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1. Introduction

In this paper we study optimization problems for Steklov eigenvalues on manifolds 
Mn with boundary. The main theme of the paper is to show that some of the refined 
results which are true for surfaces (n = 2) do not hold in higher dimensions (n ≥ 3).

We first consider the question of optimizing the first nonzero Steklov eigenvalue σ1(Ω)
for suitably normalized domains Ω in Rn. A theorem of F. Brock [1] says that a round 
ball maximizes σ1 over all smooth domains with the same (or larger) volume. On the 
other hand for n = 2 there is a stronger result of R. Weinstock [16] which says that the 
unit disk in the plane uniquely maximizes σ1 over all simply connected domains with 
the same (or larger) boundary length. From the isoperimetric inequality, any domain 
which has the same volume as a ball necessarily has boundary volume which is at least 
as large. Thus we see that for simply connected plane domains Weinstock’s theorem 
implies Brock’s theorem. On the other hand Brock’s theorem holds for arbitrary plane 
domains and domains in Rn for n ≥ 3. This leads to the question of whether there is 
an analogue to Weinstock’s theorem in higher dimensions. The question of whether the 
ball in higher dimensions maximizes σ1 over domains which are diffeomorphic to the ball 
(contractible domains) has been open. Very recently the Weinstock inequality has been 
obtained for convex domains in all dimensions by D. Bucur, V. Ferone, C. Nitsch, and C. 
Trombetti [2]. Some related questions were posed in [15, page 4] and [10, Open Problem 
2]. In this paper we show that the inequality is not true in higher dimensions for general 
contractible domains.

Theorem 1.1. For n ≥ 3 there is a smooth contractible domain Ω with |∂Ω| = |∂B1|
where B1 is a unit ball in Rn, but with σ1(Ω) > σ1(B1) = 1.

In Proposition 2.1 we also give an explicit upper bound on σ1(Ω) for any smooth 
domain in Rn in terms of its boundary volume. This leaves open the question of finding 
the sharp value for this upper bound. Theorem 1.1 shows that it is strictly larger than 
its value for a ball.

In order to prove Theorem 1.1 we first consider the annular domain Ωε = B1 \Bε. We 
show in Proposition 3.1 that the kth Steklov eigenvalue is decreased by approximately 
a positive constant times ε2k+n−2. When k = 1 the exponent is equal to n, and it 
follows that when ε is small the normalized first Steklov eigenvalue σ1(Ωε)|∂Ωε|

1
n−1 is 

strictly larger than that of B1 (actually the same is true for higher eigenvalues). For 
n ≥ 3, we then show that we can modify the domain Ωε to make it contractible while 
changing the normalized first Steklov eigenvalue by an arbitrarily small amount. This 
is accomplished by adding a small tube joining the boundary components and showing 
that the construction can be done keeping the normalized eigenvalue nearly unchanged. 
This construction leads to a more general question about boundary connectedness.

Another result for n = 2 which was discovered in [6] is that by adding an extra 
boundary component to a surface the normalized first Steklov eigenvalue σ1L (where L
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is the boundary length) can be made strictly larger. This was used to show that surfaces 
of genus 0 (homeomorphic to plane domains) which maximize σ1 for their boundary 
length must have an infinite number of boundary components. The question of whether a 
similar phenomenon might be true in higher dimensions was posed in [10, following Open 
Problem 2]. We show here that this is also not true for manifolds with n ≥ 3. Specifically 
we show that the number of boundary components does not affect the maximum value 
of the normalized first Steklov eigenvalue.

Theorem 1.2. Given any compact Riemannian manifold Ωn with non-empty boundary 
and n ≥ 3, and given any ε > 0 there exists a smooth subdomain Ωε of Ω with connected 
boundary such that

|Ω| − |Ωε| < ε, ||∂Ω| − |∂Ωε|| < ε, and |σ1(Ω) − σ1(Ωε)| < ε.

In Section 2 of the paper we give an explicit coarse upper bound on the normalized 
first Steklov eigenvalue of a domain in Rn. This is done by using stereographic projection 
and a balancing argument. This is a less general but more precise bound than that of 
[3] (see also [11]).

In Section 3 we do the asymptotic calculation of the kth Steklov eigenvalue of B1 \Bε. 
This calculation had been done previously by the authors for k = 1 and n = 2 (cf. [6, 
Proposition 4.2]) and [10, Example 4.2.5], [4], and was done for k = 1 and n ≥ 2 by E. 
Martel (see [10, Remark 4.2.8]).

In Section 4 we prove the main results concerning the effect of boundary connected-
ness. This involves delicate estimation of the first Steklov eigenvalue for domains with 
small tubes connecting boundary components.

