I ′,I ′′

ωI ′,I ′′(x)d ′xI ′ ∧d ′′xI ′′ ,

where ωI ′,I ′′(x) are smooth functions and d ′xI ′ = d ′xi1 ∧·· ·∧d ′xik (and similarly
for d ′′xI ′′) is a formal expression obeying the rules of the exterior algebra. In par-
ticular I ′, I ′′ ⊂ {1 . . .n} and consist of distinct elements. Equipped with a graded-
symmetric wedge product, super-forms are a graded algebra; the bidegree of ω
as expressed above is (|I ′|, |I ′′|) and its total degree is denoted degω := |I ′|+ |I ′′|.

The operator J is defined by J(d x ′
i ) = d x ′′

i and J(d x ′′
i ) = d x ′

i and extended
naturally to the algebra; note that J 2 = 1. The differential operators are defined
as derivations of the algebra via:

d ′ f :=∑
i

∂ f

∂xi
d x ′

i for functions

d ′(α∧β) = (d ′α)∧β+ (−1)degαα∧ (d ′β)

d ′′ = Jd ′ J .

Super-forms can be considered on open subsets of Rn , as well as all of Rn .
Under the “tropicalization” map (C×)n → Rn defined by xi := − log |zi |, one

can think of the identification d ′xi =−d log |zi | and d ′′xi = d Arg(zi ). Note that
this identification is not compatible for the types of forms of bidegree (p, q) in
complex geometry and in the sense described above. However, one can iden-
tify the space of super-forms on Rn with the space of (S1)n-invariant forms on
(C×)n , where S1 ⊂C× is the unit circle.

The formalism of super-forms developed by Lagerberg allows for an integra-
tion theory admitting a Stokes formula, change of variables (for affine maps),
and definitions of currents (i.e. super-forms with distributional coefficients) by
a duality pairing with ordinary smooth super-forms.

5.5.2. Positivity for super-forms. Just like in complex geometry, there are several
notions of positivity for (p, p)-super-forms, though they agree for (1,1)-forms. A
key fact [31, Prop. 2.5] is that a function u is convex if and only if d ′d ′′u ≥ 0 in
the sense of currents. Conversely, for any closed positive (1,1)-current T there
exists a convex u with d ′d ′′u = T (by [31, Prop. 2.6]). In fact, Hörmander-type
L2-estimates are developed in [30]. Furthermore, an intersection theory is also
available for positive currents with continuous potentials; in particular, Monge–
Ampère operators of convex functions are well-defined.

It is useful to remark that tropical cycles in Rn can be defined using the for-
malism of super-forms. Namely, if f is a PL function given as a minimization of
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finitely many affine functions f := minα ξα, then −d ′d ′′ f is the cycle of integra-
tion along the break locus of f .

5.5.3. Differential forms on Berkovich spaces. As discussed in §5.4.6, the Berko-
vich space X an can be viewed as a projective limit of tropicalizations. Using
such maps X an ⊃U →Rn called charts, Chambert-Loir–Ducros [10] define dif-
ferential forms on X an using an injective (i.e. direct) limit construction. Note
that currents on Berkovich spaces are therefore defined as projective (i.e. in-
verse) limits. In particular, a current on X an gives one on any (extended) tropi-
calization.

5.6. The currents in Berkovich dynamics. Throughout, all analytifications are
in the sense of Berkovich.

5.6.1. Setup. Suppose that X is a projective K3 surface and f : X → X an auto-
morphism, all defined over K . Let E → X be a T :=Gn

m-bundle to which f lifts
as

E E

X X

F

f

and such that the homogeneity of F (see §5.4.3) is given by a morphism FT : T→
T, i.e.,

F (t ·p) = FT(t ) ·F (p) ∀t ∈T,∀p ∈ E .

Recall that the torus morphism FT : T→ T is the same as a map NF : N (T) →
N (T) on the co-character lattice, or a dual morphism MF : M(T) → M(T) on the
character lattice.

DEFINITION 5.4 (Homogeneity for potentials). Suppose that E → X is a torsor
over X for the torus T. A function G : E an →R is called homogeneous of degree
α ∈ M(T), or α-homogeneous if for any x ∈ X an the map on the fiber

G : E an
x →R

satisfies G(t ·p) =G(p)+ log |α(t )|, where t ∈T(H (x)) and α :T→Gm , and the
norm of α(t ) is coming from H (x).

We will abuse notation and allow α ∈ M(T)R and not just M(T)Z. To make
sense of log |α(t )|, write α=∑ciαi with αi ∈ M(T)Z and ci ∈R (where we used
additive notation for characters). Then log |α(t )| :=∑i ci log |αi (t )| where now
αi (t ) ∈H (x).

5.6.2. Behavior under pullback. Suppose that G : E an → R is α-homogeneous,
and F : E → E is homogeneous for the morphism MF : M(T) → M(T) on the
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character lattice and FT : T→T on the torus. Then the pullback F∗G is MF (α)-
homogeneous. Indeed:

F∗G(t ·p) =G(F (t ·p)) =G(FT(t ) ·F (p))

=G(F (p))+ log |α(FT(t ))|
= F∗G(p)+ log |MF (α)(t )|

by the definition of MF .

THEOREM 5.5 (Existence of analytic potential). With the setup as in §5.6.1, sup-
pose that MF acting on M(T)R has an eigenvector vF with eigenvalue λF > 1.
Then there exists a unique

G : E an →R

which is αF -homogeneous and satisfies F∗G =λF ·G.

