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1. Introduction

In this paper we study optimization problems for Steklov eigenvalues on manifolds
M™ with boundary. The main theme of the paper is to show that some of the refined
results which are true for surfaces (n = 2) do not hold in higher dimensions (n > 3).

We first consider the question of optimizing the first nonzero Steklov eigenvalue o1 (£2)
for suitably normalized domains € in R™. A theorem of F. Brock [1] says that a round
ball maximizes oy over all smooth domains with the same (or larger) volume. On the
other hand for n = 2 there is a stronger result of R. Weinstock [16] which says that the
unit disk in the plane uniquely maximizes o1 over all simply connected domains with
the same (or larger) boundary length. From the isoperimetric inequality, any domain
which has the same volume as a ball necessarily has boundary volume which is at least
as large. Thus we see that for simply connected plane domains Weinstock’s theorem
implies Brock’s theorem. On the other hand Brock’s theorem holds for arbitrary plane
domains and domains in R™ for n > 3. This leads to the question of whether there is
an analogue to Weinstock’s theorem in higher dimensions. The question of whether the
ball in higher dimensions maximizes o7 over domains which are diffeomorphic to the ball
(contractible domains) has been open. Very recently the Weinstock inequality has been
obtained for convex domains in all dimensions by D. Bucur, V. Ferone, C. Nitsch, and C.
Trombetti [2]. Some related questions were posed in [15, page 4] and [10, Open Problem
2]. In this paper we show that the inequality is not true in higher dimensions for general
contractible domains.

Theorem 1.1. For n > 3 there is a smooth contractible domain Q with |0 = |0B;]
where By is a unit ball in R™, but with 01(Q) > o1(B1) = 1.

In Proposition 2.1 we also give an explicit upper bound on o1(2) for any smooth
domain in R™ in terms of its boundary volume. This leaves open the question of finding
the sharp value for this upper bound. Theorem 1.1 shows that it is strictly larger than
its value for a ball.

In order to prove Theorem 1.1 we first consider the annular domain Q. = B; \ B.. We
show in Proposition 3.1 that the kth Steklov eigenvalue is decreased by approximately
a positive constant times €2**"~2. When k = 1 the exponent is equal to n, and it
follows that when e is small the normalized first Steklov eigenvalue o (Q€)|5‘QE|ﬁ is
strictly larger than that of By (actually the same is true for higher eigenvalues). For
n > 3, we then show that we can modify the domain 2. to make it contractible while
changing the normalized first Steklov eigenvalue by an arbitrarily small amount. This
is accomplished by adding a small tube joining the boundary components and showing
that the construction can be done keeping the normalized eigenvalue nearly unchanged.
This construction leads to a more general question about boundary connectedness.

Another result for n = 2 which was discovered in [6] is that by adding an extra
boundary component to a surface the normalized first Steklov eigenvalue o1 L (where L
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is the boundary length) can be made strictly larger. This was used to show that surfaces
of genus 0 (homeomorphic to plane domains) which maximize oy for their boundary
length must have an infinite number of boundary components. The question of whether a
similar phenomenon might be true in higher dimensions was posed in [10, following Open
Problem 2]. We show here that this is also not true for manifolds with n > 3. Specifically
we show that the number of boundary components does not affect the maximum value
of the normalized first Steklov eigenvalue.

Theorem 1.2. Given any compact Riemannian manifold Q™ with non-empty boundary
andn > 3, and given any € > 0 there exists a smooth subdomain Q¢ of Q with connected
boundary such that

Q] — Q]| < €, [|09Q] —0Q]|| <€, and |o1(R) —o1(Qe)| < €.

In Section 2 of the paper we give an explicit coarse upper bound on the normalized
first Steklov eigenvalue of a domain in R™. This is done by using stereographic projection
and a balancing argument. This is a less general but more precise bound than that of
[3] (see also [11]).

In Section 3 we do the asymptotic calculation of the kth Steklov eigenvalue of By \ B..
This calculation had been done previously by the authors for £ = 1 and n = 2 (cf. [6,
Proposition 4.2]) and [10, Example 4.2.5], [4], and was done for k = 1 and n > 2 by E.
Martel (see [10, Remark 4.2.8]).