2. Upper bounds

In dimension n = 2, for any compact Riemannian surface, the k-th normalized Steklov 
eigenvalue is bounded above in terms of k, the genus γ and the number of boundary 
components b > 0 of the surface, in the most general form by Karpukhin [13],

σk(Σ)|∂Σ| ≤ 2π(k + γ + b− 1)

(see [9], [5], [12], [16] for earlier results) and also in terms of only the genus and k,

σk(Σ)|∂Σ| ≤ Ak + Bγ

for constants A and B (see [11], [3], [14]). For simply-connected domains in R2, the first 
bound is sharp, and the k-th normalized Steklov eigenvalue is maximized in the limit 
by a disjoint union of k identical disks for any k ≥ 1 ([8], [16]). In general the bounds 
are not sharp, however sharp bounds are known for the first nonzero normalized Steklov 
eigenvalue for the annulus and the Möbius band ([6]), and the authors proved existence 
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of a metric that maximizes the first nonzero normalized eigenvalue on any compact 
orientable surface of genus zero ([6]). Moreover, it was shown in [6] that the maximum 
value of σ1(Σ)|∂Σ| over all smooth metrics on a compact orientable surface Σ of genus 
zero, is strictly increasing in the number b of boundary components, and converges to 4π
as b tends to infinity. Thus, the asymptotically sharp upper bound for surfaces of genus 
zero is 4π.

In higher dimensions, it was shown in [3] (see also a generalization in [11]) that if M
is Riemannian manifold of dimension n ≥ 2 that is conformally equivalent to a complete 
Riemannian manifold with non-negative Ricci curvature, then for any domain Ω ⊂ M ,

σk(Ω)|∂Ω| 1
n−1 ≤ α(n)

I(Ω)
n−2
n−1

k
2
n

where I(Ω) = |∂Ω|/|Ω|n−1
n is the isoperimetric ratio. In particular, for any bounded 

domain Ω in Rn, by the classical isoperimetric inequality, it follows that the normalized 
Steklov eigenvalues are uniformly bounded above, σk(Ω)|∂Ω| 1

n−1 ≤ C(n)k 2
n . We observe 

that in the special case when Ω ⊂ Rn, with n ≥ 2, an explicit bound can be directly 
obtained easily for k = 1 as follows.

Proposition 2.1. If Ω is a domain in Rn, n ≥ 2, then

σ1(Ω)|∂Ω| 1
n−1 ≤ n

1
n−1 |Sn| 2

n

|Bn|
n−2

n(n−1)
.

Proof. Using stereographic projection, and a standard balancing argument, there exists 
a conformal map F : Ω → Sn ⊂ Rn+1 with 

∫
∂Ω F = 0. Using the component functions 

Fi, i = 1, . . . , n + 1, as test functions in the variational characterization of σ1, we have

σ1

∫
∂Ω

F 2
i ≤

∫
Ω

|∇Fi|2.

Summing on i, and applying Hölder’s inequality,

σ1|∂Ω| ≤
∫
Ω

|∇F |2 ≤

⎛
⎝∫

Ω

|∇F |n
⎞
⎠

2
n

|Ω|n−2
n . (2.1)

Since F : Ω → Sn is conformal, |∇F |2 = n|JF | 2
n where |JF | denotes the Jacobian 

determinant of F , and so

∫
|∇F |n =

∫ (
|∇F |2

)n
2 = n

n
2

∫
|JF | = n

n
2 |F (Ω)| ≤ n

n
2 |Sn|. (2.2)
Ω Ω Ω
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Using (2.2) in (2.1), we obtain

σ1|∂Ω| ≤ n|Sn| 2
n |Ω|n−2

n ≤ n
1

n−1 |Sn| 2
n

|Bn|
n−2

n(n−1)
|∂Ω|

n−2
n−1 ,

where the last inequality follows from the isoperimetric inequality |Ω|/|Bn| ≤
(|∂Ω|/|Sn−1|) n

n−1 and the formula |Sn−1| = n|Bn|. Simplifying, we obtain the desired 
bound. �
3. Dirichlet-to-Neumann spectrum of BBBn

1 \ BBBn
ε

Throughout the paper we let Bn
ρ denote the ball of radius ρ in Rn, and use spherical 

coordinates ρ, φ1, . . . , φn−1 on Rn. In this section we calculate the Dirichlet-to-Neumann 
spectrum of Bn

1 \ Bn
ε , where 0 < ε < 1 is small, and show that k-th nonzero normalized 

Steklov eigenvalue of Bn
1 \ Bn

ε is strictly greater than that of the ball Bn
1 . For k = 1 this 

was verified by E. Martel [10, Remark 4.2.8].