Proof. The proof is analogous to Theorem 4.3. Consider C (E an , vF ), the space
of continuous functions on E an which are vF -homogeneous, equipped with the
distance

dist(G1,G2) := sup
e∈E an

|G1(e)−G2(e)|

which makes into a complete metric space, in fact an affine space over C (X an),
the space of continuous functions on X an . The strict contraction 1

λF
F∗ has a

unique fixed point, which is the desired G .

To obtain positivity properties of the current defined by the potential G , we
need a strengthening of the above construction.

THEOREM 5.6 (Convergence to the potential). Suppose that P : E an → R is an
αP -homogeneous function. Assume that the action of MF on M(T)R has an eigen-
vector vF with eigenvalue λF > 1 and such that 1

λn
F

M n
F (αP ) → vF exponentially

fast as n →∞. Then the sequence of functions 1
λn

F
(F∗)nP converges, uniformly on

compact sets of E an , to the function G constructed in Theorem 5.5.

Proof. As a preliminary, fix a finite cover X =⋃Ui by open sets and si : Ui → E
sections. By abuse of notation, we will push forward open sets under the action
of f and sections under F .

For each pair i , j , the sections are related under the dynamics by

F∗si (x) = ti , j ( f (x))s j ( f (x)) ∀x ∈ f (Ui )∩U j

for maps ti , j : f (Ui )∩U j → T. Note that the above identity can be expressed
algebraically, without taking pointwise values, so in particular it makes sense
after analytification.
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Set Pn := 1
λn

F
(F∗)nP and let us now express its behavior under 1

λF
F∗:

Pn+1(si (x)) = 1

λF
F∗Pn(si (x)) = 1

λF
Pn(F (si (x)))

= 1

λF
Pn(ti , j ( f (x)) · s j ( f (x)))

= 1

λF

(
Pn(s j ( f (x)))+ log

∣∣αPn (ti , j ( f (x)))
∣∣),

(5.1)

where αPn = 1
λn

F
M n

F (αP ) denotes the homogeneity of Pn . By shrinking the charts

if necessary to precompact U ′
i ⊂Ui (in the analytic topology) assume that the

ti , j (x) vary in a bounded set in T. Now for the homogeneities, we can take n0

such that ∀n ≥ n0 we have

−m ≤ log
∣∣αPn (ti , j ( f (x)))

∣∣≤ m

for some uniform m > 0. Moreover, by the exponentially fast convergence of
αPn to vF , and the boundedness of ti , j (x), we can assume that there exists C1 >
0,δ> 1 such that∣∣∣ log

∣∣αPn (ti , j ( f (x)))
∣∣− log

∣∣αPn−1 (ti , j ( f (x)))
∣∣∣∣∣≤ C1

δn

for all x, i , j . Defining now dn := supi ,x

∣∣Pn(si (x))−Pn−1(si (x))
∣∣ and using equa-

tion (5.1) gives

dn+1 ≤ 1

λF
dn + 1

λF
· C1

δn ,

and since λF > 1, δ> 1, it is clear than
∑

i≥0 di converges absolutely. Therefore
Pn(si (x)) converges uniformly, and so Pn converges uniformly on compact sets
to a function G ′ whose homogeneity is clearly vF . Since 1

λF
F∗Pn = Pn+1, it

follows that 1
λF

F∗G ′ =G ′ and by the uniqueness part of Theorem 5.5, it follows
that G ′ =G .

THEOREM 5.7 (Positivity of the current). Assume the K3 surface automorphism
f : X → X is projective and the action of f ∗ on Pic(X ) is hyperbolic, i.e, there
exists a unique up to scale v ∈ Pic(X )⊗ZR which is an eigenvector with eigenvalue
λ> 1. Then for the space E from §2.2.7, there exists a choice of homogeneity v, or
perhaps −v, with the following properties:

1. The v-homogeneous function G : E an →R constructed in Theorem 5.5 sat-
isfies d ′d ′′G ≥ 0.

2. There exists a closed positive current ηv on X an , obtained by pulling back
d ′d ′′G from E an along local sections, such that f ∗ηv =ληv .

Proof. By the projectivity assumption of f and X , there exists at least one very
ample line bundle La on X . Now La carries a positive metric using the con-
struction from §5.3.2, written in the form e−Pa for a function Pa : (L×

a )an → R

satisfying d ′d ′′Pa ≥ 0. Express La in the given basis of Pic(X ) to obtain a map
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E → L×
a which is homogeneous of degree depending on the coordinates of La .

Let P be the pullback of Pa to E , which still satisfies d ′d ′′P ≥ 0.
There exists a positive rescaling of P which ensures that its homogeneity αP

satisfies 1
λn MF (αP ) → v , or possibly −v ; note that the ample cone is open in the

real Picard group, so a generic choice of La will have this property. Theorem 5.6
implies that G is a uniform limit of functions Pn satisfying d ′d ′′Pn ≥ 0, so it itself
satisfies the same property.

For part (ii), note that fixing local algebraic sections si : X → E on open sets
Ui allows us to define ηv := d ′d ′′(s∗i G). Let us check that ηv is independent of
the choice of si . Another section s′i will differ from si by a map r : Ui →T, where
E is trivialized on Ui as Ui ×T for a torus T. Then d ′d ′′(s∗i G) and d ′d ′′((s′i )∗G)
will differ by linear combinations of expressions of the form d ′d ′′(a j · log |r j |)
where r j are nowhere vanishing algebraic functions in Ui (depending on r )
and a j are real numbers depending on the homogeneity of G . Therefore the
expressions d ′d ′′(a j ·log |r j |) vanish (see, e.g., [10, 4.6.5]), showing independence
of the local sections.

Finally the equation f ∗ηv =ληv follows from the same property for G .