In Section 4 we prove the main results concerning the effect of boundary connected-
ness. This involves delicate estimation of the first Steklov eigenvalue for domains with
small tubes connecting boundary components.

2. Upper bounds

In dimension n = 2, for any compact Riemannian surface, the k-th normalized Steklov
eigenvalue is bounded above in terms of &, the genus v and the number of boundary
components b > 0 of the surface, in the most general form by Karpukhin [13],

0p(0)|0%| < 2wk +~v+b—1)
(see [9], [5], [12], [16] for earlier results) and also in terms of only the genus and £,
or(X)|0X] < Ak + By

for constants A and B (see [11], [3], [14]). For simply-connected domains in R2, the first
bound is sharp, and the k-th normalized Steklov eigenvalue is maximized in the limit
by a disjoint union of k identical disks for any k& > 1 ([8], [16]). In general the bounds
are not sharp, however sharp bounds are known for the first nonzero normalized Steklov
eigenvalue for the annulus and the Mébius band ([6]), and the authors proved existence
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of a metric that maximizes the first nonzero normalized eigenvalue on any compact
orientable surface of genus zero ([6]). Moreover, it was shown in [6] that the maximum
value of o1(X)|0X| over all smooth metrics on a compact orientable surface 3 of genus
zero, is strictly increasing in the number b of boundary components, and converges to 47
as b tends to infinity. Thus, the asymptotically sharp upper bound for surfaces of genus
zero is 4m.

In higher dimensions, it was shown in [3] (see also a generalization in [11]) that if M
is Riemannian manifold of dimension n > 2 that is conformally equivalent to a complete
Riemannian manifold with non-negative Ricci curvature, then for any domain 2 C M,

o ()00 < T kx
I(Q

n—1

n

where I(Q2) = |09]/|Q
domain 2 in R™, by the classical isoperimetric inequality, it follows that the normalized

is the isoperimetric ratio. In particular, for any bounded

Steklov eigenvalues are uniformly bounded above, ak(Q)|aQ|ﬁ < C(n)k+. We observe
that in the special case when 2 C R", with n > 2, an explicit bound can be directly
obtained easily for k£ = 1 as follows.

Proposition 2.1. If Q) is a domain in R™, n > 2, then

1
naT S|

o1 ()]0 <
B

n—2 *
n(n—1)

Proof. Using stereographic projection, and a standard balancing argument, there exists
a conformal map F : Q — S” ¢ R**! with faQ F = 0. Using the component functions
F;,i=1,...,n+1, as test functions in the variational characterization of o1, we have

al/Ff §/|VFi|2.

o0 Q

Summing on ¢, and applying Hoélder’s inequality,
2
0109 < /|VF|2 < /\VF|" Q). (2.1)
Q Q

Since F : Q — S™ is conformal, |VF|2 = n|JF|= where |JF| denotes the Jacobian
determinant of F', and so

/\VFI"=/(IVF|2)% =n%/|JF| —n}

Q Q Q

F(@)| < nb[s"]. (2.2)
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Using (2.2) in (2.1), we obtain

1 2
n— nn—1 nly n—
09| < nlS"F Q)% < 2o,

|B”| n(n—1)

where the last inequality follows from the isoperimetric inequality [Q]/|B"| <
(|0€]/|S™1)7=1 and the formula |[S*~'| = n|B"|. Simplifying, we obtain the desired
bound. O

3. Dirichlet-to-Neumann spectrum of B} \ B!

Throughout the paper we let B} denote the ball of radius p in R", and use spherical
coordinates p, ¢1,...,¢,—1 on R™. In this section we calculate the Dirichlet-to-Neumann
spectrum of B} \ B?, where 0 < € < 1 is small, and show that k-th nonzero normalized
Steklov eigenvalue of BY \ B is strictly greater than that of the ball B}. For k = 1 this
was verified by E. Martel [10, Remark 4.2.8].