Proposition 3.1. For ε sufficiently small, 0 < ε < 1, the k-th distinct Steklov eigenvalue 
of Bn

1 \ Bn
ε for n ≥ 3 is

σk = k − k(2k + n− 2)
k + n− 2 ε2k+n−2 + O(ε2k+n−1),

for k = 1, 2, 3, . . .. In particular, for ε sufficiently small the first nonzero Steklov eigen-
value is

σ1 = 1 − n

n− 1ε
n + O(εn+1),

and

σk(Bn
1 )|∂Bn

1 |
1

n−1 < σk(Bn
1 \ Bn

ε )|∂(Bn
1 \ Bn

ε )| 1
n−1 .

Proof. The outward unit normal vector on ∂Bn
1 is given by η = ∂

∂ρ and on ∂Bn
ε by 

η = − ∂
∂ρ . To compute the Dirichlet-to-Neumann spectrum we separate variables and 

look for harmonic functions of the form u(ρ, φ1, . . . , φn−1) = α(ρ)β(φ1, . . . , φn−1). By 
standard methods if n > 2 we obtain solutions for any nonnegative integer k given by

α(ρ) = aρk + bρ−k+2−n.

In order to be an eigenfunction of the Dirichlet-to-Neumann map we must have uη = σu

on ∂(Bn
1 \Bn

ε ), or α′(1) = σα(1) on ∂Bn
1 and α′(ε) = −σα(ε) on ∂Bn

ε . For each nonnegative 
integer k the conditions become
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ak + b(−k + 2 − n) = σ(a + b)

akεk−1 + b(−k + 2 − n)ε−k+1−n = −σ(aεk + bε−k+2−n).

Factoring out a and b these become

a(k − σ) = b(σ + k − 2 + n)

a(kεk−1 + σεk) = b(−σε−k+2−n + (k − 2 + n)ε−k+1−n).

Using the first equation to eliminate a and dividing by b (which must be nonzero) we 
get

σ + k − 2 + n

k − σ
(kεk−1 + σεk) = −σε−k+2−n + (k + n− 2)ε−k+1−n,

which gives the quadratic equation for σ

σ2(εk − ε−k+2−n) + σ(kεk−1 + (k − 2 + n)εk + kε−k+2−n) + (k + n− 2)ε−k+1−n)

+ (k + n− 2)k(εk−1 − ε−k+1−n) = 0.

Multiplying through by εk+n−1 we may rewrite this as

σ2(ε− ε2k+n−1) − σ((k + n− 2)ε2k+n−1 + kε2k+n−2 + kε + k + n− 2)

+ (k + n− 2)k(1 − ε2k+n−2) = 0.

Letting A, B, C be the coefficients in this quadratic equation, Aσ2 + Bσ + C = 0, we 
calculate that

B2 − 4AC

= (k + n− 2)2 − 2k(k + n− 2)ε + k2ε2 + 2k(k + n− 2)ε2k+n−2

+ c(n, k)ε2k+n−1 + O(ε2k+n)

= (k + n− 2 − kε)2 + 2k(k + n− 2)ε2k+n−2 + c(n, k)ε2k+n−1 + O(ε2k+n)

= (k + n− 2 − kε)2
[
1 + 2k(k + n− 2)

D2 ε2k+n−2 + c(n, k)
D2 ε2k+n−1 + O(ε2k+n)

]

where c(n, k) = 2k2 + 2(k + n − 2)2 + 8k(k + n − 2) and D = k + n − 2 − kε. Using the 
expansion 

√
1 + x = 1 + 1

2x − 1
8x

2 + · · · , we have

√
B2 − 4AC = D

[
1 + 1

2

(
2k(k + n− 2)

D2 ε2k+n−2 + c(n, k)
D2 ε2k+n−1

)
+ O(ε2k+n)

]

= D + k(k + n− 2)
D

ε2k+n−2 + c(n, k)
2D ε2k+n−1 + O(ε2k+n).



152 A. Fraser, R. Schoen / Advances in Mathematics 348 (2019) 146–162
Now since

1
D

= 1
k + n− 2 − kε

= 1
k + n− 2

1
1 − k

k+n−2 ε
= 1

k + n− 2

[
1 + k

k + n− 2ε + O(ε2)
]
,

we get that
√
B2 − 4AC

= k + n− 2 − kε + k

[
1 + k

k + n− 2ε
]
ε2k+n−2 + c(n, k)

2(k + n− 2)ε
2k+n−1 + O(ε2k+n)

= k + n− 2 − kε + kε2k+n−2 +
[

k2

k + n− 2 + c(n, k)
2(k + n− 2)

]
ε2k+n−1 + O(ε2k+n).