COROLLARY 5.8 (Invariant measures). With the setup as in Theorem 5.7, let η+ be
the current associated to f , and η− the one associated to f −1. Then µan := η+∧η−
is an f -invariant positive measure on X an . Furthermore, the measure is non-zero,
and the currents satisfy η2+ = 0 = η2−.

Proof. The invariance of the measure follows because f ∗η± = λ±1η±. For the
second part, on intersections, recall that the currents η± can be written as
η± = limn→+∞ 1

λn

(
f ±n
)∗ c1(La) where c1(La) is a (1,1)-form representing the

first Chern class of an ample line bundle La . By [10, 6.4.3], the integrals can
be computed in cohomology:∫

X an
c1(L1)∧ c1(L2) = ([c1(L1)] · [c1(L2)])∩ [X ]

for any two metrized line bundles, where [c1(Li )] denotes the first Chern class
of Li in the Chow ring (or Picard group in this case).

A direct computation in the Picard group gives that

lim
n→+∞

1

λ2n

(
[c1
((

f n)∗ La
)
] · [c1

((
f −n)∗ La

)
]
)∩ [X ] > 0,

lim
n→+∞

1

λ2n

(
[c1
((

f n)∗ La
)
] · [c1

((
f n)∗ La

)
]
)∩ [X ] = 0.

Indeed, this follows since the corresponding classes [η±] in the Picard group,
which are scaled by f by λ±1, satisfy the same relations: [η+] · [η−] > 0 and
[η+]2 = 0 = [η−]2.

Because η+∧η+ is a positive measure that integrates to zero, it follows that it
is zero, and similarly for η−.
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6. EXAMPLES OF PL MAPS ON TROPICAL K3 SURFACES

This section describes two classes of tropical K3 automorphisms. The first
class, discussed in §6.1, is concerned with the uniformly hyperbolic case coming
from the Kummer construction. At the opposite extreme, Rubik’s cube examples
in §6.2 are the simplest perturbations of the case when automorphisms act by
a finite group.

6.1. Kummer examples. A natural class of uniformly hyperbolic automorphisms
of K3 surfaces comes from Kummer examples. The starting point is a 2-dimen-
sional torus with an automorphism coming from a linear action on the universal
cover. The quotient by the involution p 7→ −p (plus a blowup of the resulting
singular points in the algebraic case) gives a K3 surface with a uniformly hyper-
bolic automorphism. The natural tropicalization of this example is described
below. These examples also appear in the paper of Spalding and Veselov [38],
though they are natural and I was led to them independently of [38].

6.1.1. The construction. Let E be an elliptic curve, tropical or in the usual com-
plex-geometric sense. It has a double cover to P1, denoted c : E → P1. The
product E ×E has three maps to P1, written as

C : E ×E →P1 ×P1 ×P1, (a,b) 7→ (c(a),c(b),c(a +b))

and it is clear that C (p) = C (−p), so that E ×E is a double cover of its image
K :=C (E ×E), and there is a natural identification K = E ×E/±1.

The product E×E is equipped with an action of GL2Z which takes (a,b) ∈ E×
E to the linear combination determined by the matrix, using the group structure
on E . Let Γ̃(2) ⊂ GL2(Z) be the subgroup of matrices which are congruent to 1
mod 2.

The image C (E) = K ⊂ P1 ×P1 ×P1 has three involutions (see §4.1.2) com-
ing from the exchange of the double-sheeted covers K → P1 ×P1, denoted by
σx ,σy ,σz .

PROPOSITION 6.1 (Semiconjugacy of the linear action). The quotient Γ̃(2)/±1
is freely generated by the three involutions

ιx :=
[

1 2
0 −1

]
, ιy :=

[−1 0
2 1

]
, ιz :=

[−1 0
0 1

]
.

The representation Γ̃(2) → Γ̃(2)/± 1 → Aut(K ) taking ιx → σx , ιy → σy , ιz → σz

semiconjugates the action of Γ̃(2) on E ×E and that of the group generated by
σx ,σy ,σz on K .

Proof. The claim about the freeness of the group generated by the involutions
follows from the classical fact that the subgroup Γ(2) ⊂ SL2Z of matrices congru-

ent to 1 mod 2 is generated by −1 and

[
1 2
0 1

]
,

[
1 0
2 1

]
. To check that the repre-

sentation is indeed a semiconjugation, recall that C (a,b) = (c(a),c(b),c(a +b)).
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For ιx , the action gives

C (ιx (a,b)) =C (a +2b,−b) = (c(a +2b),c(−b),c(a +b))

= (c(a +2b),c(b),c(a +b))

so that, indeed, ιx exchanges the two points in the image of C for which the
second and third positions are the same. The calculation for ιy is similar. For ιz ,
the action gives

C (ιz (a,b)) =C (−a,b) = (c(a),c(b),c(−a +b))

so that the desired property holds.

6.1.2. The tropical Kummer K3. The tropical incarnation of the above discussion
starts with E :=R/Z, Trop(P1) =R∪ {±∞} and the map

c : R/Z→R⊂ Trop(P1), a 7→ 4 ·dist(a,Z)−1,

where the normalization is chosen so that the image is [−1,1]. Let

C :R2/Z2 →R3

be the map constructed in §6.1.1.
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FIGURE 9. A fundamental domain in the (a,b) plane R2 for the
Z2 and ±1 action, and its image under the map to R3. The do-
main is divided into 4 triangles where the embedding is affine,
with corresponding affine maps to R3 indicated on each triangle.
The face and equations of the image tetrahedron are:
ABC : x + y − z +1 = 0 BC D : −(x + y + z)+1 = 0
ABD : x − y + z +1 = 0 AC D : −x + y + z +1 = 0

The image K is a tetrahedron, determined by the equation

h(x, y, z) = min(−x + y + z, x − y + z, x + y − z,−x − y − z) =−1.