Proposition 3.1. For € sufficiently small, 0 < € < 1, the k-th distinct Steklov eigenvalue
of B \ B? forn >3 is

k<2k +n— 2) 62k-l—n—2

— k- O 2k+n—1

7k k+n—2 +Oe )
for k=1,2, 3,.... In particular, for € sufficiently small the first nonzero Steklov eigen-
value s

o1 =1-— o 16” + O,

and

0(BY)|OBY| 7T < 0r(B] \ B)|O(B] \ BL)|7T.
Proof. The outward unit normal vector on 0B} is given by n = a% and on OB by
n = —a%. To compute the Dirichlet-to-Neumann spectrum we separate variables and

look for harmonic functions of the form u(p, ¢1,...,0n-1) = a(p)B(d1,...,Pn-1). By
standard methods if n > 2 we obtain solutions for any nonnegative integer k given by

a(p) = ap® +bp~ "

In order to be an eigenfunction of the Dirichlet-to-Neumann map we must have u, = ou
on O(BY\B?), or &/(1) = oa(1) on OB} and o’ (¢) = —oa(e) on OB . For each nonnegative

integer k the conditions become
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ak+b(—k+2—n)=0c(a+b)
ake" 4 b(—k 4+ 2 —n)e FTIT = —g(ae® + be T2,

Factoring out a and b these become

a(k—0)=bloc+k—2+n)
a(kek_l + Uek) — b(—oe_k+2_” + (k‘ —94 n>€—k+1—n).

Using the first equation to eliminate a and dividing by b (which must be nonzero) we
get

c+k—2+n

? (ke" ™t 4 0€) = —ge F T2 4 (k4 — 2)e R,
-0

which gives the quadratic equation for o

o2(eF — e F 2 Lok 4 (k — 24 n)eb + ke P2 4 (k4 n — 2)e FHL)
4+ (k4n —2)k(F~1 — e FF1=n) = 0.

k+n—1

Multiplying through by e we may rewrite this as

o2(e— ) _o((k+n—2)eP Tl L kP2 L ke 4 k40— 2)
+ (k4 n —2)k(1 — =2y = 0.

Letting A, B, C be the coefficients in this quadratic equation, Ac? + Bo + C = 0, we
calculate that

B* —4AC
=(k+n—2)% —2k(k+n—2)e+ k?e® + 2k(k +n — 2)?F 2
+ e(n, k)e2Rtn=l 4 (k)
= (k4+n—2—ke)? +2k(k+n—2)ktn=2 L ¢(n, k)= L O(&2m)

2k(k +n —2) (2hn—2 4 c(n, k) Zhn—1 | O(€2k+n):|

:(k+n—2—ke)2{l+ e e

where c(n, k) = 2k* + 2(k +n —2)2 +8k(k +n —2) and D = k +n — 2 — ke. Using the
expansion v/1+2 =1+ 1z — £2? + -+, we have

1 (2k(k+n—2) o c(n,k) _
2 _ - 2k+n—2 > 2k+n—1 2k+n
vVB?—-4AC =D [1 + 3 <—2 € + 5 € +O(e )

k(k +n— 2) 2k+n—2 + C(”v k) e2k+n—1 + 0(62k+n).

=D
* D 2D



152 A. Fraser, R. Schoen / Advances in Mathematics 348 (2019) 146—162

Now since

1 1 1 1 1

— = = = O 2 s
D k+n—2-he k4n-21- F ¢ k+n—2|  ktn-2° ()

we get that

v B2 —4AC

k k
—k4+n—2—ke+k {1 + e} 2ktn—2 4 c(n, k) 2ktn—1 4 O(€2k+n)

kE+n-—2 2(k+n—2)
k> c(n, k)
_ _ 9 _ 2k+n—2 ’ 2k+n—1 2k+n
=k+n—2—ke+ ke +[k:+n—2+2(k‘+n—2) € +O(e ).
Set
k) = k? c(nk) 2%+ (k+n—2)2+4k(k+n—2)
A e T 2 T 2k rn—2) k+n—2 '

Also, A = ¢(1 — €2*+7=2) and

1 1
37 ey (TR O,

Using this, we see that the quadratic equation for o has roots

1
o= 5(6_1 4 2kHn=3) [ (k4+n—2)ek =1 L k=2 L ket k+n—2
& (k+n = 2= ke + kT2 4 (n, k)L 4 O |