Set

c′(n, k) := k2

k + n− 2 + c(n, k)
2(k + n− 2) = 2k2 + (k + n− 2)2 + 4k(k + n− 2)

k + n− 2 .

Also, A = ε(1 − ε2k+n−2), and

1
A

= 1
ε(1 − ε2k+n−2) = ε−1(1 + ε2k+n−2 + O(ε4k+2n−4)).

Using this, we see that the quadratic equation for σ has roots

σ = 1
2(ε−1 + ε2k+n−3)

[
(k + n− 2)ε2k+n−1 + kε2k+n−2 + kε + k + n− 2

±
(
k + n− 2 − kε + kε2k+n−2 + c′(n, k)ε2k+n−1 + O(ε2k+n)

) ]
.

Hence there are two positive roots σ(1)
k < σ

(2)
k given by

σ
(2)
k = O(ε−1)

σ
(1)
k = 1

2(ε−1 + ε2k+n−3)
[

2kε + (k + n− 2 − c′(n, k))ε2k+n−1 + O(ε2k+n)
]

= k + 1
2(k + n− 2 − c′(n, k))ε2k+n−2 + kε2k+n−2 + O(ε2k+n−1)

= k − k(2k + n− 2)
k + n− 2 ε2k+n−2 + O(ε2k+n−1).

For any given k and ε sufficiently small, we see that σ(1)
k is the k-th distinct eigenvalue 

of Bn
1 \ Bn

ε , and the multiplicity of the k-th eigenvalue of Bn
1 \ Bn

ε and of Bn
1 must be 

the same. For Bn
1 , it is well known that the k-th distinct nonzero Steklov eigenvalue is 

σk(Bn
1 ) = k. On the other hand,
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|∂(Bn
1 \ Bn

ε )| 1
n−1 = |∂Bn

1 |
1

n−1 (1 + εn−1)
1

n−1

= |∂Bn
1 |

1
n−1

(
1 + 1

n− 1ε
n−1 + O(ε2n−2)

)
.

Therefore,

σk(Bn
1 \ Bn

ε ) |∂(Bn
1 \ Bn

ε )| 1
n−1

=
(
k − k(2k + n− 2)

k + n− 2 ε2k+n−2 + O(ε2k+n−1)
)

× |∂Bn
1 |

1
n−1

(
1 + 1

n− 1ε
n−1 + O(ε2n−2)

)

= |∂Bn
1 |

1
n−1

(
k + k

n− 1ε
n−1 + O(εn)

)

> k|∂Bn
1 |

1
n−1

= σk(Bn
1 )|∂Bn

1 |
1

n−1

where the inequality follows if ε is sufficiently small. �
4. Boundary connectedness in dimension at least 3

Let (Ω, g) be a compact, connected n-dimensional Riemannian manifold with bound-
ary ∂Ω �= ∅, n ≥ 3. The main theorem of this section shows that Ω can be approximated 
by a connected subdomain with connected boundary so that all three quantities |Ω|, 
|∂Ω|, and σ1(Ω) are changed by an arbitrarily small amount.

Theorem 1.2. Given ε > 0, there exists a domain Ωε ⊂ Ω with connected boundary and 
such that

|Ω| − |Ωε| < ε, ||∂Ω| − |∂Ωε|| < ε, and |σ1(Ω) − σ1(Ωε)| < ε.

Since Ω has smooth boundary, we may extend (Ω, g) to a manifold (M, g) so that 
Ω is a domain compactly contained in M . Given points p, q ∈ ∂Ω, let γ : [0, l] → M

be a unit speed curve from p to q meeting ∂Ω orthogonally at p and q. Consider Fermi 
coordinates t, r, θ1, . . . , θn−2 about γ, such that t is the arclength parameter along γ, 
and r, θ1, . . . , θn−2 are geodesic normal coordinates on the slices t = constant. Assume 
that γ extends beyond p and q so that

{x ∈ M : d(x, γ) < δ} ∩ {t = 0 or l} ∩ intΩ = ∅

for all δ ≤ δ0, for some fixed small δ0 > 0. Let



154 A. Fraser, R. Schoen / Advances in Mathematics 348 (2019) 146–162
Tδ = {x ∈ Ω : d(x, γ) = δ}

and let

Ωδ = Ω \ {x ∈ Ω : d(x, γ) ≤ δ}.

Proposition 4.1. limδ→0 σ1(Ωδ) = σ1(Ω).