To determine say the explicit form of the involution σx , rewrite

h(x, y, z) = min(−x +min(y + z,−y − z), x +min(−y + z, y − z))
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so that the involution becomes (using §4.1.2)

x �→ −x +min(y + z,−y − z)−min(y − z,−y + z)

=−x +|y + z|− |y − z|.
Note that the entire picture scales, i.e. the level sets h = −α give a family of
isomorphic tropical Kummer K3 surfaces, and the automorphisms commute
with this scaling.

REMARK 6.2. It is amusing to observe that the interior of the tropical Kummer
K3 surface is isomorphic to the moduli space of representations of the free
group on two letters into SU(2). A conjugacy class in SU(2) is determined by an
angle θ ∈ [0,π] and the isomorphism is given by taking a representation to the
three conjugacy classes at the cusps, viewing the free group on two letters as
the fundamental group of the thrice-punctured sphere.

FIGURE 10. Typical pictures at the corners of a tropical K3 surface

6.2. Rubik’s cube example. In general, the combinatorics of the skeleton of
a tropical K3 surface can be quite involved, as Figure 10 illustrates. We will
describe one of the perhaps simplest examples of dynamics that’s not of finite
order.

The composition of two involutions, say σx ·σy will be twisting the curves
z = const by amounts varying with z. This is reminiscent of transformations
applied to a Rubik’s cube.

6.2.1. The coefficients of the family. It suffices to set the coefficients ci , j ,k for the
equation h◦ as described in §4.1.2. All but the following5 entries ci , j ,k are set to

5This is equivalent to omitting the corresponding linear form in the minimization
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+∞:

c−1,0,0 = 0 c0,−1,0 = 0 c0,0,−1 = 0

c1,0,0 = 0 c0,1,0 = 0 c0,0,1 = 0

c−1,−1,−1 = 1

The corresponding function is

h◦ = min(−|x|,−|y |,−|z|,−(x + y + z)+1).

In the interval t ∈ [0, 1
2 ], the level set h◦ = t is a cube and the dynamics of the

automorphism group is finite order. Indeed, the reflections simply exchange
two opposite faces, and act as reflections in the remaining four squares.

For t ∈ [ 1
2 ,1] the level set is a cube with a corner chopped off, the dynamics

becomes non-trivial but it still has a domain where it is finite-order, but the
size of the domain shrinks to zero as t → 1. Indeed the corner that has been
cut off will be moved around non-trivially around the surface. The domain
where the group action is of finite order can be described as follows. Consider
the reflections x �→ −x and similarly for y, z, and take the images of the cut-off
corner under these reflections. This will give a total of 8 corners and the map
will be of finite order on the union of rectangles on each face which do not
intersect the corners.

For t > 1 the chopped off corner affects the dynamics of the automorphism
group on the entire sphere.

FIGURE 11. Tropical K3 surfaces in the Rubik’s cube family. Left:
level set in [ 1

2 ,1]. Right: level set > 1. The surfaces are not drawn
to scale, i.e. in the R3 that contains both, the one on the left is
much smaller.

The plots of some unstable manifolds (in fact, iterates of some curves) in this
family is displayed in Figure 12.
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FIGURE 12. Forward (red) and backward (blue) iterates of the
triangle face on the tropical K3. Left: for a small value of t . Right:
for a large value of t . Figure 2 contains further examples of it-
erates of the triangle face for a Rubik’s cube example for large t .

7. EXPANDING PL MAPS ON THE LINE

The basic object of study in this section will be PL maps on R of a special form.
An analogous discussion is present in the work of Favre and Rivera-Letelier [16]
but in the context of Berkovich spaces. The goal is to illustrate how elemen-
tary considerations, inspired by constructions in the Berkovich setting, can be
used to study PL maps of the line. It seems plausible that a similar elemen-
tary discussion, using the constructions in Section 4, could exist for tropical K3
automorphisms.

After discussing the formalism in §7.1, in §7.2 we construct the associated po-
tential. We can verify by elementary considerations that it is convex and hence
leads to a measure. The key to convexity is that there is a “cone invariant by
the dynamics” (built from an appropriate class of convex functions). In §7.3 we
study some of the properties of the constructed measure; it is not always invari-
ant by the dynamics since we are not in the setting of Berkovich spaces. Finally,
in §7.4 we compute the relevant objects in the case of a uniformly hyperbolic
tent map.

Notation. We view R as the set of equivalence classes of (X0 : X1) ∈ R2 modulo
the equivalence (X0 : X1) ∼ (X0+ t : X1+ t )∀t ∈R, with the quotient map sending
(X0 : X1) 7→ X1 − X0. The analogues of rational functions will then be PL maps
f :R→R which can be lifted to PL maps F :R2 →R2 which are homogeneous of
degree n, i.e.

F (X0 + t : X1 + t ) = F (X0 : X1)+n · (t : t )
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and are expressible as

F (X0 : X1) = (F0 : F1) with

Fi (X0 : X1) = min
j

(a j
i X0 +b j

i X1 + c j
i ) and such that:

a j
i +b j

i = n a j
i ,b j

i ∈N.

(7.1)

7.1. General properties of PL maps of the line.

7.1.1. Dehomogenization. The transformation in equation (7.1) descends to a
map f :R→R by dehomogenizing the variables

f (x) = f (X1 −X0) ∼ (0 : F1 −F0)

= min
j

(a j
1 X0 +b j

1 X1 + c j
1 )−min

j
(a j

0 X0 +b j
0 X1 + c j

0 )

= min
j

(b j
1 x + c j

1 )−min
j

(b j
0 x + c j

0 ),

where the last line is obtained by subtracting n · X0 from both minimizations,
and using that ai +bi = n.