(1) (2)

Hence there are two positive roots o, ” < o, given by

0,(92) = O(efl)

1
0'](91) = 5(671 + 2k Hn=3) [ 2ke+ (k+n—2—(n, k)21 4 0(62’”")}

1
=k 5(145 +n—2— C/(n7k))€2k+n72 + k€2k+n72 + O(€2k+n71)

k(2k +n —2) (2h+n—2

— k-
k+n—2

+ O(e2ktn=1y,

For any given k and e sufficiently small, we see that 0,&1) is the k-th distinct eigenvalue

of B \ B”, and the multiplicity of the k-th eigenvalue of B} \ B! and of B} must be

€

the same. For BY, it is well known that the k-th distinct nonzero Steklov eigenvalue is
0k (BY) = k. On the other hand,
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_1 _1 1y 1o
OB \ BE)[7= = [0BY |1 (1+¢"71)

1
1 n—1 2n—2 )
( "+ O ))

= OB} |7
Therefore,

o.(BY \ B?) [9(B} \ BP)|7T

. E(2k+n—2) op i o 2ktn—1
= (k: i3 € +O(e )

1 1
X |E)B§L|ﬁ <1 4 — 167l—1 + O(€2n—2>)
= 0B |77 (k+ W1y O(")
! n—1

> k|oBY |7t

1
1

= ok (BY)[OBT |
where the inequality follows if € is sufficiently small. O
4. Boundary connectedness in dimension at least 3

Let (€, ¢g) be a compact, connected n-dimensional Riemannian manifold with bound-
ary 00 # (), n > 3. The main theorem of this section shows that Q can be approximated
by a connected subdomain with connected boundary so that all three quantities ||,
|0€2|, and o1 () are changed by an arbitrarily small amount.

Theorem 1.2. Given € > 0, there exists a domain Q. C Q0 with connected boundary and
such that

Q] — Q| <€ |00 —0Q]| <€, and |01(Q) — 01(Q)] < €.

Since 2 has smooth boundary, we may extend (2, g) to a manifold (M,g) so that
Q is a domain compactly contained in M. Given points p, ¢ € 9Q, let v : [0,]] - M
be a unit speed curve from p to ¢ meeting 02 orthogonally at p and q. Consider Fermi
coordinates t, r, 8',...,6" 2 about v, such that ¢ is the arclength parameter along -,
and 7, 01,...,0,_o are geodesic normal coordinates on the slices ¢ = constant. Assume
that v extends beyond p and ¢ so that

{reM:d(z,v)<dtn{t=0o0rl}NintQ =10

for all § < dg, for some fixed small dg > 0. Let
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Ts ={x€Q:d(z,vy) =4}
and let
Qs =Q\ {z € Q:d(z,7) <}
Proposition 4.1. lims_,o 01(25) = 01(9).

The following lemma will be important later, since it implies that for a sequence of
eigenfunctions, the L?-norm on the boundary 925 doesn’t concentrate on the neck Tj
as 0 — 0.

Lemma 4.2. If there are constants 5o > 0, C' > 0 and a family of functions us € W12(Qs)
with ||lus|lw1.2qy5) < C for d € (0,0), then

}igélluéllm(n) =0.

Proof. We may assume that the functions us are defined on a neighborhood of the curve
~ on a larger domain Q containing Q and such that usllwrzgq, < C-

We can also localize the support of us to lie near the curve. Precisely, we choose a
number rg > 0 so that the coordinates (t,r, ) exist on the ry neighborhood of « and so
that the metric is uniformly equivalent to the product metric (0,1) x D, \ Ds given by
dt? 4 dr? +r%g,,_» where g,,_s denotes the standard metric on S"~2 and D, denotes the
ball of radius o centered at the origin of R"~!. We choose a cutoff function ¢(r) which
is 1 for r < ro/2 and zero for r > rq and let vs = Cus. We then have by the Schwarz and
arithmetic geometric mean inequalities

[Vos|? = ug|VCI? + 2us(Vus, VE) + | Vus|* < 2(¢%Vus|? + ug |V [?).