The following lemma will be important later, since it implies that for a sequence of 
eigenfunctions, the L2-norm on the boundary ∂Ωδ doesn’t concentrate on the neck Tδ

as δ → 0.

Lemma 4.2. If there are constants δ0 > 0, C > 0 and a family of functions uδ ∈ W 1,2(Ωδ)
with ‖uδ‖W 1,2(Ωδ) ≤ C for δ ∈ (0, δ0), then

lim
δ→0

‖uδ‖L2(Tδ) = 0.

Proof. We may assume that the functions uδ are defined on a neighborhood of the curve 
γ on a larger domain Ω̃ containing Ω and such that ‖uδ‖W 1,2(Ω̃δ) ≤ C.

We can also localize the support of uδ to lie near the curve. Precisely, we choose a 
number r0 > 0 so that the coordinates (t, r, θ) exist on the r0 neighborhood of γ and so 
that the metric is uniformly equivalent to the product metric (0, l) ×Dr0 \Dδ given by 
dt2 +dr2 + r2gn−2 where gn−2 denotes the standard metric on Sn−2 and Dσ denotes the 
ball of radius σ centered at the origin of Rn−1. We choose a cutoff function ζ(r) which 
is 1 for r ≤ r0/2 and zero for r ≥ r0 and let vδ = ζuδ. We then have by the Schwarz and 
arithmetic geometric mean inequalities

|∇vδ|2 = u2
δ |∇ζ|2 + 2uδζ〈∇uδ,∇ζ〉 + ζ2|∇uδ|2 ≤ 2(ζ2|∇uδ|2 + u2

δ |∇ζ|2).

This implies ∫
δ≤r≤r0

|∇vδ|2 ≤ c

∫
Ωδ

(|∇uδ|2 + u2
δ)

for a constant c depending on r0. Note that r0 is fixed depending only on the geometry 
and we will choose δ much smaller than r0.

Thus to prove the lemma it suffices to show that for any ε > 0∫
Tδ

u2
δ =

∫
Tδ

v2
δ ≤ ε

∫
Ωδ

|∇vδ|2

for δ sufficiently small. Furthermore since the metric is uniformly equivalent to the 
Euclidean product metric on the support of vδ it suffices the prove this estimate for the 
product metric. This is what we shall do.
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For a fixed t0 ∈ (0, l) we consider the restriction which we denote by v, v(r, θ) =
vδ(t0, r, θ) on the annulus Dr0 \ Dδ in Rn−1. Choose h to be the harmonic function of 
the annulus Dr0 \Dδ

Δh = 0 on Dr0 \Dδ

h = v = 0 on ∂Dr0 (4.1)

h = v on ∂Dδ.

By the Dirichlet minimizing property of h we then have
∫

Dr0\Dδ

|∇h|2 ≤
∫

Dr0\Dδ

|∇v|2.

For any σ with δ ≤ σ ≤ r0 we have by the divergence theorem
∫

∂Dr0

∂h2

∂r
−

∫
∂Dσ

∂h2

∂r
=

∫
Dr0\Dσ

Δh2,

and so from (4.1) we get

−
∫

∂Dσ

∂h2

∂r
= 2

∫
Dr0\Dσ

|∇h|2

≤ 2
∫

Dr0\Dδ

|∇h|2

≤ 2
∫

Dr0\Dδ

|∇v|2.

Since we are working with respect to the standard metric on Rn−1 the volume measure 
on ∂Dσ is σn−2 times that on the unit sphere ∂D1. Therefore this may be rewritten

−σn−2 d

dσ

⎡
⎣σ2−n

∫
∂Dσ

h2

⎤
⎦ ≤ 2

∫
Dr0\Dδ

|∇v|2

since σ ≥ δ. Now we divide by σn−2 and integrate this with respect to σ on the interval 
[δ, r0] to obtain (note that h = v on ∂Dδ and h = 0 on ∂Dr0)

δ2−n

∫
∂D

v2 ≤ 2

⎛
⎝ r0∫

δ

σ2−ndσ

⎞
⎠ ∫

|∇v|2.

δ Dr0\Dδ
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This implies
∫

∂Dδ

v2 ≤ εn(δ)
∫

Dr0\Dδ

|∇v|2

where ε3(δ) = 2δ log(r0/δ) and εn(δ) = 2
n−3δ for n ≥ 4.