7.1.2. Assumption on degree and coefficients. Different expressions for a PL func-
tion can have different degrees but give the same actual map f :R→R. For this
reason, and to have the correct notion of degree, assume that in equation (7.1)
there is at least one term of the form nX0 + c• occurring in one of F0,F1 (and
possibly in both), since if such a term is missing one should subtract (X1 : X1)
to get a lower-degree polynomial. Similarly, assume there is at least one term of
the form, nX1 + c•, otherwise one could subtract (X0 : X0) to lower the degree.

In terms of the dehomogenized expressions in §7.1.1, this means that at least
one of b•• must equal n, and at least one must equal 0.

7.1.3. Section and cocycle. There is also a natural section of the projection R2 →
R sending (X0 : X1) → X1−X0 defined by σ(x) := (−x/2 : x/2). Note however that
this section does not commute with applying the transformations F and f on
the respective spaces, namely we have

F (σ(x))−σ( f (x)) = c(x) · (1 : 1)

since the two elements on the left-hand side agree when projected to R. A direct
calculation gives

c(x) = 1

2

(
F0(−x

2
:

x

2
)+F1(−x

2
:

x

2
)
)

= 1

2

(
min

j
((b j

0 −a j
0)

x

2
+ c j

0 )+min
j

(b j
1 −a j

1)
x

2
+ c j

1

)
= 1

2

(−n · x +min
j

(b j
0 x + c j

0 )+min
j

(b j
1 x + c j

1 )
)

using that a j
0 = n −b j

0 .
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DEFINITION 7.1 (Adapted Cone). Let C denote the cone of concave functions
on R2 which are expressible as

φ= min
α∈A

aαX0 +bαX1 + cα

with aα,bα ≥ 0.

The following property will play a key role in obtaining convexity of potential
functions.

PROPOSITION 7.2. Transformations F : R2 → R2 of the form in equation (7.1)
preserve the cone C .

Proof. It suffices to check the condition for affine linear functions of the form

ξ(X0 : X1) = aX0 +bX1 + c with a,b ≥ 0

since these are the extreme points of the cone C . Computing directly

ξ(F (X0 : X1)) = aF0 +bF1 + c

= a min
j

(a j
0 X0 +b j

0 X1 + c j
0 )+b min

j
(a j

1 X0 +b j
1 X1 + c j

1 )+ c.

However, note that all the a j
• ,b j

• are non-negative. Using the manipulations (for
positive a,b)

a ·min
i
ξi (X0, X1) = min

i
a ·ξi (X0 : X1)

min
i∈A1

aξi +min
j∈A2

bξ j = min
(i , j )∈A1,A2

(aξi +bξ j )

so the terms defining ξ(F ) can be grouped to give

ξ(F (X0 : X1)) = min
α∈A

aαX0 +bαX1 + cα

for some explicit aα,bα ≥ 0.

PROPOSITION 7.3 (Existence of a Potential). Assuming n ≥ 2, there exists a unique
function G :R2 →R which simultaneously:

• Is homogeneous of degree 1, i.e.,

G(X0 + t : X1 + t ) =G(X0 : X1)+ t .

• Belongs to the cone C and the following limits exist:

lim
X1−X0→∞

G(X0 : X1)−min(X0 : X1)

lim
X0−X1→∞

G(X0 : X1)−min(X0 : X1)

and are finite real numbers.
• Under iteration of the dynamics, satisfies the functional equation

G(F (X0 : X1)) = n ·G(X0 : X1).
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Proof. Let P denote the space of functions satisfying the homogeneity condi-
tion, belonging to the cone C , and such that for any G ∈P there exist constants
K ≥ 0,c0,c1 ∈R such that

G(X0 : X1) =
{

X1 + c ′′ if X1 −X0 ≤ K

X0 + c ′ if X0 −X1 ≤ K .

On P , define the distance

dist(G1,G2) := sup
t

∣∣G1(−t/2 : t/2)−G2(−t/2 : t/2)
∣∣.

The completion P of P for the above distance is equal to the space of functions
satisfying the first two conditions in the proposition, since the functions are
concave and the requirement of belonging to C bounds the slopes.

Define now the rescaling R : P →P by

R(G) := 1

n
F∗G .

Provided we check that R is well-defined on P and is a strict contraction, the
unique fixed point of R in P will be the desired function G .

The strict contraction is immediately checked using the homogeneity of G
plus the cocycle relation from §7.1.3:

dist(F∗G1,F∗G2) = sup
t

∣∣G1(F (σ(t )))−G2(F (σ(t )))
∣∣

= sup
t

∣∣G1(σ( f (t ))+ c(t )(1 : 1))−G2(σ( f (t ))+ c(t )(1 : 1))
∣∣

= sup
t

∣∣G1(σ( f (t )))−G2(σ( f (t )))
∣∣

≤ dist(G1,G2).

With the added factor of 1
n , the strict contraction follows.

The homogeneity condition on M is preserved by R, using the homogeneity
of F ,

1

n
G(F (X0 + t : X1 + t )) = 1

n
G(F (X0 : X1)+n · (t : t )) = 1

n
G(F (X0 : X1))+ t .

Since F preserves the cone C (Proposition 7.2) the only remaining property to
check is the behavior for |X1−X0|À 0. We check it for X1−X0 ¿ 0, the argument
for the other situation is analogous.

Suppose therefore that X1 −X0 ≤ K ′, for a constant K ′ depending only on F ,
such that in that regime we have

F (X0 : X1) = (a0X0 + (n −a0)X1 + c0 : a1X0 + (n −a1)X1 + c1).