This implies

/ |Vus|? < c/(|VU5\2 +u?)

6<r<ro Qs

for a constant ¢ depending on ry. Note that rq is fixed depending only on the geometry
and we will choose § much smaller than rq.
Thus to prove the lemma it suffices to show that for any € > 0

/ugz/v§§6/|V1}5|2
Ts Ts Qs

for § sufficiently small. Furthermore since the metric is uniformly equivalent to the
Euclidean product metric on the support of vs it suffices the prove this estimate for the
product metric. This is what we shall do.
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For a fixed ¢y € (0,1) we consider the restriction which we denote by v, v(r,8) =
vs(to, 7, 0) on the annulus D,, \ Ds in R”~ 1. Choose h to be the harmonic function of
the annulus D, \ Ds

Ah=0 on D, \ Ds
h=v=0 on 0D, (4.1)
h=v on 9dDs.

By the Dirichlet minimizing property of & we then have
/ Vh? < / Vo2,
Dy \Ds Dy \Ds

For any ¢ with § < o < rg we have by the divergence theorem

2 2
oh B 6h / NG
or

oD, Dyo\Ds

and so from (4.1) we get

on? )
_/WJ / VA

oD, Dyy\Do

<2 / |Vh|?

DTQ\DJ

<2 / |Vol?.

Dy \Ds

Since we are working with respect to the standard metric on R™~! the volume measure
on 9D, is 0”2 times that on the unit sphere 9D;. Therefore this may be rewritten

d
_a,’n72_ 0_2777, / h2 S 2 / |VU|2
do
8D, Do \Ds

since o > §. Now we divide by 0”2 and integrate this with respect to ¢ on the interval
[0,70] to obtain (note that h = v on dDs and h =0 on 9D,,)

To

52 / vt <2 /02_”d0 / |Vol2.

dDs § D,y \Ds
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This implies

[za@ [ wop

9D;s Dy \Ds

where €3(6) = 26log(ro/d) and €,(8) = =256 for n > 4.
Written back in terms of vs this says that for each tg € (0,1) we have

/vg(t0,5,9)2§6n(6) / V" Lus (o, 7, 0) 2

9Ds D’V‘O\D(;

where we have used V"~! to emphasize that the derivative is taken only along t = t.
We now integrate over to € (0,1) to obtain

l

[iza® [ [ 19wt n ol < [0
Qs

Ts 0 Dy \Ds

where we have used the inequality |V lvs|? < |[Vus|?. Since €,(8) goes to 0 as § goes
to 0, we have completed the proof with respect the Euclidean product metric on [0, ] x
(Dr, \ Ds). As discussed above this implies the result for the original metric and for any
function us in W12(Qs). O

Proof of Proposition 4.1. Let us be a first Steklov eigenfunction of 25 with eigenvalue
0'1(95), with ||u5||L2(6§25) =1. Then,

Aus =0 on Qs
% = 0'1(95) us on an.

We first show that o1(€2s) is bounded from above independent of § for ¢ small. To see
this we use the variational characterization of oy

o1(025) = g2 VTP /Fzm

f2
fam o

where the infimum is taken over functions f € W2(s). Thus to get an upper bound we
need only exhibit functions which integrate to 0 over the boundary of 25 having bounded
Rayleigh quotient. We can do this by choosing a fized function which is supported away
from the tube region and so is a valid test function for any small §.

Elliptic boundary value estimates ([7, Theorem 6.30]) give bounds on us and its deriva-
tives up to 9€2s. There exists a sequence us, that converges in C?(K) on compact subsets
K C Q\ v to a harmonic function u on 2\ 7, satisfying
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ou

% =ou on Of) \ {p, (]},

with o = lim; o, 01(£s,). Since us, converges to u in C?(K) on compact subsets K C Q\
7, there exists C' > 0 such that [Jus, ||w1.2(q, ) < C. By Lemma 4.2, lim; o [Jus,
0, and since ||us,

L2 (Ts;) =

r2(09s,) = 1, [lullL2(00) = 1.
We now show that u extends to a Steklov eigenfunction on 2. Consider the following
logarithmic cut-off function about the curve v,

0 r < §2
ps = lardoel 52 < g (4.2)
1 6 <r.