Written back in terms of vδ this says that for each t0 ∈ (0, l) we have
∫

∂Dδ

vδ(t0, δ, θ)2 ≤ εn(δ)
∫

Dr0\Dδ

|∇n−1vδ(t0, r, θ)|2

where we have used ∇n−1 to emphasize that the derivative is taken only along t = t0. 
We now integrate over t0 ∈ (0, l) to obtain

∫
Tδ

v2
δ ≤ εn(δ)

l∫
0

∫
Dr0\Dδ

|∇n−1vδ(t0, r, θ)|2 ≤ εn(δ)
∫
Ωδ

|∇vδ|2

where we have used the inequality |∇n−1vδ|2 ≤ |∇vδ|2. Since εn(δ) goes to 0 as δ goes 
to 0, we have completed the proof with respect the Euclidean product metric on [0, l] ×
(Dr0 \Dδ). As discussed above this implies the result for the original metric and for any 
function uδ in W 1,2(Ωδ). �
Proof of Proposition 4.1. Let uδ be a first Steklov eigenfunction of Ωδ with eigenvalue 
σ1(Ωδ), with ‖uδ‖L2(∂Ωδ) = 1. Then,

{
Δuδ = 0 on Ωδ

∂uδ

∂ν = σ1(Ωδ)uδ on ∂Ωδ.

We first show that σ1(Ωδ) is bounded from above independent of δ for δ small. To see 
this we use the variational characterization of σ1

σ1(Ωδ) = inf{
∫
Ωδ

|∇f |2∫
∂Ωδ

f2 :
∫

∂Ωδ

f = 0}

where the infimum is taken over functions f ∈ W 1,2(Ωδ). Thus to get an upper bound we 
need only exhibit functions which integrate to 0 over the boundary of Ωδ having bounded 
Rayleigh quotient. We can do this by choosing a fixed function which is supported away 
from the tube region and so is a valid test function for any small δ.

Elliptic boundary value estimates ([7, Theorem 6.30]) give bounds on uδ and its deriva-
tives up to ∂Ωδ. There exists a sequence uδi that converges in C2(K) on compact subsets 
K ⊂ Ω \ γ to a harmonic function u on Ω \ γ, satisfying
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∂u

∂ν
= σu on ∂Ω \ {p, q},

with σ = limi→∞ σ1(Ωδi). Since uδi converges to u in C2(K) on compact subsets K ⊂ Ω \
γ, there exists C > 0 such that ‖uδi‖W 1,2(Ωδi

) ≤ C. By Lemma 4.2, limi→∞ ‖uδi‖L2(Tδi
) =

0, and since ‖uδi‖L2(∂Ωδi
) = 1, ‖u‖L2(∂Ω) = 1.

We now show that u extends to a Steklov eigenfunction on Ω. Consider the following 
logarithmic cut-off function about the curve γ,

ϕδ =

⎧⎪⎨
⎪⎩

0 r ≤ δ2

log r−log δ2

− log δ δ2 ≤ r ≤ δ

1 δ ≤ r.

(4.2)

By the definition of ϕδ, with respect to the product metric (see proof of Lemma 4.2) we 
have

∫
Ω

|∇ϕδ|2 ≤
l∫

0

⎛
⎜⎝ ∫
Dδ\Dδ2

|∇ϕδ|2

⎞
⎟⎠ dt

= C(n)
(log δ)2

l∫
0

⎛
⎝ δ∫

δ2

1
r2 rn−2 dr

⎞
⎠ dt

= C(n) l
(log δ)2

δ∫
δ2

rn−4 dr (4.3)

= C(n) l
(log δ)2 ·

{
− log δ if n = 3
δn−3(1−δn−3)

n−3 if n > 3

= C(n)l ·
{

− 1
log δ if n = 3
1

(log δ)2
δn−3(1−δn−3)

n−3 if n > 3

→ 0 as δ → 0. (4.4)

Since the metric is uniformly equivalent to the product metric (see proof of Lemma 4.2), ∫
Ω |∇ϕδ|2 → 0 as δ → 0. Let ψ ∈ W 1,2∩L∞(Ω) and let ψδ = ϕδψ. Since u is a harmonic 

function on Ω \ γ, satisfying

∂u

∂ν
= σu on ∂Ω \ {p, q},

and ψδ vanishes near γ, we have∫
∇u∇ψδ = σ

∫
uψδ. (4.5)
Ω\γ ∂Ω\{p, q}
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By (4.4) and Hölder’s inequality,
∫
Ω

ψ∇u∇ϕδ → 0 as δ → 0.

Since |ψδ| ≤ |ψ| ∈ L∞ and ψδ → ψ a.e., by the dominated convergence theorem, taking 
the limit of (4.5) as δ → 0, we obtain

∫
Ω

∇u∇ψ = σ

∫
∂Ω

uψ.