By the non-degeneracy assumption in §7.1.2, at least one, and perhaps both ai

vanish. We now have three possibilities:

• a0 = a1 = 0 so F (X0 : X1) = (nX1 + c0 : nX1 + c1) and then

1

n
G(F (X0 : X1)) = X1 + 1

n
G(c0 : c1)
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and the condition is satisfied.
• a0 = 0, a1 > 0, so F (X0 : X1) = (nX1+c0 : a1X0+(n−a1)X1+c1). This can be

rewritten as

F (X0 : X1) = n(X1 : X1)+ (c0 : a1(X0 −X1)+ c1)

and since we were assuming that X0 À X1 we have

1

n
G(F (X0 : X1)) = X1 + 1

n
G(c0 : a1(X0 −X1)+ c1) = X1 + 1

n
c0 + c ′,

where we used that for X0 ¿ X1 we have G(X0 : X1) = X0 + c ′ for some c ′.
• a0 > 0, a1 = 0, so reasoning as in the previous case:

F (X0 : X1) = n(X1 : X1)+ (a0(X0 −X1)+ c0 : c1)

and now
1

n
G(F (X0 : X1)) = X1 + 1

n
G(a0(X0 −X1)+ c0 : c1) = X1 + 1

n
c1 + c ′′,

where we used that for X0 À X1 we have G(X0 : X1) = X1 + c ′′ for some
c ′′.

REMARK 7.4. The functions G constructed in Proposition 7.3 above is typically
in the smaller space P defined during the proof, i.e. it is affine linear at infinity.
The only case when this cannot be guaranteed is when in the cases considered
during the proof a0 = 0, a1 = 1 or vice-versa. When a0 = 0, a1 = 0 or a0 = 0, a1 > 1
there exists a constant K > 0 such that the rescaling R will preserve the functions
which agree, up to a constant, with min(X0, X1) for |X0 −X1| ≥ K .

7.1.4. Pulled back potential. Consider now the pull-back of the potential from
R2 to R via the section σ defined in §7.1.3,

g (x) :=G(σ(x)).

Since G is concave and σ is linear, it follows that g is also concave. Under the
dynamics, the behavior of g (x) can be computed using the cocycle relation from
§7.1.3,

g ( f (x)) =G(σ( f (x))) =G(F (σ(x))− c(x) · (1 : 1))

= nG(σ(x))− c(x) = n · g (x)− c(x).

So this gives the basic property of g

g ( f (x)) = n · g (x)− c(x)(7.2)

which by homogeneity of G is equivalent to G(F (X )) = n ·G(X ).

7.2. Measures from potentials. Recall the basic identity equation (7.2)

g ( f (x)) = n · g (x)− c(x).

Recall that g and c are concave functions, so their second derivatives give a
measure. Moreover the measure associated to c(x) is atomic.
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7.2.1. Derivatives of a concave function. Recall that if g is a concave function
on an interval in R, then at any point x it has left and right derivatives

g (x) = g (x0)+
{

g ′
l (x0)(x −x0)+o(x −x0) if x ≤ x0

g ′
r (x0)(x −x0)+o(x −x0) if x ≥ x0

and, moreover, the two derivatives agree, except at countably many points (see
[24, Cor. 1.1.6, Thm. 1.1.7].

DEFINITION 7.5 (Measure associated to a potential). Suppose that g : I →R is a
concave function on an open interval I ⊂R. Define the positive measure µg by
the distributional identity

µg (φ) :=−
∫

I
g (x)φ′′(x)d x

for any smooth test function φ, compactly supported in I .
The definition will be used even if g is not concave, although the result can

be a general distribution.

PROPOSITION 7.6 (Affine change of variables for measures). Suppose that g is a
concave function on an interval (y1, y2) and let f : (x1, x2)−̃→(y1, y2) be an affine
function of the form f (x) = ax +b. Then the measure associated to the pulled-
back function f ∗g satisfies

µ( f ∗g ) = |a| · f −1
∗ (µg ),

i.e., it is proportional to the measure µg pushed forward under f −1.

Proof. For the proof, assume that x1 < x2, y1 < y2, and so a > 0, the orientation-
reversing case being similar. For a compactly supported test function φ in
(x1, x2), its pull-back by f −1 to (y1, y2) satisfies

( f −1)∗φ(y) =φ
(

y −b

a

)
d 2

d y2

(
( f −1)∗φ(y)

)= 1

a2φ
′′
(

y −b

a

)
so we can now compute

µ f ∗g (φ) =
∫ x2

x1

g (ax +b)φ′′(x)d x y = ax +b

=
∫ y2

y1

g (y)φ′′
(

y −b

a

)
d y

a

=
∫ y2

y1

g (y)

[
d 2

d y2

(
( f −1)∗φ(y)

)]
a ·d y

= a ·µg (( f −1)∗φ)

= a · f −1
∗ (µg )(φ)

which is the desired conclusion.

The next proposition deals with the case when the function f changes slope.
Since the statements are invariant under translations on the source or target,
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and under adding a constant to the functions under discussion, the result is
stated assuming a simpler local form.