By the definition of ¢s, with respect to the product metric (see proof of Lemma 4.2) we
have

l

/|V<P6|2S/ / [Ves|? | dt

Q 0 \Ds\Dj2
coy [ 1
n / / n—2
= 5 7T dr | dt
(log d) / Jor
C(n)l ;
n n—4
= dr (4.3)
log )2 /r
(log 0)* ]
_ C(n)l —logd ifn=3
 (logd)? | XA e s 3
- ifn=3
log & 1
= C(n)l . { 671—3 17671—3 .
(1og15)2 (n—3 Loitn>3
—0as o —0. 4
) 4

Since the metric is uniformly equivalent to the product metric (see proof of Lemma 4.2),
Jo Vs = 0asd — 0. Let p € WH2NL>(Q) and let 15 = ps¢. Since u is a harmonic
function on Q \ v, satisfying

ou

% =ou on Of) \ {P, (]}7

and 15 vanishes near v, we have

/ VuVips = o / wips. (4.5)

Q\y O\{p, ¢}
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By (4.4) and Holder’s inequality,

/1/)VuV<p5 -0 as & — 0.
Q

Since |¢s] < |[¢| € L™ and 95 — 9 a.e., by the dominated convergence theorem, taking
the limit of (4.5) as § — 0, we obtain

Q/VUV?/JZJ/’LH/).

o0

Therefore, u extends to a Steklov eigenfunction with eigenvalue o on €.

Finally, we show that u is a first eigenfunction of Q; i.e. 0 = 01(Q). First, since us
is an eigenfunction corresponding to the first nonzero eigenvalue of 25, we have that
faQa us = 0. Since lims_¢ [|us]|z2(15) = 0 (by Lemma 4.2), it follows that

u = lim us = 0.
6—0
o0 Qs

Therefore, u is nonconstant, and o > o1(€). Let v be a first eigenfunction of Q with
lvllz200) = 1. Let @5 be the logarithmic cut-off function defined by (4.2), and let

1
Vs = V— V.
5 = ¥s 0022 ] /%06
80

Then |, 00, Vs =0, and we will use vs as a test function in the variational characterization
S

of the first nonzero Steklov eigenvalue o (2s2) of Qs2. First note that since [, v =0,
/ IS / (ps — D).
02 oN{r<d}

Then using Hélder’s inequality and the fact that ||v||12(90) = 1, we have

/ osv| < 1020 {r < 5}]}. (4.6)
020

Now,

1
/ng /(%U)Q—WTEQ /@5“

;50 52 052
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2

- /1;2 - / (1 — p2)0? ! / Psv

09|
89 oan{r<s} EI
000 {r < 6}
= /”2 — GO <O - Ger T Ba A {r < 07|
o
= /1}2 — 01(5)
o0

where C1(0) — 0 as 6 — 0. For the inequality, the constant C in the second term is a

pointwise bound on the first eigenfunction v, and for the third term we used the estimate
(4.6). On the other hand,

[ vk = [ 9o

Qo Qo
- / Vol + / IV (50) 2
Qs

Q52\96

g/\vz}\2+2 / (V5202 + 2|Vl
Q 0\

S/‘VUP—FO / |V(,D5|2+C|Q52 \Q5|
Q Q52 \Qs

— [196P + ca(0)

Q

with Co(8) — 0 as 6 — 0, by (4.4) and since |52 \ Q5] < {2 <r<§,0<t <} =0
as § — 0. Here, in the second inequality, the constant C' depends on a pointwise upper
bound on v and |Vv|. Combining these estimates, we have

2
Jo, IV0sI® [ IVol® + Ca(6) 5 Jo V0P (@)

o1(Qs2) < >
f8952 v; Jog v = C1(9) Joa v?

It follows that, o = lims_,¢ 01(2s2) < 01(2). Therefore,
lim 0'1(95) :Ul(Q). O
6—0

Proof of Theorem 1.2. Let €2 be a manifold with b > 2 boundary components. It suffices
to construct a sequence of connected smooth subdomains €2; with connected boundary
so that
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lim |Q;] = |Q|, lim|0Q;] = |09, and limo1(Q;) = 01(9Q).