Therefore, u extends to a Steklov eigenfunction with eigenvalue σ on Ω.
Finally, we show that u is a first eigenfunction of Ω; i.e. σ = σ1(Ω). First, since uδ

is an eigenfunction corresponding to the first nonzero eigenvalue of Ωδ, we have that ∫
∂Ωδ

uδ = 0. Since limδ→0 ‖uδ‖L2(Tδ) = 0 (by Lemma 4.2), it follows that

∫
∂Ω

u = lim
δ→0

∫
∂Ωδ

uδ = 0.

Therefore, u is nonconstant, and σ ≥ σ1(Ω). Let v be a first eigenfunction of Ω with 
‖v‖L2(∂Ω) = 1. Let ϕδ be the logarithmic cut-off function defined by (4.2), and let

vδ = ϕδv −
1

|∂Ωδ2 |

∫
∂Ωδ2

ϕδv.

Then 
∫
∂Ωδ2

vδ = 0, and we will use vδ as a test function in the variational characterization 

of the first nonzero Steklov eigenvalue σ1(Ωδ2) of Ωδ2 . First note that since 
∫
∂Ω v = 0,

∫
∂Ωδ2

ϕδv =
∫

∂Ω∩{r<δ}

(ϕδ − 1)v.

Then using Hölder’s inequality and the fact that ‖v‖L2(∂Ω) = 1, we have
∣∣∣∣∣∣∣

∫
∂Ωδ2

ϕδv

∣∣∣∣∣∣∣ ≤ |∂Ω ∩ {r < δ}| 12 . (4.6)

Now,

∫
v2
δ =

∫
(ϕδv)2 −

1
|∂Ωδ2 |

⎛
⎜⎝ ∫

ϕδv

⎞
⎟⎠

2

∂Ωδ2 ∂Ωδ2 ∂Ωδ2
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=
∫
∂Ω

v2 −
∫

∂Ω∩{r<δ}

(1 − ϕ2
δ)v2 − 1

|∂Ωδ2 |

⎛
⎜⎝ ∫

∂Ωδ2

ϕδv

⎞
⎟⎠

2

≥
∫
∂Ω

v2 − C|∂Ω ∩ {r < δ}| − |∂Ω ∩ {r < δ}|
|∂Ω| − |∂Ω ∩ {r < δ2}|

=
∫
∂Ω

v2 − C1(δ)

where C1(δ) → 0 as δ → 0. For the inequality, the constant C in the second term is a 
pointwise bound on the first eigenfunction v, and for the third term we used the estimate 
(4.6). On the other hand,

∫
Ωδ2

|∇vδ|2 =
∫

Ωδ2

|∇(ϕδv)|2

=
∫
Ωδ

|∇v|2 +
∫

Ωδ2\Ωδ

|∇(ϕδv)|2

≤
∫
Ω

|∇v|2 + 2
∫

Ωδ2\Ωδ

(
|∇ϕδ|2v2 + ϕ2

δ |∇v|2
)

≤
∫
Ω

|∇v|2 + C

∫
Ωδ2\Ωδ

|∇ϕδ|2 + C|Ωδ2 \ Ωδ|

=
∫
Ω

|∇v|2 + C2(δ)

with C2(δ) → 0 as δ → 0, by (4.4) and since |Ωδ2 \ Ωδ| ≤ |{δ2 < r < δ, 0 < t < l}| → 0
as δ → 0. Here, in the second inequality, the constant C depends on a pointwise upper 
bound on v and |∇v|. Combining these estimates, we have

σ1(Ωδ2) ≤
∫
Ωδ2

|∇vδ|2∫
∂Ωδ2

v2
δ

≤
∫
Ω |∇v|2 + C2(δ)∫
∂Ω v2 − C1(δ)

δ→0−→
∫
Ω |∇v|2∫
∂Ω v2 = σ1(Ω).

It follows that, σ = limδ→0 σ1(Ωδ2) ≤ σ1(Ω). Therefore,

lim
δ→0

σ1(Ωδ) = σ1(Ω). �
Proof of Theorem 1.2. Let Ω be a manifold with b ≥ 2 boundary components. It suffices 
to construct a sequence of connected smooth subdomains Ωi with connected boundary 
so that
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lim
i

|Ωi| = |Ω|, lim
i

|∂Ωi| = |∂Ω|, and lim
i

σ1(Ωi) = σ1(Ω).

To construct Ωi we choose b −1 nonintersecting curves γ1, . . . , γb−1 which connect bound-
ary components of Ω and meet ∂Ω orthogonally. Let Ω(δ) be the domain with connected 
boundary obtained by removing a δ-neighborhood of each of the curves from Ω. Ap-
plying Proposition 4.1 finitely many times we obtain a sequence of domains Ω(δj) with 
connected boundary, where δj → 0 as j → ∞, such that

lim
j→∞

σ1(Ω(δj)) = σ1(Ω).