PROPOSITION 7.7 (Piecewise affine change of variables). Suppose that f :[−ε,ε] →
[−1,1] is given by

f (x) =
{

f ′
l (0) · x, if x ≤ 0

f ′
r (0) · x, if x ≥ 0

and g is a concave function on [−1,1], with left and right derivatives at x = 0
denoted g ′

l (0), g ′
r (0) (see §7.2.1). Then the distribution µ f ∗g is still a measure,

satisfying

µ f ∗g = f ′
l (0) · f −1

∗ µg |(−1,0) + f ′
r (0) · f −1

∗ µg |(0,1) + c f ,g ·δ0,(7.3)

where δ0 is the Dirac-delta mass at the origin, and c f ,g is a constant given by

c f ,g :=


f ′

l (0) · g ′
l (0)− f ′

r (0) · g ′
r (0) if f ′

l (0), f ′
r (0) ≥ 0(

f ′
l (0)− f ′

r (0)
) · g ′

l (0) if f ′
l (0) ≥ 0, f ′

r (0) ≤ 0(
f ′

l (0)− f ′
r (0)
) · g ′

r (0) if f ′
l (0) ≤ 0, f ′

r (0) ≥ 0

f ′
l (0) · g ′

r (0)− f ′
r (0) · g ′

l (0) if f ′
l (0), f ′

r (0) ≤ 0.

The cases depend on whether the mapping f is bijective near 0, or if it folds a
neighborhood of zero onto one of the sides.

Note that while µg is invariant under the addition of a linear function to g ,
the measure associated to the pullback µ f ∗g is changed when adding a linear
function to g .

Proof. The result is a straightforward check when g is piecewise linear of the
form

g (x) =
{

g ′
l (0) · x if x ≤ 0

g ′
r (0) · x if x ≥ 0.

The result also follows when g agrees with such a function near the origin.
A general concave function g can be approximated by a sequence gi for

which the claim is already established, with the properties∥∥g − gi
∥∥

C 0 ≤ εi ,
∥∥µg −µgi

∥∥≤ εi , εi → 0,

where the norm on measures is that of total variation. Indeed, µg decomposes
into µg ,1+µg ({0})δ0 and µg ,1 can be approximated in total variation by measures
which are not supported near 0.

Because gi
C 0

−→ g the same is true for the pullbacks f ∗gi
C 0

−→ f ∗g and then the
same is true in the sense of distributions µ f ∗gi →µ f ∗g . Because

∥∥µg −µgi

∥∥→ 0,
the right-hand sides in equation (7.3) for gi will also converge to those for g ,
giving the result.
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7.3. Properties of the measure. Recall that:

f (x) = min
j

(b j
1 x + c j

1 )︸ ︷︷ ︸
f1

−min
j

(b j
0 x + c j

0 )︸ ︷︷ ︸
f0

see §7.1.1

c(x) = 1

2

(
min

j
(b j

1 x + c j
1 )+min

j
(b j

0 x + c j
0 )
)− n · x

2
see §7.1.3

= 1

2
( f1 + f0)− n · x

2
.

Assume that all the linear functionals above do occur in the minimization, and
that there are points x1

1 ≤ ·· · ≤ xk
1 such that

f1(x) := min
j=0...k

(b j
1 · x + c j

1 ) = bi
1 · x + c i

1 if x ∈ [xi
1, xi+1

1

]
,(7.4)

where by convention x0
1 := −∞, xk+1

1 := +∞. The slopes on the intervals come
in decreasing order

b0
1 > b1

1 > ·· · > bk
1 b•

1 ∈ {n,n −1, . . . ,0}

Similarly, let x1
0 ≤ ·· · ≤ x l

0 be such that

f0(x) := min
j=0...l

(b j
0 · x + c j

0 ) = bi
0 · x + c i

0 if x ∈ [xi
0, xi+1

0

]
with the same conventions for the boundary points. The slopes on the intervals
again come in decreasing order:

b0
0 > b1

0 > ·· · > bk
0 b•

0 ∈ {n,n −1, . . . ,0} .

The break points xi
1, x j

0 are interspersed on the real axis, cut it up into intervals,
and the slope of f depends on the interval.

PROPOSITION 7.8.

1. The measure associated to c via Definition 7.5 has mass only at the break
points, where it is atomic,

µc

({
xi
α

})
= 1

2
(bi−1
α −bi

α) > 0, where α= 0,1.

2. The total mass of µg is 1.

Proof. Part (1) follows from the formula c = 1
2 ( f1 + f0) − nx

2 . Part (2) follows
since g is concave, and its slope at ±∞ is ∓1

2 , using the definition of σ and the
behavior at infinity of G from Proposition 7.3.

PROPOSITION 7.9. If there is a non-trivial interval on which f has slope ±n, i.e.
maximal possible, then f is monotonic (not necessarily strictly monotonic).

Proof. Without loss of generality suppose that on some interval f achieves slope
n, the case of slope −n being analogous, but with f1 and f0 interchanged. Since
f = f1 − f0, the slopes of f1/0 come in decreasing order, the maximal slope of f1

is n and the minimal slope of f0 is 0, it follows that all the break points of f0 (if
any at all) are to the left of the first break point of f1, i.e. x l

0 ≤ x1
1 . Moreover, the
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slope of f1 in (−∞, x1
1] is n and the slope of f0 in [x l

0,+∞) is 0. It follows that f
is non-strictly increasing, since the slopes of f will always be non-negative.

PROPOSITION 7.10 (No atoms except at the break points). Suppose that f does
not achieve slope ±n on any interval, for example f is not monotonic. Then the
only possible atoms of the measure µg associated to the potential g from §7.1.4
are at the points xi• defined in equation (7.4).

Proof. Pick a point x0, which is not a break point, and such that its mass

µg ({x0}) > 0

is largest among all atoms of µg and in the neighborhood of x0, f has slope b
with |b| < n.

Recall the functional equation (7.2))

g ( f (x)) = n · g (x)− c(x)

which translates into the equality of measures (by applying −∂2
x to both sides),

µ f ∗g = n ·µg −µc .

By Proposition 7.8, µc is a sum of delta-masses at the break points, while by the
change of variables formula from Proposition 7.6 we have

µ f ∗g
(

{x0}
)= |b| ·µg

({
f (x0)

})
.