To construct €2; we choose b—1 nonintersecting curves 71, . . ., ¥5—1 which connect bound-
ary components of 2 and meet 9 orthogonally. Let Q(d) be the domain with connected
boundary obtained by removing a d-neighborhood of each of the curves from . Ap-
plying Proposition 4.1 finitely many times we obtain a sequence of domains Q(d;) with
connected boundary, where §; — 0 as j — oo, such that

hm 0'1(9((5])) = Ul(Q).

J—)OO

Since the (n — 1)-dimensional volume of each tube Ty tends to zero as § — 0,
lim |0Q(4;)| — |09
Jj—o0

and so

lim 1 (2(3;))[092(8;)| 7 = 01(2)|99] 7.

j—o0
It is clear that

lim |€2(6;)] = |€2].

Note that we can approximate the domains by smooth domains keeping the eigenvalue
and the volumes nearly constant. This completes the proof of Theorem 1.2. O

We now apply Proposition 4.1 to show that the unit ball B} in R™ does not maximize
the first Steklov eigenvalue among contractible domains in R™.

Theorem 4.3. There exists a family of bounded contractible smooth domains Q5 C R™,
0 < < e<1, degenerating to BY \ B? as § — 0, such that

lim o1 (Qs) = 01 (B2 \ B?) and lim |09s| = [0(B? \ B)|.
6—0 5—0

Proof. Let v be the line segment {¢1 =0, § < p < 1}, where ¢; denotes the angle with
the positive x1-coordinate axis in R™. Given 0 < § < ¢, let

Q5 = (BY \ BY)\ {x € B} \ B! : d(z,7) < d}.

The result follows from Proposition 4.1. Note that the domain so constructed is only
Lipschitz, but the corners can be smoothed while changing the boundary volume and
the first Steklov eigenvalue by an arbitrarily small amount. 0O
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Proof of Theorem 1.1. For the contractible domain 24, 0 < § < ¢, defined in the proof
of Theorem 4.3, lims_,q |0Qs] = [0(B} \B?)|. Then, by Theorem 4.3 and Proposition 3.1,

lim 1 (25)|005] = 1 (BY \ B2)[2(BY \ B)| > o1 (BY)| 0B

Therefore, for ¢ sufficiently small, o1 (25)|0Qs| > o1(B})|0BY|, and the unit ball B} does
not maximize the first Steklov eigenvalue among contractible domains in R™ having the
same boundary volume. O

Corollary 4.4. The mazimum of al(Q)|GQ|ﬁ among rotationally symmetric connected
domains Q@ C R™ is achieved by B} \ B? for some 0 < e < 1.

Proof. A rotationally symmetric connected domain in R™ must be congruent to either
BT or B} \ B? for some 0 < € < 1, and by Proposition 3.1 o1(B} \ B?)|0(B} \ B™)| >
01(B})|OBT|. Notice also that as € tends to 1 the eigenvalue o1(B; \ Be) goes to 0 (for

example, the coordinate functions have arbitrarily small Dirichlet integral and integrate
to 0 on the boundary), so the maximum is achieved for some € between 0 and 1. O

We showed in Section 2 that the number
o*(n) = sup{o1(Q)|0Q|=7 : Q CR"}
is finite. We could similarly consider the number

0§ (n) = sup{o1(Q2)|00 "1 Q C R” with 90 connected}.

Corollary 4.5. We have 0§(2) < 0*(2), but o§(n) = o*(n) for n > 3.

Proof. From Weinstock’s theorem we have o(2) = 27, but we have 0*(2) > 27 (cf. [6,
Proposition 4.2] or [10, Example 4.2.5], [4]). On the other hand for n > 3, Theorem 1.2
shows that for any smooth domain €2, and any € > 0 there is a domain €y with connected
boundary so that

o1 ()09 7T < 01(Q0)[0Q| 7T + €.

It follows that o*(n) < o§(n), and since the opposite inequality is clear from the definition
we have 0*(n) = of(n). O
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