Since the (n − 1)-dimensional volume of each tube Tδ tends to zero as δ → 0,

lim
j→∞

|∂Ω(δj)| → |∂Ω|

and so

lim
j→∞

σ1(Ω(δj))|∂Ω(δj)|
1

n−1 = σ1(Ω)|∂Ω| 1
n−1 .

It is clear that

lim
j

|Ω(δj)| = |Ω|.

Note that we can approximate the domains by smooth domains keeping the eigenvalue 
and the volumes nearly constant. This completes the proof of Theorem 1.2. �

We now apply Proposition 4.1 to show that the unit ball Bn
1 in Rn does not maximize 

the first Steklov eigenvalue among contractible domains in Rn.

Theorem 4.3. There exists a family of bounded contractible smooth domains Ωδ ⊂ Rn, 
0 < δ � ε < 1, degenerating to Bn

1 \ Bn
ε as δ → 0, such that

lim
δ→0

σ1(Ωδ) = σ1(Bn
1 \ Bn

ε ) and lim
δ→0

|∂Ωδ| = |∂(Bn
1 \ Bn

ε )|.

Proof. Let γ be the line segment {φ1 = 0, ε2 < ρ < 1}, where φ1 denotes the angle with 
the positive x1-coordinate axis in Rn. Given 0 < δ � ε, let

Ωδ = (Bn
1 \ Bn

ε ) \ {x ∈ Bn
1 \ Bn

ε : d(x, γ) < δ}.

The result follows from Proposition 4.1. Note that the domain so constructed is only 
Lipschitz, but the corners can be smoothed while changing the boundary volume and 
the first Steklov eigenvalue by an arbitrarily small amount. �
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Proof of Theorem 1.1. For the contractible domain Ωδ, 0 < δ � ε, defined in the proof 
of Theorem 4.3, limδ→0 |∂Ωδ| = |∂(Bn

1 \Bn
ε )|. Then, by Theorem 4.3 and Proposition 3.1,

lim
δ→0

σ1(Ωδ)|∂Ωδ| = σ1(Bn
1 \ Bn

ε )|∂(Bn
1 \ Bn

ε )| > σ1(Bn
1 )|∂Bn

1 |.

Therefore, for δ sufficiently small, σ1(Ωδ)|∂Ωδ| > σ1(Bn
1 )|∂Bn

1 |, and the unit ball Bn
1 does 

not maximize the first Steklov eigenvalue among contractible domains in Rn having the 
same boundary volume. �
Corollary 4.4. The maximum of σ1(Ω)|∂Ω| 1

n−1 among rotationally symmetric connected 
domains Ω ⊂ Rn is achieved by Bn

1 \ Bn
ε for some 0 < ε < 1.

Proof. A rotationally symmetric connected domain in Rn must be congruent to either 
Bn

1 or Bn
1 \ Bn

ε for some 0 < ε < 1, and by Proposition 3.1 σ1(Bn
1 \ Bn

ε )|∂(Bn
1 \ Bn

ε )| >
σ1(Bn

1 )|∂Bn
1 |. Notice also that as ε tends to 1 the eigenvalue σ1(B1 \ Bε) goes to 0 (for 

example, the coordinate functions have arbitrarily small Dirichlet integral and integrate 
to 0 on the boundary), so the maximum is achieved for some ε between 0 and 1. �

We showed in Section 2 that the number

σ∗(n) = sup{σ1(Ω)|∂Ω| 1
n−1 : Ω ⊂ Rn}

is finite. We could similarly consider the number

σ∗
0(n) = sup{σ1(Ω)|∂Ω| 1

n−1 : Ω ⊂ Rn with ∂Ω connected}.

Corollary 4.5. We have σ∗
0(2) < σ∗(2), but σ∗

0(n) = σ∗(n) for n ≥ 3.

Proof. From Weinstock’s theorem we have σ∗
0(2) = 2π, but we have σ∗(2) > 2π (cf. [6, 

Proposition 4.2] or [10, Example 4.2.5], [4]). On the other hand for n ≥ 3, Theorem 1.2
shows that for any smooth domain Ω, and any ε > 0 there is a domain Ω0 with connected 
boundary so that

σ1(Ω)|∂Ω| 1
n−1 < σ1(Ω0)|∂Ω0|

1
n−1 + ε.

It follows that σ∗(n) ≤ σ∗
0(n), and since the opposite inequality is clear from the definition 

we have σ∗(n) = σ∗
0(n). �
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