From the assumption that |b| < n and that µg ({x0}) is maximal among atoms of
µg , it follows that x0 cannot be an atom of µg .

7.4. The tent map. The tent map on the interval [−1/2,1/2] can be expressed
as

f (x) = min

(
2x + 1

2
,−2x + 1

2

)
=−2|x|+ 1

2
.

It fixes −1/2, expands by a factor of 2 the segment [−1/2,0] to [−1/2,1/2], then
turns around and expands the segment [0,1/2] to [1/2,−1/2] the other way.

The homogenization of the tent map can be done in the following steps,
taking x := X1 −X0 as the inhomogeneous variable:

F (X0 : X1) ≈ (0 : min(2(X1 −X0)+1/2,−2(X1 −X0)+1/2)) add 2(X0 +X1)

≈
(
2X0 +2X1 : min

(
4X0 + 1

2
,4X1 + 1

2

))
.

The value of F depends on two possibilities:

• If X1 ≤ X0 (which corresponds to x ≤ 0 in the inhomogeneous setting) then

F (X0 : X1) = (2X0 +2X1 : 4X1 +1/2).

• If X1 ≥ X0 (which corresponds to x ≥ 0 in the inhomogeneous setting) then

F (X0 : X1) = (2X0 +2X1 : 4X0 +1/2).
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7.4.1. Finding the potential function. We would like to find a function G satisfy-
ing

G(F (X•)) = 4G(X•)(7.5)

There are two simple cases:

1. Suppose that X0 ≥ X1 + 1
2 , which is equivalent to 2X0 +2X1 ≥ (4X1 + 1

2 )+ 1
2 ,

so that the condition is stable under applying F . Then one can check that

F n(X0 : X1) =
(
En : 4n X1 + 1

2
(40 +·· ·+4n−1)

)
and therefore

G(X0 : X1) := X1 + 1

6
will satisfy the recurrence in equation (7.5).

2. Suppose that X0 ≤ X1 − 1
2 , which implies that 2X0 +2X1 ≥ (4X0 + 1

2 )+ 1
2 , so

that after one iterate we land in the previous situation. Then

G(X0 : X1) := 1

4
G(2X0 +2X1 : 4X0 +1/2)

= 1

4
(4X0 +1/2+1/6)

= X0 + 1

6
.

b

b

b

(0,0)

b (
0 : 1

2

)
= F (0 : 0)

σ(t)

(
1
4 : − 1

4

)

(
− 1

4 : 1
4

)

b
F
(
− 1

4 : 1
4

)
=

(
0 : − 1

2

)
= F

(
1
4 : − 1

4

)

FIGURE 13. The lifted tent map, and its action on the section σ.

JOURNAL OF MODERN DYNAMICS VOLUME 14, 2019, 179–226



224 SIMION FILIP

7.4.2. Computing G in the strip. Consider now the map σ(x) = (−x/2 : x/2)
viewed as a section from the base R to R2, under the projection map (X0 : X1) →
X1 − X0. Computing G on the image of σ determines it completely, due to the
homogeneity conditions G satisfies. For the dynamics, we have:

F (−x/2 : x/2) =
{

(0 : +2x +1/2), if x ≤ 0

(0 : −2x +1/2), if x ≥ 0

The cohomological condition (see §7.1.3) is then

F (σ(x))−σ( f (x)) = (−|x|+1/4)(1 : 1),(7.6)

i.e., c(x) =−|x|+ 1
4 .

PROPOSITION 7.11. The function G restricted to the line (−x/2 : x/2) is equal to

G(−x/2 : x/2) =
−

1
2 |x|+ 1

6 if |x| ≥ 1
2

−1
2 x2 + 1

24 if |x| ≤ 1
2 .

Proof. By uniqueness of the function G , it suffices to check that it satisfies the
functional equation (7.5). By homogeneity and the condition at |x|À 0 already
being satisfied, it suffices in fact to check that g (x) :=G(σ(x)) satisfies the func-
tional equation from equation (7.2). Recall that c(x) =−|x|+ 1

4 so we have

g ( f (x)) =−1

2

(
−2|x|+ 1

2

)2 + 1

24

=−2x2 +|x|− 1

12

while

4g (x)− c(x) = 4
(
− 1

2
x2 + 1

24

)
−
(
−|x|+ 1

4

)
=−2x2 +|x|− 1

12
which is the desired identity.

COROLLARY 7.12. The measure µg for the tent map is Lebesgue measure on
[−1

2 , 1
2 ] and hence the measure of maximal entropy. Indeed, the tent map re-

stricted to this interval is semi-conjugated to the Bernoulli shift on {0,1}N, and

Lebesgue measure corresponds to the uniform measure
(1

2δ0 + 1
2δ1
)N

.

REMARK 7.13. The quadratic function −1
2 x2+ 1

24 satisfies the condition in equa-
tion (7.2) on all of R, but it grows too fast at infinity.

7.4.3. Some further questions. Here are some natural questions that arise from
the above discussion.

1. Following Favre–Rivera-Letelier [16], one can define the local degree at
a point as the slope of f (x). Then the non-atomic part of µg should be
invariant on the set of points for which at the preimages, the degree adds
up to n (see [16, §5.2]).
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2. More generally, investigate further the atomic and AC parts of the measure
constructed measure µ.

3. There is a natural class of post-critically finite maps in the PL setting.
These are the maps for which the break points have finite forward orbits.
To arrange for such behavior, one can start with all the defining data of f
in Q. Then the denominators of the critical points will stay bounded, so
either the orbits escape to infinity at a definite rate, or are finite.
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